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Abstract.

We study Schréodinger operators with potentials not decaying at infinity. For these we
prove a limiting absorption principle and the absence of singular spectrum. This is done by
an abstract method, relying on the positivity of a commutator, related to the Kato-Putnam
and Mourre methods.
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0 Introduction

This article is devoted to the study of the spectral properties of some anisotropic Schrédinger
operators H = A + V acting in the Hilbert space 5# = L%(R").

Much is known on the spectrum when V is A-relatively compact. The essential spectrum
is [0, 00) and, under some mild extra conditions (essentially on the large-distance behaviour
of V), the singular continuous spectrum is absent and the point spectrum in any compact
subset of R \ {0} is discrete. The case when V is not relatively compact is less understood.
Detailed spectral informations are available when V' has some special properties: repulsivity,
quasi-periodicity, a N-body structure or monotony as in the Stark effect problem. We do
not give details or references. Let us mention that — except in the quasi-periodic case —
methods using the positivity of a commutator, as Mourre’s approach [5] or the Kato-Putnam
theory [4], [6] are fit.

Our intention is to show that some classes of V’s which are not relatively compact can
also be studied by means of the positivity of a suitable commutator. To give an idea, let us
look at the operator H = A+ V. We have i[H, A] = 2A — V where 4 = 1{(P,Q) +(Q, P)}
is the generator of dilations in R", P,Q are the momentum (resp. position) operators and
V = (z,VV). It is known that, for N > 3, A > (LV—E"—Q)ziQfQ; hence, if we require
Cn

3

V(z)| < Tof with Cy <

(N —2)

. (0.1)

we get i[H, A] > 0. This seems to be a good starting point for studying the spectral properties
of H in the anisotropic case, because (0.1) allows a rather general behaviour of V' at infinity
(roughly V must have radial limits, which may depend on the direction, and a O(r~2) type
of convergence towards them). But the existing commutator methods are not able to exploit
the situation above in a suitable generality. First, in the Kato-Putnam theory, the weak
positivity i[H, A] > 0 is enough, but one needs strong regularity properties for H and A.
Secondly, suppose that one aims at a Mourre estimate for the interval J:

Eg(J)i[H, AlEx(J) > aBx(J) + K (0.2)

where Epy is the spectral measure of H, a is a strictly positive number and K a compact
operator. In our case i[H, A] does not dominate a strictly positive constant (except in some
very restricted circumstances). Hence the best we can do is to adopt a perturbative point of
view and write

i[H,A] = 2H — (2V + V).

One can try to get some positivity out of the first term and a compact operator out of the
second by using suitable spectral projections Ey(J). But this requires some compactness
assumptions on V, which are not implied by (0.1) and which we would like to avoid. There-
fore, one aims at a result relying on the condition B = i[H, A] > 0, but with less regularity
required on H and A. This will be done in the first section. The main result is Theorem
1.1. It is shown roughly that if i[H, A] is positive, injective and H-bounded and the second
commutator [B, A] is not too singular (in a sense to be specified), then the spectrum of H is
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purely absolutely continuous. We also get some estimates on the behaviour of the resolvent
of H close to the real axis (the limiting absorption principle and smoothness estimates). In

Corollaries 1.1 and 1.2 we reformulate these as criteria for the existence and unitarity of the
wave operators. :

1 The Method of the Weakly Conjugate Operator

Let us consider a self-adjoint operator H in the Hilbert space J# (with scalar product (-, -)
and norm || - |[). We denote by ¥ its domain and by ¥' the form-domain. Endowed with
the corresponding graph norms, they are also Hilbert spaces. By identifying ¢ with its
topological anti-dual (its adjoint) #*, one has the following continuous, dense embeddings:

G*chgcHcCYrcy?

where, for example, ¥~ ! is the adjoint of 4. Notice that H extends to a bounded operator:
@1 — @1 (denoted by the same letter), which is symmetric with respect to the duality
between 4! and ¥1.

We shall study the spectrum of H by means of another self-adjoint operator A, which
will be now introduced through its unitary group {W(t) = €4 | ¢ € R}. We assume that
all operators W (t) leave ¢2 invariant. It is a standard fact that W will induce Cy-groups in
the spaces ¢° (s = 1, +2). They act in a coherent manner, hence no notational difference
will be made between them, neither between their infinitesimal generators, but it is useful
to distinguish between their domains by writing D(A; ), where ¢ stands for one of the
spaces above.

Definition 1.1 We will say that H € C'(A;¥%?, 5#) if the mapping
R >t W(-t)HW(t) € B(4?, 5¢) (1.1)
is strongly C', i.e. for any f € 4%, t — W(—t)HW (¢)f € # is C' in norm-sense.
The strong derivative of the function (1.1) at ¢ = 0 will be denoted by B. It belongs to

B(%?, 5#), the space of all linear, bounded operators: ¥? — 5. By duality and interpola-
tion, we can think of B as a symmetric element of B(4!,%4~1).

Definition 1.2 We say that A is weakly conjugate to H if H € C'(A;%2,5¢) and B > 0
(i.e. B > 0 and the kernel of B is trivial).

Definition 1.3 (a) We denote by & the Hilbert completion of ¢! for the norm ||f||5 =
(f. BFYM2.

(b) We denote by &* the Hilbert completion of B* for the norm ||g|

g = (g, B 1g)¥%
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It is easy to see that B extends to a unitary operator: & — %*. %* can be identified
with the adjoint of & (this explains the notation). The duality form of the couple (&, Z*)
coincides with the scalar product of 3# on ¢! x B¥' and will therefore also be denoted by
(-,-). In general, # is not comparable with % or %*. Note that we have dense embeddings
Gl C % and B* C 4. 1f the Cy-group W in 4! leaves %* invariant, we get Cop-groups
respectively in #* and in %, also denoted by W. Hence, two new Hilbert spaces appear:
D(A; #*) and D(A;%). Since D(A;%*) will play a distinguish role, we use the short
notation & = D(A; %*). It carries the Hilbert norm

1/2

£ 1lar = (15155 + A7) = (7, B7£) + (Af, B AD) .
We finally assume B € C'(A; %, %*). As explained before, this means that the map
R>t— W(—-t)BW(t) € B(#,%") (1.2)
is strongly C!. Equivalently the sesquilinear form
D(A; B) x D(A; &) 3 (f,9) — i(f, BAg) — i(Af, Bg) € C (13

)
is continuous with respect to the topology of & x 4. A rough way to say this is i[B, A] €
B(%, %*), where the second commutator i[B, A] is either the operator associated with (1.3)
or the derivative at t = 0 in (1.2).

We may now state our main result:

Theorem 1.1 Suppose that A is weakly conjugate to H and that B € C'(A; &, #*).
(@) [{fy (H = XFin) 1) < C||f||%, with C independent of A € R, u >0 and f € &

(b) Any operator T € B(«/*, ¥") is H-smooth where J stands for an arbitrary Hilbert
space.

(c) H has purely absolutely continuous spectrum.

Remark that (H — A Fip)~! belong to B(¥4~*,4') C B(#*, %) C B(«/,4/*), hence the
uniform estimate (a) (the “limiting absorption principle”) makes sense. The point is that
it cannot be true in B(¥4~!,%!) if A belongs to the spectrum of H. The precise statement
of the point (b) is that a closed operator Tj in 4%, taking values in ¢, which extends to
an element of B(&/™*, J¢) is H-smooth in the usual sense (see [7]). This also makes sense,
because if Ty is H-smooth, its domain must contain the domain of H, which is dense in &/*.

Proof of Theorem 1.1. (b) and (c) follow from (a) in a standard way. We shall divide the
proof of (a) into several easy steps. The same letter may denote different constants from
line to line.

Lemma 1.1 There ezists €9 > 0 such that for all A € R, > 0 and € € (0, &), the operators
H-AFipFicB: 9% - H#

are isomorphisms.
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Proof. As a consequence of the open mapping theorem, one needs only to show that the
operators H — A Fip F ie B, which are elements of B(42, ), are bijections: 42 — . For
fe¥?

I(H = AFiuFieB)f||* = p?||fII* + |(H — A FieB)f||”
+2Re{(H — A FieB) f, Fipf)
> @2 |fI? + 2eull £l
> p?l| 1%
In particular, for u # 0 the operators H — A F iy F ieB : ¥? —  are injective. But,
setting €9 = 1/||B||w2_ s and restricting to € € (0, &), it is easy to see that they are closed

operators in J# and adjoint to each other. This gives immediately the surjectivity and this
finishes the proof.

(i) Now, let us set
CE=GE(\p)=(H-AFipFieB)™ (1.4)

They are in B(5#,%?), hence in B(¥~1,4') and in B(%*,%#) too. One can easily show
that
(f,GZq) = (GFf.g) forall f,ge 9. (15)

This is why one sometimes uses the notations G = G, and G_ = G?. In the next lemma we
give the crucial a priori estimates satisfied by G*. Note that, for lack of a better positivity
of B, one cannot avoid the new spaces % and #*.

Lemma 1.2 (a)

1GE £l < %W, G, (16)
(b) 1
162 flla < +11fllg- (1.7)
©) /\
[ P— (7) ‘ (18)

Here A€ R, p € (0,00) and € € (0,e0); in (c) the constant c(A) does not depend on p nor €.

Proof. (a) We write Gf — G, = 2iuG} G + 2ieG BG_, which, combined with (1.4), gives
for f € B* Cc ¥ L

! ¢ - _ -~

5\ F,1GE = G21f) 2 (G2 £,BG ) = 16 {1l

and this is stronger than one of inequalities in (1.5). The other one is obtained in the same
way.
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(b) follows from (a) and from |{f, g)| < ||f|

219l (f € B* and g € B).

(c) is straightforward.

(iii) We set F, = F (A, u; f) = (f,G.f), where A € R, > 0,e € (0,£0) and f € &. Our
strategy is to differentiate with respect to €, to use the a priori estimate (1.5) in order to get
a differential inequality on |F.| and integrate this. We will obtain (a) in the end by letting
€ — 0. In fact, a formal calculation gives easily

Fcf == (G:fs Af) - (AfaG5f> - ZE<G:f! {BvA]GEf)

We give no details about the rigorous proof which can be easily supplied. By (1.5) we get

P < %nfndnmm 1B, Alllgae

Fel. (1.9)

(iv) By a version of Gronwall’s lemma which is proven in [2], Appendix B and by (1.6)
we conclude from (1.8) that the limit Fy = lim,_,¢ F. exists and satisfies

1Fol < CQ1Ful + 171} < O { 1A +11A11%} < CUALE

(v) To finish the proof we need only to show that Fj is the right object, i.e. that
(f, Ge(A\, p) f) converges to (f, (H — A —ip)~'f) when € — 0. For this we write

(.G ) f)y = {fs (H = X = i) )] S NIGe(A ) = (H = X = ip) || g _ 5l f]

This goes to zero when € — 0 because of the second identity of the resolvent and of (1.7).

2
7

As consequences of Theorem 1.1 (b) and Theorems XI1.24 and XIII.26 from [7], we can
state the following scattering results:

Corollary 1.1 For j = 1,2, let H;, A; be self-adjoint operators in the Hilbert space €.
Assume that A; is weakly conjugate to H; and that B; = i[H;, A;] € C'(A; B;,%;) (the
objects 47, B; and o are as explained before). Assume also that Hy — Hy € B(#", &%) in
the sense that there exists Hi, € B(&)*, @) such that for f; € %2

(Hlfl;f2> - (fl, H2f2) = (H12f1,f2>

((-,-) denotes here different but coherent pairings). Then the wave operators
% = plim e (jk=1,2, j # )

exist and are unitary. In particular, H, and Hy are uhitary equivalent.
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Corollary 1.2 Assume that A is weakly conjugate to H and that B € C'(A; B, #*). Let U
be self-adjoint, such that |U|Y? extends to an element of B(ef/*, ). Assume either that H
is bounded below or that U is H-bounded in operator-sense. Then there is a constant I' > 0
such that for any v € (-I',T"), Hy = H + yU 1s self-adjoint, purely absolutely continuous
and unitary equivalent to H through the wave operators.

The constant I is proportional to || {U]|/2|| ,._, ,- For the self-adjointness of H., for small
v we use K.L.M.N. or Rellich’s theorem. Note that |U|'/2 € B(¥*, 5#), because ¥' C &/*.
Neither of the two corollaries is stronger than the other. In the first, it is important that
9! + 4} and | # o, are allowed. The second is fit to situations when the weak conjugation
is easy to get only for one of the operators involved.

2 Schrodinger Operators

Let us consider an euclidean space X, i.e. a finite-dimensional, real vector space equipped
with a scalar product (-,-). The corresponding norm is | - |. For each subspace Y we denote
by 2#(Y) the Hilbert space L%(Y';dy) and by 5#°(Y) the usual Sobolev space of order s € R
associated to Y. #(X) will be identified freely with s#(Y) ® (Y1) and we write (-,-)
for the scalar product in any J#(Y). By QY we denote the usual multiplication operator by
the free variable in #2(Y). P¥ = —iVY will be the corresponding momentum. The index
X will be usually dropped.

We intend to study Schrodinger operators H = A + V(Q), where V(Q) is the multi-
plication by a real Borel function V' defined on X and A is the Laplace-Beltrami operator
assigned to X, with the convention A = |P|? (it is positive). We also set AY = |PY|%; it
acts in S#(Y), with domain #%(Y). Ay = AY ® 1 is an operator in J#(X) defined in
HAY)@H(Y).

Let us also set AY = ${(PY,QY) + (Q", P¥)}, the generator of dilations in Y. As a
weakly conjugate operator we shall try Ay = AY @ 1, for some suitable Y. It generates in
J(X) the unitary group Wy () = WY (.) ® 1, where WY is the dilation group in J#(Y).
Namely

Wy () fli(z) = e%ttf(etscy,zz) forallt e R, z € X and f € #°(X).

Here ny is the dimension of Y, Z = Y1 and (zY, z%) is the decomposition of z with respect
to the splitting X =Y & Z. Let us advocate the use of Ay. We have

B =i[H, Ay] = 2Ay — (DYV)(Q), (2.1)

where the notation DYV = (z¥,VYV) will be systematically used. Suppose that V is
Y-homogeneous of degree 0, i.e.

V(xz¥,2?) =V (z¥,2%) forall A > 0,(z¥,2%) e X. (2.2)
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Then D¥V = 0 and B = 2Ay > 0. In fact, under some mild conditions (we may suppose for
simplicity that V is bounded), Theorem 1.1 may be applied to show that H has no singular
spectrum and this is not trivial if Y # X.

The discussion above suggests the introduction of the homogeneous Sobolev space of order
1 on Y, denoted by 52 (Y), which is the completion of 2(Y) = C°°(Y) in the norm

||f||”1(y) (f, AY /YY2 = || |PY|f||. It is a Hilbert space and ##*(Y) C .%ﬂl(Y) %”I(Y)

is not comparable with 5#(Y"). Its adjoint may be identified with 21 (Y'), the homogeneous

Sobolev space of order —1, defined by the norm || g|| By ™ I|PY| " g|| (here we may start
with g belonging to the Fourier transform of C§°(Y \ {0}) if ny 2 > 3, one might simply take

gin 2(Y), since | - |~! will be in L2, We also set .%”fil = ji”*l(Y) ® H(Z), with the
scalar products (f, g)% L = {f, Aflg). Of course, these two Hilbert spaces stay in duality
Y

in a natural way.

In the same way, only by changing PY into QY, we define %” +1(Y), the homogeneous
Lebesgue spaces with weight of order +1, as well as the spaces H 11y = —# +1(Y)®H#(Z).

We shall rely heavily on the classical inequality

Az (B2 ) Q¥ (2.3)

valid on 2(Y) if ny > 3. Obviously, it extends on #!(Y). As an immediate consequence,
we have

HUY)CHLY),  HY)C AT,
%;Cﬁé&_lry, jflijfy.

It is possible now to give the main result of this section.

Theorem 2.1 Assume that V(Q) is A-bounded with subunitary relative bound and that there
is a subspace Y C X, with dimension ny > 3 such that

(i) (DYV)(Q) € B(o#*(X), #(X)),

(i) |(DYV)(2)| < Sz, where Oy < 52, (2.4)
(ii1) |(DYDYV)(@)] < =& (2.5)
Then

(a) H has purely absolutely continuous spectrum,

() 1(F,(H=AF i) ) S CIISIE,  for al \ER, p> 0 and f € Ky,
1,Y
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(c) Any closed, densely defined operator in S€(X) which extends to an element of
B(X# _1y(X), (X)) is H-smooth.

Proof. The proof consists in verifying (straightforwardly) the assumptions of Theorem 1.1
mainly by making use of (2.3). We only note that the choices & = #} and &#* = #° '
are possible (with equivalent norms) and that 5# ; y is obviously embedded continuously in

D(Ay; # 3*). We shall not make explicit the assumption that V(Q) is A-small, neither the
assumption (i); since our main purpose is to master potentials which behave anisotropically
at infinity, there is not a great loss to suppose that V and D¥V are bounded.

Remark 2.1 It is easy to see that there is no monotony in Y, neither in the hypothesis nor in
the conclusion. It is an important fact that one is allowed to take Y # X. For example, if V
is Y-homogeneous of degree 0 (see (2.2)), it seems that the absence of the singular spectrum
is known only for Y = X (case treated by I. Herbst in [3] in great detail; he emphasizes
the asymptotical property of e™*#  obtaining refined informations). The examples covered
by setting ¥ # X have unexpected generality. Choose for example V : X — R a function
which is C? outside the origin, whose derivatives of order < 2 do not grow at infinity and
which depends only on (z¥|z¥ |1, 2%). This is is already quite anisotropic inside Y. With
respect to the variables in Z it is “arbitrary”; in particular, there is no need of radial limits.

Even the factorizable case v

Via) =" (551 ) V7(e) 26)

is remarkably wild. But if V does not depend on zY, the situation becomes trivial; the
operator H = AY ® 1 +1® (A% + VZ(Q?)) is, of course, purely absolutely continuous.
It might happen, however, that the global resolvent estimates be new. The smoothness
condition imposed on V is there for simplicity and can be relaxed. In (2. 6) for example, VZ
may be any L* function.

Remark 2.2 Let us make some comments on the dimension ny. The trouble is that (2.3)
is not true for ny = 1 or ny = 2. Generally, there is no way out; if V € C°(RY) with
N = 1,2 and V is negative, then H = A + €V has bound states for any € > 0. But there
are also good particular cases. For instance, if V is Y-homogeneous of degree 0, the use of
(2.3) is avoided and ny may take any value.

Remark 2.3 It is obvious that one may replace (2.4) by some repulsivity condition. This
does not give a very attractive result for Y = X, because of the extra assumptions needed.
Using the Kato-Putnam theory and a more intricate A, R. Lavine obtained a better result
(see for example Theorem XIII.29 in [7]). However, the present approach has also some
pleasant features: one needs no tedious calculations and “the repulsivity inside a proper
subspace” is enough.
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Remark 2.4 We now make some considerations on the behaviour of V' at infinity allowed
in Theorem 2.1. We add a mild regularity assumption: for almost every 22 € Z, V is C! in
the radial variable outside a compact set. Specifically, suppose that there is a negligible set
M C Z such that, for any 2% € Z\ M, there is a 7=° > 0 such that the map (r*°, 00) 3 7 +—
V(r-w¥,z%) € Ris C! for all w¥ € SY, where SY is the unit sphere in Y. From (2.4) we
infer by means of “an integration of the derivative procedure” that the radial limits

V(oo -wY,z%) = lim V(r - w¥,z%)

r—00
exist and one has the following estimate on the convergence rate
Y 2 Y Z Cv _»
V(oo -w",z%)—V(r-w',z )ISTT . (2.7)
Hence, roughly:

(i) V must have radial limits in the directions included in Y,

2

(ii) V must have a r~*-convergence (with a small constant) to those limits,

(iii) (8, V)(rwY¥,2?) = O(r~) when r — oo (with a small constant),
(iv) (82V)(rwY,z%) = O(r~*) when r — co.

There is no extra restriction on the Z-behaviour. The strength of Theorem 2.1 is shown
even by the special case V(z) = V¥ (z¥) - VZ(2?). VZ may be any L™ function and (2.4)
(for example) reads now:

CY l y|~2

))|SWZ—

|, (V'VY)(z" =

Up to our knowledge, neither of the two simple situations (a) ¥ = X, (b) V¥ (z¥) — 0 when
|z¥| — oo, with Y # X was known before.

Remark 2.5 Let us work in the representation 5#(X) = 5 (Y; 5#(Z)). One justifies easily

the identification ofj%_i(Y)@o.ﬁf(Z) with .}oi”_l(Y; (7)), the completion of C§°(Y'; 5 (Z))
(the smooth functions: Y — ##(Z) having compact support) under the norm

1/2
Hf“‘%,, (Y392(2)) {/ ”f(y Hﬁt"(z Iylz] :

Taking into account this and the point of (c) of Theorem 2.1, we see that any measurable
function F': Y — B((Z)) which satisfies ||F(y)|| por(z) < Cly|™! defines in an obvious
way a smooth operator.

We particularize now Corollary 1.1 for the case of Schrodinger operators.
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Corollary 2.1 Let V;,V5 : X — R two Borel functions such that the corresponding mul-
tiplication operators in € (X) are A-bounded with bounds < 1. For j = 1,2, let us set
H; = A+ V;(Q) and assume that there is a subspace Y; of X, of dimension n; > 3 and a

constant C; < (ﬂ’;i)z such that

(W@ oo DYV e Brt(0, (X)), ©9)
(D5 D)@ < 52 (29)
(@)~ Vale)| < o (2.10)

Then the wave operators
Qi(HQ,Hl) — ts"lim ethz . e—thl

ezrist and are complete. In particular, H, and H, are unitary equivalent.

Proof. The proof consists in checking that the assumptions of Corollary 1.1 are fulfilled
with A; = Ay,. Note that (2 10) says precisely that Vi(Q) — Va(Q), defined at least as a
continuous form on ¢! = (X ), i.e. as a bounded operator: #1(X) — #~1{X), extends

to an element of B(%_l yl,ﬁfﬁ Ya)-

Remark 2.6 Let us take a look at the case Y; = Yo = Y, taking into account Remark
2.4. Vi and V;, will be supposed regular in the sense described there. Obviously, in order to
satisfy (2.10) when (2.8) is true, it is enough to ask that V(oo -w", 2%) = V(oo -wY, z%) for
all ¥ € 5Y and almost all % € Z. The unitary equivalence criterion we get can be roughly
described as follows: Take two potentials satisfying (i),...,(iv) in Remark 2.4. Assume that
they have the same radial limits in the directions included in Y. Then they define unitarily
equivalent Schrodinger operators. This seems to be interesting in both the particular cases
“YV'=X" and “Y # X and Vj(co - w¥,z%) = 0”. To illustrate the second situation, let us
take Vj(x) = V¥ (2¥) - V% (z”). Then

Vi(z) = Va(@)] = VY (@) - IV (&%) — Vg (=)

and it suffices, for example, to require that V¥ be a symbol of order —2, with small enough
positive constants y; and ., and V(f), Vé) bounded, but otherwise arbitrary.

Remark 2.7 Let us set Yj2 = Y] + Y. It follows at once from (2.10) and (2.7) (written
alternatively for ¥; and Y5) that the limits V(oo - w12, £¥i5) = limy, o V;(r - w¥i2, 2Y73) exist
for any w2 € §¥12 £¥is € Y5, j = 1,2 and are equal {we assumed some regularity on the
dependence of V; of the variable z¥12).

Corollary 1.2 is even more interesting in our context, because it extends the result on the

absence of the singular spectrum to some potentials satisfying less than what was needed in
Theorem 2.1.
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Corollary 2.2 Let H = A + V(Q), where V satisfies the hypotheses imposed in Theorem
2.1. Let U : X — R a Borel function such that

U@ < 5

(2.11)
and set H,, = H +~U(Q). There exists I' > 0 such that for all y1,v. € (-TI',T'), H,, and
H,, are unitary equivalent through the corresponding wave operators. All H,’s are purely
absolutely continuous.

Remark 2.7 shows how to control the case when U is, more generally, a suitable function
from Y to the self-adjoint elements of B(4#(Z2)).

By means of Corollary 2.2 we cover a large class of perturbations with no condition on
the derivatives. Let us take for example Y = X and V' : X — R homogeneous of degree 0.
Its radial limits are V(oo - w) = V(w) (w € SX). If one superposes a potential which obeys
(2.11), there follows a result which is worth mentioning;:

Corollary 2.3 Let W : X — R be a function which is smooth (outside a compact set).
Assume that it has radial limits W (w) = lim,_, W(r - w) for any w € S¥* such that

W(w) —W(r-w)| < T12 forallT >0, w € SX.

Then, for vy small enough, H = A+W(Q) is a closed form on 5#'(X) and it has no singular
spectrum.
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