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An Improved Approach to Relativistic Rotational
Kinematics

By Giorgio Ziino

Istituto di Fisica dell'Università, via Archirafi 36,1-90123 Palermo (Italy).

(15.VII.1995, revised 24.1.1996)

Abstract. The requirement of full compatibility between time-dilation and relative motion makes it
meaningful to search for a direct theoretical way of mutually comparing just two clocks which are

moving relative to each other. This goal can soundly be reached by introducing a "covariant" Cartesian

projection of the space-time path of one clock onto the world-line of the other clock. Such a projection,
besides reducing the given space displacement to a null length, also reduces (accordingly) the related

time interval to its proper length, so as to set up a one-to-one correspondence (called "covariant"
synchrony) between the "local" (proper) times that the two clocks have symmetrically been reading since

their meeting. That gives a peculiar "local" physical content to the definition of four-velocity, which, in
its turn, yields some far-reaching effects on rotational kinematics. A natural geometrical conception of a

rotating frame can in fact be regained, in terms of a suitable "world" radial coordinate that may freely run

to infinity (with no failure of relativistic consistency) and does not need to be cut off beyond the value

c/oj (to being the angular velocity of rotation). Hence a new kinematical model of a spinning disc

directly proceeds, which allows a disc initially at rest, of whatever (original) radius, to be brought to
rotate with an arbitrarily great, uniform angular velocity. What would ensure a border tangential speed

v < c is a shape-preserving, global (both longitudinal and transversal) Lorentz-Iike contraction that the

disc should apparently undergo when seen rather spinning than being at rest in the Laboratory system.
1 or v « c, the effect of such a contraction on the rotational red-shift would not exceed a size of order

(»4R„/c4, where R„ is the (original) uncontracted distance between the source (placed at the centre of the

disc) and the absorber (placed on the disc edge).



Züno

1 Introduction

Recently, Bailey et al.'s measurements of circularly rotating muon lifetime [1-3] have been

the main subject of a renewed controversy [4,5] as regards the experimental evidence for the

relativistic time-dilation formula
dt dt0(l - v2lc2Yxh (1)

dt0 being a proper-time interval by a clock travelling at speed v. In the present paper, the

intrinsic reliability of such measurements is not under discussion; it is argued, however, that a

further insight into the question about time-dilation can still be gained from the theoretical

viewpoint, with some intriguing far-reaching effects upon rotational kinematics.
As is well-known, the relativity principle strictly demands an identical flow rate of the

proper time in every inertial system. This is not contradicted by the time-dilation effect, that

actually involves an asymmetrical comparison of clocks in relative motion [6] : the clock which
is seen lagging behind is always the one which is being compared with different clocks set along
its path in the other inertial system. What we are going to show in Section 2 is that in full
consistency with the relativity principle, also a symmetrical rate comparison for just two

relatively moving clocks may be conceived in the Minkowskian space-time, though it has a

purely theoretical significance. This rate comparison can be made in geometrical terms, by
introducing a "covariant" Cartesian projection of the space-time path of one ('moving') clock
onto the world-line of the other ('rest') clock (taking their meeting world-point as the initial
event). Under such a projection, which is rigorously defined in Section 3, the given world
displacement of the 'moving' clock is turned into a pure time displacement (at one and the same

spatial point) while keeping its length unvaried: the result is that not only the space
displacement alone is reduced to a null length, but also the related time interval is reduced,
accordingly, to its proper length. This (covariant) procedure really succeeds in setting up a one-
to-one correspondence between the "local" (proper) times that the two clocks have been reading
far from each other; which, of course, cannot be obtained merely under a (non-covariant)
Cartesian projection in ordinary space. The correspondence so established - we shall call
"covariant" synchrony - gives a peculiar physical meaning to the definition of four-velocity,
that may now be viewed as being relative to a single rest observer and his "local" (proper) time.
As is seen in Section 4, such "local" view of the four-velocity becomes particularly significant
within rotational kinematics: it enables one to recover a geometrically congruous (and still
relativistically consistent) internal description of a rotating frame, in terms of an appropriate
"world" radial coordinate that may naturally run to infinity, instead of needing a cut off for
values greater than c/co (co being the angular velocity of rotation). The most immediate physical

application, discussed in Section 5, concerns a disc which is initially at rest and is then brought
to spin with a uniform angular velocity. What should happen is that a disc with an arbitrarily
great (original) radius can be brought to rotate at an arbitrarily great angular velocity : it should

apparently undergo, with spinning, a global (both longitudinal and transversal) Lorentz-like
contraction leaving its shape undistorted. Such an outcome does not affect the standard

expectation for a radial length of the spinning disc that should look the same in the Laboratory
system as well as in the frame rotating along with the disc.
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2 Time-Dilation Revisited: An Insight Gained into the
Equivalence Property of Two Relatively Moving Clocks

The whole question about the real compatibility of the time-dilation effect with the

relativity principle has been the subject of a very long controversy [7]. As particularly concerns
the clock-rate'paradox' for two distinct inertial systems, a way out of contradiction is provided
by the well-known standard argument [6] mentioned above. In short, the actual asymmetrical

way of comparing relatively moving clocks is to be taken as just an essential condition for time-
dilation to make its appearance (in spite of the relative motion).

One basic point emerging from these considerations is the following: if we could directly
and unambiguously compare the rates of two single clocks in relative motion, without having
recourse to any further clocks in the two systems, we should find them to be neither slower nor
faster than each other and we should observe no time dilation at all. Were such a statement

incorrect, the argument itself making the time-dilation effect fully compatible with the

equivalence of inertial frames would be unavoidably contradicted. But what significance (other
than the strict logical one) may be attributed to this statement

Actually, given two clocks, C and C, belonging to the respective inertial frames K(x,y,z)
and K'(x',y',z'), a direct comparison of their own rates seems to be conceivable only in

geometrical terms. Suppose C and C" to be placed at the origins of K and K', so that they may
read the same time instant t t' 0 when the two origins are happened to coincide. Let E0

denote such initial event (geometrically represented by the common space-time origin of the K
and K' systems). If K' is assumed to be moving (relative to K) in the direction of the .x-axis, let

£ be a successive event marked by the instantaneous position x xx (> 0) of the clock C on that
axis. Of course, the actual time instant t tl associated with E in the K system cannot be read

(remotely) by C, but can be determined (locally) by another clock (synchronized with C) set at
the spatial point of coordinates (jt^OjO). If t' t\ is the corresponding instant read by C',then,
according to (1), the time interval At tl and the proper-time interval At0=t'! (both measured
between E0 and E) should be such that

At y(V)Ato (2)

y(V) (1 — V2/c2)~l/2, where V is the K' speed relative to K. In view of that, the simplest
attempt at getting in principle a direct comparison of the C and C rates might be to project the

space location (jc,,0,0) of the event E onto the yz-plane (perpendicular to the direction of the C
motion): a correlated event E± is thus obtained, which lies on the world-line itself of clock C.

The outcome is trivial, but by no means convincing. The time interval between E0 and Ex. (in the

C system) would, of course, be still equal to At, and one should conclude that clock C would be

slower than C. Such a conclusion is indeed at variance with what should be expected for a really
unambiguous and truly direct comparison of the C and C ' rates. The questionable point is that a

quite opposite outcome could equally be obtained, once allowing for the relativity requirement
and applying the same procedure to the motion of C with respect to C". Hence, this cannot be

taken as being a sound method, since it would lead, on the whole, to a self-contradictory result :

the same clock might equally be claimed to be either slower or faster than the other clock.
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The intrinsic ambiguousness of the above method does not seem to exclude the possibility
of really conceiving a correct procedure for the purpose in question. Strictly speaking, the

projective operation we have taken into account is not a covariant one, as it is just defined in

ordinary space and merely affects the spatial coordinates of the event E. The non-covariant
character is especially pointed out by the fact that such a projection is apparently able to reduce

At to a proper-time interval (at the C location) without being able, however, to reduce its length

accordingly. This is at the origin of the questioned ambiguousness and makes it natural to think
of some "covariant" sort of projection in space-time that may really exhibit such further
essential requirement. Let then E' be that event - quite symmetrical to E - which is specified
by the world coordinates (t'=t1,x'=xl,0,0) in the K' frame, or by the world coordinates (t t\,
0,0,0) in the K frame; and let E'L be the correlated event which is obtained by simply projecting
the spatial location of E' onto the y 'z -plane. We may argue that the improved projective method

looked for should prescribe the "covariant" mapping

E (£") > £±<c> E' (E'x® E). (3)

A comparison between (3) and the ordinary mapping, E (E') > Ex (E'x), shows that they
overlap merely in the spatial domain: the whole effect of (3) in K (K') also includes the full
reduction of the time interval between E0 and E (£') to its proper length (equal to At0).
Prescription (3) is really able to define a self-consistent direct comparison of the C and C" rates:

in strict accordance with their relative motion, clocks C and C" can unambiguously be claimed,
via (3), to be neither slower nor faster than, but "covariantly" synchronous with, each other.

According to (3), the proper time which is being read by each of the two clocks C, C may
also be regarded as a "local" time connected with a far-away displacement of the other clock.
This enables one to think of the four-velocity in more physical terms, beyond its pure
geometrical significance in the Minkowskian space-time. By virtue of (3), the four-velocity of a

moving object may in fact stand for a (covariant) velocity with respect to a single observer at

rest and in terms of his "local" (proper) time far from the object. It will be seen in Section 4 that
such an insight into the concept of four-velocity turns out to play an essential role for a deeper

understanding of the metric properties of a rotating frame, as particularly concerns points which
are not very near the rotation axis and whose tangential speed is not very small relative to the

light speed.

3 A "Covariant" Cartesian Projection of a Time-like
World Displacement in an Inertial Frame

Unlike the purely spatial mapping E (E1) * £±(£'±), the "covariant" mapping (3) in
the K (K') frame really succeeds in defining a one-to-one correspondence between the proper-
time instants that the clocks C and C" have symmetrically been reading since their meeting. This

may happen, because the world displacement connecting E0 with E(E') is so projected by (3) as

to keep its original length, c At0, unvaried.
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Such distinctive property tells us that (3) should be taken as a special case of a generalized
kind of projection in space-time, we may call "covariant" Cartesian projection. The feature

peculiar to it should just be the fact that unlike an ordinary Cartesian projection, it preserves the

length of the whole world displacement involved.
Take, e.g., in the K system, an infinitesimal world displacement (c dt,dr) carried out by a

moving object starting from a given spatial point r, and let

c2dt2 - dr2 c2dt2 (4)

be its squared length. Indeed, the "covariant" Cartesian projection of (c dt,dr) onto a given q-
axis (q x,y,z) can be conveniently represented by introducing one ficticious time coordinate,

tq, associated with that axis: we may thus say that (cdt,dr) is mapped into a world
displacement (cdtq,dq) ofsquared length

c2dtq— dq1 =c2dt2 (q=x,y,z). (5)

So, if making reference to the dr direction, we may in particular speak of a "transverse" time

component, dt±, that equals the proper time dt0 spent by the object and stands just for the

corresponding "local" (proper) time elapsed at the starting point r:

dtx dt0 (6)

Of course, we have still to do, consistently, with a total number of four freedom degrees in
space-time, since the three time displacements dtx,dty,dtz are already determined by knowing
the four quantities dx,dy,dz,dt0. A formalism like this, characterized by a "three-dimensional"
time-dilation like

dtq dt0(l - Vq2lc2rxh (Vq dq/dtq ; q x,y,z) (7)

is not a novelty in the literature [8,9], though herein it is being adopted anew and without
departing from the strict framework of the (four-dimensional) Minkowskian space-time.
According to the present approach, time is still a scalar (one-dimensional) quantity in space,
which is left invariant under an ordinary Cartesian projection of the motion: each "component"
dtq that may be assigned to dt is but the result of a "covariant" Cartesian projection (onto the

corresponding q-axis). Likewise, each quantity vq in (7) should not be confused with an

ordinary Cartesian component of three-velocity, rather standing for a "covariant" Cartesian

component (in terms of dtq) that obeys one independent composition rule of the type

Vq=(v'q+Vq)(l + V'qVq/c2)-1 (q=X,y,Z) (8)

Vq being itself a "covariant" Cartesian component of the three-velocity of frame K' relative to
frame K). This also means that the same ultrarelativistic limit vx vy vz c covariantly
holds forall u9's,as can be seen by substituting c2dt2 =0 in Eqs. (4), (5).

In conclusion, we may state that the previously defined "covariant" synchrony of two clocks
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in relative motion can strictly be obtained by making a "covariant" Cartesian projection of the

space-time trajectory of one clock onto the world-line of the other clock. Let us see now what

happens on extending all that to the case of an infinitesimal world displacement performed by a

clock in uniform circular motion around a clock at rest.

4 A Deeper View of the Kinematics of a Rotating Frame

The reason for utilizing a 'clock' in uniform circular motion to test time-dilation lies in the

common (sensible) idea that we can truly simulate a uniform rectilinear motion by restricting
ourselves to an infinitesimal displacement, d£=R dq>, which the 'clock' is performing along its

circular path of radius R. This peculiar feature can be expressed in the following essential terms.
Let C" denote the 'clock' under consideration. Suppose dx' to be the proper time spent by C" in

covering di, and dt to be the corresponding actual time interval elapsed in the reference system
at rest. Then,

dt/dx' dtldto Y(v) (v dt/dt), (9)

dt0 strictly being the proper time that C would spend (in covering dt) if let go free along the

tangent line.
The actual (constant) angular velocity of C (with respect to the centre of the drawn

circumference) can be defined as

w dyldt (10)

and is such that v mR. Strictly speaking, time dt is not just a proper time in the rest frame,
which may be read, i.e., by one (and the same) clock, say C, placed at the centre of the

circumference: considering that C belongs as well to the rotating frame linked with C", we may
regard dt as an actual proper time measured by C, only if we are also making reference to the

latter frame (where C is at rest relative to C). In principle, to define a "true" instantaneous

angular velocity, one should, rather, make reference but for the rest frame and replace dt with a

truly proper (virtual) time interval, say dx, suitably obtained from dt by projecting the C" world
displacement onto the perpendicular line: one should take then, in place of co, a quantity like

m0 d(f/dx. (11)

By definition, this is not, however, a directly measurable quantity, and the value of it may
depend on the projective method adopted to define dx. Similarly, as strictly concerns the

viewpoint of the clock C alone in the rest frame, one should introduce, together with (11), an
instantaneous linear velocity like

v0 d£/dx w0R. (12)

Quantity v0 can equivalently be defined in a reversed manner, by exploiting the fact that C is

belonging to the rotating frame as well: from the latter frame, during an actual proper time
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interval dt, the clock C sees C" moving in the rest system by a (virtual) spatial length d~k

R'dy, where R' strictly stands for the radial coordinate of C relative to C i« the rotating frame.
It may, therefore, also be put

v0 dX/dt (oR', (13)

whence,
m0R wR'. (14)

All that has merely a formal significance, until the projective method fixing the value of dx
is really specified. If limiting ourselves to projecting the spatial component of the C world
displacement onto the perpendicular line, we trivially obtain

dx dt, (15)

so that

co0 co v0=v. (16)

This leads us, via 14), to define R' in line with the standard identity

R R'. (17)

If on the contrary, in view of the foregoing, we make a "covariant" Cartesian projection of the

whole C" world displacement onto the perpendicular line, we non-trivially find that C" is

"covariantly" synchronous with C:

dx dx'=dt0. (18)
That implies, due to (9),

a)0 y(i/)co v0 y(v)v (19)

where v0 now looks just like the space component of the C" four-velocity. Hence, via (14), it is

drawn that by a "radial coordinate" R' we can alternatively mean also a quantity (no longer
coincident with R) such that

R=y~l(v)R' (20)

or

R'=R0 y(v)R. (21)

The resulting non-uniqueness of the R' definition is clearly admissible on account of the non-
Euclidean nature of the C" frame, but it is left to see what different meaning should be assigned
to R' in the two cases (17) and (20).

The unusual link (21) makes it non-trivial to rewrite formula v =wR just in terms of iv'
R0, so as to obtain

v y-\v)wR0. (22)
>oi'

This equation if solved relative to V, yields

v (oR0(l + (o2R02/c2)~l/2 (23)
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y -\v) y -\wR) (1 + w2R2lc2YU2 ô(to/?0). (24)

Formula (23) consistently binds v to be less than c for any (arbitrarily large) value of Ra and any
fixed value of to: looking at (23), it can immediately be checked that v -* c as R0 -* œ. Such

a property becomes particularly significant on defining a rotating frame. Let R' R0, z', tp' be

the cylindrical coordinates of a rotating frame, with the new coordinate R' Ra replacing the

ordinary radial coordinate R' R, and let the z'-axis be coincident with the rotation axis. By
virtue of (23) we can thus recover the natural geometric definition of a radial coordinate R'

freely running to infinity (rather than being cut off for values exceeding the usual maximum
admissible value i?'max c/to). From the viewpoint of the inertial system at rest, such a frame is

still seen rotating as a whole with an actual angular velocity co, and still appears with a finite
radial extension up to a distance /?max c/to from the rotation axis. Evidently, the invariance

property of the world interval being understood, an unusual reading of the ordinary space-time
metric of a rotating frame must be involved. The "new" metric will be formally reducible to the

usual one, as soon as it is rewritten in terms of the ordinary radial coordinate R' R: it can then
be expressed by a squared world interval of the form

ds2 ô2(mR0) c2dt2 - ô6(wR0) dR02 - 2ô2(wR0)w2R0d<p'dl - ô2(wR0)R2dtp'2 - dz'2, (25)

where ô(wR0), as given by (24), is such that R 0(wRo)Ro and dR ô3(mR0) dR0. The spatial
metric related to (25) reads

di'2 ô6(mR0)dR2 + R2dy'2 + dz'2; (26)

and a comparison with the corresponding usual metric form,

di'2 dR2 + y\mR)R2dy'2 + dz'2, (27)

points out the following distinctive meaning for R0 as opposed to R: The coordinate R0 should
standfor the Euclidean radius proper to a circumference which is drawn in the rotating frame at
an actual radial distance R from the rotation axis. So R0, unlike R, does not give the actual
radial length of such a circle in the rotating frame, but rather gives the corresponding radial
length that the same circle would exhibit if the metric were Euclidean. In this sense, R0 may just
be taken as the spatial analogue of the world time t (measured at the rotation axis) and may then
be referred to as a "world" radial coordinate.

5 An Undistorted Contracted Model of a Uniformly
Rotating Disc

What has been shown in the previous Section enables one to gain an insight into the

kinematics of a uniformly rotating disc. Consider a disc which is initially at rest in the

Laboratory system and is then brought to rotate (around its centre) with an actual uniform
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angular frequency to. From locally applying Special Relativity we may draw the conclusion that

when the disc is seen spinning, its edge should exhibit a Lorentz-contracted total length, as

compared with the proper total length of it in the frame rotating along with the disc: the factor
of contraction should just be the one, y-1(coÄ), predicted for each infinitesimal rectilinear
element of the disc edge, R strictly being the radius that the disc turns out to have (in the

Laboratory system) when rotating. Likewise we may conclude that the radial distance R must
also be coincident with the actual proper distance of the edge of the spinning disc from the

rotation axis. In principle, this does not strictly mean that R should further be identical with the

original radius of the disc (still at rest in the Laboratory system); as well as it cannot a priori be

said that a Lorentz contraction of the disc edge should netly occur even relative to the original
proper length of it (before spinning). Two different readings can in fact be provided according to
whether the spatial metric relevant to the rotating disc has to look like (27) or (26). If such a

metric is still to be Euclidean along the radial direction, as in (27), then R must stand as well for
the original radius of the disc; if, on the contrary, the Euclidean character of the metric is still to
be maintained along the disc edge, as in (26), then the length of the disc edge must truly appear
to be Lorentz-contracted when the disc is seen rather spinning than being at rest in the

Laboratory system. Two such metric varieties turn out to work opposite. As for (27), the

appearance of the non-Euclidean metric factor y2(wR) along the disc edge should imply an
actual dilatation of the proper length of the edge, so that no net Lorentz contraction could be

observed in the Laboratory system (relative the original length of the disc edge at rest) [10]. As
for (26), which is no more Euclidean along the radial direction, it does not bind the actual radius
R of the spinning disc to coincide with the original radius of the disc at rest, while it strictly tells

us that the proper length of the disc edge should be always the same, no matter whether the disc
is at rest or uniformly rotating. Let us take then (26) as the "true" metric for the reference

system which is rotating along with the disc. Denoting by R0 the related radial coordinate to be

assigned to any given point of the disc edge, we should therefore have, as concerns the radial
coordinate R of the same point in the Laboratory system,

R y -\wR) R0 ô(wR0) R0 /?„(1+ m2R2/c2rl/2 (28)

Note, by the way, that a formula like this should similarly apply to an inner point of the disc. On
the other hand, we already know that R0 stands for the Euclidean radius fitting the actual proper
length of the circumference drawn by the edge of the disc. So, after all, considering that the

proper length in question should not depend upon whether the disc is spinning or not, we are led

to conclude that it is rather R0, than R, to be identified with the original radius of the disc at rest
in the Laboratory system. Hence, when the disc is brought to rotate with a uniform angular
velocity co, its edge should exhibit a net Lorentz-contracted length 2nR0y~1(wR), and its

apparent new radius R as given by (28) should just be that one for a circle with an edge of length
2jtÄ0y_1(to/?)! This means that the (longitudinal) Lorentz contraction is really expected to affect
a disc rather spinning than being at rest, but without causing any sort of distortions in its shape:
A uniformly spinning disc should apparently undergo a global (both longitudinal and
transversal) contraction preserving its natural (undistorted) shape. Such a model of a rotating
disc is indeed the direct physical counterpart of the proposed model of a rotating frame with a
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radial coordinate freely running to infinity: by virtue of (23), a disc of whatever original radius

R0 might actually be brought to rotate at whatever uniform angular velocity to.
Let us look now at the experimental viewpoint. Of course, measurements like those of

circularly rotating muon lifetime [1-3] are not so conceived as to be a suitable test for the new
model of a rotating frame and its physical consequences: the radius R of the muon circular path
is (like co) a fixed parameter in the Laboratory system, and the metric (25) still predicts a dilated

muon lifetime x ô~1(wR0)x0 y(mR)x0 (x0 2.2xl0~6 sec). Quite different, on the contrary,
may be the case of an experiment aimed at measuring the rotational red-shift with the help of the

Mössbauer effect [11]. In outline, let an absorber be circularly rotating around a source placed at

the centre of the described circumference. Both the source and the absorber are supposed to be

assembled within a cylindrical apparatus which is rigidly spinning at an angular velocity to. Due

to the circular motion, the (proper) resonant absorption frequency v0 is expected to be red-
shifted according to the standard formula, equivalent to (9),

v/Vo y-\v) (29)

(v being the actual tangential speed of the absorber). Let the lower resonant absorption
frequency v be written in terms of to.Ro (rather than of v), where R0 is the original radius of the

cylinder at rest (as well as the original proper distance between source and absorber). In the
standard approach, one clearly has v wR0 and

v(to7v0)=v0y-1(toÄ0). (30)

In the new approach, on the contrary, Eq. (23) should hold, and one should have then, as can be

obtained by substituting (24) in (29),

v(to/?0)=v0(H-to2Ä02/c2)-l/2 v0y-1(toÄ), (31)

R being the contracted radius, given by (28), which is to be expected for the rotating cylinder.
Formulas (30) and (31) are actually coincident up to order m2R2lc2. Experimental evidence for
(30) is just to order m2R2/c2 [11], thus being unable to distinguish (30) from (31). For such a

purpose to be achieved, a measurement of the resonance frequency shift to an accuracy at least

of order co4/?04/c4 is required. If we take the expansion of v((oR0) in either case and neglect
higher-order terms, we get

v(co/?0) v0(l - (o2R2l2c2 - to4R04/8c4) (32)
and

v(co/?„) v„(l - (o2R2l2c2 + 3co4Ä078c4) (33)

respectively; and subtracting (32) from (33) gives

v0(co4R04/2c4). (34)

Of course, a measurement to such an accuracy would be extremely difficult, but it could,
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perhaps simplier, be replaced by a direct search for the (lower-order) effect (28) concerning the

radius of the rotating cylinder.

6 Concluding Remarks

It has first been shown, as an essential preliminary statement, that a symmetric theoretical

comparison of the rates of just two clocks in relative motion is soundly conceivable in the

framework of the Minkowskian geometry. This can be done by introducing a "covariant"
Cartesian projection of the successive space-time positions of one clock onto the world-line of
the other clock (starting from their meeting world-point). Such a projection has not only the

ordinary effect of reducing the given space displacement to a null length, but also the

complementary effect of accordingly reducing the related time interval to its proper length. As a

result, a "covariant" synchrony may be defined for two relatively moving clocks, in line with the

relativity-principle requirement of an identical flow rate of the proper time in every inertial
system. The same unambiguous outcome cannot clearly be obtained under a mere Cartesian

projection in ordinary space, because this would be a non-covariant operation that does not
affect time instants and is unable to set up a true comparison of the proper-time rates of the two
clocks.

It has further been pointed out that the new concept of "covariant" synchrony for two clocks

in relative motion can actually give a peculiar "local" significance to the four-velocity of one
clock with respect to the other clock, just in terms of the "local" (proper) time which the latter is

reading (far away from the former). Such an argument has been extended to the limiting case of
an infinitesimal world displacement performed by a clock in uniform circular motion around a

clock at rest, and some fundamental conclusions about rotational kinematics have been
drawn.What can essentially be gained is a more orthodox (and still relativistically consistent)
geometrical definition of a rotating frame, in terms of a suitable "world" radial coordinate that

may naturally run to infinity, with no need for values greater than c/co to be ruled out. The new
radial coordinate, R0, differs from the standard one, R, by the following: it is identically equal
to the Euclidean radius, i?y(to/?), of a circumference of proper length 27iRy(mR) which is
described in the rotating frame at an actual radial distance R from the rotation axis. A "new"
metric should accordingly be assigned to a rotating frame, which can be obtained by just
recasting the usual metric in terms of R0. The most immediate physical application concerns the

kinematics of a uniformly spinning disc (with presumable far-reaching effects on the physics of
rotating black-holes). The result is that a disc of whatever (original) radius R0 might be brought
to spin with an arbitrarily great uniform angular velocity to: its shape should not undergo any
distortion with spinning, but should appear to be globally contracted by a scale factor y ~l(wR),
where wR to/?0(l + <o2Ro/c2)~l/2 and R is the new radius that the disc should exhibit when it
is seen rotating with an angular velocity to.

The experimental viewpoint has been taken into account too, and it has been seen that the

rotational red-shift as measured to an accuracy of order w2R2/c2 is unable yet to test this model
of a uniformly spinning disc, an accuracy at least of order to4i?04/c4 being required.
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