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Categories of Representations of Physical Systems

D. J. Moore

Département de Physique Théorique, 24 quai Ernest-Ansermet, CH-1211 Genéve 4

(19.1I1.1996)

Abstract: I present a review of the mathematical structures used to represent the states
and properties of physical systems in the Geneva School approach to the foundations
of physics using the language of category theory. After proving the equivalence of the
categories of state spaces and property lattices I reformulate the classical decomposition of
the property lattice of a physical system as a universal category-theoretical construction
and summarise the notions of hemimorphism and adjoint.

1 Introduction

A guiding principle of the Geneva School approach to physics, developed over the
last thirty or so years at Geneva, Brussels and Amherst among others, is the conviction
that a general framework for the development of specific model theories should be based
on reflection upon physically primitive notions. In this work, which is largely expository
in nature, I shall formulate a synthesis of the resulting mathematical structures within
the language of category theory. Quite apart from the resulting compacity of expression,
such an approach enables proofs of the universality, and hence mathematical naturality,
of many standard constructions such as the decomposition of a system with respect to its
classical variables, an application treated in section 6. A further example, treated briefly
in section 7, is the abstract definition of the adjoint of a hemimorphism, introduced by
D. J. Foulis [1960] and developed, for example, in [Gudder and Michel 1981; Piron 1995;
Pool 1968a,b; Riittimann 1975]. A final example, which provides the inspiration for this
work, is the construction of categories of projective geometries by Cl.-A. Faure and A.
Frolicher [1993, 1995b], which has provided an elegant construction of vector spaces from
projective geometries and a fundamental theorem proving the representability of general
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morphisms by semilinear maps [Faure and Frolicher 1994], as w~ll as a general proof of the
representability of dualities by sesquilinear forms [Faure and Frolicher 1995a].

I shall not present a general overview of the physical construction of the state space
and property lattice of a physical system [Piron 1964, 1976, 1990; Aerts 1982, 1994],
although I shall present the basic definitions. Nor shall I comment on the relation of the
Geneva School approach to others: for an identification of effects with particular definite
experimental projects see Ludwig and Neumann [1981], and for an analysis of a formal
scheme motivated by the Geneva School in terms of selection structures see Cattaneo
and Nistico [1993]; for a reformulation of the Geneva School axioms in the language of
quasimanuals see Foulis, Piron and Randall [1983] and developments in Randall and Foulis
[1983]. Finally, for some discussion of criticisms see Cattaneo and Nisticd [1991] and Foulis
and Randall [1984].

The primitive physical notions in the Geneva School approach are ‘definite experimen-
tal project’ and ‘particular physical system’. A definite experimental project relative to a
physical system is a real experimental procedure where we have defined in advance what
would be the positive response should we perform the experiment. These conditions define
the response ‘yes’ — if we perform the experiment and if the conditions are not satisfied
then we assign the response ‘no’. A given definite experimental project is called certain
for a particular realisation of the physical system if it is sure that the positive response
would obtain should we perform the experiment.

I shall not enter into a detailed discussion of the notion of certainty, however a few
remarks are perhaps in order. First, the certainty of a given definite experimental project
is falsifiable since the experimenter always has the right to perform the experiment if
the assertion is challenged. Further, ‘certain’ in no way means ‘necessary’; at the very
least one would have to assume that no uncontrolled external agent could act upon the
system. Finally if a definite experimental project is certain for a particular realisation of
the physical system it is so before we perform the corresponding experiment or even if we
decide not to perform it.

The collections of definite experimental projects and particular physical systems are
provided with natural physical structure which can be encoded mathematically using phys-
ically motivated axioms. Let a and 8 be definite experimental projects. We write o < 0
if B is certain in each case that « is certain; in this case we call « stronger than 3. The
relation < can then be demonstrated to be a preorder; the associated equivalence classes
are by definition the properties, or potential elements of reality, of the system. The set of
properties can then be constructively demonstrated to be a complete lattice.

On the other hand, let £ and &, be possible realisations of the system. We call &
and & orthogonal, written £ L&,, if there exists a definite experimental project o such
that « is certain for the particular system &£; and impossible for the particular system &;.
The orthogonality relation can then be demonstrated to be symmetric and antireflexive.

One can identify each property of the system with the collection of all particular re-
alisations for which it is actual; dually one can identify the state of a particular system
with the collection of all of its actual properties. This observation provides the start-
ing point for the development presented here, where I define categories of state spaces
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and property lattices and extend the physical duality between the two descriptions to a
category-theoretical equivalence. For completeness, in the following I have given proofs of
the standard results concerning lattices and orthogonality spaces used in the paper. Many
of these can be found in Birkhoff [1973] along with historical references; most of the others
are reasonably trivial extensions.

2 Category Theory

Category theory provides a compact method of encoding mathematical structures in
a uniform way, thereby enabling the use of general theorems on, for example, equivalence
and universal constructions. There has been much debate on the relative foundational
status of category theory as opposed to set theory; as remarked by J.-P. Marquis [1995]
there are four main views that can be held, namely:

(1) categories are structured sets;
(2) sets are unstructured categories;

(3) the two theories are irreducibly complementary in the same way as arithmetic
and geometry;

(4) both theories will eventually be superceded as notation systems.

I do not wish to enter into this debate here; for our purposes mathematics will be used to
model structures based upon a reflection upon the nature of physical objects and so it will
be heuristically convenient to couch my discussion in the language of some underlying set
theory: as stated by H. Wang [1974 p.25] “We do feel there is a distinction between the
ways in which mathematical and physical propositions are established. One also has the
feeling that while objects are basic in physics, relations and structures are more basic than
objects in mathematics.” In this formulation, a category is a quadruple (Ob,Hom, id, o)
consisting of:

(C1) a class Ob of objects;

(C2) for each ordered pair (A, B) of objects a set Hom(A, B) of morphisms;
(C3) for each object A a morphism idy € Hom(A, A);
(C4)

C4) a composition law associating to each pair of morphisms f € Hom(A, B) and
g € Hom(B,C) a morphism go f € Hom(A,C);

which is such that:
(M1) ho(gof) = (hog)of forall f € Hom(A, B), g € Hom(B,C) and h € Hom(C, D);
(M2) idgo f= foids = f for all f € Hom(A4, B);
(M3) the sets Hom(A, B) are pairwise disjoint.

This last axiom is necessary so that given a morphism we can identify its domain A
and codomain B, however it can always be satisfied by replacing Hom(A, B) by the set
Hom(A, B) x ({A},{B}). In the following I shall state the basic definitions and results
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that will be needed in the following: for more details see, for example, [Addmek, Herrlich
and Strecker 1990; Borceux 1994; Mac Lane 1971].

A motivating example in category theory is the category Set. Here the objects are
sets, the morphisms are maps and we take the usual identity map and map composition.
More formally, within ZF set theory we define Ob = {z |z = z}, and for A, B € Ob we
define Hom(A, B) = {z C (A x B)|(Vz € A)(3ly € B)((z,y) € 2)}. If f € Hom(A, B)
I shall write f : A - B : a — f(a), where f(a) is the (by definition) unique element
of B such that (a, f(a)) € f. For A € Ob we define idg : A — A : a +> a and for
f € Hom(A, B), g € Hom(B,C) we define go f: A — C : a+— g(f(a)).

In the following I shall need two standard constructions used to build new categories
from old. First, let X be a category and J be a set. We can then form the category X7 whose
objects A are families {A;|j € J} of objects in X and whose morphisms f € Hom(A, B)
are families of morphisms f; € Hom(A;, B;), with (idA)j =ida, and (fog); = fj 0 g;.
Second, let X be a category. We can then form the category X°P, which has the same
objects as X, where the set Hom°?(A, B) is defined to be Hom(B, A) and fxg=go f.

There are several special types of morphism of particular interest. These generalise
important notions for maps such as injectivity, surjectivity and bijectivity. A morphism
f € Hom(A, B) is called a monomorphism if for all morphisms g,h € Hom(C, A) we have
that f og = f o h implies g = h; and a section if there exists a morphism g € Hom(B, A)
such that go f = id4. We note that any section is a monomorphism. Indeed, let f be a
section with f*o f =id. Then if fog = foh we have that g =idog = f*o fog =
f*ofoh=1idoh = h. The converse does not hold in general, although it does in Set,
where ‘section’ and ‘monomorphism’ both coincide with the notion of injection.

On the other hand, a morphism f € Hom(A, B) is called an epimorphism if for all
morphisms g, h € Hom(B, C) we have that go f = ho f implies g = h; and a retraction
if there exists a morphism g € Hom(B, A) such that f o g = idp. Section and retraction
are dual notions, as are monomorphism and epimorphism. By this we mean that if f €
Hom(A, B) is a section in X, then it is a retraction when considered as an element of
Hom°P(B, A) in X°P. Hence by duality any retraction is an epimorphism. Indeed, let f €
Hom(A, B) be a retraction. Then f € Hom®®(B, A) is a section and so a monomorphism.
But this implies that f € Hom(A, B) is an epimorphism. Again, the converse does not
hold in general, although it does in Set, where ‘retraction’ and ‘epimorphism’ both coincide
with the notion of surjection.

Finally, a morphism that possesses an inverse (is both a section and a retraction) is
called an isomorphism. If there exists an isomorphism f € Hom(A, B) then the objects
A and B are called isomorphic. The inverse of an isomorphism is unique. Indeed, let
[ € Hom(A, B) be an isomorphism and f*, f’ € Hom(B, A) be inverses of f. Then
f*=1idaof* = flofof* = floidg = f'. Note that the classes of sections, monomorphisms,
retractions, epimorphisms and isomorphisms are all closed under composition.

Much of the utility of category theory lies in the fact that one can relate different

categories using the notion of functor. Let X and Y be two categories. A functor from X
to Y is a family of functions F which associates to each object A in X an object FA in
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Y and to each morphism f € Hom(A, B) a morphism Ff € Hom(FA,FB), and which is
such that:

(F1) F(go f) =FgoFf for all f € Hom(A, B) and g € Hom(B, C);
(F2) Fid4 = idp4 for all A € Ob.

The map composition of two functors is a functor. Indeed, (GoF)(go f) = G(FgoFf) =

(GoF)go(GoF)f and (G o F)idy = G(idpa) = id(gorya. This does not allow us to
directly form a category of all categories whose morphisms are functors, since the class of
functors from a given category to another need not be a set. One can however form the
category Cat whose objects are small categories, that is categories with a set of objects.

For example, let X be a category and J be a set. Then there exists a canonical functor
A from any given category X to the product X7 called the diagonal functor. The object
A is mapped to {A; = A} and the morphism f to {f; = f}. A is indeed a functor, since
AgOAf — {gj = g}o{fj = f} — {h] = gof} = A(gof) and ldAA = {h_g - ldA} = AldA

As with morphisms, there are several special types of functor of particular interest.
For example, let F be a functor from X to Y. Then F is called faithful if the maps
F : Hom(A, B) — Hom(F A, F B) are injective, whereas it is called full if they are surjective.
A functor that is faithful and injective on objects is called an embedding, whereas a functor
that is full, faithful and bijective on objects is called an isomorphism. Again these classes
are closed under composition. Finally a functor F from X to Y is called an equivalence if
it is full and faithful, and if for each object B in Y there exists an object A in X such that
F A is isomorphic to B. We say that X is equivalent to Y if there exists an equivalence
from X to Y, and that X is dual to Y if it is equivalent to Y°P. Note that equivalence is
indeed an equivalence relation.

Much of the methodological utility of category theory arises from the possibility of
encoding many standard constructions in a universal way as the adjoint of certain simple
functors. Let F be a functor from X to Y and G a functor from Y to X. Then F is
called a left adjoint of G (G is called a right adjoint of F) if there exists a bijection
which associates to each morphism f € Hom(FA, B) a morphism ¢f € Hom(A, GB)
such that ¢(f o Fg) = ¢f o g and ¢(ho f) = Gh o ¢f for each g € Hom(A’, A) and
h € Hom(B,B’). Note that any two left (right) adjoints F and F’ of a given functor
are naturally isomorphic in the sense that for each object A € Ob(X) there exists an
isomorphism 74 € Hom(F A, F'A) such that F'f o 74 = 75 o Ff for each f € Hom(A, B).

In the following I shall need two such adjoint constructions. First, in a given category
the left adjoint of the diagonal functor (if it exists) is called the coproduct and the right
adjoint (if it exists) is called the product: in Set the product is the Cartesian product
and the coproduct is the disjoint union. Second, let the category X be concrete over some
category A in the sense that there exists a faithful functor U from X to A, usually called
the forgetful functor. The left adjoint to this functor (if it exists) is then called the free
functor. A standard example is the forgetful functor from complete metric spaces to metric
spaces, whose left adjoint in the completion functor.
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3 The Category State

An object in State is a state space, that is, a pair (%, 1), where ¥ is a set and L is a
symmetric antireflexive binary relation which separates the points of %:

(SOl) if SIJ_SJ then SJ_J_S“
(SOZ) if gi_LSJ then 81' 7’1 Sj;
(S03) if & # &; then there exists £ such that &1 & and &; LE}.

Let (X, 1) be a state space and A C . We define A+ = {£’' € B|&'LE VE € A}, If
At = A then A is called biorthogonal. The following results are standard:

Lemma 3.1 We have the following results:
(i) AC A+L for each AC I;
(ii) if A C B then B+ C At;
(iii) AL+ = AL foreach AC T ;
(iv) 0+ =% and Bt = §;
(v) {EYtL = {£} for each £ € X.

Proof: (i) Let £ € A. Then for each £ € At we have that £’ L€ and so £L&’. Hence
Ec Attt andso AC AL, (ii) Let ACB. Then BL = {£' € L |E'LE VE€ B} C{&' €
N|E'LE VE € A} = AL, (ii) AY C AL by (i). However A C A+ by (i) and so
At C AL by (id). (i) 0F = {£' € T|E'LE VE € B} = %. Next, £ is never orthogonal
to itself and so Bt = {£’' € B|E'LE VE € B} = 0. (v) Let & € {&}*+. Then for all
£ € {&}* we have that £; LE. Hence &; LE whenever & LE and so &; = &;. N

A morphism from (3, 1) to (X2, L) is a partially defined map f : £; \ K; — 33 such
that:

(SM1) Ky U f~1(F) is biorthogonal in ¥, for each F, which is biorthogonal in X.

The set K; is called the kernel of f. Note that K, is necessarily biorthogonal since K; =
K1 U f~1(@). Clearly the identity maps are morphisms with empty kernel. Hence we
need merely show that the composition of two morphisms is again a morphism and that
composition is associative.

Lemma 3.2 Let f : ¥ \K; — Y3 and g : X3 \ K3 — %3 be morphisms and let
go f:E1\K — B3 with K = K1 U f~1(K,) be defined by (go f)(€) = g(f(€)). Then (i)

go f is a morphism and (ii) composition is associative.

Proof: (1) If € ¢ K then f(€) & K5 so the map is well defined. Let F3 C X3 be biorthogonal.
Then KU (go f)"1(F) = KU fF (g7 (Fs)) = K1 U f1(K2 U g~ (F3)). However Ky U
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g~ '(F3) is biorthogonal in ¥z and so K U (g o f)~!(F3) is biorthogonal in £;. (#i) Let
J:21\ K1 = 2, g: X2\ Ky — 23 and h: B3\ K3 — X4 be morphisms. To prove that
ho(gof)=(hog)o f it suffices to show that the kernels are the same. The kernel of
ho(gof) is (]Cl UfmHK2)) U(ge £)~YHKs) = K4 Uf_l()‘CQUg"l(IC3)), which is the kernel
of (hog)o f. |

Let X1 C X, be biorthogonal and £ € ¥5. Then the constant map ¢ : ¥; \ K1 —
Yo 1 & — & is a morphism. Indeed, let Fo C ¥y be biorthogonal. If & € F, then
K1 U c¢™1(F2) = ¥; which is biorthogonal. If & & F, then K; U ¢~!(F;) = Ky which is
biorthogonal by hypothesis. This allows us to prove the following results:

Lemma 3.3 A morphism f : 31\ K1 — X3 is a monomorphism if and only if it is injective
with empty kernel.

Proof: We must prove that for all g : £3\ K3 — X1 and §: X3 \163 — Y1 we have that
fog = fogimplies g = g. We first prove necessity. Let Ky # 0. Let & € K; and g
be the constant morphism onto &£ with empty kernel. On the other hand let g be the
trivial morphism with kernel ¥3. Then fog = fog but g # g. Let f not be injective.
Then there exist & # & such that f(&;) = f(£1). Let g be the constant morphism onto
£, with empty kernel and § be the constant morphism onto & with empty kernel. Then
fog= fogbut g# g. Hence the conditions are necessary.

We now prove sufficiency. Let f be injective with empty kernel and fog = fog. For
the two morphisms to be equal their kernels must be equal so that K3 = Ks. Let & € Ks.
Then by hypothesis we have f(g(£3)) = f(§(£3)) so that g(£s) = §(€s) by injectivity.
Hence the conditions are sufficient. |

Lemma 3.4 A morphism f : ¥1\K1 — ¥ is an epimorphism if and only if it is surjective.

Proof: We must prove that for all g : ¥5 \ £y — X3 and g : 3 \162 — Y3 we have that
go f = go f implies ¢ = g. We first prove necessity. Let f not be surjective. Then there
exists & & Imf. Let £&3 € X3 and g be the constant morphism onto £ with empty kernel.
On the other hand, let § be the constant morphism onto & with kernel {&;}, which is
necessarily biorthogonal. Then go f = go f but g # g. Hence the condition is necessary.

We now prove sufficiency. Let f be surjective and go f = go f. For the two morphisms
to be equal their kernels must be equal so that K; U f=1(K3) = K3 U f~1(K3). However K3
and f~1(K,) are disjoint, as are K1 and f~'(Kj), and so f~1(Ky) = f~1(Ky). Further, f
is surjective so that Ky = K. Indeed, let & € K. Then there exists £ € ¥ \ K1 such
that £ = f(£1). Then & € f~1(K,) = f~1(K3) so that & € K,. Let £ & K. Then there
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exists £1 € X1\ Ky such that &, = f(&;). But then g(&2) = (gof)(&1) = (Gof) (&) = G(E2).

Hence the condition is sufficient. ‘ |

Lemma 3.5 A morphism f : ¥, \ Ky — X is an isomorphism if and only if it is bijective
with empty kernel and f(F,) is biorthogonal in Xy for each F; which is biorthogonal in
3.

Proof: We must prove that there exists a morphism g : ¥3 \ K2 — 1 such that go f = id;
and f og = ids. Kach isomorphism is both a monomorphism and an epimorphism and
so it 1s necessary that f be bijective with empty kernel. Indeed, let foh = fo h.
Then h = (go f)oh = go(foh) = go(foh)= (gof)oiz = h and analogously if
ho f=ho f. It remains to prove that g : 35 — ¥ defined by g(&2) = & if &2 = f(&) is
indeed a morphism. Let F; C 3; be biorthogonal. Then g~!(F;) = f(F1) which will be
biorthogonal in general if and only if the last condition is satisfied. [

Note that it is easy to construct morphisms which are mono- and epi- but which are not
isomorphisms. Indeed, let ¥ = {8,, EJ,Sk,El} with any two distinct points orthogonal
and X, = {éi, Sk,&} with only A _LE and £, L& Define f: 35 — By : € — E. Then f
is trivially a morphism as every subset of ¥ is biorthogonal and is clearly both mono- and
epi-. However the inverse map g : £s — &7 : £ — & is not a morphism since, for example,
{&,&;} is biorthogonal in £, but g7 ({&;,&;}) = {&:,&;} is not biorthogonal in .

The paradigm examples of state spaces are the classical entity, where ¥ is a manifold
with any two distinct points orthogonal, and the quantum entity, where X is the set of
rays of an underlying Hilbert space, with [t¢q] L[)g] if (¢1,%2) = 0. In the former case any
partial map is a morphism since every subset of the state space is biorthogonal, whereas
in the latter case morphisms are represented by semilinear maps.

4 The Category Prop

An object in Prop is a property lattice, that is, a complete atomistic orthocomple-
mented lattice (£, <, ’):
(PO1) there exists a maximal element 1 € L;
(PO2) the greatest lower bound A A of an arbitrary non-empty family A exists;
(PO3) a= /\{p |p < a', pan atom} for each a € L;
(PO4) o’ = a for each a € L;
(PO5) if @ < b then b’ < a';
)

ana =1 for each a € L;
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where an atom is an element p # 1’ such that if x < p then x = 1’ or x = p. As usual, we
shall write 0 for 1’ and a A b for A{a,b}. The following results are standard:

Lemma 4.1 We have the following results:
(i) a < bifand only ifa Ab=a if and only ifaV b = b;
(ti) The family A has least upper bound \/ A= A{bla<b Vaec A};

(iii) \/{a,} = Aar} and A} = V{a};

(tv) a=\/{p|p < a, p an atom} for each a € L.

Proof: (i) Let a < b. Then a is a lower bound of {a,b} and so a < a A b < a. Further b
is an upper bound of {a,b} and so b < aV b < b. On the other hand, if a A b = a then
a=aAb<bandifavVb=>bthena <aVb==0b (i)let B={bla<b Vae A}
Note that B is nonempty since 1 € B. Each a € A is a lower bound of B and so a < A B
since A\ B is the greatest lower bound of B. Hence A B is an upper bound of A. Let z be
such that @ < z for each @ € A. Then = € B and so A\ B < z since A\ B is a lower bound
of B. Hence A\ B is the least upper bound of A. (iii) A{a,} < a,, and so a;, < \/{a,}’
for each a,,. Hence \/{a,}’ is an upper bound of {a;}. Let b be such that a, < b for
each a; . Then & < a,, and so ¥’ < A{a,}. Hence \/{a,}' < b and so \/{a,}' is the least
upper bound of {a]}. We then have that A{a.} = A{a.}’ = V{a!'} = V{a.}'. (iv)
a = A\{p'|p<a”} =V{plp<a} and so a=\/{p|p <a}. u

As we shall see in the following, it is useful to define two dual categories, Prop and
Prop™. Let £; and L5 be property lattices. A morphism is a map ¢ : £1 — L5 such that:

(PM1) ¢(01) = 02;
(PM2) o(V{a1,,}) = V{é(a1,)} for any non-empty family {a1 .};
(PM3) ¢ maps atoms of £ to either atoms of £ or to 0.

Dually, a comorphism is a map ¢* : L3 — £; such that

(PM1*) ¢*(I2) = I1;

(PM2*) ¢*(Af{azr}) = A{¢*(az,)} for any non-empty family {as,};

(PM3*) for each atom p; € L, there exists at least one atom p; € L5 such that p; <
»*(p2).

Clearly the identity maps are both morphisms and comorphisms and composition is asso-
ciative. Hence we need merely show that the composition of two morphisms (comorphisms)
is agian a morphism (comorphism).

Lemma 4.2 The composition of two morphisms (comorphisms) is again a morphism
(comorphism).
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Proof: Let ¢ : L1 — L3 and ¢ : L3 — L3 be morphisms. (¢ o ¢)(0;) = ¥%(03) = 03.
(¥ o d)(V{a1r}) = ¥(V{p(a1,+)}) = V{(¥ 0 ¢)(a1,)}. Let p1 be an atom of £;. Then
¢(p1) is either an atom of L, or 05 and so (1 o ¢)(p;) is either an atom of L3 or 03. Hence
1 o ¢ is a morphism.

Let %* : L3 — L3 and ¢* : L3 — L1 be comorphisms. (¢* o ¢*)(I3) = ¢*(I2) = .
(¢ o ") (Mas,}) = ¢*( A¥*(as,)}) = AL(" 0 9*)(as,)}. Let p1 € £ be an atom.
Then there exists an atom p, € L5 such that p; < ¢*(pz). Further, there exists an atom
pas € L3 such that p; < 9*(p3). Comorphisms preserve the greatest lower bound and so
the order and thus p; < (¢* 0 9*)(p3). Hence ¢* o * is a comorphism. n

Let ¢ : L1 — L5 be a morphism and ¢* : L5 — £, be a comorphism. We call ¢ and ¢*
dual in the case that a; < ¢*(as) if and only if ¢(a;) < az. In this case we shall say that
¢* is the dual of ¢. This is justified by the following result, which establishes the relation
between morphisms and comorphisms:

Lemma 4.3 FEach morphism ¢ has a unique dual ¢* and each comorphism ¢* is the dual
of a unique morphism ¢. We have ¢*(az) = \/{z1|¢(z1) < az} and ¢(a1) = A{zz2|a1 <
¢*(x2)}-

Proof: We first prove unicity. Let ¢* and ¢* both be duals of ¢. Then for each ay €
L; we have that ¢*(az) < ¢*(az) and so ¢(¢*(az)) < az2. But then ¢*(az) < ¢*(az).
Interchanging the roles of ¢* and ¢* we have that ¢* = ¢*. A similar argument holds if
both ¢ and ¢ are dual to ¢*.

We now show that the defined maps ¢* and ¢ are indeed comorphisms and morphisms
respectively. ¢*(Iz) = \/{z1|¢(z1) < I} = VL1 = I;. ¢* preserves the order. Indeed,
let ay < by. Then ¢*(az) = V{z1|¢(z1) < a2} < V{z1|¢(z1) < b} = ¢*(bz). Hence
¢*(Naz,r}) < N{¢*(azr)}. Let by < ¢*(azy,) for all ay,,. Then ¢(b1) < az,, and
50 ¢(b1) < A{az,}. Hence by < ¢*( Af{az,}) and so ¢*( A{azr}) is the greatest lower
bound. Finally, let p; € £, be an atom. Then ¢(p;) is either an atom or 0;. In either case
there exists an atom py; € £, such that ¢(p;) < p2 and so p; < ¢*(p2).

#(01) = A{z2]|01 < ¢*(z2)} = ALz = 02. ¢ preserves the order. Indeed, let
a; < by. Then ¢(a1) = A{z2|a1 < ¢*(z2)} < N{z2|b1 < ¢*(z2)} = ¢(b2). Hence
V{(]S(Ctl’-,«)} < ¢'(V{CL1,T}). Let ¢(a’1,7‘0) < by for all a1,rq- Then A1,ry < qb*(bz) and so
V{ai,} < ¢*(b2). Hence gb(V{al,r}) < by and so qﬁ(\/{al,r}) is the least upper bound.
Finally, let p; € £1 be an atom. Then there exists an atom py € L, such that p; < ¢*(p2).
But then ¢(p;) < p2 and so ¢(p;) is either an atom or 0s.

Finally we show that the defined maps ¢* and ¢ define duals. If a; < ¢*(az) then
#(a1) < ag by definition. To prove the reverse implication we use the fact that a; <
QS*(QS(CL])) Indeed a; = /\{m1|a1 < 56'1} < /\{Cb*(m'z) |(11 < ¢*(az)} = ¢>*(/\{$2 |(11 <
¢*(x2)}) = ¢*(#(a1)), where we have used the fact that ¢* preserves the infimum. Let
¢(a1) < az. Then a; < ¢*(¢(a1)) < ¢*(az) since ¢* preserves the order. Hence ¢ is dual
to ¢*. A similar argument shows that ¢* is dual to ¢. |
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Note that (3 o ¢)* = ¢* o ¢*. Indeed, (¢ o ¢)*(a3z) = V{z1| (¥ o ¢)(z1) < a3} =
V{z1|¢(z1) < ¥*(as)}, which by definition this is nothing more than ¢* (qb*(a3)).

5 The Equivalence of State and Prop

Let (£, <, ') be a property lattice and define ¥, = {p|p is an atom}, with p_Lq if and
only if p < ¢’.

Lemma 5.1 S(£,<,’) = (Z,,1) is a state space.

Proof: (SO1) Let pLlg so that p < ¢’. Then ¢ = ¢” < p’ and so ¢gLlp. (SO2) Suppose
that @ < a’. Then a < a Aa’ =0 and so a = 0. Since an atom is non-zero by definition
we therefore have that ¢ £ ¢’. (SO3) Suppose that r < p’ implies that » < ¢’. Then
p=V{rir<p} <V{r|r<¢}=q and so ¢ = ¢’ < p’ = p. Since p and q are atoms
we then have that ¢ = p. [

Lemma 5.2 We have the following results:
(i) At ={q|q< (\V.A)'} for each AC E;
(ii) {p|p < a}t ={q|q < a'} for each a € L;
(iti) A C X, is biorthogonal if and only if A= {p|p < \/ A}.

Proof: (i) Let p € A and ¢ < (\/.A)". Then p < \/ A < ¢’ and so ¢ € A+. On the other

hand, let ¢ € A+ so that ¢ < p’ for each p € A. Then ¢ < A{p'|p € A} = (V.A)’. (21)
Let p < a and ¢ < a’. Then q < @’ < p’ and so ¢ € {p|p < a}*. On the other hand,
let ¢ € {p|p < a}'. Then p < ¢ for each p < @ and s0 ¢ < A{p'|p < a} = (V{plp <
a})’ = a'. (iii) By (i) we have that At = {q|q < (\/.A)'}. By (ii) we then have that
A = {{glg< (VA ={plp< VAL =

Let ¢ : £ — L3 be a morphism and define fy : ¥z, \ K1 — Ez, : p1 — ¢(p1), where
K1 ={p1 € £1|¢(p1) = 02}. Note that f, is well defined by (PM3).

Lemma 5.3 S¢ = f4 is a morphism.

Proof: Let A; be biorthogonal so that Ay = {p |p2 < \/ A2}. Then f(p1) € A, if and
only if ¢(p1) # 02 and ¢(p1) < V Az, which is the case if and only if ¢(p1) # 02 and
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p1 < ¢*(\/ Az). On the other hand, p; € K; if and only if ¢(p;) = 02. In this case also
¢(p1) < V Az and so p; < ¢*(\/ Az). Hence K1 U f~1(Az) = {p1|p1 < ¢*(V Az)}, which
is biorthogonal. n

Lemma 5.4 S is a functor.

Proof: It is trivial that S(idz) = ids. We must then prove that the correspondence
preserves composition. Let ¢ : £1 — Lo and ¥ : L3 — L3 be property lattice morphisms.
Let the state space morphisms corresponding to ¢, 1) and 1o¢ be f, g and h respectively. To
show that h = go f it suffices to show that the kernels are the same. Let the kernels of f, g
and h be K1, K2 and K respectively. Now K is biorthogonal since o = {pa | p2 < ¢*(03)}.
Then Ky U f~HK3) = {p1]p < ¢*(VK2)} = {p1]p1 < (¢* 09*)(03)} = {p1|p1 <
(0 #)*(03)} = K. m

Let (%, L) be a state space and define Ly, = {A C = | A+L = A}
Lemma 5.5 P(3, 1) = (Lx,C, 1) is a property lattice with N{A.} = N{A-}.

Proof: (PO1) We have that %1+ = f* = ¥ and so Ly has a maximal element. (PO2)
The intersection of a family of biorthogonal subsets is itself biorthogonal since ({A,} =
MAHY} =N{{E e Z|E L& VE c ALY ={£eX|ELE VE e YA} =
(U{A;})*, and for any subset A we have that A1+ = AL. The intersection is then the
greatest lower bound since (V{A4,} C A,, and if B C A,, for all A, then B C {A,}.

(PO3) The atoms of Ly, are exactly the singletons {£} since each singleton is biorthog-
onal and if £ € A then {£} C A. Note that the least upper bound of a family {.A,}
is given by (U{Ar})il. Indeed A,, C |J{A.} C (U{Ar})ll. Let B be biorthogonal
and such that A, C B for all A,,. Then |J{A.} C B so that Bt C (U{A4,})* and
(U{Ar})ll C B+ = B. Finally, let A be biorthogonal. Then A = AL = (U{ {E}I€ €
ApH = V{{ET{€} c A}

(PO4) The map A — Al is well defined since A" is biorthogonal. By definition, if

A € Ly then A1+ = A, (PO5) For any subsets A and B of ¥ we have that Bt c AL
(PO6) If £ € At then £ ¢ € since £ LE, and so AN AL = 0. u

Let f:%; \ K1 — 5 be a morphism and define ¢; : Lz, — Lx, : A; — f(A1 \ Kq)+t.
Lemma 5.6 Pf = ¢ is a morphism with ¢%(Az) = Kq U F1(Ay).

Proof: We must show that (i) ¢% is a comorphism, and (ii) ¢; and ¢} are dual. (z)
Note that ¢% is well defined by (SM1). (PM1*) ¢*(32) = Ky U f~1(%,) = ¥y. (PM2¥)
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¢*(M{Az2,-}) = Ko U (N{ A2 }) = Ka U (N{F T (A2)}) = (K1 U f7Y(Azp))} =
N{¢*(As)}. (PM3*) Let & € By, If & ¢ Ky then {&} C £ ({f(&)}) C Ky U
f—l({f(gi)}) = ¢*({f(&1)}). If &1 € Ky then for any &2 € E3 we have {1} CK; C Ky U
FH{E}) = ¢*({E2}). (4) (A1) = Bz | A1 € ¢"(B2)} = N{Bz| A1 C Ky U f~1(B2)}.
Let A; C Ky U f71(By). Then A; \ Ky C f~1(B,) since K; and f~!(B;) are disjoint, so
that f(A; \ K1) C B. Hence f(A; \ K1)t C By and so f(A; \ K1)+t C ¢(A;). Finally,
fAL\ K1) C f(A\ KMt and so A3 \ K1 C fH(f(A1\ K1) € FE(f(AL\ Ko) ).
Hence ¢(A;) C f(A; \ K1), completing the proof. |

Lemma 5.7 P is a functor.

Proof: 1t is trivial that P(idy) = id;. We must then prove that the correspondence
preserves composition. Let f : ¥, \ Ky — X3 and g : ¥; \ K2 — X3 be state space
morphisms. Let the property lattice morphisms corresponding to f, ¢ and go f be ¢, ¥ and
x respectively. Then x*(As) = (K1Uf~1(K2))u(gof)H(Az) = KiUF 1 (KaUg 1 (Ag)) =
K1 U S (47 (As)) = (6" 0 ") (As) = (1 0 $)" (As). Hence x* = (1 0 §)". :

Finally we have the following result, which establishes the relationship between State
and Prop:

Theorem 5.8 State and Prop are equivalent.

Proof: We must show that (z) S is full and faithful (bijective on each Hom-set), and (i)
(SP)(%, 1) is isomorphic to (¥, L). (i) Let ¢,¢ : £1 — L be such that S(¢) = S(¢) =
fiE1\ Ky — X3, Then Ky = {p1|¢(p1) = 02} = {p1|é(p1) = 02} and if p; & K; we
have ¢(p1) = f(p1) = ¢(p1). Hence S is injective on each Hom-set. On the other hand, let
f:E1\ K1y — I3 be a morphism and define ¢ : £ — £ :a; — \V{f(p1)|p1 € K1, p1 <
a1}. Then ¢ is a morphism. Indeed ¢(01) = 02 and ¢(\/{a1,) = V{f(p1)|p1 € K1, p1 <
Viai}} = VIV @) o1 € Ki, p1 < ax,))) = V{larr)}. Finally, if py € £ is an
atom then either p; € K; and ¢(p;) = 05 or p; € Ky and ¢(p1) = f(p1), which is an atom.
Trivially we have that S(¢) = f so that S is surjective on each Hom-set. (i7) Let (2, 1)
be a state space and £ = P(X) so that S(£) = {{£}|€ € £}. Themap f: {E} — £ is
then an isomorphism. It is clearly bijective with empty kernel. Further & L&; if and only
if & € {&€;} or equivalently {&£;} C {&;}1; that is {£;}L{€,}. Hence the inverse image of
a biorthogonal subset of S(L) is biorthogonal and the image of a biorthogonal subset of 3
is biorthogonal, completing the proof. n
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6 Classical Variables

A property a € L is called classical if for each atom p € L either p < a or p < a'.
Clearly 0 and 1 are both classical. Recall that a lattice is called distributive if aV (bAc) =
(aVb)A(aVe) for all @,b,c € L. On the other hand; a state space (X, 1) is called classical
if any two distinct states are orthogonal. The following result is standard:

Lemma 6.1 Let (X, 1) be a state space with corresponding property lattice L. Then the
following are equivalent:

(i) (3, L) is classical,
(it) L is distributive,

(iii) each property a € L is classical.

Proof: (i) = (i1): Let (X, L) be a classical state space and £ be the corresponding
property lattice. All subsets of X are biorthogonal so that \/{A.} = |J{A+} and so the
greatest lower bound and least upper bound distribute.

(12) => (147): Let L be a distributive property lattice, a € £ and p be an atom of £. Then
p=pAl=pA(aVva)=(pAa)V(pAd). However pAa < p so that either pAa = p and
sop<aorpAa=0. Butinthiscasep=0V (pAa’)=pAa andsop<a'

(i1i) => (4): Let L be a property lattice for which each property is classical and let p and
q be atoms of £. Then, since g is classical by hypothesis, either p < ¢ and so p = q or
p < q and so plgq. [

Let us define the category PSet, whose objects are sets and whose morphisms are partially
defined maps.

Theorem 6.2 The free state space over PSet is classical.

Proof: We must show that () State is concrete over PSet, and (ii) each free state space
is classical. (i) The map (X,1) — X, f — f is clearly a functor, since the composition
law in the two categories is the same, and is trivially faithful. (i¢) Let X be a set and
set £11E5 it £ # & so that (X, 1) is classical. Now every subset of ¥ is biorthogonal
and so any partially defined map from (¥, 1) to a state space is a morphism. Define
F:¥X— (%X,1), f— f. We associate to each morphism f : FX — (¥',L’) the map
¢f : 8 > X : & f(E). It is then trivial that ¢ is a bijection, and that F is a left adjoint
of U since the composition laws are the same in the two categories. |
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The rest of this section will be devoted to proving that any property lattice can
be decomposed into its so-called irreducible components, a property lattice being called
irreducible if its only classical properties are 0 and 1. First we define the centre Z of L to
be the set of classical properties. The next two results are standard:

Lemma 6.3 The centre is a distributive property sublattice of L.

Proof: We first show that Z is a complete subalgebra of £; that is that it is closed under
the orthocomplementation and greatest lower bound. If a is classical then o' is trivially
classical. Let {a,} be a family of classical properties and set a = A{a,}. Let p £ a. Then
since either p < a, or p < aj. there exists a,, such that p < a; . But o’ = \/{a;.} and so
p < a’. Hence a is classical and Z is a complete subalgebra of L.

We next show that the atoms of Z are exactly the elements ¢, = A{a € Z|p < a}
for p an atom of £. The sets are nonempty since 1 € Z. Let x € Z with z < ¢,. Then,
since z is classical, either p < z in which case ¢, < z and so ¢ = ¢, or p < z’. In this case
cp < 2’ so that & < ¢, A ¢, = 0. Hence each ¢, is an atom of Z. Now let = be an atom of
Z. Then z is non-zero and so there exists an atom p of £ such that p < x by atomisticity
in £. But in this case ¢, < z so that £ = ¢,. The atoms of Z are then exactly the c,.

We now show that Z is atomistic. It is trivial that \/{c,|c, < =} < z. Further,
for = classical, p < z if and only if ¢, < . But then by atomisticity in £ we have that
z=\V{plp <z} < V{elp <z} =V{c|c < z} and so Z is atomistic. Finally it is
trivial that Z is distributive by theorem 6.1. Indeed let ¢, and ¢, be atoms of Z. Then
either p < ¢4 so that ¢, < ¢ and hence ¢, = ¢4 or p < ¢ so that ¢, < c; and the

q
corresponding states are orthogonal. [

Next, let ¢, € Z be an atom and define L., = [0,¢p] = {a € L]a < ¢,}. We have the
following result:

Lemma 6.4 L, is an irreducible property lattice with order < and orthocomplementation
a" =d Acp.

Proof: The existence of a greatest lower bound in L., is trivial and the map a — a” is well
defined on L., since a” < ¢, for all a. aAa™ =aA(a'Acy) = (ana’)Ac, =0. Let a < bso
that b’ < a’ and o’ AV =b'. Then a" Ab” = (a’ Acy) A (V' Acy) = (@' AD)Acp =b Acp =07
and " < a”. Let a < ¢, so that ¢;, < a’. Then by atomisticity ' = \/{q|g < a'} = (V{r <
lr<a})v(V{s<d|s<al})=(aAc) Ve, Hencea =a” = (a’ Aep) Ay = (a”)"
and so a +— a” is an orthocomplementation on L., . Finally L., is trivially atomistic since
L is, and is trivially irreducible since ¢, is a minimal non-zero classical property of £. =
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We are now in a position to prove that any property lattice can be decomposed into
its irreducible components:

Theorem 6.5 X is the coproduct of the %, .

Proof: A coproduct of a family {A; |j € J} of objects in a given category X, if it exists,
can be proved to be an object A of X and a family of morphisms g; : A; — A such that
for any object B of X and any family of morphisms h; : A; — B there exists a unique
morphism f : A — B such that h; = fog;.

Now p < ¢’ in L if and only if ¢, # ¢4 or p < ¢" in L.,. Indeed, if ¢, # ¢, then
p<c,<¢q,andif p<q inc then p < ¢" = ¢ Ac, < ¢’. On the other hand,
let p < ¢'. Then either ¢ < ¢, in which case p < ¢, < ¢/, or ¢ < ¢, in which case
p=pAd =(@PAcp)Aq =pA(d ANey) =pAq sothat p < ¢". Hence I is the disjoint
union of the family {(X;, 1,)|j € J}, with £ € £; and £ € ¥, orthogonal if and only if
j#korj=kand ELE.

We now show that (X, L) is the coproduct of {(X;,L;)|j € J}. We use the fact that
A is biorthogonal in ¥ if and only if each A; = AN X; is biorthogonal in ¥;. Indeed,

if & € A; then & € At if and only if & € .Aj'j since for any £ ¢ A; we have that

£;LE. Hence AT = i .A;L”' . Now A;,.Lj C %; by definition and so A = J; A+, We
then need merely note that A = (J; A;. Let us define the maps g; : 3; — X : &; — &;.
Let A be biorthogonal in ¥. Then gj—l(A) = ANZY; is birthogonal in ¥; by the above.
Hence the g; are morphisms with empty kernel. Finally, let (¥, L) be a state space and
h; : £; \ K; — X’ be morphisms. If there exists a morphism f : ¥\ K — ¥’ such that
h; = f o g; then necessarily we must have K; = g}’l(lC) = KnNZX; Hence K = |J,;K;.
Further, if £; € K; then we must have h;(&;) = f(£;). We must show that h; is indeed a
morphism. Let A be biorthogonal in ¥’. Then since the h; are morphisms we have that
K; U h71(A) is biorthogonal in X;. However K U f~1(A) = |J; (K; U h;*(A)) which is
biorthogonal by the above. Hence f is a morphism and (X, L) is the coproduct. |

We note that the atoms of the centre Z are often called superselection rules in a usage
derived from that of G. C. Wick, A. S. Wightman and E. P. Wigner [1952]. The existence
of such classical variables is important in discussions of, for example, elementary particles
as defined via imprimitivity systems [Giovannini and Piron 1979], the two body system
[Piron 1965], unstable systems [Piron 1969], the quantum electromagnetic field [D’Emma
1980] and chirality [Amann 1988; Pfeifer 1983].

7 Hemimorphisms

In the lattice context it is useful to also consider a larger set of maps, called hemi-
morphisms. These are maps ¢ : £; — L3 which satisfy (PM1) and (PM2):
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(PM1) ¢(01) = 0z,
(PM2) ¢(V, a1,0) =V, #(a1,o) for any non-empty family {a1 «}-

Clearly the identity maps are hemimorphisms and the composition of two hemimorphisms
is again a hemimorphism. A hemimorphism preserves the order since it preserves the
supremum. It is easy to construct hemimorphisms which are not morphisms. Indeed let
L, and L3 be property lattices with a; € £; and a; € £;. We define the constant map
onto az with kernel ay by ¢(z1) = 02 if 27 < a; and ¢(z;) = az otherwise. Then c is a
hemimorphism, but is not a morphism unless a; is either an atom or 0,.

I now introduce the important notion of adjoint [Foulis 1960]. Let ¢ : £; — L5 and
¢ : L3 — L be hemimorphisms. Then ¢ and v are called adjoint if 1(¢(a1)’) < a} and
¢(¢(a2)’ ) < ah for all a; € £, and a; € L5. The following result is due to C. Piron [1995]:

Theorem 7.1 Any hemimorphism ¢ : £1 — L, has a unique adjoint ¢! : Lo — L given
by ¢'(az) = N{z}|#(z1) < ab}. Let ¢ : L1 — Ly and + : L3 — L3 be hemimorphisms.
Then ¢ = ¢ and (¢ 0 ¢)T = ¢T 0 9T,

Proof: We first show unicity. Let ¢ and ¢* both be adjoint to ¢. Then ay < (¢(¢Ta2)’ )'
and so ¢*(az) < ¢* ((qﬁ(g{)Tag)’)’) < ¢'(az). Inversing the argument we have ¢* = ¢.

We now show existence. ¢ (¢(a1)’) = A{z}|é(z1) < ¢(a1)} < a} by considering z, =
ar. ¢(¢'(a2)') = ¢(N{z}|¢(z1) < a3}) = ¢(V{z1|d(z1) < a3}) = V{d(z1) | (z1) <
as} < aj.

It therefore remains to show that ¢! is a hemimorphism. ¢(02) = A_{z}|é(z1) <
13} = A L1 = 0;. ¢! preserves the order. Indeed let az < bo. Then ¢f(az) = A{z1|az <

d(z1)'} < N{z1|b2 < é(z})'} = ¢7(b2). Hence \/_ di(aza) < #'(V, a2,a). Let by <
¢f(az o) for all az,. Then ¢(by) < qb(qb’f(ag,a)') < ay, so that agq < ¢(b1)" for all

azq. But then \/_as, < ¢(b1) so that ¢'(\/ _aza) < ¢'(¢(b1)) < b}. Setting by =
(Va ¢T (OJZ,&))I completes the proof.
¢!t = ¢ trivially since the conditions on an adjoint pair are symmetric.

't ((¥@)(a1)’) < ¢t (d(a1)’) < a) and Po((¢'91)(as)’) < ¥(¥(as)’) < as, the desired

result then following from unicity. |
I shall need the following simple lemma in the following;:

Lemma 7.2 Let ¢ : £, — Ly be a hemimorphism. If a; < ¢(11) and ¢'(az) = 0; then
Ay — 02.

Proof: Let ¢f(az) = 0;. Then ¢'(az)’ = 1; so that ¢(1;) = ¢(¢T(az)’) < aj and az <
#(1,)". However az < ¢(1;) so that az < ¢(1;) A ¢(1;1) = 05. m
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A morphism ¢ : £y +— L, is called a homomorphism if the hemimorphism ¢! is also a
morphism. It is easy to construct morphisms which are not homomorphisms. Indeed, let
Ly = {01,p1,p1, 11} and L3 = {02,p2,p05,92,¢5,12}. Define ¢ : L1 — L3 by ¢(01) = 0o,
$(p1) = p2, ¢(p}) = ph and ¢(1,) = 15. Then ¢ is clearly a morphism, however ¢(gz) =
MMz | g2 < é(2})'} = 1; and so ¢ is not a homomorphism.

The notion of adjoint enables the definition of standard operator theoretic concepts
in the lattice context. For example, a hemimorphism u : £; — £, is called an isometry if
u' o = id; and unitary if in addition v o uf = ids.

Theorem 7.3 Let u: Ly — L5 be a hemimorphism. Then the following are equivalent:
(i) w is an isometry,
(it) ay < b iff u(a;) < u(by)’,

(ZZZ) uf(].z) = 11 and 'U,(CLS_) < u(al)’ for all a; € ‘Cl-

Proof: (i) = (i4): Let a; < b}. Then a; < ulu(b;)’ and so u(a1) < u(ulu(b)’) < u(by)’
Let u(a;) < u(by)’. Then a; = ulu(ar) < ul (u(by)’) < b}.

(i) = (443): a1 = af so that u(a;) < u(a})" and u(a}) < u(a;)’. Let uf(12) = a;.
Then u'(13)" = a} and so u(a}) = u(uf(12)’) < 1, = 0z. Thus 1; = 05 = w(a})’ and so
u(1,) < 1, = u(a})’. In this case 1; < a} = a; and so uf(13) = 1;.

(i) = (i): ulu(ay) = wiu(ay) < ul(u(a))’) < af = a;. Let py € £; be an atom.
Then ufu(p;) < p; and so w'u(py) = 0; or p;. Let ufu(p;) = 0;. Then u(p;) = 0
since u(p;) < u(ly). However p; < 1; = uf(13) so that p; = 0;, which is impossible.
Hence for each atom p; € £; we have that ufu(p,) = p;. Let a; € £;. By atomisticity
a1 = V{p1|p1 < a1}. Hence utu(a;) = ufu(\/{pl |p1 < ai}) = uT(\/{u(pl) |p1 < al}) =
V{UTU(Pl) |p1 < a1} =V{p1|p1 < a1} = a;. u

The two conditions in (7i7) are independent. Indeed ¢ : a; +— 03 is a hemimorphism which
satisfies ¢(a}) < ¢(a1)’ but is not an isometry. Note that an isometric hemimorphism
need not be a morphism. Indeed, let £; = {01,11} and £, be any property lattice. Define
¢ : L1 — Ly by ¢(0;) = 0y and ¢(11) = 1,. Then ¢ is an isometry since ¢Tpp(1;) =
¢'(12) = A{z1]12 < é(z})'} = 1;. However ¢ is not a morphism if £, has more than
two elements.

Lemma 7.4 Let u : £L; — L5 be a homomorphism such that u(a;) < u(by)’ implies
a; < b). Then u is an isometry.

Proof: u(utu(p1)’) < u(p1)’ and so ufu(p;)’ < pi. Thus py < ulu(p;). However u is
a homomorphism and so ufu(p,) is either an atom or 0;. Hence ulu(p;) = p1 and so
uwlu(a;) = a; by atomisticity. [
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Theorem 7.5 Let u: £y — L5 be a hemimorphism. Then u is unitary if and only if it
is bijective and u(a}) = u(a,)’ for each a, € L. .

Proof: Let u be unitary. Let ay € £ and set a; = uf(az). Then u(a;) = uu'(az) = ay
and so u is surjective. Let u(a;) = u(b;). Then a; = ulu(a;) = ufu(b;) = b; and so
u is injective. Since u is an isometry we have that u(a}) < u(a;)’. Further, since u' is
an isometry we have that uf(a}) < uf(ay)’. Setting az = wu(a;) we have that u(a;)’ =

wul (u(a)’) < u(ufu(a;)’) = u(a}) and so u(a}) = u(ay)'.

Let u be bijective with u(a}) = u(a,)’ for each a; € £;. Note that u(1;) = u(0}) =
u(01)" = 04 = 1 Then uf(13) = A{z1|12 < u(z})'} = A{z1]12 < u(z1)} = 1, since u
is injective. Hence u is an isometry. Let a; € L5. Then since u is surjective there exists
a; € £, such that ap = u(a;). Hence uf(a}) = utu(a;)’ = ulu(a}) = a} = (vlu(a1)) =
u'(az)’. Hence u' is an isometry and so u is unitary. |
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