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Abstract For classical lattice systems, the Dobrushin-Lanford-Ruelle theory of boundary conditions
states that the restriction of a global equilibrium state to a subsystem can be obtained as an
integral over equilibrium states of the subsystem alone. The Hamiltonians for the subsystem
are obtained by fixing a configuration for the variables in the complement of the subsystem,
or more generally, by evaluating the full interaction Hamiltonian with respect to a state for the
complement. We provide examples showing that the quantum mechanical version of this statement
is false. It fails even if the subsystem is classical, but embedded into a quantum environment.
We suggest an alternative characterization of the local restrictions of global equilibrium states by
inequalities involving only local data.

I. Introduction

It is well-known that basic phenomena in statistical physics such as phase transitions,
critical behaviour, and symmetry breaking cannot be modelled by finite systems as studied
in classical or quantum mechanics. On the other hand, infinite systems can rarely be
handled directly by finite computations. Therefore it is a fundamental task of statistical
mechanics to develop techniques by which properties of infinite systems can be inferred
from a study of finite subsystems. For the equilibrium statistical mechanics of classical
systems on a lattice there is a standard tool for performing precisely such a step, namely the
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Dobrushin-Lanford- Ruelle (DLR) theory of boundary conditions [1]. It says that the effect
of the ambient infinite system on a finite subsystem can be parametrized adequately by a
choice of “boundary conditions” for the finite subsystem. Here, boundary conditions are
identified with configurations of the particles outside the finite subsystem in consideration.
They can then be used to classify the pure phases, or to select a particular pure phase in
the event of a broken symmetry. In specific models such as, e.g., the two-dimensional Ising
model, a small selection of boundary conditions suffices to obtain all phases.

The notion of boundary condition as a configuration in the boundary region of a
finite subsystem is the starting point both for proofs of existence of a phase transition and
proofs of its opposite, the uniqueness of the equilibrium state. An example of the first is
the Peierls argument [2] where one shows that the configuration of a small subsystem (a
single spin), strongly depends on the configurations of the boundary region. An example of
the other usage is the Dobrushin-Shlosman unicity argument [3]. In this case, the influence
of variations in boundary conditions is proven to become negligible when one surrounds a
small system by larger and larger intermediate regions.

It is one aim of the present paper to show, by way of explicit examples, that, while
the basic statement of the DLR-theory has a straightforward generalization to the case of
quantum lattice systems, this generalization, along with some of its natural modifications,
turns out to be false. But our intention is not merely to disprove a single statement. Rather,
we believe that a careful study of examples may be helpful for the development of the much
needed tools of quantum statistical mechanics which would be capable to serve some of the
functions of the classical DLR-theory. The energy-entropy inequalities [4,5] described in
Sec. IV are a promising step in this direction: they form a set of strictly local constraints on
the restrictions of possible equilibrium states, which approaches an exact characterization
of equilibrium states as the local region under consideration becomes larger and larger.
For the restrictions to classical subsystems, an efficient evaluation of these conditions is
possible (see Sec. V), but, for the case of general quantum systems, better techniques of
extracting information from these inequalities are still to be developed.

The term boundary condition, especially as used in the context of quantum statis-
tical mechanics, carries several meanings, often not too clearly defined. “Free boundary
conditions” refer to a special way of constructing finite volume Hamiltonians from an inter-
action potential, namely as the sum over all potential terms localized in the given region.
There are always many different interaction potentials representing the same infinite vol-
ume Hamiltonian (“equivalent potentials” [1]), which in this language lead to different
“free boundary conditions” for the same Hamiltonian. Some properties, like the presence
or absence of frustration [6,7], or the invariance of local Hamiltonians under the action of
a symmetry group or quantum group [8], depend very sensitively to this choice. “Periodic
boundary conditions” arise when a lattice is shaped into a torus. The translation symme-
try of the infinite lattice is then approximated by cyclic shifts. Another type of “boundary
condition” is obtained by adding an overall small external field, which is removed after-
wards [9]. Such fields are usually introduced for driving the system in a pure phase of
broken symmetry. Typically, all these additional terms to the Hamiltonian leave the ther-
modynamic quantities unchanged. In the description of continuous systems “boundary
conditions” are used to specify the Hamiltonian as a self-adjoint operator [10]. This can
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be used to confine the system to a particular region, or to introduce hard-core repulsion.
In principle, this is equivalent to adding strongly repulsive potentials to the Hamiltonian.
Finally, conditions that select particular ground states in situations with degeneracy are

also called boundary conditions. An example of such usage occurs in valence-bond-solid
models [11].

For simplicity, we will only consider finite systems in this paper. The difficulties that
we demonstrate for describing the local restrictions of equilibrium states will certainly
not be lifted by considering infinite systems. (This could only happen if more structure,
like translation invariance, is incorporated into the scheme). However, the notions that
we introduce for finite systems can be generalized in a straightforward manner to the
infinite systems obtained in the thermodynamical limit. The adequate tools for doing so
are the DLR-equations for classical lattice systems, the KMS-condition [10] for quantum
spin systems, and the energy-entropy inequalities for both. The basic input, namely the
interaction between the lattice spins, now translates into a relative Hamiltonian for the
classical systems, and a derivation that generates the dynamics for quantum spin systems.
There is an, apparently local, description of equilibrium states for quantum spin systems
known as the Gibbs condition [12] (see also Sect. 6.2 of [10]). Unfortunately, it involves
a variation over all global extensions of the local state, and is therefore of little practical

help.

The paper is organized as follows: in Sec. II we briefly review the local “DLR-
characterization” of equilibrium states of classical systems in terms of boundary condi-
tions. Sec. III introduces the corresponding notions for quantum spin systems. In Sec. IV
we recall the characterization of equilibrium states in terms of energy-entropy inequali-
ties, while Sec. V examines the consequences of these inequalities for the restrictions of
global equilibrium states to a classical subsystem. Sec. VI contains the major part of our
results, a succession of examples showing the failure of the direct quantum analogue of
the DLR-theory. Where feasible we also discuss the consequences of the energy-entropy
inequalities.

II. Boundary conditions for classical
equilibrium states

In this section we will only consider finite, discrete classical systems, described by
finite configuration spaces. We will concentrate on a distinguished subsystem, called the
inner system, with configuration space X. The configuration space of the global system is
X xY, where Y is the configuration space of the outer system. We assume that we have
a complete knowledge of the contribution of the particles in the inner system to the total
energy H,,, meaning that we write

Hi,n.=H+V , H fixed function on X x Y and
V only depending on Y

(1)
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The function (z,y) € X x Y — H(z,y) is the basic information that is at our disposal,
whereas the size of the outer system and the interaction V is supposed to be less well-
known. The minimal choice of outer system is fixed by requiring that H actually depends
on the configurations in this minimal exterior region. More precisely we say that y and
y' in Y are equivalent iff for all ¢ € X, H(z,y) = H(=,y'). The quotient of ¥ by this
equivalence relation is called the set of the boundary configurations Y34 and it is the
minimal exterior configuration space that has to be considered. We will sometimes refer
to it as the boundary system.

The equilibrium state of the global system at inverse temperature 8 = 1/k T is given
by the canonical Gibbs distribution, which assigns the probability

u(az,y) = e PHei(=:9) /2 2)

to the configuration (z,y). The normalization factor is the canonical partition function
Z=3 a D e~BHiot(2:9)  Unless we explicitly discuss temperature behaviour, we assume
that 8 is included in the Hamiltonian, and therefore put g = 1.

The restriction p;ny of p to X is easily computed. It assigns to # € X the probability
of {(z,y)|y € Y}:

e~ Hiot(2,y)
Hint(2) = Z u(z,y) = Z -z
yeY yeY
ve ) e~ H¥(2)
L B T L el ©
yeY y€eY
where v
w(z) = e H'(2) 20 (4)

is the Gibbs distribution on X defined by the averaged Hamiltonian

Hy(x) :H(way) ’ (5)

and where the A(y) are positive numbers adding up to 1. Thus formula (3) says that
the global equilibrium state, reduced to the inner system X, is a convex combination of
equilibrium states p? of the inner subsystem for averaged Hamiltonians HY. The configu-
rations y € Ypq can be viewed as boundary conditions, defining the averaged Hamiltonians
HY. Formula (3) solves the problem of giving a simple characterization of the equilibrium
distributions, reduced to the inner system, in terms of the basic interaction H. It is a basic
tool in proving both absence and occurrence of phase transitions.

It is easily seen that all the Gibbs distributions u¥ are themselves limits of restrictions
of equilibrium distributions of the global system to X. Indeed, it suffices to consider the
minimal system X x Y34 and to take V = Ae, (where the function e, takes the value 1
on y and zero elsewhere), and consider the limit A — —oco. This makes the configuration
y € Yhq infinitely attractive to the outer system, and yields a sequence of equilibrium
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states, whose restrictions converge to u¥. This procedure is reminiscent of the way one
finds the Dirichlet boundary conditions for the Schrodinger equation in a finite region, by
introducing larger and larger confining potentials.

The set of restrictions of global equilibrium states y, determined by Hamiltonians Hio
satisfying (1), is convex. This is easily seen as follows: if ¥ and Y' are two outer config-
uration spaces for the subsystem, consider then Y" = Y UY"' and the total Hamiltonian
H{,, = H+ V", where V"(y) = V(y) if y belongs to Y and V""(y) = V'(y) + C else. By
varying the constant C' € IR, we can produce any convex combination of the restrictions
of the equilibrium distributions corresponding to Hy.¢ and H{,,. Taking the conclusions of
the last three paragraphs together, we arrive at the following statement, whose quantum
versions form the subject of this paper:

for a measure p on X the following two statements are equivalent:

(1) p can be approzimated by the restriction of Gibbs distributions for Hamilto-
nians in the class (1).

(2) p is a convex combination of the Gibbs distributions u¥, formed with Hamil-
tonians HY (5), averaged with one outside configuration y € Yiq.

Especially suggestive in this equivalence is the identification of the “extreme” elements p¥
of the set so described: in terms of the reduced equilibrium distributions (1), these are
obtained by making the outside potential V very large, whereas in (2) the same elements
play the role of the extreme boundary in the sense of convex sets.

This suggestive picture loses a bit of its appeal when we consider more general, less
“extreme” averages of the Hamiltonian H: rather than evaluating H on a single external
configuration y € H, we can also consider

Hp(m) = Z p(y) H(wa y) ’ (6)
y€Yua
where p is a probability distribution on Y;4. Such boundary conditions arise naturally when
considering random systems. They will also appear when we couple classical systems to
quantum outer systems. One can easily find examples in which the equilibrium states of
such averaged Hamiltonians H” are not contained in the convex set described above (see
Example 1 for an illustration).

Besides equilibrium distributions, ground states can be considered as well. A distribu-
tion u is a global ground state if it minimizes the energy functional p — p(Hyot). As this
functional is obviously affine, the ground states form a face of the simplex of probability
measures on X X Y, and the same is of course true for their restriction to the inner system
X. By an argument quite similar to that for equilibrium states, one verifies that the set
of reduced ground states, when Y and V' vary as in (1), is still a face of the probability
measures on X. A configuration zy € X is an extreme reduced ground state iff there is a
Yo € Ypq such that

H(z,yo) > H(zo,yo) forallze X

The situation is quite analogous to that for equilibrium states: in order to characterize
reduced ground states, it suffices to minimize the energy of the averaged Hamiltonians
HY (5) where y runs over the configurations of the boundary region Y34.
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ITII. Extension to quantum systems

There are two essential properties of classical systems that underlie the description
of equilibrium states of global systems in terms of local Gibbs distributions. Firstly,
all probability distributions on a composite system are convex combinations of product
measures, namely the point measures described by pairs of configurations. This allows
conditioning as in equation (3). Secondly, for functions f and g, exp(f + g) = exp f expg.
Both properties totally fail when we pass to quantum systems.

Quantum systems are described in terms of algebras of observables rather than con-
figurations. The observables of a discrete, fully quantum mechanical system form a matrix
algebra, say, the algebra M, of complex d x d-matrices. On the other hand, the observ-
ables of a discrete classical system with finite configuration space X are the complex-
valued functions C(X) on X. This is an Abelian algebra, which can be identified with
the diagonal d x d matrices, d being the number of points in X. In this paper, we only
consider finite-dimensional algebras of observables. All such algebras decompose into sums
of matrix algebras and may also describe quantum-classical hybrid systems. Probability
distributions are expressed in algebraic language as linear functionals, called states, which
assign to each observable its expectation value. On a finite-dimensional algebra A all such
functionals are of the form

w(4) = Tx(Do4)
where the density matrix D, is positive, and Tr D, = 1.

We consider systems split into an “inner” and an “outer” subsystem. On the level
of the algebras, this translates into a tensor product structure of the global algebra of
observables A = A;;t @ Aexi: the elements of A can be written as finite linear combinations
of elementary tensors AQ B, Ac A, BeB. A—~ A® B and B— A ® B are linear and
the multiplication in A is given by

(A1 ® B1)(A2 ® B;) = A; A, ® B, B,

Asin the classical case, we will assume that we have a complete knowledge of the interaction
of the particles in the inner system with the exterior. More precisely

H e Ainy ® Apg  1s a fixed Hermitian operator and
Htot:H+I®V, V:V*E-Aext:)Abd . (7)

Here, Apq denotes the smallest *-subalgebra of Ayt such that H € Ay ® Apg. For
classical systems Apq is precisely C(Ypq). The equilibrium state w of the global system is
given by the Gibbs density matrix

D, =e Hiot/z (8)

The normalization factor Z is the canonical partition function. We can restrict the state
w to the inner system to obtain the state wiy; on Ajp:

wint(A) =w(AQT), A€ Am . (9)
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The density matrix of w;,; is the partial trace of the one for w with respect to Aex;. We
now define the set £r of reduced equilibrium states

&r = {wint

w equilibrium state for Hyo¢ as in (7)} 2 (10)

where the bar denotes the closure. The set £g is completely determined by H and we
will sometimes explicitly refer to that dependence by writing &g = Eg(H). By the same
argument as in Sec. II, £g is a convex set and we are interested in the following question:
can one give a simple description of £y in terms of H?

There are two natural ways of averaging the Hamiltonian H: either against pure or
against arbitrary states p on Apg (compare with (5) and (6)). In either case, the averaged
Hamiltonian is obtained as

Ef(H) = Zp(Bi)Ai )

where H = ). A; ® B; with A; € Ajy, and B; € Apg C Aext. The sets of Gibbs states on
A;nt corresponding to these averaged Hamiltonians will be denoted by

" = {wL equilibrium state for IE°(H) , p pure } (11)

and

EaH = {w‘ equilibrium state for IE’(H) , p arbitrary} ; (12)

In [1], the set of pure states on Apq is considered as a candidate for quantum boundary
conditions. As in the classical case, this choice can be made plausible by considering
perturbations of the Hamiltonian by large potentials: let P be a minimal projection in
Aext and consider the Hamiltonians Hiot(A) = H + A1 @ P. Note that P, taken as a
density matrix, also determines a pure state p on A.xi. We claim that, as A — —oo, the
restrictions of the equilibrium states for Hiot(A) to Aine converge to the equilibrium state
for IEP(H). In order to verify this, we consider A\™'H as a small perturbation of —1® P,
obtaining eigenvectors %.()), and eigenvalues 7,()), which depend analytically on A~1.
Note that the eigenspaces of I ® P are highly degenerate, and we must chose the basis in
0*! order such that ¥4(o0), @ = 1,...,d is the eigenbasis of the operator (I® P)H(I® P)
and the remaining ¥4(00) are an eigenbasis of (I1® (I— P))H(I® (I— P)). Let n,, denote
the eigenvalues of these operators. Then the equilibrium state w? is given by

AMA) = L § e #a(R), A%a(N))
W Z(")za: lba(M)I

The exponent is

=2+ 9L,+0(01Y) fora=1,...,d
Ma(2) = { nh, +0O(A1) fora>d
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Hence the terms with a > d are negligible in the sum and, after cancelling the factor ¢*
between the sum and Z(A), we can take the limit A — —o0, obtaining

d
W (4) = % 3 e (a(c0), Adpa(o0))

a=1

= (1/2) Tr e~ (IOPIH(ISP) 4

An infinite system generalization of this result can be found in [13]. Now, if P is the one-
dimensional projection onto the vector ¢, the 1-eigenspace of (I ® P) consists precisely of
the vectors 1 ® ¢ where 7 is in the Hilbert space of the inner system. By identifying ¥ ®@ ¢
with 9, the operator (I ® P)H(I ® P) becomes IE°(H), hence w™ is the Gibbs state with
this Hamiltonian, as claimed.

As any state on Apg can be extended to a pure state on Aey; for some suitable
embedding of Apg into a Aeyy, it follows that

convEag C Er . (13)
Obviously, £4° C €am and the states in £5° can be obtained by restricting in the
construction of above to the case Axi = Apg.

In the classical case we found that £g = conv&hy°. In Sec. VI we will examine

whether the converse inclusion of (13) holds, i.e., whether we have
Er Cconvépyg . (14)

We will refer to this as the DLR-inclusion. By (13) it is in fact equivalent to the equality
ER = conv EaH.

A state w of the global system is a ground state of Hi,¢ if it minimizes the energy
w(Hiot). For a fixed Hiot, the ground states form a closed convex set, which is even a face
of the state space. Restricting a pure state of the global system Ajyt ® Aext to the inner

system will in general destroy its purity. The set Gr of reduced ground states is similar to
&R

Or = {wint

w ground state for Hio as in (7)} y (15)

It is a closed convex set that contains the convex hulls of the sets Gh;® and Gag which
are defined as the sets of ground states on A;,; with respect to the averaged Hamiltonians

IE’(H), where p varies either over the pure or over the general states on Apg.

IV. Energy-entropy inequalities

An equilibrium state can be characterized as a solution of the variational principle of
thermodynamics:

wi F(w) =U(w) — S(w)
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attains its minimum at the Gibbs state. F'is the free energy, it is the difference between the
internal energy U(w) and the entropy S(w) = — Tr D, In D,,. It is possible to characterize
equilibrium states by a set of inequalities that express in a differential form that the Gibbs
state minimizes the mean free energy [14]. Consider a quantum system described by the
d X d matrices My and let H be the Hamiltonian of the system. For any observable
A € Mg, the Gibbs state w satisfies the “energy-entropy inequalities”
w(A*A)

w(A A*)
Conversely, if (16) holds for any choice of A € M, then w is the Gibbs state defined by
H. The main advantage of these inequalities, which express the energy-entropy balance in
equilibrium, is that they involve the Hamiltonian in a linear way.

w(A*[H, A]) > w(A*A) In (16)

Consider now again the situation of Sec. III. Any equilibrium state w of the global
system will satisfy the energy-entropy inequalities (16). In particular, the inequalities must
hold for A € A;p: and therefore:

w(A*A)

w(A A*)’
Note that the left hand side involves only the restriction of w to Ayt ® Apg, whereas the
right hand side involves only the restriction to A;y;. In either case, this condition is “local”
in the sense that it does not require knowledge of the global state on Aexi. Moreover, if
this condition is satisfied for A;,; varying over the observable algebras of arbitrary bounded
regions, the inequalities (16) hold on the whole algebra, and hence w must be an equilibrium
state. Thus at least some of the key requirements for a useful replacement of the DLR-
equations in the quantum case are satisfied by the partial energy-entropy inequalities (17).

We denote by Egg the set of states on A;,; defined by
EgE = {w‘ Jw” extending w and satisfying (17)}

w(A*[Hior, A]) = w(A*[H, A]) > w(A*4) In A€ A . (17)

The set Egg is a closed convex set and it contains £g. Indeed, in order to show convexity,
let w and w' be states in Egg. We can then find extensions w™ and w'”on Ajy; ® Apg that
satisfy

wO(4* 4)
SO(AA")
For A € [0,1], Aw™+ (1 — A)w'"extends Aw + (1 — A)w' and for A € Ajns:

(vt (1 - X)) (4° [H, 4)
= Aw (A% [H,A]) + (1 — N w'"(A*[H, A])

W (A*[H, 4]) > w)(4* 4) In A € Ay

> Aw(4"A) In :((:E)) +(1-2)w'(4*4)In %
= -(Ae(4 )l Z((jf A)) +(1-N)w'(4"4)In “’;——,((if A)) )

Aw(AA*)+ (1 - A)w'(AA%)
Aw(A*A) + (1 — N w!(A*A)
Aw(A*A) + (1 — M) w'(A*A4)
Aw(AA*)+ (1 - N w'(AA¥)

> —(Aw(A*A) + (1 - M) w'(4*4)) In

(Aw(A*4) + (1 — A)w'(474)) In
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There are versions of the energy-entropy inequalities for classical and hybrid systems
too. The inequalities (16) are of no use in this case because in a classical system all
commutators vanish and A*A = AA*. Hence (16) is trivially satisfied as 0 > 0. We
therefore consider in the next section a more general type of inequality that also covers
hybrid systems.

V. Systems with a classical interior algebra

With the exception of Example 3, all examples in Sec. VI will be “hybrid systems”
with a classical inside system with n = finitely many configurations, i.e., we have Aj,; =
C({1,...,n}). The interaction is given by a Hermitian element H € Ajnt @ Aext, i.€., by a
Hermitian-valued function ¢ — H(z) € Aext. The subalgebra Apg C Aext is the algebra
generated by 1, and all H(z). The perturbation I® V by a potential V = V* € Ay is
represented by the corresponding z-independent function. The reduced equilibrium states
of the total Hamiltonian Hi,s = H + 1 ® V are then the probability distributions

pag(z) = %Tr(e_(ﬂ(x) + V)) s B=lycinyB 3 (18)

where Z is the normalization factor making this a probability distribution. If p is a state
on Aext, the averaged Hamiltonian IE°(H) is the function h = IE°(H) € C({1,...,n})
taking the value h(z) = p(H(z)) at z. (Note that only the restriction p[.Apqa enters this
expression). This leads to a probability distribution of the form

phu(e) = 5 e PHE) 10 (19)

General states w on A ® Aext are given by (not normalized) positive functionals w® on

-Aext:
w=)Y 60w , (20)

where 6, is the evaluation at z. If e, € X denotes the function which is 1 at « and 0
otherwise, we can expand the observables A of this system as

A=) e, @A) , (21)

where the A(z) are elements of A.yx;. Thus observables are identified with Ac¢-valued
functions on X, and the algebraic operations are defined pointwise in z. In particular,
A is Hermitian iff A(z)* = A(z) for all =, and the identity element is the function which
is equal to T € A for all z. The expectation of an observable (21) in the state (20) is
computed as
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With the identity element for A, we find the normalization condition

Z wi(I) =1

zEX

The useful energy-entropy inequalities in this situation are

w*(A*A)
TAA) (22)

w* (4 (H(y) A - AH(z))) > w*(4"4) In

z,y =1,...,n and A € Aex. From this, we find restricted energy-entropy inequalities
analogous to (17). We have to evaluate (22) for A = al. Thus AA* = A*A, and a
factor a® can be cancelled from (22). Hence, for a classical inner system, the suitable
definition for Egg is the set of all probability measures ugg on {1,...,n} for which there
exist non-negative functionals w® on Aext with pgg(z) = w*(I) and such that

w®(H(y) — H(m)) > pee(z) In ZEEE;;, r,y=1,...,n . (23)

It is sometimes convenient to work with the logarithms of probabilities, i.e., to describe
a state pu on Ajye by the n — 1 numbers

(Inp)(z) = In(p(z)) —ln(p(1)) , for z=2,...,n . (24)

The image of the various sets Exx C IR™ ! under this map will be denoted by ﬂié’xx. In
this logarithmic scale €4y becomes

In €y = {g e R™!

t=p(HW) - H@=)} (25)

where p runs over all states of Apg. This is an affine image of the state space of Apg.
Note that this set is always convex but, due to the non-linearity of exp, £ag itself is not
(compare Figure 1).

When A;,; is classical, we can also give a fairly explicit description of £gg. Since we
want to interpret (23) as a condition for the probability distribution ugg(z) = w*(1), it is
convenient to write the positive linear functionals w* determining w as w® = pgg(z) - p~,
where the p® are now states on A.y;. Note that no ugg(y) can vanish: since w # 0, some

peE(z) must be non-zero, and by (23) In{pge(z)/pee(y)) is not infinite. Hence we may
divide (23) by pre(z) and we find

In ueE(y) + p*(H(y)) > ln pr(z) + p*(H(z)) . (26)

In these terms, the energy-entropy condition on ugg is that, for every z, there is a state
p® on Ayt such that (26) holds for all y. We consider first the case z = 1. Then,
using the equations (24) and (25), we conclude that there is a vector £ € In Ean, namely
¢, = p*(H(1) — H(y)), such that In ugg — £ lies in the cone Cy of coordinatewise positive
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vectors in IR™™ . In shorthand notation, this is written as In UEE € In Eam + C1, where,
£ cinEam, ne 01}. The

conditions for z > 1 can be written in a similar form after subtracting In pgg(1)+p*(H (1))
from both sides of the inequality when = # y. Thus, with the cones

as usual, the sum on the right is to be interpreted as {5 +n

eR" | Vy & >0 =1
O;c = {f ‘ Y Ey B } ’ (27)
{¢eR" | Vy g >¢ and §, <0} z>1
we get the formula
inépp = (| (In€am + Ce) - (28)

z=1
This construction is illustrated below in Example 5 (see Figure 4). An amazing feature of
this set is that both In Egg and its exponentiated version £gg are convex (see Sec. IV for
the second statement). This seems to be in conflict with the non-linearity of the map In.
However, this conflict is resolved by considering the special form of the cones (27): the
cone C, corresponds to that subset of the state space in which In u(z) < In u(y) for all y.
Such inequalities survive exponentiation, i.e., the cone C, + In u at p corresponds in the

state space to the set of probability distributions p' such that p'(z)/u(z) < p'(y)/p(y) for
all y, which is a convex set.

V1. Examples

Since our main aim is to demonstrate the failure of the DLR-inclusion in the quantum
case, our main results are in the form of examples demonstrating the success or failure of
these ideas in various situations. We have chosen a succession of examples to illustrate var-
ious degrees of failure of the DLR-inclusion £g C conv £ay. Mathematically, the strongest
result is the last example, in which both the inside system .Ajn¢, and the boundary algebra
Apa are classical, and Aext is the algebra of 3 x 3-matrices. However, this example is
rather indirect, so we will give simpler, direct examples as well, hoping to help the reader
to develop an intuition of what exactly goes wrong. We emphasize that, while we treat
only finite systems, our results are equally valid for infinite outside systems. In fact, every
example that we give can easily be enlarged to an example with infinite outside. In the
same spirit we are looking mostly for examples with classical Aj,,: usually these can be
expanded easily to examples with non-commutative A;;;. Moreover, they are simpler to
treat and, being closer to the classical DLR-situation, they bring the failure of the quan-
tum generalization into sharper focus. In producing the examples we found the help of a
computer algebra program [15] a very valuable tool.

The symbols in the heading of each example are a shorthand for the type of algebras
used. Thus “Q5C3” is an example with a quantum inside with A;;y = Mj;, and an
interaction H contained in a subalgebra of A,y ® Apg, which is isomorphic to Ay ®
C({1,2,3}), i.e., the inside system interacts with 3 classical configurations. Of course,
we will mostly assume that the whole algebra A.y; is not commutative, since otherwise
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the DLR-theory would simply be valid. If the number of configurations or Hilbert space
dimensions is irrelevant, we just write “n”. Each example begins with a short description
of the model and of the claims about various inclusions to be seen in this example (set in
italics), followed by the verification of these claims and some additional remarks.

SR

(O
N

-
]

‘ ——— .,

A e — "=

AVWarw e ———o

Figure 1 (for Ezample 1): state space of C({1,2,3,4}) with
Ean embedded. The triangle is conv SEIIJ_I“ = En.

Example 1: C4C3; A, classical

With this ezample, where Aexy is Abelian, we demonstrate that convEay ¢ convEhy . It
also serves to illustrate the lack of any definite convezity properties of the map which takes
Hamultonians to Gibbs distributions (see Figure 1). Ezplicitly, the interaction is given by
the matriz H(z,y), ¢ =1,2,3,4, y=1,2,3, as

0 0 0
1 -1 0
H = 0 1 -1
1 0 -1

The numerical evaluation in this example is straightforward, and the result is shown
in Figure 1. We include this example mainly to illustrate a remark made in Sec. II, namely
that, due to the non-linearity of the exponentiation map, general averaged Hamiltonians

(6) do not give equilibrium states inside the DLR-triangle £g, which is also marked in the
figure.
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Example 2: C2Qn

When the inside system is a single Ising spin and the outside is arbitrary, the DLR-
inclusion holds, namely

ure
En =&y = SKH

The Hamiltonian is specified by two Hermitian H(1), H(2) € M,. Then, by (25), InEsn
is just the set of numbers p(H(1) — H(2)), where p ranges over all states of Aext. Thus
In Eag is the interval [7—,m+], with endpoints given by the largest and smallest eigenvalues
of H(1) — H(2), i.e., the smallest 7, and the largest 7_ such that n_1 < H(1) — H(2) <
n+1. Moreover, the same interval is obtained if we restrict the states p to be pure, i.e.,
Eam =& = [1-y14]-

On the logarithmic scale, pjp € € from (10), is given by the single number
NWV)=InTrexp—(H(2)+V)—InTrexp—(H(1)+ V)

Now the function A — InTr exp(—A) is monotonely decreasing with respect to the
operator ordering for A. Moreover, InTr exp(—A — nI) = InTr exp(—A) — . Since
H(2) < H(1) —n_1, we get (V) > n_. Similarly, we get the upper bound n(V) < n,.
Hence & C [n—,n4] = €Ly > and, from the general arguments in Sec. III concerning large
potentials, we get the inclusion £§;° C &g, and hence equality.

Example 3: Q2Q2
1

We now replace the Ising spin of the inside system by a quantum mechanical spin-3, i.e.,
we take Ay = Mo, For the outside, we will also have Aexy = My, and define the

Hamiltonian by

H(a,7v)=01®01+ 02802 +703 @03 —aos @1 (29)

where a > 0 and v > 0 are parameters, and o;, 1 = 1,2,3 are the usual Pauli matr:-
ces. We claim that, in this model, the reduced equilibrium state wl, € En(BH(a,7)),
where the superscript 0 denotes that the potential V is vanishing, is not contained in
conv py (6H(a,fy)). Hence the DLR-inclusion fails in the following cases:

(1) 8 =3, a=.3, v =.05 (see Figure 2)

(2) =0, and all 3 > 0,

(3) for 0 <+ < .8, and B = o0, i.e., for ground states.

What makes this operator tractable is that it commutes with SU(2)-rotations around the
3-axis. In the joint eigenbasis of 03 ® 1 and 1 ® o3 it corresponds to the matrix

—a + 0 0 0
0 —a — 2 0
0 0 0 o+
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The partition function for H(ea,v) and the expectation of a3 @ I are readily computed:

Z(B,a,7) =Tr e~ BH(ay) = 2¢7P cosh(Ba) + 2¢°7 cosh(BR;)
1 8

wiont(a?’) = E 5;111 Z(8,a,7)
R, (eﬁ(a+21) + eBR1 4 B(2a+Ry) | eﬁ(a+2‘y+2R1))

where R; = v/4 + o2. Since H(a,v) commutes with rotations around the 3-axis, so does
0

Wiy, and hence it is completely determined by the expectation of o73.
_1 1423 21—tz . . 9 . ’ ) .
If p=3 (zl+izg - ), with z; € R and ), 2] < 1, is a 2 x 2-density matrix, we
find

—a+yr3 T1 —IT
B () = (5110 BT

The equilibrium state w4y of IE°(H(e,<y)) can be evaluated with the formula

e PH 1][ ta.nhﬁ\/detHH

Tre—B8H 2 2v/det H

for H a traceless 2 X 2-matrix. €45 is now a body in the state space of M,, parametrized
by the triple (z1, 2, #3) determining p. It is the image of an ellipsoid in the space of 2 x 2
Hamiltonians under the non-linear map (31). This map preserves the symmetry under
rotations around the 3-axis, hence £,y will also have this symmetry. Figure 2 shows a
section of Eapg in the (1,3)-plane of the state space. It has to be completed by rotating it
around the vertical axis, thus making £s5 the shape of a mushroom. The point marked

on the axis is w-!ont. It is clearly not contained in the convex hull of £g.

(31)

At high temperature (small 3) one can expand all exponentials, and one finds that, in
first order in 3 and as long as v # 0, the convex hull of £451 does contain w(,. However,
if v = 0, the first orders coincide, and we get

win(os) — wine(os) > Z(2— 2] —23) B° + O(8°) > 0

w|R

Hence the DLR-inclusion fails even for small 3, and it can be seen numerically that, with
v =0, it fails for all 8 > 0.

In the opposite direction, as 3 grows, the points in €4y move radially out to the
extreme boundary of the state space and, in the limit, we obtain the pure ground states
of the Hamiltonians IE’( H(a,+)). Hence, for 8 = oo

o — Y3 5 o2 —A2
VEi+ 22+ (a—qz3)?  4/l+a—42 ’

where the second expression is the minimum of the first with respect to variation of the
z;, attained for m% +2z2 =1—22% and z3 = v/a. The limit # — oo of “’iont can be obtained

“’iH(US) =
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directly from (30): of all the exponents appearing in this equation, B(a + 2y + 2R;) is
clearly the largest, so the limit is a/R;, or

04

w?nt(a3) = ———W

Hence, for all p, we have
w? (cr wd (o f = do< V3
AH 3) = int( 3) or ,3 oo and 0 < vy < SO

Thus the DLR-inclusion fails in general for quantum ground states. For this conclusion
it is crucial that both systems are non-classical. In our further examples we will always
take A;y; Abelian. The pure states of the tensor product Aj,; ® Acxi, such as the extremal
ground states of H, are then product states and can be found by minimizing IE°(H) for
each p. Thus, for classical A;,¢, the ground state DLR-inclusion holds.

0 0.2 0.4 0.6 0.8 1
Figure 2 (for Ezample 3): section of state space, with £an
marked (3 = 3, a = 0.3, ¥ = 0.05). The point on the vertical
axis is w) .. It is not contained in the convex hull of £xn.

Example 4: QnCm; At = Apa ® B
The DLR-inclusion Eg = conv Exy - holds when the boundary algebra is purely classical and
when the ezterior algebra Aext factorizes into a tensor product C(Yvqa) ®@ B, B arbitrary.

From the general argument of Sec. II we always have convEhp;~ C Er. Conversely, with

Hiot = H+1®V, H and V functions from Ypq to Ajye and B, we have for any A € A

Z Tra,.08 (e*(H +V) A) = Z Trs (e_V(y)) Tra, (e“H(y) A) .

YE€EYra YyEYna
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But this precisely means that &g C conv&iy°. From Example 1 it becomes clear that
generally conv Ei7° is strictly contained in conv £s. Therefore the inclusion conv Exmg C
&R, that holds if we allow for general embeddings of C(Ypq) in an exterior algebra Aeyt, is
reversed if we restrict ourselves to product systems Aine ® C(Ypa) ® B.

A special case of this example is the case where all of A.y is classical. The representa-
tion of equilibrium states by conditioning with respect to a classical outside is reminiscent
of the work [16]. In that project one also considers quantum systems split into inner and
outer region. The aim is then to represent general quantum states as integrals of states
conditioned with respect to a classical subalgebra in the outside region. In the present,
finite-dimensional setting, this is a trivial operation.

Example 5: C3Q2; A, = M,

By Ezample 2, the smallest non-trivial case of a classical inside algebra is Ay = C({1,2,3})
and we stay with Aexy = My i.e., we consider only the subset Eg(M3z) C Er of reduced

equilibrium states coming from potentials V € M,. Thus H is given by three 2 X 2-matrices,
which we choose as

3 3
H1l) =0 , H(2)=§a'3 , and H(3)=§o'1

In this ezample, we will determine the three sets Eau C Er(M2) C Egg ezplicitly and show
that both inclusions are strict (see Figure 3).

Figure 3 (for Ezample 5): state space of M in logarithmic
scale; inner circle is In £55, extension by curves is In £g (M3),
angles determine ln Egg.

The averaged Hamiltonians IE°(H) depend only on the two expectations p(o3) and
p(o1), and therefore form a two-dimensional disc in the space of Hamiltonians. Note that,
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because p(o3) does not enter, we get the same disc when Hamiltonians are averaged only

by pure states p. The disc of Hamiltonians is (up to a factor) identical with InEapm (see
the circle in Figure 3).

In the logarithmic scale pky is given by a point in the plane with coordinates

~ InTr exp(—H(2) - V) —InTr exp(—V
n(V) = Inprp = (ln Tr exi%—«ﬂ&g - V; —InTr exgg—V;)

By choosing some random V, it is easy to convince oneself that in this example
Er(My) & Eam,i.e., we get points outside the circle in Figure 3. The precise determination
of Ep (M) is more difficult. Consider the map V — n(V). We know that, as A — oo,
n(AV) approaches a point in £ag. Therefore the boundary points of £g(M3) must be
of the form n(V) with finite V, and at such points the map 1 must be singular, more
precisely, the rank of the Jacobian must be one. It turns out that this can happen only in
the plane V = zo; + 203, along three disjoint arcs. Each of these arcs extends to infinity,
and describes a piece of the boundary of £g(M3) connecting with the boundary of Eag.
Solving for the critical points in the (z,z)-plane can only be done numerically and the
result is shown in Figure 3.

In this example we can also evaluate the energy-entropy inequalities (23). Using the

general method outlined in Sec. V, we obtain Iln £gg as the intersection of the three convex
sets shown in Figure 4. The result is also included in Figure 3 for easier comparison.

/\

___

W%

Figure 4 (for Ezample 5): upper left: the cones Ci,C>,Cj3
from (27). Remaining panels: In€xg + C;, 7 = 1,2,3. The
intersection of these sets is shown in Figure 3.
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Example 6: C3C2

In the previous example the algebra Angq was non-Abelian. We now move still closer to
the classical DLR-situation by requiring this algebra to be Abelian too. We will retain the
choice Ay = C({1,2,3}) of the previous ezample, but set Apq = C({1,2}). More generally,
the considerations of this example are valid if Ainy = C({1,2,3}) and if the three operators
H(z) € Aext, determining the interaction, are of the form

H((U) = hg + azhl + bz,][ )

for some Hermitian ho,h1 € Aext and real constants a.,b.. We then find that the DLR-
inclusion holds, i.e., Eg = convExy. Moreover, the inclusion Eg C Egg is strict (see
Figure 5).

Without loss of generality, we can take a; > a; > a3. Then we can finda A, 0 < X < 1,
such that

H(1)=AH(2)+(1-A)HE)+y1 , (32)
where y = b; — Aby — (1 — A)bs. Hence, we have

Inp(l)=Alnp2)+(1—-AN)1nu3)—y , for p€&am . (33)

Thus €5y lies on a line in the state space, which appears straight on the logarithmic scale.
The set £5y is parametrized by the expectation p(h;) in arbitrary states p of Aext and the
extremal eigenvalues 74 of h; (i.e., the best constants with n_1 < hy < 74 1) determine
the £ag as a segment of that line. An alternative description of the endpoints is by the
equation of the line passing through them, or equivalently, by the coefficients c3,¢s of the
linear inequality

#(1) = cap(2) + esp(3) (34)

which becomes an equality precisely at these endpoints. Inserting the known endpoints
p+ and solving the linear system, we find

e-(ez—a1)+ni(az—a1)+(b2—b1) (en-(aa—M) _ em—(aa—al))

Co —
2 e’?+(¢2-a1)+ﬂ—(aa—ﬂ-1) _ eﬂ—(az—al)+ﬂ+(a3—a1)

e-(aa—e1)+n4(az—a1)+(ba—b1) (eﬂ+(az—0-1) —_ eﬂ—(az—aﬂ)

Ca =
3 eM+(az—a1)+n_(as—a1) _ on-(az—a1)+n4(as—a1)

The only information we will need from these formulas is that, since ny > n— and a; >
ay > as, both constants are positive. This implies that, for all  with n_ <75 <74,

e—~a1n-b1 > c2e—azn—bz 4+ 63e—aan~ba

Indeed, this is an equality for = 4 and n = 7 and follows for the intermediate values
by multiplying both sides with €®*” and invoking the convexity of the exponential function.
Since p(h1) € [n-,n4+] for all states p on Aexi, we find that Eax is the set of probability
distributions satisfying equation (33) and inequality (34). (See the thick line in Figure 5).
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Figure 5 (for Ezample 6): left panel: state space of C({1,2,3});
right panel: same figure in logarithmic coordinates (same
orientation). Thick line is £am, lens shape is €g, and dashed
corners together with £ay are the boundary of &gg.

On the other hand, since the interval [p_,n4] contains the spectrum of h; and both
(H(1) — H(2)) and (H(1) — H(3)) are functions of h;, we obtain from (32) the operator
inequality

1> ¢y HW-H®) o o, JH)-H(3)

Combining this with the Golden-Thompson inequality [17], i.e.,
Trexp(A + B) < Tr(exp(A) exp(B)) ,
we get
¢ Tr g~ HIZ)~V 4 c3 Tr e HE)-V
— ¢ TrfHO—H@)—(HOAY) | o Ty (H)-H(3)~(HQ)+V)
< Tr (c2 eHO-H(2) 4 . eH(l)-H(s)) —H()-V

_<- TI' e—H(l)—V

Hence, all probability distributions u € &g also satisfy inequality (34). On the other hand,
we may use the convexity of the function A — In Tr exp(—A), together with (32) to obtain
that, for u € &g,

Inp(l) <Alnp(2)+ (1 —A) Ing((3) -y

Thus we have shown the DLR-inclusion &g C £am. The determination of Egg uses the
method described in Sec. V and illustrated in Figure 4.
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Example 7: CnC3

The previous example might have nourished the hope that, at least for purely classical
interactions (Apa Abelian), the DLR-inclusion might survive. What we will show now,
however, is that Eg ¢ conv&py in this case. The proof of the following Proposition is
based on the failure of a well-known failed conjecture, which was disproved by Gaudin [18].

Proposition. Let Ay = M3, and denote by D3 the subalgebra of diagonal matrices.
There exist an n € IN and a Hamiltonian H € C({1,...,n}) ® D; such that the DLR-
inclusion Eg C conv Eay does not hold.

Proof : We will show that the validity of the DLR-inclusion would imply for any Hermitian
3 x 3-matrix V the existence of a positive measure uy on R® such that

1 0 0
Tr exp (—— (0 3 0) - V) = /,uv(d)\l dA\zd)3) e PIRFEE . (35)

0 0 T3
We may paraphrase this by saying that the expression Tr exp A, considered as a function
of the diagonal matrix elements of 4, is the Laplace transform of a positive measure. This

is precisely the statement investigated by Gaudin [18] and proven to be wrong for suitable
V. Hence the DLR-inclusion fails for such V. '

It remains to prove (35) assuming the validity of the DLR-inclusion. By E; € D3 we
denote the matrix with “1” in the i*® place of the diagonal, and all other entries zero. For
z € R® we set H(z) = ¥.°_, z; E;. Consider a finite subset X C R®. Then H(z) defines an
interaction H € C(X) ® Ds. The left hand side of equation (35) is p}g(z), for z € X. On
the other hand, the average of H with respect to a state on M3 (or, equivalently, a state on
Ds) is characterized by three numbers A; > 0 with 33, X; = 1, and EM H)(z) = ¥, Aizi.
As we assumed the inclusion Eg C €ay, we can find a measure ,u,{,{ with finite support
such that equation (35) holds for all z € X with uff for u. Now consider the net of
finite subsets of X C IR®, ordered by inclusion. We may assume that each X contains the
origin, so that each one of the associated measures yi¥ is normalized to the same constant
Tr exp(—V). Then, by weak*-compactness, we find an accumulation point uy of this net
of measures and it is clear that equation (35) holds for this measure and all z € IR.

Rather than considering the expression Tr exp A as a function of its n diagonal el-
ements, one can also study this expression along a single straight line in the space of
Hermitian n x n-matrices. The following conjecture about this situation was formulated
by Bessis, Moussa, and Villani in 1975 [19]:
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Conjecture. Let A and B be Hermitian n X n-matrices. Then there is a positive measure
u such that
TreA +iB _ [”(dﬂ) eﬂt

A, possibly signed, measure p satisfying this equation always exists and is uniquely
determined by A and B. Hence, the issue is only the positivity of this measure. Despite
many attempts, this conjecture is still open, even for n = 3. It is true for n = 2 and
whenever A has positive matrix off-diagonal elements in an eigenbasis of B [19]. Moreover,
it is true for sufficiently small A [20]. The measure p is known to have support in the
convex hull of the eigenvalues of B and to have a positive atomic part, supported by the
eigenvalues themselves. A review of the existing partial results, together with some new
ones, is in preparation [20].
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