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AN INTEGRAL EQUATION ARISING IN THE

STUDY OF ABOVE THRESHOLD PHOTO-
DETACHMENT

By Patrick Guidotti and Matthias Hieber

Institut fiir Mathematik, Universitat Ziirich, Winterthurerstr. 190,
CH-8057 Ziirich, Switzerland

(29.XI.1995)
1 Introduction

In 1990 Faisal, Filipowicz and Rzazewski [1] proposed a model describing strong-field pho-
todetachment processes. Indeed, they studied the case of photodetachment in a strong
circularly polarized laser field using a three dimensional é-potential mode. For further ref-
erences and more detailed information on this problem we refer to Faisal, Filipowicz and
Rzazewski [1] as well as to Faisal, Scanzano and Zaremba [2], and the references therein.
In order to establish various properties of the observables of the model a basic integro-
differential equation was derived, which reads:

F(r) = — 1 U(r) + F'T_

v «/_f Fa +

2\/7,?052

For the interpretation of (1.1), the definition of the constant § and the functions U and vy
and more details we refer to Faisal, Filipowicz and Rzgzewski [1] (p. 6178). Recently Saladin
and Scharf [3] showed that for certain reasons the above integro-differential equation is not
completely correct. They proposed that (1.1) should be modified into the following integral

—1)F(r-¢&d¢, 7€(0,T). (1.1)
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equation:

F(m—a/ m ﬁ/ (ro)F(rdr+G@), £>0.  (L2)

The constants and functions appearing in (1.2) will be specified precisely in the next section.

In this paper we do not discuss the physical background of the derivation of (1.2). For
this we refer to the forthcoming paper of Saladin and Scharf[3]. Our interest in this prob-
lem, however, is to give a rigorous mathematical proof of the existence of a unique, global
continuous solution u : [0, 00) — C to the equation (1.2). Substituting v in the wave function

o(r,t) = ] G(r,7,70,0)r0) dro — ] G(r, 7,0, €)u(€) dé (1.3)

one is able to compute various observables of the original problem. For details, see Ref. 1.
Here G and ¢ denote the Volkov’s Green function and the initial condition, respectively.

To the best of our knowledge all the existing results for (1.3) are based on numerical
approximation of the solution of (1.1) or (1.2). These are obtained by discretizing the
integral equation involved. Our approach to equation (1.2) relies on the classical Neumann
series representation of the inverse of a linear operator. Thus we do not only obtain the
existence of a solution to (1.2), but also an approximation method by the classical iteration
scheme. This also provides exact error estimates.

2 Mathematical formulation and existence of continu-
ous solutions

In this section we reformulate equation (1.2) as a fixed-point equation in a space of continuous
functions. To be more precise, put J := [0, T] for some T > 0 and fix the space E := C(J),
consisting of all continuous functions v : J — C. Let § > 0. Endowed with the weighted
supremum-norm ||u||s := sup,¢; e~°*|u(x)| the space E becomes a Banach space. The choice
of this weighted norm allow us, as we shall see, to establish directly the existence of a global
solution without any continuation argument. From the mathematical point of view the
problem consists of finding a function F' € E satisfying
* F(r)m(r)

Flz)=a 0 —;\/,___——?—dT—FﬁmeR(T,m)F(T)dT—i—G(a:) , T€[0,T], (2.1)

where & = 4\Vir for some A > 0, § = % and the functions m, R and G are defined as
follows:

(M1) m(r) == (1 — (1) -e), 0 < 7 < T. Hereby b(r) = [, E(s)ds, where E = E(t)
denotes a time-dependent continuous electrical field and e € R? is a unit vector.
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(R1) ¢*(t,7) i= %‘fﬁz[(coswv' — coswt)? + (w(t — 7) +sinwr — sinwt)?] , (t,7) € J2. Hereby
# and w denote the amplitude and the frequency, respectively, of the outer field.

czgt‘r

(R2) k(t,7) :=t—L(e W == 1) 0<t,7<T.

(R3) R(T,:c)::fm-—ﬂam— 0<7<z<T.

T [(z—o)(o—7)]2

(G1) w(z) =3, PJ(%%) , where I is the Euler Gamma-function and z € C. Observe that

w is the power series expansion of the modified complex error function e"”zerfc(—z'z)
(cf. Ref. 4, p. 297).

(G2) qi(t) == —\/Ejfé%ﬂ — aivit, g(t) == —\/ZL%%M +aivit,0 <t < T, where a € C.

-c:2 25
(G3) S(t) := 2Icg0)| 1_‘(tt_ol[w(q,'g) — w(—q1)] , where N € R\ {0} denotes a suitable normal-

1zation factor.

CZT
(G4)CHx)==—aﬁfjgngT+§FUDﬁf:fo§:G¥—%m——l)dT,xEcﬁ

In order to find such a function we use the Neumann series (cf. Ref. 5, p. 191) to represent
the solution of the linear equation

(I-®)(u)=G, (2.2)
where ® is defined by

u(r)m(T

®(u)(z) =a -

dr +ﬁ/ Hlirea)ulr) dr »
€0,T], ue E. (2.3)

In a first Lemma we prove that ® is well-defined as a self-map on F and that GG is continuous.
Note that in this paper const denotes a generic constant, which may differ from line to line.

Lemma 1. Let w € E. Then ®(u) € E. Further, G € E as well.

Proof. We divide the proof in three steps. The first two correspond to the terms of the
right-hand side of (2.3) and the third to the second assertion, respectively. Let u € E and
let B the Euler Beta-function, defined for z,y € (0, 00) by

1
BlEy) = / o* 1 —o) ldo.
0

Step 1 It follows by elementary calculations that

€ E.

[xH/; Tr:dd
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Step 2 We show that
[3: — / R(T, z)u(r) dT]
0

is continuous and thus bounded and uniformly continuous on J. To this end let 0 < z <
y < T and consider

/DI R(1, z)u(r) dr — /Oy Rz, y)ulr)dr=
= /Ow (R(T, z) — R(r, y))u(T) dr — fy R(r,y)u(r)dr = 1+11
Note that by the power series expansion of sin and cos
c*(t,7) < const Wit +7)3(t —1)%, (t,7)€ J? (2.4)
and thus

c (t T)

: l]m ’ ’5d§1 <const (t+7)%, (t,7)€ J.
-7

|k(t, 7)| =

Hence

1] < Uy u(T)[’ - mkt()t(: % dtdr| <

< const /: [,y (( _j)t((:i 7))

Y

b=

Setting now o := ;—’:—: we obtain

I1I] < const f [ i const (z —y) .

- 1
1—0 £

As for I we have

'I"‘] { \/tt—T)r(\/xl-t \/yl*t)dt-i—
A (v ; (ttf(?iltr))% } g
< const /[ \/tl—r(\/ml—t_\/yl—t)dth+
dtdr
+const[ / =

=:Ip+1p.
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The integrals I, and Iz may be estimated as follows:

IIAlgconst// = \/y—t—\/x—tdth
\/t*T\/x—-t

1/2 E/ [ —z)¢dtdr
< const
Jw—tt—T@—ﬂ@r%W*e
dt dr

< const (y 1/2 ‘/ /
V(t—171) x—t)l €

<WMM9—@”2‘W“B% €) < const (y —z)"/>~*.

and

dt < const (y — a:)%

o < coms, [ [
B = s VU—1tJy Vt—T

Thus, summarizing, we have

11| + JII] < const (y — z)/*7¢.

Step 3 Consider the first term in the right-hand side of (G4). It follows from the definition
of w, ¢ and ¢, that

w(an(®) = wi-aa(0) = -V 4 20let, 0]+ O(VA)

Hence

const

Vit

15(2)] < ted. (2.5)

Let now y > z > 0, then

/oﬁt \/S(t—)

— 1 1 B y S(t) _
_/os(t)(\/xmt_\/y"t)dt ./;c\/yTtdt JES

Using (2.5) and performing the change of variables o := ;:—2 we verify that

III| < const z™/?(y — )2 .

Furthermore

|I| < const /O\x\/iz(\/\y/'y—__t;\/\gfv__;t

) dt <

cons ’ y— % dt .
: tL U@—ﬂ@—ﬂfﬂt
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By the change of variables o := % , the last integral on the right-hand side above equals

1
const (y — 1:)1/2/ o721 — o) V2{y — o2) "V (y — ox) " do . (2.6)
0

Note that a positive constant M can be found such that

1 1
<M— on (0,7]. (2.7)
y— oz ox
Inserting (2.7) into (2.6) we obtain
1 1
|I| < const "% (y — ) ¥ B(e, 5

To prove continuity at z = 0, if suffices to show that lim, . f \/:C— dt exists. By definition
of S(¢) we have

i
\/E

<2 (+,0)

S(t) = —( + 204+ O(Vt))e! it

2
This implies

c2t0

: N S(t) (e —1) 1)
Sy Vot “‘“filf%/o N

T gt 11
— = P RABi- =
“[,lﬂ%; . Vol 2“/fZ (53)

The second term on the right hand side of (G4) still remains to be handled. Writing this
term as

2 2
.c“(¢,0 s (t,0)

F(O)[/ﬁmu((w—ﬂ%—(y-—r)_Tl)d’r—/ye—l—“—-——w—}dTJ ,

1
— 1
w T2

it follows that it can be estimated by

-

const (y — x)
for all z,y € [0, 7). O

Remark 1. It follows from (2.2) and the previous Lemma that a solution u of (2.1) neces-
sarily must satisfy the initial condition

u(0) = =2 N7 .

Remark 2. The above proof shows, that for each v € E and each e € (0,1/2), ®(u) is
Holder continuous of degree 1/2 — € on each interval [6, 7], where 0 < 6 < T.

Lemma 2. Let § be such that L := 4w6~1/2 + %gé‘l < 1. Then

sup e %% |®(u)(z)] < L sup e *|u(z)].
z€[0,T] z€[0,T]
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Proof. Let z,0,7 € [0,T]. Then by (R1)

wo

2 _ 4 = g 2 2
(o,7) = F{(-— sin(€)d¢)” + (w(o—7) + cos(€)d¢ ) }
20
S L(JZ (0 - T)2'
Hence, we obtain by (R2)
5u?
|k(a,7)| < el
and therefore by (R3)
5u2 11
<22 B(=, ). .
R(r2) < 5B, 2) (29

Using (2.8) we at last verify that
~-1/2 5u*
12(u)lls < 4dlmloo6 ™ lulls + B =287 |ulls = Lilulls

O

After these preparations we are now able to prove our main result which reads as follows.

Theorem 1. Let T > 0. Let R and G be defined as in (R3) and (G4). Then the equation

Flx) = 4\/5/02 \/ZL?_TdT + 51;/: R(r,z)F(r)dr + G(z) , z € [0,T]. (2.9)

possesses a unique solution u € C([0,T]). Moreover, u is locally Holder continuous of degree

5 — € for each € € (0,1) on the interval (0,T).

Proof. Fix T > 0. It follows from Lemma 1 and Lemma 2 that (I — <I>) - may be represented
by

(I-®)"'(w)= () ")), vec(o,T].

n=0
Hence (2.9) has a unique solution u, which is given by

[o <]

u=()_®")(G). (2.10)
n=0
The additional regularity for » is implied by Remark 2 . a

It is now standard to deduce from the uniqueness of the solution the following
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Corollary 1. Let R and G be defined as in (R3) and (G4). Then the equation (1.2) has a
unique global solution u € C‘([O, oo)), which is locally Hélder continuous of degree %— — € for
each € € (0, 3) on the interval (0, c0).

Equation (2.10) implies that the solution u may be approximated by

Uy = (Z ‘I)n)(G) .

n=0

Corollary 2. LetT > 0, N € N and L be as in Lemma 2. Then the following error estimate

18 valid:

N+1 ‘5I| @
sup e G(z)].
z€[0.T] 1= L sepom)
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