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Quasilocality of Projected Gibbs Measures through
Analyticity Techniques

By Jézsef Lorinczi

Institute for Theoretical Physics, Rijksuniversiteit Groningen
Nijenborgh 4, 9747 AG Groningen, the Netherlands

(8.XI.1995)

Abstract. We present two examples of projections of Gibbs measures. In the first example we
prove high-temperature complete analyticity for the g-state Potts model. As a consequence we
obtain complete analyticity also for the decimated Potts model. In the second example we prove
quasilocality of the projections to the line of the pure phases of the two dimensional standard Ising
system in the whole uniqueness region, and indicate why non-Gibbsianness can be expected to
occur for higher dimensions.

1 Introduction

Over the last few years there has been a revival of interest in the mathematical well-
definedness of real space renormalization group transformations applied to lattice spin sys-
tems. This problem originally dates back to the late ‘70s when Griffiths and Pearce, and
Israel noticed that in certain renormalization examples one cannot take for granted the ex-
istence of an effective potential [22, 23, 31]. Later a comprehensive investigation of these
so called renormalization-pathologies has been carried out by van Enter, Ferndndez and
Sokal [14, 15, 16]. In parallel with these studies a number of other examples emerged from
also other sources, such as models from nonequilibrium statistical mechanics [51, 45], per-
colation models [25, 46|, projections of Gibbs measures to lower dimensional sublattices
[48, 39, 36, 37, 38, 17], probabilistic cellular automata [35, 40], and others, showing that
the measure relevant in their specific context was not a Gibbs measure. These examples
are related to the inverse problem of statistical mechanics, which is the question whether
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for a state a reasonable potential can be found such that the state is a Gibbs measure with
respect to it. The uniqueness aspect of this problem is better understood than the existence
aspect: indeed, within a large class of potentials it is true that if there does exist such an
interaction, then it is unique up to ‘physical equivalence’ [24]. In many interesting cases this
inverse problem comes up for a measure which is the image of a Gibbs measure under a trans-
formation (e.g., renormalization transformations, lower dimensional projections, restrictions
to subsets of the configuration space). Given that, a way of formulating this problem is the
following: What are the properties a Gibbs measure and a transformation must have in order
that the transformed measure will be a Gibbs measure for some interaction? Thus far, we
have only a partial answer to this question, which is apparently easier to provide when the
image measure is the transform of a measure at sufficiently high temperatures than at low
temperatures or near the critical point. In fact, there are typically domains of parameters

1. in the phase coexistence region where the image measure is not quasilocal, and hence
non-Gibbsian. Proofs are based on the fact that by choosing a special configuration
in the image system, a phase transition can be induced in the original system [22,
23, 31, 15). A single configuration is of course negligible, i.e. it has measure zero,
but it is often enough to find one and show that the system constrained by fixing
this particular configuration can be described by conditional probabilities which are
essentially non-quasilocal at this configuration.

2. in the uniqueness region where the potential for the image measure is an analytic func-
tion of the temperature [31, 32]. Surprisingly enough, however, there are no obvious
‘safe regions’, since failure of Gibbsianness occurs even deep within the uniqueness re-
gion as recent examples show (in particular, above the critical temperature or at large
magnetic fields) [11, 13].

Results for regions close to the critical point are few and far between. In [33, 2] it is suggested
that the critical temperature at which a phase transition can occur in the constrained system
for certain majority-rule schemes and block averaging transformations, is strictly lower than
for the original (unconstrained) system. These results indicate that around the critical point
one may have a behaviour devoid of pathologies at least in certain cases, but they fall short
of being rigorous proofs. Furthermore there are two recent more precise results available. In
[26] the absence of pathologies near the critical point has been shown for decimation on a
rectangular lattice and some Kadanoff transformations on a triangular lattice, both applied
to the Ising model. In contrast, in [11] the presence of pathologies at the critical point is
established for a block-spin transformation which is, however, not immediately linked to
widely used renormalization schemes.

Analyticity is a very neat property in the sense that when it holds one can express many
things by convergent expansions. However, analyticity is not the only ‘good’ behaviour one
can have. There is actually a range of interesting regularity properties of states of which the
strongest available is an analyticity property uniform in all volumes, called complete ana-
lyticity. Complete analyticity has been introduced and studied by Dobrushin and Shlosman
[6, 7, 8]. A weaker version of it, that might be termed restricted complete analyticity, is a
property uniform only in sufficiently regular volumes [41] (see below).
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In this paper we want to investigate the behaviour of states at high temperatures or in
the presence of a magnetic field in two examples in which non-Gibbsianness occurs at certain
values of the parameters (see also [37]). One example is the decimated ferromagnetic g-state
Potts system. Here renormalization-pathologies have been found above the critical tempera-
ture [13]. We will show, however, that at sufficiently high temperatures the decimated Potts
measure is completely analytic, moreover the regimes where this behaviour and failure of
Gibbsianness has been proven are separated by a narrow gap in the temperature scale. The
other example we shall consider is the projection to a d— 1 dimensional sublattice of the pure
phases of the d dimensional Ising system. These projections in the absence of an external
magnetic field have been shown by Schonmann to be non-Gibbsian measures for the two-
dimensional case at every temperature in the phase-coexistence region [48]. Maes and Vande
Velde [39], and Fernandez and Pfister [17] showed that the same happens for d — 1 dimen-
sional projections from d-dimensional lattices. We will show below that the addition of any
small magnetic field to the original two-dimensional system makes the projected measures
Gibbsian, while for higher dimensions we still expect non-Gibbsianness of the projections.

2 Notation and some standard results

We will use the lattice Z¢ throughout, with various particular choices of the dimension d.
The lattice will be equipped with the I'-metric dist(j, k) = [j — k| = S¢_, |5 — &™),
Accordingly, two sites j and & are called nearest neighbours whenever |j — k| = 1. The set
of all finite volumes of the lattice will be denoted by #?;(Z%). For the outer r-boundary of
A € P¢(Z%) the symbol 9,A = {j € A°: dist(j,A) < r} will be used, where dist(j, A) =
infgea dist(, k) and A® = Z% ~. A. For the nearest neighbour boundary to A we put simply
01 A = OA.

To every spin we assign the same set of possible values by attaching to each site k € Z¢
the single spin space S. For the Ising system S = {-~1,+1}, for the g-state Potts system
(with ¢ € N) S = {1,2,...,q}. We write 4 = S* and Q = S%° for the finite resp. infinite
configuration spaces. Also, we put wy;; = w;, and use the notation wp X 7ac corresponding
to a configuration which agrees with w in A and with 7 in A°. The configuration space will
be endowed with the product topology; we choose the neighbourhood basis

Uypn = {w' : ) = wa}
for all w € 2 and A € Z;(Z%).

We further equip both S and 2 with their associated Borel o-fields .% and %, respectively.
Because of separability of S and Q, both are countably generated, moreover .# coincides
with the product o-field #Z°. The symbol .#, will be used for denoting the Borel o-field
for 9%,

Any real measurable function on the configurations will be considered as an observable.
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Observables satisfying

lim sup |f(w)— f(r)] =0 (2.1)
A—>7d w,TES
WA=TA
are called quasilocal observables. The set of quasilocal observables will be denoted by B (€2)
and provided with the sup-norm topology. In fact, since S is finite, in this topology the space
of quasilocal functions coincides with the space of continuous functions. With the sup-norm
and under the natural operations By () becomes a Banach space.

We will require invariance with respect to the translation group on the lattice, 8;, k € Z¢.
On the configuration space translation invariance reads as (fx(w)); = wjtk, and it induces
similar actions on the spaces of observables.

An interaction (also called potential) is a family of real valued functions @4 : Q4 — R,
with A € #;(Z%), such that ®, are .F)-measurable and ®; = 0. The interactions will be
assumed to be translation invariant, i.e. @5, = $p o O, for all k. Also, we will require
a certain control on the interaction at infinity. We will talk about absolutely summable
(invariant) interactions whenever

> 14l < 00 (2.2)

A30
Ae Py (zd)

and denote the set of such interactions by 4. Note that the summability condition (2.2)
defines a norm on the set of these interactions, and thus % becomes a Banach space under
natural operations.

The finite volume Hamiltonians corresponding to the interaction ® are

jﬁ\@(w,x X wAc) = Z @X(wx) (23)
XNA#D

This definition also takes account of the fact that there is a boundary condition, i.e. a par-
ticular configuration fixed outside the volume A. Note that if ® € 2, then the Hamiltonians
above exist and are quasilocal, thus absolute summability is a natural regularity condition
for the potential. By using the Mdbius-inversion formula (a version of the inclusion-exclusion
principle), one can obtain the interaction from the expression of the Hamiltonian:

Ix(w) = 3 ()P W) (2.4)

ANX#D

The Ising model (including an external magnetic field) is defined by the potential

—hw; A= {5}

0 otherwise
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We will consider the translation invariant ferromagnetic nearest neighbour Ising model, that
is, (2.5) under the constraint that the coupling factors J;; are translation invariant, positive,
and non-vanishing only if |¢ — j| = 1.

Next, we want to introduce probability measures in order to describe physical, in partic-
ular equilibrium, states. For the non-interacting system of spins we choose the product of
one-site normalized counting measures, and we regard it as a reference measure throughout
in the sequel. This measure will be denoted by pu for the whole lattice, and by p for finite
volumes. Since in the thermodynamic limit the Hamiltonian is ill-defined, one cannot use
Hamiltonians directly for defining correctly Maxwell-Boltzmann-Gibbs probability weights.
A way of circumventing this difficulty is to consider a family of conditional probabilities which
turn out to be well behaving objects in the infinite volume limit. We will use specifications,
that is, a family of everywhere defined conditional probability kernels I = {ma}ac 24(29)
mapping the Borel space (£2, %) to itself, and satisfying the following requirements for all
weand E € #:

1. ma(, E) is an Zj.-measurable function
2. wa(w, ) is a probability measure on (9, %)

3. ma(w, ) is Fac-proper, i.e. it reproduces the boundary conditions: for any F € Fje,
ma(w, F) = 1p(w)

4. for any A’ C A, the probability kernels are compatible, that is,

(rama)(w, B) = f ra(w, dr)mp (7, B) = walw, E)

I

A probability measure g on (2, %) is said to be consistent with the specification II if a
version of its conditional probabilities for the subfields #5c coincides with m,.

Now we can define Gibbs measures. The specification I1* = {7} }rco /(z4) given by the
densities

dn} 1
Y ) [ P
d,u,A( ) ZE(WAC)

defined for all E € #, all w € Q and every A € Z;(Z9), is called a Gibbs specification
for the interaction @ and reference measure p. Here Zg(wae) = [, exp(—=73" (w))dua(w)
is the partition function, and we used the traditional notation of mathematical physics by
not making explicit the temperature in the densities. Any measure consistent with the
above specification II? is called a Gibbs measure. For further details of the theory of Gibbs
measures we refer to [20, 15].

1g (w)e"’ff(“’) (2.6)

I1 is said to be a uniformly nonnull specification with respect to the reference measure p
if there is an £ > 0 such that for every E € %, u(F) > 0 implies mp (w, E) > ¢, for every
w € QA € P¢(Z?%. Measures consistent with a uniformly nonnull specification have full
support.
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Next we recall an important notion of locality describing the way how spins outside a
finite volume have some effect on the spins inside the volume. The simplest case is when
a function of wpe depends only on spins in a finite neighbourhood of A. Whenever II, is
F 5, n-measurable, it is called an r-Markovian specification, and in this case 7 (wae, -) equals
7a(wa, a, ). If the dependence extends to the whole A, but ‘smoothly’ enough as the spins
are spatially more and more separated, satisfying

lim sup |7TA(w: f) - ﬂ—A(T: f)' =0 (27)

A’—+Zd w, TN
WAr=Tpy

forall f € By(Q2) and A C A/, then the speciﬁcation is called almost Markovian or quasilocal.
(Here we used the notation ma(w, f) fn T)ma(w, d7).) Equivalently, any quasilocal
observable has quasilocal conditional expectatlons with respect to an almost Markovian
specification. It is useful to consider besides the uniform notion of quasilocality discussed
above also its pointwise counterpart [36, 17, 25]. Accordingly, 74 is called almost Markovian
or quasilocal at the point w if for all quasilocal observables f

lim sup |ma(w, f) —7wa(7, f)| =0 (2.8)
A—=Z4  ren
UAI=TAI

for all finite volumes A C A’. Clearly, by compactness of 2, if (2.8) holds for all w, we obtain
the uniform version of almost Markovianness (2.7).

A particularly useful characterization of Gibbs measures based on the intuition that in
equilibrium perturbations should have small direct effects on remote locations is provided
by the following

Theorem 2.1 Let II be a specification, and suppose a reference measure is given. The
Jollowing two statements imply each other:

1. There exists an absolutely summable interaction ® such that I is a Gibbs specification
with respect to it.

2. 11 is quasilocal, and uniformly nonnull with respect to the reference measure.

Two versions of the theorem go back to Sullivan [52] and Kozlov [34]; for a discussion see
[15].

We will consider below projections of Gibbs measures obtained by summing over spins
living on a selected infinite sublattice L C Z%. (We also require L¢ to be infinite.) The
projection of a measure g on (2, .%#) to the Borel sub o-field #; is given by

gr(du)A) e /SLC Q(dTLc X de) (29)

for all wy € Q4, with A € #;(L). The projection is called in particular a decimation if
dim L = d; we will consider decimations on the sublattice with spacing b, bZ% = {k € 79 :
K™ modb=0, Vn=1,.., d}. In relation to such projections we will address the question
whether for ¢’ an absolutely summable interaction exists such that it is a Gibbs measure for
that interaction.
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3 High-temperature complete analyticity of the ¢g-state
Potts model

In this section we prove complete analyticity at sufficiently high temperatures for the g-
state Potts model (¢ > 2). As a consequence we obtain complete analyticity also for its
decimations on the sublattice bZ¢. We use the technique developed in [30, 19]. The key
observation is as follows: By using Gelfand’s theory, a (sufficiently large) subset of the
space of continuous observables can be related to a Banach algebra of functions on the
configuration space Q(q) = {1,2, ..., q}zd having absolutely convergent harmonic series. On
this algebra a certain conditional expectation kernel can be defined, which is the action of
the decimation transformation, and which satisfies a Gruber-Merlini type equation. When
an operator related to this conditional expectation kernel is invertible within this algebra,
analyticity follows, and since the result will turn out to be uniform in the sublattice we pick,
it will actually imply complete analyticity.

Singularities of the thermodynamic functions such as the pressure, etc., often indicate
non-uniqueness of the Gibbs measure, while the analyticity of the pressure with respect to
small perturbations of the interaction implies uniqueness of the Gibbs measure. The Lee-
Yang circle theorem implies a picture of phase transitions in which such singularities play a
major role. In that description phase transitions occur at limit points of the zeroes of the fi-
nite volume partition functions in the complex plane when the thermodynamic limit is taken
(see, e.g., [47]). The study of analyticity involves thus the introduction of complex interac-
tions and complex measures. A stronger version of analyticity, called complete analyticity,
has been introduced by Dobrushin and Shlosman as a concept of uniqueness associated with
the ‘best possible’ regularity properties of the Gibbs state [6, 7, 8]. We will use the following
definition from the set of many, mutually equivalent, conditions they introduced: A measure
o consistent with a specification {m,} is called completely analytic if for every finite volume
A, and every pair of configurations w and 7 different at just one site 7 € A°, there exist some
positive constants C' and « such that

|ma(w, ) = TA(T, )| < Cexp (= dist(j, A)) (3.1)

Here the variation-norm ||p — v||... = supgegs(1(E) — v(F)) is used. The corresponding
interaction is called a completely analytic interaction, and it is shown that all finite volume
partition functions and other functions of the interaction are holomorphic for each volume.

For simplicity we will consider the case d = 2 and then extend the results to arbitrary
dimensions in a straightforward manner. Let S = {1,..., ¢} and consider the group G° =
(S mod ¢) + 1, and the group of its characters consisting of the roots of the unity

27ni

Z (G®) = {exp ( p

):in=1,..,q} (3.2)

To each site k € Z? we assign a copy of these groups, and we consider the product groups
for a finite number of sites G = @GP, respectively 2 (Ga) = ®rea £ (GP), A € P;(Z7).
We write G and % (G) for the product group and the character group on the full lattice,
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respectively. Both of these groups are compact. The character group 2 (G) consists of
elements of the type idg(go)®@ida(goy®..., and x1 ® x2 @ ... ® xn With xx # ida(go),
where k£ € {1,2,... ,n} C N. We will describe below §2(q) in terms of the group G.

It is useful to distinguish the characters supported on the sublattice Z2 from the char-
acters supported on subsets off this sublattice. Instead of using the symbol x we will denote
them further on respectively by 6. sz2 and Tprpze2, for all A € F2((Z?%). Characters supported
on the empty set will be understood to be identity characters. The character set is itself too
an Abelian group. Consider G° for the site k. Then the characters for this group can be
written as

6x(w) = exp (2—?%%) o, € G° (3.3)

Suppose f : (g) — C is some function. We consider harmonic expansions of such functions
with respect to the character set 2 (Gppzz ® Grrpz2):

fwy= > > al(6,7)5nwz (W) Fanwz: (W) (3.4)

AeP;(2?) S€X(G ) 472)
FEX (G, 52)

where af (5,7) are generalized Fourier coefficients, for all A C 92;(Z?). The characters read
as follows:

aA\,,zz(w):exp(@ > owwr) o €G VE (3.5)
keA~bZ2

. 271 .

fazz (W) = exp(— Y mwr) e €G® Vk (3.6)
keANbZ?

We consider furthermore the Banach space 2 of complex functions on {(q) having absolutely
convergent harmonic series, equipped with the /'-norm

1flle= > Y. a6, 7)< (3.7)

AP (Z?) 9€X(Gp_y72)
FEX (G yrpg?)

First we need a standard result on the structure of .&7:

Lemma 3.1 & is a Banach algebra (where the involution operation is complex conjuga-
tion).

By using Gelfand’s theory, the Borel space (Q(q),.#(¢)) can be represented in terms of
elements of the Banach algebra 2 and its spectrum. The spectrum consists of all the
characters of &, Since & is the algebra of functions having finite {*-norm, the range of the
Gelfand transformation acting on it is a proper subset of the Banach algebra of continuous
functions on the spectrum. The range is, however, dense in the sup-norm topology, and the
maximal ideal space for & is Q. For details we refer to [27].
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We are interested to see whether at high enough temperatures an interaction with certain
regularity properties exists for the subsystem consisting of the 7 spin variables, after the o
spin variables are integrated out. To this end we shall consider a probability kernel E(-|7)
mapping &, onto the subspace spanned by the 7 variables. This corresponds to a decimation

transformation applied to the Gibbs measure of the original system which will be denoted
by Iy

Since we are actually interested in the analyticity of the image interaction, we associate
to &/, the complex interaction space %(«). We assume translation invariance of the inter-
actions. The (complex) Hamiltonian for the ferromagnetic nearest neighbour g-state Potts
model is

HAE) = =T D e (3.8)

JkEA
li=kl=1

where J € & and ReJ > 0. The (complex) Gibbs specification constructed for this Hamil-
tonian will be denoted by {v7}. We will consider the local field given by the contribution to
the Hamiltonian from a site k& belonging to the internal system, and its neighbourhood:

up=u(§) =-J > ge (39)

jilj—k|=1
The representation of this function in terms of characters goes as follows. By using the
identity
27m

4 2= &P (S ok = k) = dnc (3.10)
a'kES

we find
w(€) = Y. w(&)sn®) (3.11)
&keﬂ(GO)
thereby separating the contribution depending on the site & and 0k. Here

vkzvk(ﬁ) ——[ Z Z O'J a,ak+ Z Z TJ Tjok

Jili—kl=1 a-Jei’(Go) Jli=kl=1 +;€2(C0) (3.12)
jEZ2022 1ex(c0) jebz? *ex(GO)

Note that complex conjugation of the characters is a one-to-one map in the character group,
and it is more convenient to work with the complex conjugated characters rather than with
the inverse characters.

Next, a linear operator K on 2 will be defined so as to integrate out the spin at site k,
by putting
Kix =0 (3.13)
Ka'x’f'y = H(Uk)oﬂ'x\{k}’iﬁy if X —}‘é @



614 Lorinczi

where

H(v) = fg Y o i) (3.14)

ake.i",’(Go)

is the conditional expectation of 6;(£) with boundary conditions {(x)c, and we convene to
choose k as the first site of the volume X according to some, e.g. lexicographic, ordering.
(Once g is fixed, the operator, and the functions v, and H are well defined, so for simplicity
we do not label them by ¢.) The conditional expectation for the site k is

e’ — 1

H =
) = e

(3.15)

For the conditional expectations a Gruber-Merlini-type equation can be established [30]

E(f|r) — E(K f|r) = R(f|r) (3.16)
by making the identifications
E(ty|r) =1y (3.17)
E(Gxty|T) = E(Gx ey H(v)|T) if X #0 (3-18)
R(fy|r) =7y (3.19)
R(oxfy|r) =0 if | X|>2 (3.20)

By iterating (3.16) and taking the limit over the iterates we obtain
E(f|r) = R((ide, —K) ' fI7) (3.21)
whenever
[|Kll; <1 (3.22)

The left hand side in (3.21) is a complex function measurable with respect to the spins living
on bZ?, and it is the unique solution of (3.16). The iteration of the operator K actually
means that next we integrate out the spin at the second site of the volume X (if there is
any). Conditions (3.18) and (3.20) change by changing the set X to X ~\ {k}, moreover we
get E(6x(kyy7y H(vi)H (v;)|7) at the right hand side of (3.18), where I denotes the second
site. If X has no more elements, then we get zero at both sides, and we can go on to larger
volumes according to (3.4).

By the definition of the decimation transformation, whenever an effective interaction
exists, the equation

E(f|T) = H(v) (3.23)
holds, for all [ € Z? \ bZ?. Moreover, by (3.21) and (3.23)

e o]

H(v) = R()_ K"#|r) (3.24)

n=1
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follows. Thus whenever the operator K is invertible, that is, at high enough temperatures
(small-norm interactions), the image local field v} is well defined and is an analytic function
of vg, given by the series expansion cf. (3.24). Then by the Mdbius transform (2.4) the
image coupling constants J' € & can be reconstructed.

The above considerations lead thus to the following conclusion:

Theorem 3.2 For every q > 2 there is a neighbourhood of J = 0 in which the decimated
interaction Ty(J) = J' is an analytic function of J.

Proof: 1t remains to show that id #, —K can be made indeed invertible in some domain.
We shall actually construct a neighbourhood of J = 0 where complete analyticity holds.

First let us notice that the || - ||, norm dominates the sup-norm, for all g, therefore
condition (3.22) will automatically involve a control also with respect to the sup-norm.
Indeed, we have for all w € Q(q)

@ =1 Y Y e Y awt Y mwl

AeP((22) 6€X(G)_ 1 72)

+e£(GAnb22)

> > lak@, D)l =Ifll

AEP;(22) 6EX(Gy_ 4z2)
FER (G, 70)

IA

For a discussion on the relation between possible norms and uniqueness properties (unique-
ness, exponential decay of correlations, analyticity) in general, see also [12, 3].

Let us replace e’* by the complex function e*, such that |e?*| = e’s. Then the condition
it has to satisfy is

[ W S (3.25)
ek —1+q'? ‘
Consider the case
et —1
I g <1

and use the notation wy = (e** — 1)/q. Then by a Taylor series expansion we get

Wy |[willq
< 3.26
Thus a sufficient condition for (3.25) to hold is
1 ;
laelly < 5 (3.27)

On the other hand
|le* —1]|, < elP*lle — 1 (3.28)
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hence for a sufficient condition for (3.25) to hold we get

vl < (3 +1) (3.20)

In case that ¢ = 2, better bounds can be obtained. Then the left hand side in (3.25) can
be written as tanh z;, and we get (as in [30])

|| tanh zg||2 < tan ||vg|l2 < 1 (3.30)

which implies

™

- (3.31)

[lvell2 <

Because of translation invariance, we actually have a uniform control over the volumes
of the sublattice, hence the estimates (3.29) and (3.31) imply complete analyticity of the
decimated Gibbs measure for the ferromagnetic Potts and Ising models at sufficiently high
temperatures. 0

Remark 3.3 By [13] the decimated Gibbs measure for the high-¢ Potts model on 272 is
non-Gibbsian for gJ > %ln g. Note that Th. 3.2 is consistent with this result since complete
analyticity occurs for 8J < 11lng, for large g.

Remark 3.4 The limiting case ¢ — 1 corresponds to independent bond percolation. For-
mally, a sufficient condition for complete analyticity that we get in this case is ||vg|[; < In2,
which corresponds to occupation probabilities p < 0.32p,, where p, = 1/2 is the critical
percolation probability.

Remark 3.5 The proof of Th. 3.2 extends to arbitrary dimensions d. Then conditions
(3.29) and (3.31) given in terms of the sup-norm become as follows: For ¢ > 3

q

1
respectively for ¢ = 2
™

where z(d) denotes the coordination number of the d-dimensional lattice.
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4 Lower dimensional projections of the states of the
Ising system in the uniqueness region

Suppose 3 > ., and consider ,uj, the + phase of the two dimensional ferromagnetic nearest
neighbour Ising system. R. Schonmann proved that there is no absolutely summable interac-
tion for which the projection of p onto the line would be Gibbsian [48]. We will denote this
projection by v, obtained by putting L = Z®{0} in (2.9). A similar behaviour of x; under
projection can be established. The mechanism of the break-down of Gibbsianness at low
temperatures becomes transparent by noticing the fact that the alternating configuration is
a point of non-quasilocality for »* and a complete wetting occurs [15], giving rise to long
range order in the observables off the line.

At sufficiently high temperatures, however, there exists an absolutely summable interac-
tion such that v is a Gibbs measure, moreover the interaction is an analytic function of the
temperature. This can be proven by adapting Th. 3.2 to this particular situation (see also
Rem. 3.5). Our result is

Proposition 4.1 In the temperature regime 3J < % the potential for the Gibbs measure vt
depends analytically on (.

High temperature analyticity has been proven by an expansion method also in [39]. The
inverse temperature below which this method yields analyticity is 3 = arctanh1/3e? =
0.0451 (in units of J), a value lower by a factor 8 than ours (equal to 0.3927).

In [17] it was shown that a similar wetting phenomenon occurs for general d — 1 dimen-
sional projections of the pure phases of the d > 3 dimensional Ising system. (For details
about wetting see also [18].) Also, high-temperature analyticity of the projections can be
established for higher dimensions too, ¢f. Th. 3.2 and Rem. 3.5.

Now we want to investigate the projection of the Ising system in the presence of an
external magnetic field. We will state our conclusions separately in the two-dimensional and
the higher dimensional cases. In all dimensions, however, if a sufficiently strong magnetic
field is applied, then the projection is Gibbsian since it corresponds to the system in a low
density regime (compare with [23]). The question is if the same behaviour would occur in
the presence of small magnetic fields. Without restricting generality we choose an external
magnetic field h > 0.

Denote by p* the Gibbs measure for the d-dimensional Ising system when a magnetic
field A > 0 is switched on. The corresponding specification will be denoted by I'*. The
projection to the line as defined by (2.9) will be denoted by v". First we want to construct
the specification I1* for this projection.

The configuration space of the Ising system on the d — 1 dimensional sublattice will
be denoted by Q2 = {—1,+1}Zd—1, and the Borel o-field for by .#. Suppose W C 7Z¢.
Following the suggestion of Fernandez and Pfister [17] to define the specification for the
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projection by properly restricting the global specification for the original measure, we first
define a global specification I'* to the local specification I'* by putting

Y (w, E) if [W| < o0

. . _ - (4.1)
limy_,7a Yhaw (Waaw X +wenae, E) if [W] = o0

;}/W(wa E) - {

where A means symmetric difference. The ‘globalization’ in fact consists in extending the
conditional probability kernels defined for finite volumes to infinite subsets of the lattice.
Here the notation +, = +1, Vj € A, has been used. Note that a global specification does
exist since for the Ising potential the global Markov property is known to hold in the whole
uniqueness regime, in arbitrary dimensions [21, 1]. The ‘globalization’ cf. (4.1) is made in
such a way that u” is consistent with I'".

We construct the specification II" = {7} for the projection given on (Q2,.#) by using
the global specification. By choosing W = Z%! and V C Z4"! (possibly infinite) in (4.1),
we write

m(w, B) := o Thov(Waaze-r X +aenzaszi-ry, B (dwp ze-1) (4.2)
I1" is indeed a specification for the spin system living on the d — 1 dimensional sublattice.
Clearly, 7% (-, E) is a function dependent only on spins in V¢ = Z¢"! \ V. It is also proper,
every event measurable with respect to #y. reproduces the boundary condition. Compat-

ibility follows by direct inspection. Moreover, as I'"* was FKG, the projection IT* becomes
FKG too.

Lemma 4.2 Fiz h > 0, and consider the specification I1* and the measure v". Let {V,} C
7% be a sequence of volumes. The following hold true:

1. (a) 7t (+,-) =7} (+,-) for all Vi C V.
(b) © (—,-) < mh (=) for all Vi C V.

2. Suppose {V,} is a van Hove sequence of finite volumes in the d — 1 dimensional sub-
lattice. Then there exist the limits in van Hove sense

Jim wl (h) = inf o, (+,)
)= )

3. With probability 1 we have
lim 7% (+,)= lim =% (=) ="

Vp—Zd-1 Vp—Zd-1
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Proof: The first statements follow by the FKG inequality and the fact that 77 is a
specification:

. (+,E) = wbnk (+,E)

= [ #h it (n.B)

< f 7 (+, dn)mts (+, E)
= np (+,E)

and similarly for the — boundary conditions. The existence of the limits follows by mono-
tonicity and boundedness. The fact that both specifications are consistent with the same
measure v" comes from the uniqueness of the measure ", and a combination of (2.9) and
(4.2) with the consistency of u” with I, O

Consider now the case d = 2 with the same notations as above.

Theorem 4.3 For every h # 0, v is a Gibbs measure for some absolutely summable inter-
action, at any temperature.

First we need two lemmas. In [44] Gibbs measures for the two dimensional Ising model are
characterized by mixing conditions (see also [41]). These properties give detailed information
about the way local fluctuations are decoupled in separate volumes. In particular these
conditions imply some neat properties of the Gibbs measures related to a weak dependence
on the boundary conditions also far outside the Dobrushin uniqueness regime.

Denote an (2L + 1) x (2L + 1) square by
AL = {(may) € Zz 2 —sls _<__ z,y S L}

Take A’ C A € P;(Z?), and a site j € A°. The Gibbs measure p" is said to fulfil the weak
mizing condition for the volume A with constants C' > 0 and k > 0 if for every A’

sup ||V (7,7) = Yh (77, Ml < C D exp (—r dist(j, k) (4.3)
7,71 EQpc keA!
jEdA

The Gibbs measure p” is said to fulfil the strong mizing condition for the volume A with
constants C' > 0 and k > 0 if for each A" and j € A°

Bup 7R (7, ) = Y0 (77, ) || < C exp (—k dist(A’, 7)) (4.4)
T,‘T'JE AC
The notation
. nn if7#£k
(ri=q ™ M7 (45)
-1 fj=k

has been used.
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Lemma 4.4 If " satisfies the weak mizing condition with constants C and k for each
A € P;(7?), then some constants C' > 0 and k' > 0 can be found, such that u* satisfies the
strong mizing condition with respect to them, for sufficiently large squares Ay € P;(Z?), at
every temperature.

The next lemma gives sufficient conditions for the weak mixing property.
Lemma 4.5 Consider the measures u", and p for h =0 and 3 < 8.

1. There exist some constants C and k such that p" satisfies the weak mizing condition
for every finite volume A, for each h > 0, at every temperature.

2. There exist some constants C and  such that |1 satisfies the weak mizing condition for
every finite volume A, at each 3 < f3,.

For sufficiently low temperatures in a non-zero field, and all temperatures above the critical
point at any field the proof of these lemmas was given in [44]. The gap in the proof for
the rest of the uniqueness region was closed in [49], relying on results in [10, 9, 28, 29)].
Notice that the strong mixing behaviour above actually coincides with complete analyticity
restricted to large squares.

Proof of the theorem: By the results of [44, 49|, the strong mixing condition for large
squares entails that neither a bulk, nor a surface transition in the neighbourhood of the
line can occur. Note that, in fact, instead of the squares Ay the same would hold for also
other subsets provided that they were sufficiently regular, e.g. unions of squares (see also
the remark after Th. 1.1 in [44]). Strong mixing thus corresponds to complete analyticity
restricted to a class of sufficiently regular volumes. We will think of the line as the boundary
of a union of large squares that will enable us to use this result. We have this strong mixing,
or restricted complete analyticity, in the uniqueness region by Lemmas 4.4 and 4.5. This
then implies that all points for the projection v* are continuity points, that is, »* is a Gibbs
measure for all h > 0, at every temperature. The same conclusion holds for A < 0.

We show how strong mixing in two dimensions implies quasilocality in one dimension in
the sense of (2.7). We have to investigate how the flip of remote spins affects the probability
in finite volumes V C Z. Take W D V, a piece of the line. Since for any &

< 3 Nl ) — %)

zeWe

HW\h/(”'; )= W{L/(TW\V X Ewe, )| var (4.6)

it is actually enough to show that for any possible choice of W

' (1) = TH (%, ) e = 4.7
o 32 g b ) = =0 @

for every 7 (where W¢ =7 ~ W). We will put for a shorthand
Spapnviw, 7, 7%) = (4.8)

h h T
Ya, v WALz X Tagave X +acze, ) — Vi, av(Waz X Th, qye X +acnze, )
L L L L L
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Pick a sequence of squares {A;}1>1 C Z2. Then we have

lim sup ||7(7,-) = 72 (7%, )| | var

Wz sewe TEQyc H V( ’ ) V( ’ )| )

T . T\, h

= lim Tzlé}ac | BLH;/5ALnV(w,T:T )1 (dw) [ var
zeWe

< lim lim Z / sup ||6a,nv(w, 7,7 )”var)u’h(dw)

zEWE T7€N ve
< lim lim E g disd(z,051V)

WoZ L—soo
zeWe
— Cl lim ehndist(WC,V) — 0
W—Z

where C' is a positive constant. O

Clearly, the proof above is substantially relying on the fact that for the special case of
the two dimensional Ising model weak mixing implies strong mixing. Actually the crucial
point is that the boundaries here are one dimensional. In contrast, for three dimensions
layering transitions can not be ruled out. Indeed, in the three dimensional case it is thought
that the so called Basuev phenomenon occurs which is a layering transition. This consists in
the following. Consider the semi-infinite Ising model, say, above the plane (z,y,0). Suppose
there is a small external field h > 0 switched on. When — boundary conditions are applied,
an interface appears as a consequence of the competition between the effect of the field and
the entropic repulsion of the boundary condition. In these circumstances a coexistence of
two semi-infinite Gibbs measures will appear, describing two layers near the plane (z,y,0),
of average height r and r+1. Note, however, that at the same time the infinite-volume Gibbs
measure is unique. Layering phase transitions are long range order phenomena localized in
‘shells’ of sites of negligible volume compared to the size of the whole system [5, 50, 4, 44,
42, 43]. Since layering transitions have after all no effect on the bulk phase diagram, this
phenomenon suggests a weaker notion of uniqueness in the bulk. If the Basuev phenomenon
would occur, then it presumably would give rise to discontinuities of certain conditional
expectations of some observables for the two dimensional projection. One can expect that
those configurations which belong to the layers are mostly sheets of — spins with small
patches of + spins. Having a positive magnetic field switched on, these events are of course
exceptional. Indeed, by general results in [17] (Prop. 4.1) it follows that those configurations
for which the Basuev transition may occur must belong to a set of measure zero.

The Gibbs measures one has on the line in the presence of external fields can be used for

approximating the non-Gibbsian measures in zero field in the coexistence region:

Proposition 4.6 Consider a sequence of positive magnetic fields {h,} convergent to zero,
and fiz the temperature below the critical point of the two dimensional system. Then v™ is
weakly convergent to vt. Similarly, v~ can be weakly approzimated by the sequence v~"n.

Proof: For the measure u", describing the d-dimensional Ising system in a field h, it
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is known that u"» — p in the weak topology, for every sequence h, — 0. Then weak
convergence of v to vt follows by taking the marginal on the line of uh». O

Finally, for the projection of the supercritical state in two dimensions we have

Corollary 4.7 Part 2 of Lemma 4.5 and Lemma 4.4 imply similarly that the projection of
the measure for the two dimensional zero-field Ising model at every temperature above the
critecal point is a Gibbs measure.
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