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On the Completeness of Some Subsystems
of g-Deformed Coherent States

By A. M. Perelomov

Departamento de Fisica Tedrica, Univ. de Valencia
46100-Burjassot (Valencia), Spain !

(12.11.1996)

Abstract. The von Neumann type subsystems of g-deformed coherent states are considered. The
completeness of such subsystems is proved.

Introduction

The systems of coherent states related to Lie groups introduced in [Pe 1972], play the impor-
tant role in many branches of theoretical and mathematical physics and pure mathematics

[CS 1985], [Pe 1986].

The basic feature of such systems is that they are overcomplete, i.e. contain subsystems,
which are themselves complete. The most interesting of them are subsystems related to
discrete subgroups of Lie groups, the first of which were considered by von Neumann [Ne
1929], [Ne 1932]. The completeness properties of such system were investigated in [BBGK
1971] and [Pe 1971].

In the last few years g-deformed coherent states were introduced and some their properties
were investigated (see, for example, [AC 1976}, [Bi 1989], [Ma 1989], [Ju 1991]). Note that
these states are related to ¢g-deformed Lie algebras [Dr 1985], [Dr 1986], [Ji 1985], [Ji 1986],
[FRT 1991].

'On leave of absence from Institute of Theoretical and Experimental Physics, 117259 Moscow, Russia.
Email: perelomo@evalvx.ific.uv.es
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We investigate in the present paper the completeness properties of ¢-deformed coherent
states for simplest ¢-deformed Lie algebras, namely for w,(1), su,(2) and suy(1,1). It appears
that some important properties of such systems are changed essentially after g-deformation.

1 System of Standard Coherent States

In this section we recall the basic properties of the system of standard coherent states. For
more details see books [CS 1985], [Pe 1986].

The basic quantities are the creation and annihilation operators a* and @ and the unit
operator I, which act in the Hilbert space H and generate the Heisenberg-Weyl algebra:

[a,at] =aat —ata=1, [a,]]=][a*I]=0. (1.1)

The standard orthonormal basis {|n)}, n=0,1,...,in H is defined by

where |0) is the vacuum vector satisfying the condition

a|0) = 0. (1.3)

The operators ¢ and a* act as follows

aln) =4nin—-1), at|n)=vn+1|n+1). (1.4)

Let us introduce the operators

E(a) = exp(@a), E*(a)=exp(aat), a€ C. (1.5)

Then the standard system of coherent states that are non-normalized, may be defined by
the formula

la) = E*(a) [0), (L6)
o) = i ). (L.7)

It is easy to see that coherent states are eigenstates of the annihilation operator

alla) = alla), a€C, (1.8)
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and we can calculate the norm of such state

(alle) =

o =exp(lal) (1.9)
Hence the normalized state |a) has the form

|a) = exp (—m%)[lc@ :exp< |a}2)2\/_] (1.10)

The coherent states are not orthogonal to one another. The scalar product of two such states
has the form

(a|8) = exp (af). (1.11)

We also have the“resolution of the unity”
—]d2 @ (ol = 3 In) n] = 1, (1.12)
n=0

from which it follows that the system of coherent states is complete.

This gives us the possibility to expand an arbitrary state |¢) on the states |«)
1
=~ [dac(a)la), c(a) = {alp). (1.13)

Note that if a coherent state |3} is taken as |¢), Eq. (1.13) defines a linear dependence be-
tween different coherent states. It follows that the system of coherent states is overcomplete,
l.e. 1t contains subsystems that are complete.

Using (1.10) we obtain the following expression for (|t} in (1.13):

2

(el = exp (~12L Yyi@) (111

where
oo c, ,
bla) =3 50" = (). (1.15)
n=0 ’
At the same time, the inequality |c,| = |(n]¢)| £ 1 means that ¢(«) is an entire function

of the complex variable a for the normalizing state ) >. We also have |{a])] < 1 and
therefore have a bound on the growth of ¥ (a):

% (e )I<e><p(|0;| ) (1.16)

The normalization condition may now be written as

= = [ @aexp (laf?) [bte)l = (leh =1, (1.17)
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The expansion of an arbitrary state |1)) with respect to coherent states takes the form
1 al? _
|¥) = ;/dza exp (~«%~)¢(a) |e). (1.18)

Thus, we have established a one-to-one correspondence between the vectors |¢) of the
Hilbert space and the entire functions v(a), for which the integral (1.17) is finite. This
correspondence is established by Eqgs. (1.15) and (1.18).

2 System of Coherent States for g-Deformed
Heisenberg-Weyl Algebra

The generalization of the coherent states for g-deformed Heisenberg—Weyl algebra was given
in the papers [AC 1976], [Bi 1989], [Ma 1989], [Ju 1991]. The corresponding formulae of the
previous section should be modified.

Here the basic quantities as in the previous section are the creation and annihilation
operators at and a and unit operator I, which act in the Hilbert space H and satisfy the
relations
t—qata=1, [a,I)=[a*,I]=0. (2.1)

[a,a™] = aa

The orthonormal basis |n) in H is defined by

n) — (a+)n 0 (2_2)
)=~ 10
where { —g?
Pt =[] [l [ =14gt .t =T (2.3)

and |0) is the vacuum vector satisfying the condition

a|0) = 0. (2.4)

The operators a and at act here as
aln) =l —1), atln) =t 1] o+ 1). (25)

Let us introduce the operators

E(a) = e,(@a), E*(a)=e,(aa’), a€C, (2.6)
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where the function e (z) is the generalization of the exponential function and is defined by

the formula (see [Ex 1983] and [An 1986] for details)?

z)=), % (2.7)

It is easy to see that this series converges at |z| < R, = (1 —¢)~! (for all finite values of z at
lgl > 1), and at ¢ — 1, [n]! — n!. This function coincides with a standard exponent and
satisfies the equation

(55).eola) = esfe), (238)

where the g-derivative (), is defined by the formula

d _ flz) = f(qx)
(E)qf(w) =E=h (2.9)

so that (£), — (£) at the limit ¢ — 1.
By using (2.8) and (2.9) one can show that
1

Mo (1 ~ Gl - q)x).

gq(x) = (2.10)

So the e,(z) is the meromorphic function, which has no zeros and has simple poles at the
points z; = ¢~%/(1 — q).

=}
One can show [Ex 1983] that the inverse function (eq(a:)> (an entire function) is given
by

()" = a-a) = 3 S [ (-¢0-02). e

Following [Bi 1989] and [Ma 1989] we now define the system of coherent states by the
formula

|la) = E¥(a) |0) (2.12)
o) =3 - o). (2.13
||ex) g::o [n]!l) )

[t is easy to see that coherent states are eigenstates of the annihilation operator

alla) =alla), aeC, (2.14)

For simplicity, we restrict the consideration of the case 0 < ¢ € 1, used mainly in mathematical literature.
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and we can calculate the norm of such states

_ (o] a"a™ _ 00 Iai2n _ 5
(o) = 37 =i () = 3 o = e (1aF). (215)

Note that this series converges at
la]* <RZ=(1-¢)" (2.16)
Hence the normalized state |) has the form

n

o = (ealaf)) " lla) = (esla®) " T2

= In), lal < R, (2.17)

The coherent states are not orthogonal to one another. The scalar product of two such
states has the form

(@]|8) = e (aB), (2.18)
We also have the “resolution of the unity”
1 g 1 27 R2 5 o0
+ Jo, Gele) (el = 5= [0 [T d, %) le) (el = 3 In) (2.19)

a=re? D,={o:|a| < R}

which follows from the formula

/Dxl (eq(m))_lwn d,z = [n]!, (2.20)

-1
where 21 = (1 — ¢)~! is the first zero of the entire function (eq(m)) and the integral

fo f(z)d,z is the so-called Jackson integral [Ex 1983]:

(s e}

[ #@ bz = a1 =) 3 ¢* f(aa) (2:21)

k=0

Note that from the“resolution of unity” (2.19) it follows that the system of coherent
states is complete. This gives us the possibility to expand an arbitrary state [/} on the
states |a)

9=~ [@alal)la). (2.22)

If a coherent state |3) is taken as |¢), (2.22) defines a linear dependence between different
coherent states. Therefore, the system of coherent states is overcomplete, i.e. contains
subsystems, which are complete.
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By using (2.17) we obtain an equation for {a|i)

(i) = (eallol)) (@), (229

where

pla) =3 —ﬁa ¢ = (nl). (2.24)

At the same time, the inequality |¢,| = |(n|))| < 1 means that 1(«) for the normalizing
state |) is an analytical function of the complex variable « in the disc D, = {e||a| < R,}.
We also have |(«|¢)| < 1, and therefore a bound on the growth of ¥(a):

2
$(a)| < (ealla®)” (225)
We can now rewrite the normalization condition as

1= [ da(elaf)” @ = (bls) =1 (2.26)

The expansion of an arbitrary state |¢)) with respect to coherent states takes the form

) =2 [ a(eal) " v@lah (221

™

Thus, we have established a one-to-one correspondence between the vectors |¢) of the
Hilbert space and the functions (&) analytical in D,, for which the integral (2.26) is finite.
This correspondence is established by (2.23) and (2.27).

3 Completeness of Subsystems of g-Deformed Coher-
ent States

As it was shown in the foregoing section, the system of ¢g-deformed coherent states
{lo):a € Dy}, Dy ={aila] < (1-q)7"%} (3.1)

is overcomplete, and hence there exist subsystems of coherent states that are complete ones.
We describe these subsystems in this section.

Let us take some set of points {ey} in the disc D, and take the corresponding subsystem
of coherent states {|ax)}. Then if there exists a vector |¢) of the Hilbert space H, which is
orthogonal to all states {|ax)}:

(o |4) = 0, (3.2)
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then the system {|ax)} is incomplete. It is complete if such a vector does not exist.
We may reformulate this criterion in terms of the function

B(a) = (#lla) = 3 (), (3.3)

n [n]!

which is analytic inside D,, and is equal to zero at the points oy

$(ox) = 0. (3.4)
If such a function has a finite norm
-1
W12 = [ (@) (cullal))  dZa < oo, (3.5)
then the system {|aj)} is incomplete. But if any such function has infinite norm ||+|| = oo,

then such a system is complete.

Note that the function %(a), having the finite norm, should satisfy the condition

bl (flal))” <W@P(1-laf1-9)SC, a€D. (36

It follows from this condition that

I~

2

lim ()] (1= lal*(1 - )" < co. (3.7)

o2 —(1-g)~1

We give the simple example of the complete subsystem of coherent states.

Let the set {c} have a limit point inside the disc D,. The function that is analytic inside
D, and equal to zero at points a should be equal to zero identically. Hence this system of
coherent states is complete.

For the future, it is convenient to introduce the new variable

(=(1-9"e (3.8)
So we may now consider the set of functions analytical inside the unit disc D = {¢: || < 1}.

The characteristic property of ¥({), related to the complete set {(x}, is that it has
sufficiently many zeros inside D, = {(:|¢| < r} and hence it sufficiently quickly grows at
|| — 1. So we may use some theorems from the theory of functions analytical inside the
unit disk.

Let us give the theorem [Le 1964] that relates the growth of such function analytic in a
disc with the distribution of its zeros. '
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Let M(r) be the maximum modulus of f({) on the circle C, = {(:|{| =r}:

1 . :

Mi(r) = [ [1re®) P as]” (3.9)
and n(r) be the number of zeros of f(({) in the disc D = {(:|{| < r}. We assume that the
limit

v =lim,_; (1 = r?)n(r) (3.10)
exists and that v # 0. The numbers

T = Ti—l'_l:l_r_,.l [lnM(r)/]n '1-&:_1—7,2], (3.11)

7 = lim,_, [ln M;(r)/In - ] (3.12)

1 —1r2

characterize the growth of f(() at |(| — 1, and we call 7 and 7y the generalized types of
function f({).

Note first of all the following relation between v, 7 and 71:
Theorem 3.1. When v > 0, the following inequalities are true
T2

n > (3.13)

[\DIQ
[\3|§

Proof. Dividing f(z) by az", if necessary, we obtain f(z) with f(0) = 1. We use the
Jensen formula

" / I [ e 146_/ (tt)dt, (3.14)

from which

In M(r) > f()r %t)dt. (3.13)

On the another hand, from the generalized inequality between the arithmetic and geometric
means

1

In My (r) = é-m [gf: Fre®)? do] = 2—17}-[)%111 1F(re?)| d6 = /;@dt. (3.16)

It follows from the definitions of v, 7 and 71, that whatever the numberse > 0, &; >0
and 6 > 0, there exists the such number rq < 1 that

InM(r)<(r+¢)ln In My(r) < (11 +¢€1) In

1 —r2’ 1 —r2’

(3.17)
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when r > r). We may now rewrite (3.15) and (3.16) as

o n(t) v—>=6 1 1
(r+¢€)ln —rzzlnM(r)Z/o : dt + 5 [lnl—r2_1n1~r§}’ (3.18)
o n(t) v—26 1 1
(7'1+51)1n1_r221nM1(r)2]0 a4 [ml_ﬁ_mldr?}]. (3.19)

Considering the limit » — 1 in (3.18) and (3.19) with v > 0, we arrive at (3.13).

The criterion of completeness of the subsystem of ¢-deformed coherent states follows from
this theorem and from inequality (3.6).

Theorem 3.2. The system of q-deformed coherent states {|ax)} is complete, if the limit
v =lim,_y (1 — () (3.20)
exists and if v > 1. Here n(r) is the number of points oy inside the disc D, = {(:|(] < r}.

In order to construct the examples of complete subsystems it is useful to consider the
unit disc D as a Lobachevsky plane with standard measure

&2
(1—1¢12)*

on which the group G = SU(1,1)/Z, acts transitively. The simplest subsystems {|ax)} are
related to the discrete subgroups I' of the group G.

du(C) =

Let I' = {7,} and ap be any point of D.

Definition 3.3. The set of states {|ax)}, where ax = 4 - @0, is called the subsystem of
coherent states related to subgroup T'.

Theorem 3.4. The system of q-deformed coherent states related to the discrete subgroup
I' of the group G = SU(1,1)/Z, is incomplete if the area Sr of the fundamental domain I'\D
is infinite.

Proof. In this case one may show (see for example [Le 1964]) that there exists a function
f(¢), which is analytic and bounded in D, that has zeros at the points {;. For such a function
the norm defined by Eq. (3.5) is finite and hence this system of coherent states is incomplete.

Theorem 3.5. Let the system of q-deformed coherent states {|ax)} be related to the
discrete subgroup I', such that the area Sr of the fundamental domain I'\D is finite and
Sr < n. Then the system {|ax)} is complete.

Proof. Let us remind that non-Euclidian area of the disc of radius r is equal to S(r) =
7r?/(1 — r?). In this case, it follows from the condition Sp < 7 that » = n/Sp > 1. Hence
the norm of any analytic function, which has the zeros in the points {ay}, is infinite, and
the system {|ak)} is complete.
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Let us try to list the discrete subgroups I' for which Sr < 7. To this end, we need the
information from the theory of discrete subgroups I' of the group SU(1,1)/Z,, which we
take from [Le 1964]. Let us restrict ourselves to consideration of groups with finite area of
the fundamental domain I'\D. It is known that in this case the fundamental domain has the
form of a polygon with an even number of sides 2n. These sides being divided into pairs, are
equivalent with respect to the action of transformations of the group I'. The vertices of the
polygon are joined in the cycles of vertices, which are equivalent to one another. With this,
the sum of the angles of the polygon at the vertices of a given cycle equals to 27/, where [
is either a positive integer or co. If { = 1, the cycle is called random. If [ = oo, the vertices
of the cycle lie on the boundary of the domain D, and the cycle is called parabolic, while
in all the other cases, the cycle is called elliptic and [ is called the order of the cycle. Let ¢
be the number of cycles. By identifying equivalent sides and vertices, we obtain a Riemann
surface. The genus p of this surface may be found by the formula

2r=14+n-c (3.21)

We call the set of numbers (p,c; lh, ly,. .., l.) the signature of the group I'' We would
like to mention that the area of the fundamental domain Sr is completely determined by the
signature of the group and, for our choice of invariant measure du({) = (1 — ||?)"2dédn, is
given by

Srzﬂ'[p*l-i——;-g(l—llj)]. (3.22)

From (3.22) it is easy to see that the value of Sr cannot be arbitrarily close to zero.
It may be shown [Si 1945] that the minimal value of Sr = g, corresponds to the group T
with the signature (0, 3; 2, 3, 7). If the fundamental domain is not compact, i.e. the group
' contains parabolic elements, then Sp > 55 S = {5 correspond to the modular group
I' =(0,3; 2,3,00). It is known also that when p > 2, the signature of I' may be arbitrary.
For p = 1 the condition ¢ > 1 should be satisfied, and for p = 0 we should have either ¢ > 5,

orc:4and§:lj_1<2,0rc=3and21;1<1.

We are interested here in the case

&:[p—1+%§(1—-%)]<1. (3.23)

T

As it will shown below, the number of such cases is finite.

Let us consider separately the different cases:

I. Let p > 2, then (3.23) cannot be satisfied.

IT. Let p =1, then (3.23) takes the form

Z%>c—2, el n=e+l (3.24)

j=1 4

Hence here we may have:
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a)
Czl, l1=2,3,...,00,
b)
e=2 =23 o0y da=8d::
except of the case I} = oo, Iy = 00,
c)
2. 1
&= 3 Zl_
Cl)
C:3, 112271222,l322,3,...,<
Cg)
c= 33 (11712713) - (21373)3 (253a4)a (2733
ITI. Let
a)
e 1
p =0, — > c—4,
i=1 [J
CL}_)
.1
& ==, Z = 3w 1
1 z
ag)
|
& =10, Z— 2,
1 li
ag)
|
e=T, Z =% &,
1 li
G4)
81
e=5B, Z — >4
1 lj
This case and also the case ¢ > oo are impossible.
b)
51 Z‘*: 1
c=4, = 3 ) ==
; lJ 1=1 l.?
c)

L
l;

3 1 3
c = 3, El— ——1, Z
1 1=1

o0,

5).

565

-~ (3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)
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So, as a function having zeros at the points (, = 7, - (o, we may take the automorphic
form related to discrete subgroup I' = {7,}. If the fundamental domain I'\ D has finite
area, we may take it as polygon with finite number of sides which are segments of geodesics.
Vertices of a polygon lying on the boundary of disc are called parabolic vertices. We denote
P the set of parabolic vertices, and D* = D|JP. Now we are ready to give the definition
of the automorphic form.

Definition. An avtomorphic form of weight m (m is integer) is a function f,,(z) that
is analytic in D, satisfies the functional equation

e m a'n. k3
fm(( '7n) = (ﬁnz +an)2 fm(z)’ Yn = ( B g ) el
and is regular in DY (this means that at each parabolic vertex (, of the domain I'\D, there
should exist im(z — z,)*™ fn(2) at z — 2, in the interior of domain T\ D). An avtomorphic
form fn.(z) is called parabolic if f,.(2) vanishes at all parabolic vertices.

The set of automorphic forms of weight m builds a finite-dimensional vector space. We
denote d,,(I') (d (T'), correspondently) the dimension of the space of automorphic forms (the
space of parabolic forms, correspondently). Let mo(mg) be the least m for which d,,,(T') > 2
(df (T) > 2, correspondently). It is known (see for example [Le 1964]) that if I'\ D is compact,
then d,,(T") = d} ('), mo = m¢, and any automorphic form may be considered as parabolic
one.

The dimension of the space of automorphic forms of weight m is given by

0, for m < 0,
1, for m =0,
A L) = g, form =1, (3.37)

@m-1)p-1)+ iy m(1-1)], form>2
Here, p is the genus of the fundamental domain, [m] is the integer part of the number m,

and g; > p is the number of holomorphic differentials on the Riemann surface T\ D.

With this, the number of zeros of function f,,(z) in the interior of fundamental domain
is given by the Poincaré formula [Po 1882] (written here in a somewhat different form)

It should be mention that if there are elliptic and parabolic vertices, this number need
not be integer.

Further, from a comparison of (3.22) and (3.37) we found that
N2dn+p-1, (3.39)

with the equality sign holding only in case when the numbers m/l; are integers, including
Zero.
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In what follows we shall be interested in automorphic forms for which d,,(I') > 2. We

denote by mg the minimal weight of such forms. We consider now the values which mg may
take.

L If p > 2 then mo = 1, as it is evident from formula (3.37).
II. Let p=1 and let ¢; be the number of parabolic cycles. Then, if
a) ¢; > 2, then mg =1,
b) ¢; =1, then mgy = 2,
c) ca=0and ' =(1,1; 2), then mg = 4,
d) co=0andI'=(1,1;1), !> 3, then mg = 3,
e) ¢ =0,c> 2, then mg = 2.

III. If p = 0 then

Let us introduce the notation:
No = 2m0 S[‘/‘ﬂ'.

It follows from (3.39) that Ny > p + 1.Therefore, Ny can be equal to one only in the case of
p=0.

With this, d,,, = 2, and the value of my may be determined from (3.38):

mo = 52—; — [Z (1 - ll) _ 2] o (3.41)

=1

Let I be the least common multiple of the numbers /; which are not infinite. Then, (3.41)
can be written in the form:

[

mo=1[x (1-7) -2,

from which it follows that my < 1. However, m must be divisible by those of {; which are
not infinite. Therefore, they must coincide with [, i.e., mo = [.

Thus we have

Proposition. If group I' of signature (0,¢; 5 ...1,, 00,...00) admits automorphic form
fmo(2) with one zero in the fundamental domain, then mq is the least common multiple of
the numbers U1, 0y, ..., [, and, moreover, must satisfy the condition

mo(c —2) — Z ";_0 = L (3.42)

i=1
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It is not difficult to show that (3.42) has a solution only for ¢ = 3,4,5, and that the
number of solutions of this equation is finite. There are 21 discrete subgroups I' corresponding
to them. All of them are listed in Table 1.

TABLE 1
mo r
1 (0,3; 00, 00, 00)
2 (0,3; 2,00, 00),(0,4;2,2,2,00), (0,5; 2,2,2,2,2)
3 (0,3;3,3,00)
4 (0,3;4,4,4),(0,3;2,4,00),(0,4;2,2,2,4)
6 (0,3;2,3,00),(0,3; 3,3,6),(0,3; 2,6,6), (0,4;2,2,2,3)

8| (0,3;2,4,8)

10| (0,3;2,5,5)
12| (0,3;3,3.4),(0,3;2,3,12), (0,3; 2,4,6)
18| (0,3;2,3.9)
20 | (0,3;2,4,5)
24 | (0,3;2,3,8)
42 | (0,3;2,3,7)

4 Case of Quantum Algebra su,(2)

In this section we consider the basic properties of the system of g-coherent states (see [AC

1976], [Bi 1989], [Ma 1989], [Ju 1991] for other details).

The basic quantities here are the operators Jy and Jy, which act in the Hilbert space 'H
of finite dimension 2j + 1 (j is half-integer, 25 4+ 1 is a positive integer) with the basis

|j::u)7 ru’:_ja_j-l_la"'rja (41)

or
n), n=j4+p, n=0,1,...,2;. (4.2)

The operators Jy and Jy act as follows

Jelivw) = U Fullj £ p+ 1150 £1), (43)
Joli, u) = pli, p), (4.4)
Je |n) = /[n +1][2j — n]|n + 1), - (4.5)

J-|n) = /[n][2j —n +1]|n = 1), (4.6)
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Jo|n} = (n—g) |n). (4.7)
Here [n] is the Gauss symbol [Ga 1808]

n

l1—gq

[J',n]:1+q+-~-+q“"l=m, (]t =[1][2].. . [n]. (4.8)
>From (4.5) it is not difficult to obtain
ez

>From (4.5)-(4.7) it follows that the operators Jy and Jy satisfy the commutation relations
[JO, ‘]i] = :t‘]:ta [J+7J—] = [2‘]0]: (410)
where the operator [2J;] is defined by the formula

[2J0] |n) = An [, (4.11)

M= (154011~ 1) = (In) — 25— ) = { N (ST

Now following [B1 1989] and [Ma 1989] we define the system of ¢-deformed coherent states
by the formula

12) = eq(2J2)10). (4.13)
>From (4.9) we have
_ 3 2] .
9= 3 o ™ (4.14)

and we may calculate the norm of this state

(lls) = Gasel®) = 3 Tl o = 1+ o1, (4.15)

Here Gyj(x) is a certain polynomial of degree 2j. Let us give the simplest examples:

Go=1, Gi=14+z, Gy=142z+2*=1+(1+q)z+2%

Gs =1+ [3Jo + 32 +2° = (1 +2) (1 +([8] - Ve + x?*), - (4.16)

Note that these polynomials were first considered by Gauss [Ga 1808] and investigated in
more detail in the paper by Szego [Sz 1926]. Here we note the following important properties
of these polynomials:

1) Their roots are located on the circle of unit radius and = 1 is not a root.
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ii) The relation of these polynomials to theta-functions [Sz 1926]. Namely the functions

(___1)11 qn/2

b=1,..., &,= Gn_—1/2z
Ji-g)(1-¢)...(1-q) (q )

are orthogonal on the unit circle {z: z = €} with the weight function f(8), which
coincides with theta—function

[T B@ a0 10 d8 =0, j#F

o o] . 2
f(e) - Z qn2/2 e-int? - z qn2/2 COSTLH — {D(eza)

n=-=00 n=—0o

ﬁ v1—qm® (1 4 q(2”_1)/2z).
=1

9

D(z)

I

Note also that we have .

Gn(¢'?) =TI (1 + ¢/%),

r=1

the expression for the generating function for G, (z),

> Gh(z) n T 1
n; (1—q)(1—qz)---(l—q”)t _Eo(l—q”t)(l—q”tw)’

and the recurrence formulae
Gni1(z) = (1 + 2) Ga(z) — (1 — ¢") 2Grna();
Grlgz) — (1 — ¢") Ga-1(gz) = ¢"Gr(2).

Let us denote the roots as (i,...,(y;. Then |(x| = 1 and (}, is also the root as (i. So

Gulz) = [I(z — G;)-

j=1

The normalized coherent states now take the form

-1/2 2§ 4l
9= (Gue?) " 3 *}[‘1‘*‘% ), (@17

and the scalar product of two such states is
sz(ﬁz)
17z
(Gaill1) Gs(Jul?))

(w]2) = (4.18)
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So for the fixed coherent state |z) there are 27 coherent states |wi), k = 1, ..., 27, which
are orthogonal to state |z). Here

w = (2)71C,. (4.19)

As for the standard system of coherent states, for ¢-coherent states we also have the
resolution of unity

J112) el dgu(z) = 1, (4.20)

doz) = B (1) 1=y a0, 2 = e (121)

To prove this, let us consider the integral

I = /0 e (G’l(a:)) * s, (4.22)

Then after an integration by parts [Ex 1983] we have

q—“n [n] o n—1 -1 -
h=4=5 [ s (Gisle™2)) o, (4.23)
and hence ol
.
T = [—1[=2...[i=n] (4.24)
Furthermore - i .
fo (Gz—n(l + q_n$)> dgz = [I———it—l_]’ (4.25)
and finally
o0 =1 "l —n—2]!
fa o (Gl(m)) do = [[1_ I E (4.26)

As a result of resolution of unity, an arbitrary vector |¢) may be represented by a polynomial
of degree 2;:

$(z) = (z[¢). (4.27)
Finally we come to the functional realization of the Hilbert space F;
(Wils) = [$1(2)6(2) do(2) (4.28)
and have the basis:
fa(2) = {2]|n) = --—[Qj—]i—fn (4.29)
" R]1[27 —n]!

It is easy to see that any set of (2j + 1) coherent states form nonorthogonal basis in F;.
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5 Case of Quantum Qlgebra su,(1,1)

In this section we consider the basic properties of the system of g-coherent states for discrete
series T} (see [Bi 1989], [Ma 1989], [Ju 1991] for other details).

The basic quantities here are the operators Ki and Ky, which act in the infinite-
dimensional Hilbert space H with the basis

{lk, )}, w==kk+1,..., (5.1)
ik p=g—kr=01 - (5.2)
The operators Ky and Ky act as follows
Ky lkypy = /lu £ K [wF k£ 1] |k, p £1), (5.3)
Kolk,p) = plk, 1) (5.4)
Kyln) = /ln+ 1] [2k +n] |n + 1), (5.5)
K_|n) = /[n] 2k +n —1]|n — 1), (5.6)
Ko |n) = (k4 n)|n). (5.7)

Here [n] is the Gauss symbol [Ga 1808]

i

| e g

[n]:1+q+...+qn_1=T:—(;, ]! =[1]]2] ... [n]. (5.8)
>From (5.5) it is not difficult to obtain
[2k]! n

>From (5.5)—(5.7) it follows that the operators Ky and K, satisfy the commutation relations
(Ko, Ki] = £ Ky, [K_,Ki]=[2K,], (5.10)

where the operator [2Ky] is defined by the formula
[2Ko] ) = As|n), (5.11)

p = 0;

o= (o = 1) = (W enl) = { 2008, 20

Now following [Bi 1989] and [Ma 1989] we define the system of ¢g-coherent states by the
formula

12} = e (2£4) [0). (5.13)
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>From (5.9) we have

I = 3 | e ) (.14

and may calculate the norm of this state

~(2k)
el = Fu (o) = & Bl ep = (1) . 59

Here Fyi(z) is the function of degree (—2k):
Fa(z) = G (—2).

Let us give the simplest examples:

B=1, R=-2" B=(1-Pk+e) =(1-(Qtoe+e?) ;

R = (1 — [3]e + [3]2% - :1:3) T (1-2) (1 — (Bl -1e+ 3:2))_1 " (5.16)

Here we only note that the poles of these functions are located on the circle of unit radius
and that, at integer k, x = 1 is a pole.

Let us denote the poles as (i,..., (2. Then |(x| =1 and (,, is the pole too as (. So the
normalized coherent states have the form

~1/2 oo
)= (Batle) " 5 JT}TT%%T ) (517

and the scalar product of two such states is

For (w2) __
(Furllz?) Ewol))

(wl]z) = (5.18)

As for the standard system of coherent states for g-coherent states we also have the
resolution of unity

[ U2 el dys(z) = 1, (5.19)

dptz) = B (1) =)0, = = e (5.20)

To prove this, let us consider the integral

L= /01 2" (F,,(x))’l 3 s. (5.21)

Then after an integration by parts [Ex 1983] we have

Ly = f:{’f]] /O f g (Fg~1(q_lx)) s (5.22)
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and hence ]
n)!
I, = ' ;
METCi—2 . =7 18:29)
Furthermore ) .
—n ) _ 9"
fo (F,_n(1 +q a:)) e = = (5.24)
and finally

Ll z" (Fl(w))_l dgz = ok [{ll__?}'_ 2}!' (5:29)

As a result of resolution of unity, an arbitrary vector |¢») may be represented by a function
of degree 2k:

P(Z) = (z]l). (5.26)

And we finally come to the functional realization of the Hilbert space F:

(nln) = [BilE) al) dopu(2) (5.27)

and we have the basis

Fl#) & {z]ln) = J [71]'[[22—:‘]_—'———7—;]—'_?” (5.28)

So all formulae here are similar to the corresponding formulae for the case of Heisenberg-
Weyl algebra. Comparing, for example the basic formulae (2.15) and (5.15) we can see that
the case of Heisenberg-Weyl algebra is similar to the case of su (1,1) for & = %. So, for

2
sug(1,1) algebra we have the results analogous to results of section 2.
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