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Constant-Cutoff Approach to the Isovector
Exchange Magnetic Moment

By Nils Dalarsson

Royal Institute of Technology
Stockholm, Sweden!

(15.X1.1995, revised 15.XI1.1995)

Abstract. We suggest a quantum stabilization method for the SU(2) o-model based on the constant-
cutoff limit of the cutoff quantization method developed by Balakrishna et al., which avoids the
difficulties with the usual soliton boundary conditions pointed out by Iwasaki and Ohyama. We
investigate the baryon number B = 1 sector of the model and show that after the collective
coordinate quantization it admits a stable soliton solution which depends on a single dimensional
arbitrary constant. We then derive the results for isovector exchange magnetic moment operators
for two-nucleon systems in the constant-cutoff approach to the SU(2) o-model using the product
Ansatz for the soliton field operator.

1 Introduction

It was shown by Skyrme [1] that baryons can be treated as solitons of a nonlinear chiral
theory. The original Lagrangian of the chiral SU(2) o-model is

F2
i == l—gTr a,I,U8“U+ , (1.1)

where .
7= E;—(cr—l—i'r-vr) (1.2)

is a unitary operator (UU' = 1) and F, is the pion-decay constant. In (1.2) ¢ = o(r) is a
scalar meson field and 7 = #(r) is the pion-isotriplet.

!Present correspondence address : Bjorkvagen 55, S-147 33 Tumba, Sweden.
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The classical stability of the soliton solution to the chiral o-model Lagrangian requires
the additional ad-hoc term, proposed by Skyrme [1], to be added to (1.1)

'CSk =

2

+ +
et pf 8.U, U*8,U| (1.3)
with a dimensionless parameter e and where [A, B] = AB — BA. It was shown by several
authors [2] that, after the collective quantization using the spherically symmetric Ansatz

Up(r) =expiT -#F(r)] , #=r/r, (1.4)

the chiral model, with both (1.1) and (1.3) included, gives a good agreement with the
experiment for several important physical quantities. Thus it should be possible to derive
the effective chiral lagrangian, obtained as a sum of (1.1) and (1.3), from a more fundamental
theory like QCD. On the other hand it is not easy to generate a term like (1.3) and give a
clear physical meaning to the dimensionless constant e in (1.3) using QCD.

Mignaco and Wulck (MW) [3] indicated therefore a possibility to build a stable single
baryon (n = 1) quantum state in the simple chiral theory, with the Skyrme stabilizing
term (1.3) omitted. MW have shown that the chiral angle F'(r) is in fact a function of
a dimensionless variable s = £x”(0)r, where x”(0) is an arbitrary dimensional parameter
intimately connected to the usual stability argument against the soliton solution for the

non-linear o-model Lagrangian.

Using the adiabatically rotated Ansatz U(r,t) = A(t)Uo(r)A™(t), where Up(r) is given
by (1.4), MW obtained the total energy of the nonlinear g-model soliton in the form '

T 1 1 "(0)F
= = £ 1.5
E= 0tz zr HT+1), e
where
o |1, (dF\? ,2(1 )
- Rl el in? ( = 1.6
G= dsLs (ds) + 8sin 4.7'" ; (1.6)
o2 4 1
b= A ds %82 sin’ (Zj:) : (1.7)
and F(s) is defined by
F(s) = —nm+ %]—"(s) 4 (1.8)

The stable minimum of the function (1.5), with respect to the arbitrary dimensional scale
parameter x”(0), is
4 3 (m\?2a? Ea
B=iFR|3(7) So0+n| 1.9
3 [2 4 b i )} L9

Despite the non-existence of the stable classical soliton solution to the nonlinear o-model,
it is possible, after the collective coordinate quantization, to build a stable chiral soliton at
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the quantum level, provided that there is a solution F' = F(r) which satisfies the soliton
boundary conditions, i.e. F(0) = —nm, F(co) = 0 such that the integrals (1.6) and (1.7)

exist.

However, as pointed out by Iwasaki and Ohyama [4], the quantum stabilization method
in the form proposed by MW [3] is not correct since in the simple o-model the conditions
F(0) = —nm and F(co) = 0 cannot be satisfied simultaneously. In other words if the
condition F'(0) = —= is satisfied Iwasaki and Ohyama obtained numerically F'(oc0) — —m/2,
and the chiral phase F' = F(r) with correct boundary conditions does not exist.

Iwasaki and Ohyama also proved analytically that both boundary conditions F'(0) = —nw
and F(co) = 0 can not be satisfied simultaneously. Introducing a new variable y = 1/r into
the differential equation for the chiral angle F' = F(r) we obtain

d*F 1
— = —sin(2F) (1.10)
dy oy
There are two kinds of asymptotic solutions to the equation (1.10) arround the point y = 0,
which is called a regular singular point if sin 2F = 2F". These solutions are

mm

F(y) = 5 cy® | m = even integer , (1.11)
Fly) = %ﬁ + y/cy cos [g In(ey) + al ,  m = odd integer , (1.12)

where ¢ is an arbitrary constant and « is a constant to be chosen adequately. When F(0) =
—n7 then we want to know which of these two solutions are approached by F'(y) when y — 0
(r — 00)? In order to answer to that question we multiply (1.10) by 4?F’(y), integrate with
respect to y from y to co and use F(0) = —nn. Thus we get

@)+ [ dy2y[F @) =1 - cos2F(y)] (113)
Y

Since the left-hand side of (1.13) is always positive, the value of F(y) is always limited to

the interval nm — m < F(y) < nm + w. Taking the limit y — 0, (1.13) is reduced to

| avlP @ =1- ", (1.14)

where we used (1.11-12). Since the left-hand side of (1.14) is strictly positive, we must choose
an odd integer m. Thus the solution satisfying F(0) = —nn approaches (1.12) and we have
F(00) # 0. The behaviour of the solution (1.11) in the asymptotic region y — oo (r — 0) is
investigated by multiplying (1.10) by F'(y), integrating from 0 to y and using (1.11). The

result is 2 Ply) 2 P(y)
2sin” F(y v 2sin” F'(y

’ 2 e ISSER——" LA 1.15

Pl =220 [ ay 22 (1.15)
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From (1.15) we see that F’(y) — constant as y — oo, which means that F(r) ~ 1/r for

r — 0. This solution has a singularity at the origin and can not satisfy the usual boundary
condition F'(0) — —n.

In [5] the present author suggested a method to resolve this difficulty by introducing a
radial modification phase ¢ = ©(r) in the Ansatz (1.4), as follows

U(r) =expiT - 7o' (r) +i0(r)] . (1.16)

Such a method provides a stable chiral quantum soliton but the resulting model is an entirely
non-covariant chiral model, different from the original chiral o-model.

In the present paper we use the constant-cutoff limit of the cutoff quantization method
developed by Balakrishna, Sanyuk, Schechter and Subbaraman [6] to construct a stable chiral
quantum soliton within the original chiral o-model. Then we apply this method to derive
the results for isovector exchange magnetic moment operators for two-nucleon systems in the
constant-cutoff approach to the SU(2) o-model using the product Ansatz for the soliton field
operator [7]. Such an approach avoids very lengthy algebraic manipulations and complicated
final results [7]. On the other hand it allows the same physical description of the isovector
exchange mechanisms.

The reason why the cutoff-approach to the problem of chiral quantum soliton works is
connected to the fact that the solution F' = F(r) which satisfies the boundary condition
F(o0) = 0 is singular at r = 0. From the physical point of view the chiral quantum model is
not applicable to the region about the origin, since in that region there is a quark- dominated
bag of the soliton.

However, as argued in [6], when a cutoff ¢ is introduced then the boundary conditions
F(e) = —nm and F(oo) = 0, can be satisfied. In [6] an interesting analogy with the damped
pendulum has been discussed, showing clearly that as long as € > 0, there is a chiral phase
F = F(r) satisfying the above boundary conditions. The asymptotic forms of such a solution
are given by Eq. (2.2) in [6]. From these asymptotic solutions we immediately see that for
€ — 0 the chiral phase diverges at the lower limit.

Different applications of the constant-cutoff approach have been discussed in [8].

2 Constant-Cutoff Stabilization

The chiral soliton with baryon number n = 1 is given by (1.4), where F' = F'(r) is the radial
chiral phase function satisfying the boundary conditions F'(0) = —7 and F(co) = 0.

Substituting (1.4) into (1.1) we obtain the static energy of the chiral baryon

Moo [ 5 dF g .9
M= —F,r/ ar |72 [25) 4 2sin® F (2.1)
2 £(t) dr




Dalarsson 543

In (2.1) we avoid the singularity of the profile function F' = F(r) at the origin by introducing
the cutoff €(t) at the lower boundary of the space interval r € [0, 00], i.e. by working with the
interval r € [g, 00]. The cutoff itself is introduced following [6] as a dynamic time-dependent
variable.

From (2.1) we obtain the following differential equation for the profile function F' = F(r)

d [ ,dF
— | =sin(2F 2.2
- (7‘ dr) sin(2F) , (2.2)
with the boundary conditions F(e) = —m and F(oo) = 0, such that the correct soliton

number is obtained. The profile function F' = F[r;e(t)] now depends implicitly on time ¢
through €(¢). Thus in the nonlinear o-model Lagrangian

L=Ex f fzTr (9,U0°U%) (2.3)
we use the Ansitze |
Ulr,t) = A Us(r, 1) AT (), UT(r,t) = AQ)US (r, t)AT(2) , (2.4)
where

Up(r,t) = exp[iT - ToF'(r;e(t))] . (2.5)
The static part of the Lagrangian (2.3), i.e.

= %fdsm Tr (VU-VU*) = -M, . (2.6)

is equal to minus the energy M given by (2.1). The kinetic part of the Lagrangian is obtained
using (2.4) with (2.5) and it is equal to

2
L= % f Az Tr (0UBU™) = ba®Tr (89ABAT) + c[(t)) | (2.7)
where
dF
=3 F =—Fp 2 2.8
b= FfdyysmF c F-/dyy(dy)y’ (2.8)

with z(t) = [g(t)]*? and y = /¢. On the other hand the static energy functional (2.1) can
be rewritten as

0 dF\’
M=az??, o= gFg/l dy {yz (d_y) + 2sin® F (2.9)

Thus the total Lagrangian of the rotating soliton is given by

L = ci? — az®® + 2bx’a, & | (2.10)
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where Tr (GgAGyA™) = 2&,¢" and «, (v =0, 1,2, 3) are the collective coordinates defined as
in [9]. In the limit of a time-independent cutoff (# — 0) we can write

oL |

1
v _ [ = ‘2/3 9 ‘2- LV 12/3 T )
5 & az " + 2brq,a" = az®® + T J(J+1), (2.11)

where <J 2> = J(J + 1) is the eigenvalue of the square of the soliton laboratory angular
momentum. A minimum of (2.11) with respect to the parameter x is reached at

H =

2 ab 38 " 2  ab 1/
= | = = e———— ; 212
! [SJ(J—H)} : [3J(J+1)] Wil
The energy obtained by substituting (2.12) into (2.11) is given by
4 [3a° L
B~ |[=— . 2.13

This result is identical to the result obtained by Mignaco and Wulck which is easily seen
if we rescale the integrals @ and b in such a way that @ — ZF?2a, b — ZF?b and introduce
fr = 272/3F,. However in the present approach, as shown in [6], there is a profile function
F = F(y) with proper soliton boundary conditions F(1) = —7 and F(oo) = 0 and the
integrals a, b and ¢ in (2.9-10) exist and are shown in [6] to be @ = 0.78 GeV? b= 0.91 GeV?,
c=1.46 GeV? for F, = 186 MeV.

Using (2.13) we obtain the same prediction for the mass ratio of the lowest states as
Mignaco and Wulck [3] which agrees rather well with the empirical mass radio for the A-
resonance and the nucleon. Furthermore using the calculated values for the integrals a and b
we obtain the nucleon mass M(N) = 1167 MeV which is about 25% higher than the empirical
value of 939 MeV. However if we choose the pion decay constant equal to F; = 150 MeV we
obtain a = 0.507 GeV? and b = 0.592 GeV? giving the exact agreement with the empirical
nucleon mass.

Finally it is of interest to know how large the constant cutoffs are for the above values of
the pion-decay constant in order the check if they are in the physically acceptable ball park.
Using (2.12) is is easily shown that for the nucleons (J = 3 the cutoffs are equal to

_1022fm, for F, =186 MeV
1027 fm, for F, = 150 MeV

Clearly, the cutoffs have to be smaller than the nucleon size (0,72 fm), and from (2.14) we
see that it is the case. It should, however, be noted that the simple Skyrme model discussed
here is at variance with some physical constraints since the isoscalar charge radius (~ 0.8
fim) is identical to the baryon charge radius (~ 0.5 fm).

(2.14)

3 Isovector Magnetic Moment in the B =1 Case

The isovector component of the nuclear electromagnetic current in the Skyrme model is
a. Noether current associated with the symmetry of the Skyrme Lagrangian density. The



Dalarsson 545

isoscalar component is, however, proportional to the topological baryon current and it is not
directly related to the Skyrme Lagrangian density. Thus only the isovector curent provides
a possible tool for testing the quality of the Skyrme Lagrangian.

The study of the two-nucleon system (B = 2), in the original Skyrme model [1], gives a
good description of the isovector exchange mechanisms, e.g. the long-range tensor nucleon-
nucleon interactions and spin-orbit interactions [7]. On the other hand, the Skyrme model
does not provide a satisfactory description of the isoscalar exchange mechanisms, e.g. isospin-
independent central interaction [7].

The isovector current is the Noether current associated with the symmetry of the La-
grangian density (1.1), without the pion mass term, under the transformation

1., 1 .
U — exp (iiEJTj) U exp (—52'637']-) . (3.1)

where 7 (j = 1,2, 3) is the set of three infinitesimally small Noether parameters. As ¢ — 0,
we obtain

¥ - 3 [%U] — U +&6U; . (3.2)

U ) . (3.3)

The third component (j = 3) of the vector current (3.3) is the isovector electromagnetic
current given by

The Noether current associated with the transformation (3.2) is

. oL o oL [
Viu = 21r (a(auU)5UJ) =2l (a(auU) 7

F2 .
Ju=Vo=~iZT (U*o.U + nUBUY) . (3.4)
In the present paper we consider only the space part J of (3.4), given by
F2
J = —itTr (UVU + mUVU*) (3.5)

Using the rotational Ansatz U(t) = A(t)UpA™*(¢) and the projection theorem [7]
1
(N ATATIN) = —2 (N'|e™(T-7V)IN) , (3.6)

we obtain from (3.5)

1 sin? F°
J(r]= 75T X r 732 e

(3.7)
The isovector magnetic moment m is obtained from the definition J = m X = and is given
by
1 sin? I’
m = —arF? :
127 0 g2

The total magnetic moment is given by

(3.8)

1 1
[h = gfd3r r’m(r) = gﬂ'racr ; (3.9)
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where 0 = be3 is the moment of inertia of the rotating soliton with b and ¢ defined by (2.8)
and (2.12) respectively. From (3.9) we obtain the isovector gs-factor

_2My

3 0. (3.10)

gs

4 The Exchange Magnetic Moment Operator for B =
2 Soliton

In order to describe a two-nucleon system we use the product Ansatz suggested by Skyrme
[1] for the B = 2 field operator

U(Ry,Ry;7r) =U(r — R)U(r — Ry) = U1 Uy, (4.1)

where R; and R, are the coordinates of the centers of the two solitons. The unitary operator
(4.1) has the correct B = 2 soliton form for R; = R,.

Using (4.1) we obtain the space part of the isovector current
J =J:i(r — Ry) + Ja(r — Rp) + Jex (R, Ry 7) (4.2)

where J; and J, are single soliton current operators of the form

2
Ji= it Tr (Ui VUL + 1UVUF ), k=1,2, (4.3)
and Jgx is an irreducible exchange current operator given by
o + + + (17+
JEX = Z'I—GTI' [Ul VUl (UQT3U2 - T3) + UQVU«Z (Ul T3U1 - T3)] . (44)

The soliton fields U; and U, are rotated using the expression
Up — Ar()UrAf () = Ax()Us(r — Rp)AF (), k=1,2, (4.5)
where Up is the static soliton field defined by (1.4).

Since the product Ansatz (4.1) does not possess a definite symmetry under interchange
of the particle coordinates, Jgx contains both a physical symmetric part and an unphysical
antisymmetric part which has no nonzero matrix elements between any two antisymmetric
two-nucleon states. The symmetric part is, on the other hand, reduced to a form which
contains only Pauli spin and isospin for the two nucleons.
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Using (4.5) and the projection theorem (3.6), (4.4) becomes

Tox = F_,,f { [sin Fi cos Fy sin Fy cos Fy (o2 - ry)ort — (o - r)a)
16 172
4 dFl _ Sil‘lFl COSFI SiﬂFzCOSFQ(al 1"1)(0’2 1‘2)2
dry T T172 A (4.6)
dFy; sinFycosFy\ sin Ficos Fy, 5 T2 1 9 .
— = (! -r)(o? - -ro)—| (T8 x T°)
d'l‘g T9 179 T2
-2 SiIl2 F1 SiIl2 F2 |:i2(0'1 X "'1)7'31 + l2(0'2 X Tz)T«?l} ;
T1 Ty
where 1"1:1"“R1 y T‘Q“‘—_T’—RQ y F1=F(’f‘1) and FQZF(TQ).
The magnetic dipole moment operator is defined by the following expression
1
HEx = 5 fd?u,.' r' x Jex(r' — Ry, 7' — Ry) (4.7)

where JEgx is the exchange magnetic moment operator defined by (4.6). Introducing relative
and center-of-mass coordinates

1
r= RI - Rg and 5 A §(R1 + Rg) ; (48)

respectively, the exchange magnetic moment operator splits into two terms as follows

HEx = Ky + Hewm. s (4.9)
where
1
ur=§fd3pp>< Jex(p—7/2,p+7/2), (4.10)
1
HeM. = -2-R X fd3p Jex(p—7/2,p+7/2) . (4.11)

In (4.10) and (4.11) the vector p is defined by
p=r—-R. (4.12)
In the present paper only u,., depending solely on the relative coordinate r, is of interest.

In order to calculate p, we shall perform the variable transformation p — —p, which
amounts to changing the sign of the relative coordinate r since Jgx is odd in the variables
r1 =7 — Ry and bpy = ¥ — R,. Furthermore we make a multipole expansion of the radial
functions occuring in p,., using

oo

flri,ra) =D filri,r2) Py - 72) (4.13)

=0



548 Dalarsson

where Pj(z) are Legendre polynomials and the multipole factors fi(ry,7s) are defined by

20+ 1 1
filriyra) = == [ dz B()f(r,ra52) (4.14)
Thus we obtain the standard form for the exchange magnetic moment
fly. = L {[glcrl X g%+ gy (((0'1 X a?) - ry)re — lcrl x 0'2)] (1! x 7%);
r 4MN 0/70 3
1
+ [hl(al — %)+ h, (((01 —0?) - 1o)To — 5(01 - 0'2))] (7' = 7%)3 (4.15)

+ k(e + 0% + ks (0 +0%) royro = 3(0* +07))] (7 + 70}

where the radial functions g1, g2, h1, ho, k1 and ky are given by

2t M, 0o +1 in F cos I sin I cos Ft 1
91(7‘) _ Y NFE_/ dppz_/ gz {sm 1 COS ['] 81N 15 COS L'y (p2 L _sz>
27 € —1 ™72 2

1 (dFl sinFlcosFl) sin Focos Fy o5 4

6_7'% rp° (1 — P2(z))} ) (4.16)

drq o] To

3
g2(r) = —591
—M;INFffoodpp‘a‘fﬂdz {sinF1 cos i‘ljiancost (1- Pg(z))} 7 (4.17)
€ —1 172

2rM 00 +1  gin? Fy sin? F 1
hi(r) =ki(r) = — 27NF,3/E dpp2f_1dz ;% 2 (p2 + §rpz) ,  (4.18)

3 mM o0 +1  gin? F} sin? F.
ho(r) = ky(r) = —=ky — g”ij dpp4f1dz 150 72 1 _ Py(2) .

- 5 2
2 T

(4.19)

Using now the constant cutoff method, we obtain the results for the radial functions (4.16-19)

nr) = 228 g o) [+ 1) (4.20)
0ar) = ~3:r) = T2 Fla(rfe) [ a4 1)] (421)
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[+

ol = Euffr) = —2“;74“’ Fon(r/e) [Z%bJ(J + 1)] ) (4.22)
har) = kalr) = ~Sha(r) - o) [+ 1), (09)

where a and b are dimensionless integrals defined by (2.9) and (2.8) respectively, and <J 2> =
J(J + 1) is the eigenvalue of the square of the soliton collective angular momentum. In
(4.20-23) we introduced the dimensionless integrals 71, 2, 71 and 7, defined by

g +1 sin F} cos F} sin F5 cos F: 1
71(3):f1 dffzf_ldz{sm 1 COS I'7 81N L' COS 2(§2+§sfz)

§182

Gisz (dﬂ sin F} cosFl) sin Fy COSF282§2 (1-— Pz(z))} (424
1

ds; 81 S

(oe] +1 % . 5 .

- :/ d€§4f s sin Fj cos F) sin F5 cos Fy (1-Py(2)) , (4.25)
1 -1 5182
oo +1  gin? F. sin® 1

m(e) = [Taee [T a I (@4 s | (4.26)
1 -1 81 2
oo +1  gin? F} sin? F:

mis) = [ degt |7 d=TIEE (10— o)) (427)

1

In (4.19-22) we used the notation F, = F(s;) (k = 1,2) where F' = F(s) is the chiral phase
function and , e »

5= S =— (k=1,2) , =7 (4.28)
As the Skyrme model reproduces the usual one-pion exchange potential at large internu-
clear separations, the exchange magnetic moment operator (4.9) agrees with the usual pion
exchange magnetic moment operator in the asymptotic region when r — co. The form of
the magnetic moment operator in the pion physics is well known, and the relevant radial

function ¢3(r) and gj(r) are given by

2 —2MpT
= 2 My Juwn (g 1) E , (4.29)

3m, 4w MyT

g1 ()

M 2 —2M g
—Q_EL’—NN(m,,T+1) c :
my; 4w Myl

(4.30)
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This important consistency test of the Skyrme model remains valid even in the case of the
constant-cutoff approach to the SU(2) o-model, since in the asymptotic region when r — oo,
the behaviour of our expressions (4.20-23), with the integrals (4.24-27), is the same as that of
the expressions (4.29-30). This consistency was discussed in the case of the complete Skyrme
model in [7]. However the present approach makes the algebraic manipulations easier and
final results simpler and much easier to handle.

Finally the numerical comparison of our radial functions g1(r), g2(r), h1(r) = ki(r) and
hao(r) = ka(r) with the corresponding radial functions obtained using the complete Skyrme
model in [7] is made in Figs. 1, 2, 3 and 4, respectively, for F, = 186 MeV and for r > € ~
0.22 fm. From Figs 1, 2, 3 and 4 we see that there is a good qualitative agreement between our
radial functions and the corresponding radial functions obained using the complete Skyrme
model in [7], for large and intermediate separations. The product Ansatz to describe the
B = 2 soliton is, of course, limited to large and intermediate separations. For very small
separations (r < &) the comparison is not possible anyway, since our radial functions are
defined only for r € [e, +00].

0.4 2 3.6

0.1 4

0.1 1 r(fm)

-0.3 1

-0,5

Figure 1: The radial function g;(r) given by the expression (4.20) for nucleons (solid line)
compared to the corresponding radial function obtained using the complete Skyrme model

[7] (dashed line).

5 Conclusions

In the present paper we have derived the expression for the isovector exchange magnetic
moment in the constant-cutoff approach to the SU(2) o-model. Thus we have shown that
the long-range behaviour of the isovector exchange magnetic moment agrees with the usual
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0.4 2 36

-0,7

Figure 2: The radial function g,(r) given by the expression (4.21) for nucleons (solid line)
compared to the corresponding radial function obtained using the complete Skyrme model
[7] (dashed line).

0.4 1 1,76

-0,1 4

-0,2 4

-0.3 4

-0.4 -

-0,5

Figure 3: The radial function h;(r) = k,(r) given by the expression (4.22) for nucleons (solid
line) compared to the corresponding radial function obtained using the complete Skyrme
model [7] (dashed line).
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Figure 4: The radial function hy(r) = k,(r) given by the expression (4.23) for nucleons (solid
line) compared to the corresponding radial function obtained using the complete Skyrme
model [7] (dashed line).

pion-exchange magnetic moment. This agreement is due to the manifest chiral invariance of
the SU(2) o-model Lagrangian without the pion mass term, which leads to predictions that
satisfy the soft-pion theorems based on the chiral invariance.

We have however not investigated the short-range behaviour of the isovector magnetic
moment, which is not well understtod in the complete Skyrme model (with the Skyrme
stabilizing term included). We shall return to that matter in the coming studies.
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