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Abstract. We prove that a generic potential perturbation in Euclidean scattering splits the multi-
plicities of all resonances. Our argument can in fact be generalized to a class of non-self-adjoint
Fredholm operators on an abstract Hilbert space.

1. INTRODUCTION

The purpose of this note is to show that for a generic compactly supported perturbation
of the Laplacian in R” the resonances are simple. The argument presented here shows in
fact that for any perturbation for which the resonances are defined by complex scaling the
algebraic multiplicities can be split by adding a generic compactly supported potential to
the perturbation. As was pointed out to us by the referee the argument we use is more

general and applies to some families of non-self-adjoint Fredholm operators of index zero —
see Remark 3.21

Results of this type are now well-known for eigenvalues ([11, 12]) and the minor new
difficulties here come from dealing with non-self adjoint operators. We were motivated by

TWe would like to thank the referee for clarifying our earlier argument and for suggesting the generalized
formulation of the result. The second author is also grateful to the National Science Foundation for partial
support.
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the fact that many statements about resonances are easy in the case of no multiplicity
but become complicated in general. For instance, the correspondence between the poles
of the meromorphic continuation of the resolvent and the scattering matrix for compactly
supported perturbations in odd dimensions is now standard when the poles are simple (see
[3]). The generic simplicity combined with the continuity of resonances in compact sets
(8], shows that this correspondence persists in general. Similarly one obtains that the poles
of the scattering matrix agree with multiplicities with the poles of its determinant (in the
hyperbolic case where complex scaling cannot be globally used a direct argument, applicable
in the Euclidean case as well, is presented in [2]).

We should stress that the above applications are probably known but we are not aware of
a convenient reference. The variational formula for the resonance used here (see (3.2) below)
is also probably well-known. In deriving it we were motivated by a formula of LaVita for a
variation of an eigenvalue of non-self adjoint operator which we learned from [4].

We will state the result in the abstract setting introduced in [10] (see [13] for more refer-
ences). Let H be a complex Hilbert space with an orthogonal decomposition
M = Mg, & L*(R"\B(0, Ro))

where Ry > 0 is fixed, B(0, R) = {y € R : |2 — y| < R} and the corresponding orthogonal
projections are denoted by u +— u[g(o,Rry), U — ulrm\B(0,R,)- The operator

P:H—-H
1s unbounded self-adjoint with the domain P C H which satisfies
DlrmB(o,r) C H(R™\B(0, Ro)),
and {u € H*(R"\B(0, Ry)), u = 0 near B(0, Rg)} C D. The crucial assumptions are

(Pu)lrm\B(0o,Re)= —A(ulr™\B(0,R,)) for all u € D (1.1) |
1go,r) (P + ¢)7! is compact (1.2)
Piu = Pu. (1.3)

The spaces Heomp, Hioc, Ploc are defined in the obvious way. The resolvent of P is defined
as a bounded operator in the upper half-plane:

RN =P -2)"1""H—->D,Im)>0, \* & opoim(P)
and the assumptions (1.1) and (1.2) guarantee its meromorphic continuation
R(A) : Hcomp =k Dloc (]‘4)

for A € C when n is odd and A € A, the logarithmic plane when n is even (strictly speaking
[10] treats only the odd dimensional case but the proof of Theorem 1.1 there applies for n
even as well). The poles of this continuation are called resonances or scattering poles. The
multiplicity of a scattering pole Ag is defined as the rank of

/R(A)/\d)\, 71 [0,27) 3 8 v Xo + e
:

for € sufficiently small. As we shall see this is the same as the dimension of the image of the
full polar part of R(\) (see the definition in [7]). Let us put Agy = {A € A: 8 < arg A < ¢}
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Theorem Let P satisfy the assumptions above and let R, satisfy Ry < Ry. Then there exists

a dense Gs subset of C$°(B(0, R1)\B(0, Ro); R), U, such that for any V € U the resonances
of P+V in A_, o are simple.

Remark 1.1. Proceeding in this generality we cannot eliminate multiplicities of either neg-
ative or embedded eigenvalues by adding a potential supported outside of the perturbation.
For practically any specific perturbation that is however much easier either by the variational
formula for eigenvalues or by the Fermi Golden Rule [6, 9].

2. PRELIMINARIES

We will briefly recall the complex scaling of Section 3 of [10]. For |0| < # there exists
a totally real submanifold 'y C C" such that Ty N R™ C B(0,Ry), Te N {|z| > Rz} =
e?R" N {|z| > Ry}, Ry € R,. Considering the Laplacian, —A = Y7, D2 as a holomorphic
differential operator in C*, 3 D2, we obtain —Ar, = ¥ D2 [, (where the restriction can be
uniquely defined by, for instance, using almost analytic extensions).

The deformed space is defined as
Hy = Hr, ® L*(Ts\B(0, Ry)) ,

where the measure on I'g is dzy A -+ Adz,[r,, (21 -+ 2,) € C*, and the deformed operator as

Pyulg(o,R,) = P(xu)lB(o,Ro) (2.1)
Poulro\Bo,re) = —Are(ulra\B(o,R0)) -

where x € C3°(B(0, R,)) is equal to 1 in a neighborhood of B(0, Ry) and u € Dy with the
domain Dy defined by

Dy={ue€Hy:xueD,(1-x)uec H(Ts\B(0,Ro))} .
Section 3 of [10] gives the following

Proposition 1. If z € C\e %R, |0] < «, then (P — z) : Dy — Ho is a Fredhalimn operator
of index 0. »

Hence P; has discrete spectrum in C\e 2R and its resolvent behaves near its singularities
like the resolvent of a matrix. The relation with the scattering poles (defined as poles of the

meromorphic continuation of (P — A*)™!) is given in the following proposition, quoted again
from [10]:

Proposition 2. For n even or odd, A € A_yp, 0 < 8 < 7, is a scattering pole if and only
if \? is an eigenvalue of Py or P_y respectively. The multiplicity of the scattering pole A is
equal to the algebraic multiplicity of the corresponding eigenvalue \?.

We recall that for n odd the poles satisfy the symmetries A\ — —X and hence Mgy, 5 %
# < 7 + €, is sufficient for a complete study. For n even the same symmetry holds in the
sense of identifying A_, o and A, o, as subset of the logarithmic plane.
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If we define a bilinear form on H;
HH = Uu,v o (ua U}B d=ef (uat_))G ) (22)

where (o, )y is the Hilbert inner product on Hy, then (e, e}, is non-degenerate and it iden-
tifies Hy antiholomorphically with H}. If u,v € Dy then we have

(Pg‘u, U)g = (U,ng)g . (23)
From the self-adjointness of P, (1.3) and the fact that the usual inner product can be used
in Hp, we only need to check this for —~Ar, = 3-7_; D? Ir,. That follows in turn from
Dzjft[[\e -fi[ps dzy N+ A dzane: — ﬂrre 'Dz;ﬁrl"e dzy A+ A dzn[p9 s
| Lo (24)

where 4 and ¢ are almost analytic extensions of u and v, u,v € C§°(T'g) which, as ¢(D,, 40 +
D, vu)dzy A--- ANdz, = (=1)"119;(avdzy A -+ Adzj_q Adzje1 A+ Adz,), is a consequence
of Stokes’s theorem.

The structure of the resolvent (P; — z)™! in a neighborhood of an eigenvalue is given by

Lemma 1. For z5 € C\e %%[0, +oo|, an eigenvalue of Py, one has, for some N € N

(Ps—2)7" = Gop(2) — —Ok:rrg,z0 (2.5)

1. Go.0(2) is analytic and bounded for |z — zo| sufficiently small
2. Thz = 3, 0i9i @ ¢; and ¢; € Dy, ¢; @ ¢; = (o, ¢i)od;
3. ((ai))ig = ({1, 84)e)is) ™"

Proof. As Py is Fredholm, zq is an isolated eigenvalue and for g > 0 small enough, we define:
1

T8,20 = o1

The Fredholm property guarantees that the range Ran 7y, is finite dimensional and an

argument based on Cauchy’s Theorem and on the resolvent identity gives 7§, = 7y, and
(76,20, Ps] = 0. Hence for z & 0(Py) (P — 2)™t = (P — 2) " my o, + Go 2 (2) where

f(z — P3)7'dz with 4 :[0,27) 3t — ~(t) = 20 + €oe™ . (2.6)
A

o 1 “1y -
GQ,ZO(Z) :(Pg-—Z) 1—5};L(Pg“—-z) 1(2 ““Pg) 1dZ,
- l l it 1 n— !
=(B= g [ (B -7 (RS ds

So if we choose z inside the disk of boundary v, we get Gy ., (2) = 1/(27i) [, (2" — 2) 7" (Pp —
z')1dz' which gives (1) and (2.5).

Since Py is symmetric with respect to (e, e}, (2.6) shows that so is 74 ., , that is (mg ,, u, v)s =
(u, g,z 0)a. If 1, , dar form a basis of Ran 74 ,,, we can write 74, as 1M, ¢; ® é;, in the
sense of (2), where #; € Hy. The symmetry of the bilinear form shows that éi = Zj]\il aijd;
where (a;j);; is a symmetric matrix of full rank. Checking the projection property of mg .,

immediately gives ((a:;))i; = (((¢i, ¢)0)i;)~" which is (3). O
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Remark 2.1. There exist some natural choices for the basis {¢;}1<;<p. For instance,
we can take a basis in which the matrix of Pyrg ., takes the Jordan normal form (see, for
instance [6], Sect..5.4). In that case the matrix (a;;)i<ij<pm will in general be rather far
from the identity matrix. On the other hand the non-degeneracy and the symmetry of the
form (e, e), allow a basis for which a;; = §;;. Then the resulting matrix for Pymg ., is not in
the Jordan normal form unless N = 1.

3. PROOF OF THEOREM

Let W € C°(B(0, R1)\B(0, Ro); R) and set Py = P;+W which is well defined as TyNR" D
B(0, Ry). For the same reason,

Py=(P+ W),

and it is clear that Pj is Fredholm with index 0 and symmetric with respect to (o,0)g.

We define a family of open sets (the eigenvalues of P are discrete by the Fredholm prop-
erty), £, which consist of all potentials W € C§°(B(0, R1)\B(0, Ro); R) for which all the
eigenvalues of Py = P; + W in Ag N {|z| < r} are simple. Then we have a Gj set

Ey= ) E3.
neN
The theorem in Sect.l will follow directly from:

Proposition 3. If Fy = C§°(B(0, R1)\B(0, Ry); R)\ Ej then the interior of Fy is empty.

By the Baire category theorem and the discreteness of the spectrum we only need to
prove that if W € Fy and z, an eigenvalue of P, then for any ¢ > 0 there exists V €
C(B(0, R)\B(0, Ro); R) with ||V]|e < € such that P; + V has only simple eigenvalues in
a neighbourhood of z,.

Thus we take W € Fj and let zp be a multiple eigenvalue of Pp=P+W. For V €
C&(B(0, R)\B(0, Ry)) satisfying ||V ||e < € we define P} = By + V. If D(z,6) is the disk
of center zp and radius § (6 chosen small enough so that o(Ps) N D(z0,6) = {z0}) and with
7 its boundary, then for z € «,

<y N _ N (139 _ ZO)k—l
z2— Py =(z—=F) | 1+ Go(2)V — Z T V| -

Consequently, for ||V ||s small enough, (z — P}), z € 7, is invertible with a bounded inverse.
We define i
~V V-1
By = = - P dz
¢ Bues [y(z [4 )
which is a finite rank projection, and, moreover, it is analytic in V for ||V]|« < €. The

analyticity is meant in the following sense: %;/IHVE is analytic in 7 for 7 € C, V4, V, €

C&(B(0, R1)\B(0, Ro); R) such that ||V} + 7V4]|.c < &. We also note that for ||V« <
&,]|V'||ec < € (with € small enough),

17y =75 | <CIV = V']
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Hence the rank of 7} is constant and equal to M, say, and 7y is the projector on the
generalized eigenspace associated to the eigenvalues of P} contained in D(zo, §).

To prove the proposition, we will proceed by induction. Either of the following two cases
occurs

() VedV e C(B(0, R)\B(0, Ro); R), ||V |lso < & such that P} has at least two distinct
eigenvalues in D(z,0)

or

(2) 3e V'V € C°(B(0, R)\B(0, Ro); R), ||Vl < €, there exists a unique eigenvalue 2(V')
for P} in D(z,6), that is 31 < k < M and 2(V) such that

(PY — 2(V))¥z) =0, (3.1)

If the first case occurs, we choose a V which splits the eigenvalues and set P} = ]39‘/ .
We then perturb P} by some potential V;: P;Y = P} + Vi, where ||Vi]eo < /2 and
Vi € C(B(0,R)\B(0, Ro);R). For each of the distinct eigenvalues of Pj, we apply the
same procedure as for zg choosing ||V1|| small enough so that distinct eigenvalues remain
separated. Applying the same argument inductively, after at most M such steps we get
either only simple eigenvalues or we encounter case (2) to which we now turn. We will show

that it cannot in fact occur.

Lemma 2. Assume that case (2) above holds. Then, for £ small enough, z(V) is analytic

in'V (for |V]|e < &) in the sense that, for Vi, Vo € C§(B(0, B)\B(0, Ro);R) and 7 such
that ||V1 + 7Walleo < €

z(Vi + 7V3) is analytic in T.

Proof. From (3.1) we deduce that z(V) is the unique eigenvalue of of ]39‘/ 74 . Recalling that
the rank of #}', M, is constant for V small, we obtain that z(V) = tr Py 7 /M. Hence the
analyticity of z(V) follows from that of PY'7). U

For V € C§°(B(0, R)\B(0, Ro); R), ||V]|ee < &, and assuming that (2) holds, we define
k(V) = inf{k : (B} —2(V))*7; =0},
so that k(V) satisfies
(B — z(V)*WzY = 0 and (P} — z(V)HV) %) £0.

The function k(V') is lower semi-continuous and we have the obvious bounds 1 < k(V) < M.

Let k. = sup{k(V) : V € C§°(B(0, B1)\B(0, Ry); R), ||Vl < €}. Then for any ¢ > 0
small enough there exists V. such that V. € C§°(B(0, R1)\B(0, Ro);R), ||Ville < € and
k(V.) = k.. Hence there exists 7. > 0 such that for all V/ € C§°(B(0, 1)\ B(0, Ro); R) with
V' —V|leo < ne, K(V') = k.. Consequently, we may now assume that k(1) is constant, that
1s the maximal size of the Jordan blocks of ]33‘/7?;/ is constant equal to k, say. We first treat

the casier case where the geometric multiplicity is equal to the algebraic one (i.e £ = 1):
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Lemma 3. Let us assume that for some o > 0 and for all

Ve C(B(0, B\ B(0, Bo);R),  [[V[|o < €0,
(P = 2(V))7; =0.
Let {¢:}1<i<m be a sequence of eigenvectors of Py and let z(e) = z(eV) for some fized

Ve CSO(B(O, Rl)\B(U, Ro); R). Then
(Vi, di)e = 2(0){¢i, bj)e - (3.2)

Proof. Abusing notation slightly let Pf = PV for some fixed V € Cg°(B(0, B1)\B(0, Ro); R)
such that ||V, < 1. We put ¢5 = 75¢; so that (P; — z(¢))¢? = 0. We now differentiate
this identity and this yields

(V = 2())d + (P — 2(2)) (7547) = 0.

Pairing with ¢7 under the bilinear form (e, e}y gives

(V5, 65)0 — 2(e)(95, 6500 = —((¢5) 5 (Bf — 2(c))5)a = 0..

We now set ¢ = 0 and obtain the ‘variational formula’ (3.2) O

An analogue of this standard argument works also when the algebraic multiplicity exceeds
the geometric one:

Lemma 4. Let us assume that for some ey >0, k € N, k > 1 and for all

Ve CP(B(0, RO\B(0, R );R), ||V« < <o,
(B —=(V))\Fzy =0, (Fy —=(V))*'7) #0.
Let 1 # 0 be an eigenfunction of the form 1 = (Py — 2(0))* *h. Then for all V above
(Vip, ) =0. (3.3)

Proof. Using the same notation as in the proof of Lemma 3 we put ¢ = (P§ — z())*"'%5h
which is now an eigenfunction of P§ depending analytically on e. As in Lemma 3 the
differentiation of the eigenequation gives (3.2) with ¢; = ¢; = ¥». But now we also have

(0, 9)0 = (P — 2(0)* " h, o = ((Pr — =(0))* "k, (Py — 2(0))¢)s =0,
and (3.3) follows. O

Lemmas 3 and 4 exclude case (2): if k = 1 then (3.2) for all V € C$*(B(0, R,)\B(0, Ro); R),
with [[Vl]je < 1 would imply that ¢;[pq zy\5Emm= 0 for some 1 <1 < M since We: oain
take {¢;, ;) = &;; (see Remark 2.1) . Since (—Ar, + W — z0)¢; [B(O,Rl)\m: 0, unique
continuation for second order elliptic operators (see for instance [5], Sect.17.2) implies that
é; rFe\B_(O—,ET: 0 and thus ¢; € L2(T'y) for all 0. Hence z, is an eigenvalue of P, and z # A?
for any A € Ag,. The same contradiction is clearly obtained from (3.3) in the case when
k> 1

Remark 3.1. The formula (3.2) is the obvious analogue of the standard variational formula
for eigenvalues of a self-adjoint operator and that analogy is particularly valid when the
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resonances are simple and some differentiability is allowed (here it was guaranteed by Lemma
2 under the degeneracy hypothesis). But as the bilinear form is not positive definite there
1s no control on the speed of motion of the resonance. The standard example is A + €V,
V € C3(R™) where as € — 0 the resonances escape to (imaginary) infinity in ‘finite time’.
Even more striking examples come from considering a pair of é functions potential on R (see
[1]) where the same phenomenon occurs with the non-zero limiting potentiall

Remark 3.2. The argument above works in much greater generality, in particular without
the assumption (1.3) — however, one does not have then the exact analogues of the statements
of the self-adjoint case with the inner product replaced by the indefinite form (see (3.2)).
We could also consider a family of (unbounded) operators, H(V'), on a Hilbert space H,
depending smoothly on a parameter V in a Banach space B. We would then assume that
for z in an open set 0 C C, H(V) — z is a Fredholm operator with index zero. The simplest
abstract condition replacing the unique continuation argument above is

VW eB (dHy(W)u,v)y =0, HV)u=2u, HV)v=2v, z€ Q) = u=v=0.

We can now use the same argument as in Lemmas 2 and 3 but with the Hilbert space inner
product and with pairing with the eigenfunctions of the adjoint of H(V') (which were equal
to #; and 1 above so that we could use (o, )y and drop the complex conjugate). Hence,
generically, in the sense of a (G5 dense subset of V's in B the spectrum of H(V) in 0 is
simple.

[t would be somewhat cumbersome to devise an optimal abstract setting and the one
described in this remark does not completely apply to Theorem in Sect.l (see Remark 1.1
and for instance the case of scattering on finite volume surfaces with hyperbolic ends — see

Sect.1 of [10] or [2]).
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