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Quantum Mechanics on Spaces With Finite Funda-
mental Group

By Domenico Giulini*

Fakultit fiir Physik, Universitit Freiburg
Hermann-Herder Strasse 3, D-79104 Freiburg, Germany

(17.VIII.1995)

Abstract We consider in general terms dynamical systems with finite-dimensional, non-simply
connected configuration-spaces. The fundamental group is assumed to be finite. We analyze
in full detail those ambiguities in the quantization procedure that arise from the non-simply
connectedness of the classical configuration space. We define the quantum theory on the universal
cover but restrict the algebra of observables O to the commutant of the algebra generated by deck-
transformations. We apply standard superselection principles and construct the corresponding
sectors. We emphasize the relevance of all sectors and not just the abelian ones.

Introduction

Quantizing a system whose classical configuration space, @, is not simply connected is
ambiguous over and above other ambiguities which may already be present in the sim-
ply connected case. This paper aims to fully describe and analyze these ambiguities for
the cases of finite fundamental groups without entering any discussion on problems in
quantization proper. For the rest of the paper we thus assume a definite and consistent
prescription for quantization on simply connected configuration spaces (or at least specific
examples thereof, e.g. homogeneous spaces) to exist and focus attention to the additional
ambiguities in the non simply-connected case. We are interested in non-abelian funda-
mental groups and, necessarily, their representation theory. It is to evade the unfortunate
intricacies of representation theory for infinite discrete non-abelian groups that we restrict
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attention to finite groups. This at least allows a general treatment, although there are
certainly many cases where specific infinite groups are of interest.

From the technical point of view the ambiguities we are interested in appear in a
variety of guises, depending in particular on the quantization scheme that is employed.
For example, attempting standard canonical quantization rules on R% — {0} (the famous
Bohm-Aharonov situation) results in unitarily inequivalent representations of the canoni-
cal commutation relations [Re]. This is possible since the point defect and its associated
incompleteness prevent the representations to exponentiate to the Weyl form of the com-
mutation relations and therefore the application of von Neumann’s well known uniqueness
result ([RS], theorem VIIL.14). An even simpler situation that captures all the essential
features involved here is given by a particle on the circle (compare remark 3.1.6;5 in [T]).

Let us go into some more details by looking at the slightly more general situation of a
particle on the n-torus, ™. We represent the torus by the cube, K™ = {0 <z < 1, k =
1,..,n} C R™, whose opposite sides are eventually identified via translations. For the
moment, however, let us work with the fundamental domain K™. We consider the Hilbert
space L2(K™,d"z) and in it the dense domain of absolutely continuous functions, v, which
vanish on the boundary K™, and whose first derivatives are again in the Hilbert space.
The momentum operators, pp = —i%, are not self-adjoint on this domain but admit
self-adjoint extensions by relaxing the boundary conditions to |, =1 = exp(i0k )¢ |z, =0,
where each 6}, is some absolutely continuous but otherwise arbitrary function of the n — 1
variables z;, i # k. Each of the now self-adjoint operators py (we shall use the same
symbol) exponentiates to a one-parameter unitary group: R 3 a — exp(iapy) = Ug(a),
where U (a) displaces v by an amount a in the positive z-direction so that values that
are pushed through the boundary z; = 1 reenter at x;, = 0 with the additional phase
exp(—16x). At this point we note that our self-adjoint extensions are too general, since
for non-constant 6, the unitaries Ug(a), and hence the py, will not mutually commute
(compare section VIIL5 in [RS]). Since we want our extensions pj to commute we restrict
to constant #;. The inequivalent commuting extensions for the momenta are thus labelled
by n angles 0y,...,6,. If we finally identify opposite faces of K™ so as to obtain the n-torus,
T™, all the inequivalent quantizations still persist if we allow the ‘functions’ % to be sections
in flat complex line-bundles-with-connection over T™ [Wo|. The fundamental group of
T™ is Z™, and the flat line-bundles-with-connection are classified by the inequivalent one-
dimensional irreducible representations thereof (see e.g chapter 5 in [Wo]). These are just
labelled by the angles 6;,...,0, whose interpretation in the bundle picture is to fix the
representation for the transition functions and also to determine the holonomies: exp(ify)
is the holonomy for the loop along the z) coordinate.

From this example it should be clear that the geometric picture underlying the possi-
bility of inequivalent quantizations is fairly simple. It is therefore not surprising that these
possibilities were first systematically studied within the path-integral formulation [LD],
where different homotopy classes of paths connecting two fixed points need not carry the
same weight in the path integral. (See also [Sch] for an early discussion.) Rather, they
could carry relative weights given by complex numbers of unit modulus. Unitarity then
implies that these weight factors must furnish some one-dimensional complex unitary rep-
resentation of the fundamental group. This prescription is most conveniently formulated
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by employing the universal cover, Q, of the configuration space @ as domain for the quan-
tum mechanical state function [Dol-2]. At least in the case of finite coverings one may then
simply work on the universal cover space. The redundancy it represents is restricted to
finitely many repetitions which can easily be accounted for by appropriate normalization
factors. In the case of infinite groups one may select a fundamental domain F C Q for Q
and chose the Hilbert space to be square integrable functions on F. This is precisely what
we did in the torus example above. However, in the sequel we restrict to finite coverings
and here Q is more convenient to work with than F. Any quantum mechanical system
based on @ can be lifted to define such a system on Q so that all the operations may now
be carried out on the simply connected space Q. The distinguishing feature of a quantum
mechanical system so obtained from a system with genuine classical configuration space Q
is the absence of certain observables in the former case. For example, disjoint sets on Q
which cover the same set on () cannot give rise to different projection operators, as it would
be the case if we considered a system whose configuration space were truly given by Q.
Hence the idea is that due to missing observables we encounter superselection rules, and
that the quantization ambiguities are precisely given by the different sectors. We stress
that we wish to consider all sectors arising in this fashion.

The plan of the paper is as follows: In section 1 we outline the underlying classical
geometry thereby introducing some notation. In this setting we briefly review the known
case where the fundamental group is abelian [LD]. Section 2 presents in an explicit way
the geometry of the regular representation for general finite groups. In section 3 we use
a finite-dimensional Hilbert space with reducible algebra of observables as a toy model to
introduce some basic concepts from the theory of superselection rules in ordinary quantum
mechanics. In section 4 we finally generalize the constructions mentioned in section 1 to
the non-abelian case. We show how to implement the requirement of so-called abelian
superselection rules which in the non abelian case is not automatic. Coherent sectors are
built from sections in vector bundles for each irreducible representation of the fundamental
group. Appendix A provides some explanation on how gauge theoretic concepts apply to
the universal cover space and its associated vector bundles. Appendix B contains a simple
quantum mechanical example with non-abelian finite fundamental group. Throughout this
paper we shall not employ the summation convention for repeated indices.

1 Classical Background and Abelian Case

Let @ be a finite-dimensional manifold that serves as configuration space for some dynam-
ical system. We denote its cotangent bundle by T*(Q). 71(Q, ¢) denotes the fundamental
group of @ based at the point ¢q. It is assumed to be finite, and hence for each g abstractly
isomorphic to a finite group G. The neutral element of G will be called e. We stress that
although there exist isomorphisms of m;(Q, q) with G for each ¢, there are generally no
natural choices for these isomorphisms and hence no natural identifications of the funda-
mental groups at various points with G (see appendix A). There are, however, natural
identifications of the conjugacy classes of each m;(Q,q) with those of G. Abelian funda-
mental groups may thus be identified with an abstract abelian group. In this case it makes
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sense to speak of its (meaning @’s) fundamental group, a terminology which otherwise just
refers to an abstract isomorphism. The relevance of this point to our discussion should
not be overlooked (compare appendix A).

Let further Q denote the universal covering manifold and 7 : @ — Q the projection
map. Points of ) are denoted by g, p, etc., where sometimes we use this notation to also
indicate that 7(g) = g etc.. Q has the structure of a G-principal bundle:

G — Q@
lf (1.1)
Q
where G acts on @ from the right:
GxQ—Q, (9,9 Ry(q) =79, (1.2)
such that 7o R, =7 VgeG. (1.3)

Since G is discrete, T is a local diffeomorphism and the tangent maps 77 : T7(Q) — Ty(Q)
are linear isomorphisms with inverse 77, : To(Q) — T5(Q) for each g € Q. For them (1.3)
implies:

(Rg_l)qg* 2 th_gl* = "'q_*l s (14)

We can now lift 7 to the cotangent bundles T*(Q) and T*(Q) of Q and Q (call the lift
7) and combine it with the natural lift, Ry, of R, into the following diagram with two
commuting squares:

™Q) = Q) — TQ
J'Fr , li’ lw (1.5)
g — 8 — -g

We denote points of the cotangent bundle by greck letters with occasionally added sub-
scripts indicating their base point. We have

Ry(aq) = g0 (Rg-1),,, VA€ T7(Q), (1.6)
F(ag) :=agory, VageTi(Q), (1.7)

so that, using (1.4), we get in analogy to (1.3):
FoR,=7. (1.8)

Let &; € T7(Q) and oy € T;(Q), so that 7(&) = o, i.e., g 0 735 = &g. The canonical
1-forms on T*(Q) and T*(Q) are defined by G4 := @ o 7, and 0, := a o m, respectively.
Then

7’:;(0'&):0&0%&*:O{OWQ*O’F&*:QDTQ*O’}—[‘&*:&& (19)
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so that 7 is exact-symplectic. The same holds obviously for all 1-:?,9, so that phase space
functions invariant under all R, generate an invariant flow on T*(Q). It is easy to see that
R,-invariant (Vg € G) functions H on T*(Q) are precisely those of the form H = H o 7,
where H is a function on T*(Q). Given such a function as a Hamiltonian, the dynamical
descriptions using (7*(Q), H) and (T*(Q), H) are equivalent in the following sense: pick
a € T*(Q) and any & € T*(Q) satisfying 7(&) = a. Let ¥(t) be the uniquely determined
solution curve on T*(Q) for the Hamiltonian H which satisfies 4(¢t = 0) = & Then
T 0% = -y, where vy is the unique solution curve on T*(Q) for the Hamiltonian H, satisfying
v(t = 0) = . In this way, the Hamiltonian description on T%*(Q) using only observables
of the form

O=007% (1.10)

is entirely equivalent to the description on 7*(Q). Note that generally the maps 7 4

allow to uniquely lift any vector field X on T*(Q) to a vector field X on T*(Q) which is
invariant under the action R of G. (The same holds, of course, for vector fields on @ and
Q) Moreover, X is locally Hamiltonian if X is. The converse is not quite true, since it
might happen that for some properly locally Hamiltonian X its lift, X, is in fact globally
Hamiltonian. It is obvious that X is complete if X is. If a (symmetry-) group S acts
on T*(Q) it will generally not be true that it also acts on T*(Q). For example, let the
vector field X on T*(Q) generate the circle group and suppose that its orbit loops are not
contractible{!}. Then it is clear that only a cover group of the circle will act on T*(Q).

Generally, there will be an action of a larger group, Sg, given by some G-extension of

si2},

Let us now turn to the quantization, where the Hilbert space is built from square
integrable complex functions on Q. The measure dg on () is taken as the pullback of the
measure dq on @ via 7, so that, Vg € G,

Ridg=dq. (1.11)

In analogy to the classical case, we require: observables must commute with the action
of G on L?*(Q,dq). For example, integral kernels of operators on L?(Q, dg) which satisfy

O(q9,p9) = O(7.) V4.P€Q, Vg€ G (1.12)
clearly commute with the action of G. In particular this is true for the propagator:
K(7,t;q,t) = K(79,t;d9,t) - (1.13)

In [LD][D1-2] it was pointed out that the wave function on @Q need not project to a well
defined function on Q. Rather, one could also consider wave functions that satisfied

YP*(g9) = x"(g)¥"(q), (1.14)

{1} For connected T*(Q) either all or none of the orbits are contractible.
12} @ is a normal subgroup of Sg so that Sg/G = S. But if S is not a subgroup of Sg there will be no
action of S on T*(Q). Since we consider only finite G, S will be compact if S is.
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where p labels a one-dimensional complex unitary irreducible representation of G with
characters x*(g). On @ such wave functions are sections in a complex line bundle which is
x"-associated to the principal bundle (1.1). In general we prefer however to work instead
with functions on Q satisfying (1.14), called the condition of y*-equivariance (compare
appendix A). We thus have the Hilbert spaces H = L?(Q,d3) and the subspaces H* of
those functions satisfying (1.14). A key point is now to establish that the observables

act indeed irreducibly on each H*. This will follow from a more general result proven in
chapter 4.

Let us consider the operator
T H — H*
(T*y) (g Z X" (9)¥(q9), (1.15)

QGG
which is easily seen to to be self-adjoint. It satisfies
TETY = §,, T (1.16)

due to the orthogonality of the characters. Moreover, T* restricts to the identity on
H*. The set {T*} is thus just the collection of projection operators onto the mutually
orthogonal subspaces {H*} of H. Since the propagator satisfies (1.13), we have{3}

THoK(tt) = K(t';t) o TH = TF o K(t';t) o TH = K*(t',1), (1.17)
where explicitly
_ i _ _
KM@, t;q,t) = = Y x"(9)K(@g,t;3,1). (1.18)
n geG

The standard combination property for propagators, satisfied by K, now implies the same
for each K*:

[ RA 53" ) R*(§" ¢ 3,1) d7" = B*(d,1';4,1). (1.19)

Finally, we note that due to (1.12) formulae (1.17-1.18) identically hold when K is replaced
with O:

T“OO:OOT“:T“OOOT“::O“
1.20
“(g,p) = Zx“(g (g9,P) (1.20)

gEG

This is essentially the framework of [LD][D1-2]. We believe, however, that starting
from (1.14) (or (1.18)) is a rather ad hoc procedure and that the actual task is to construct

{3} Composition of maps will generally be denoted by the symbol o. In the very obvious cases it will be
omitted, like in (1.16).
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all subspaces of H in which observables act irreducibly. This is not achieved by considering
all H*, since generally

H+ P H- (1.21)

p=1—dim

Only for abelian groups could the equality sign hold in (1.21). In section 4 we give the
generalization to non-abelian finite groups G. Similar ideas how this could be done were
also formulated in a non-technical fashion in [So] and [Bal-2]. But before attacking the
actual problem, we need to present some standard facts about the regular representation
of finite groups. This will be done in some detail in the next section.

2 The Geometry of the Regular Representation

Let G be a finite group of order n and unit element e. The group algebra Vg is the vector
space
Ve :=span{g, g € G} (2.1)

where from now on a hat identifies an element of V5. Vi is made into an algebra by the
obvious multiplication law on the basis vectors:

——

G h:=g-h, (2.2)

and linear extension. Given any two elements ¥ and w of Vi,

b= v(g)g, w=> w(gd, vlg),wg)eC, (2.3)

geG geG

the components of their product are hence given by

(0-w)(g) = Y v(gh™w(h) = Y v(h)w(h™"g). (2.4)

heG heG

The algebra Vg is called the group algebra of G and the representations of G on Vi by
left or right multiplication are called the left or right regular representation respectively.
Under such a regular representation Vg decomposes as (see [We| for a general discussion)

Ve = @ 4 (uniquely), (2.5a)
=1
VH = GB Vz",L{L,R} (non uniquely), (2.5b)
i=1
where 1 = 1,...,m labels all the inequivalent irreducible representations of G, and ¢ =

1,...,n, labels the copies of the u-th representation. {L, R} is understood to replace either
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Lor R V¥ (L,ry are irreducible subspaces for the left (L) and right (R) multiplications
respectively. As indicated, for neither of them the decomposition of V# is unique, whereas
the decomposition of Vi into the V# is unique. This will become more transparent as we
proceed. It is a property of the regular representation that it contains each irreducible
representation as often as its dimension, that is, n, = dimV}-times (e.g. [We][Ha]). Hence

dimV* = n? and Z iy 7= T (2.6)
p=1

Performing left and right G-multiplications simultaneously, we obtain a left G x G-action
on Vg: )
((gvh)aﬁ) Hg'ﬁ'h’mla (270‘)

which, by linear extension, yields an action of the corresponding group algebra Vgxg =
Ve ® Vg on Vg

Vaxe Va3 [ Y a(g,h)§@h,d Lza(g,h)g-ﬁ R e V. (2.7b)
g,h 9,h

The algebras of left and right multiplications are contained in Vo as subalgebras Vg ® €
and é ® Vg respectively, with centralizers V§ ® Vi and Vg ® V§, where V§ denotes the
centers of Viz. The images of these centralizers under p are isomorphic to V.

For what follows it will be convenient to employ a special basis of V¢ which is adapted
to the decomposition (2.5). We construct it by assuming we are given a complete set
of unitary irreducible representation matrices D;;(g). Special choices within the unitary

equivalence class can be made if required. By virtue of the orthogonality relations (e.g.
[Hal),

n

> D7) Dia(g) = Suvbadin, (2.8)
g

> n—,fDé‘j (97")D%;(h) = 8gn, (2.8b)

Koty

we can use the D} as coefficients for a new basis, {&};}, of Vi, defined by

~ n — ~
& ::_7“ Zij(g g, (2.9a)
g
and inversely § = Z & DY (g) - (2.9)
Kyt ]

With respect to these two bases a general element 0 € Viz has the expansions

b=y v(g)g=> vl (2.10a, b)

g yi,J
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and from (2.9) we infer the transformation rules for the components

v = v(g)Dk(g), (2.11a)

g

v(g) = Y ol Dl(g7Y). (2.11h)

~. n
H,0J

Left and right A-multiplications are now given by

h-&; =Y &, D}.(h), (2.12a)
k

et -h =" Dh(h)é. (2.12b)
k

The rows and columns of éz‘f‘j, considered as a matrix in 7, thus span left- and right-
irreducible subspaces respectively, which we may take as our Vﬁ"‘ , and V;’," g in the decom-

position (2.5b). For the algebra Vi this means that

V¥, =span{éf;,... ,ég‘nu} is a minimal left ideal, (2.13a)
VH. =span{é},...,é¥ .} is a minimal right ideal, 2.13b)
i, R 14 ()

ik e EB %8 (z,ry s a minimal 2-sided ideal. (2.13¢)

In terms of the basis {€];} the multiplication law can be easily inferred from (2.8a) and
(2.9a):
&l - & = b bady;, (2.14)

which implies that components (compare (2.100)) just multiply like matrices:
(- w)L; = Zvﬁﬂwﬁj. (2.15)
k
Left and right multiplications by é, are then given by
e =) vliél, (2.16a)
J

boelh = vhel (2.16b)
j

which, in an obvious sense, say that left/right multiplication by &}, results in writing the
content of V%, /V/'; into Vi, /V¥, and deletion of all other components.

Let us define &' := éj; and é* := Y &, It follows from (2.9b) that é = ) é*. The
spaces V# form subalgebras with units é*. Left/right multiplication by é;‘ correspond to
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projection into V'y /V | as is easily seen from the following special cases of (2.14) and
(2.9b):

é# éuk e (Sﬂyékj A;’}k, (217(1.)
&y - & = 6,656, (2.17b)
&Y = 6,658, (2.18)

)

» =4 (2.19
1,1

The projection into V* is given by right or left multiplication with é*. It follows that

A:=span{é],...,é: ,...... L B iy By (2.20)
is a maximal abelian subalgebra of Vi of dimension E::;l n,. Indeed, commutativity of
v € Vg with all elements of A implies that its projection into VI“R equals its projection into
V“ for all :. But the intersection V‘“ N V“R is the ray spanned by é{'. Thus ¥ must be in
A wh1ch shows maximality. In compa;rlson the centre V§ of Vg is also easily determmed

forv-g=g-9VYgeG 1mp11es via (2.12) that ), o4 Dl (9) = X2, Dhi(9)viy, Vg € G.

Schur’s Lemma then yields v}, = v*6;;, so that

V& = span{é',...,é™}. (2.21)

Note that, unless G is abelian, the centre of the group algebra contains but is not equal to
the group algebra of the centre, G., of G. For example, for non-abelian G, ) 9 gisin V§
but not in the group algebra of G..

The projection maps ¥ +— é* - & = ¥ - é* are homomorphisms from Vg onto the
subalgebras V#. Left and right actions of Vi on the V#*’s thus factor through these
projections. The centralizers Z* of V# are easily seen to be given by the subalgebras

@V” @® span {€"} . (222
v#EQ

Obviously we have Z¥ = Vg, iff the p-th representation is abelian. From (2.9) it follows
that g € Z#, iff D:;(g) = n(g)é;;. This is the case iff g € C* := {h € G/ D¥(hf) =
DH#(fh) Vf € G}. C* is a normal subgroup of G and D*(g) = D*(g¢g) for any g € C¥,
where gg C C* denotes the conjugacy class of g in G.

Whereas Vg decomposes unambiguously into the V#’s for both left and right multi-
plication, our choice of left and right irreducible subspaces V:‘ (R,L} is not unique. To see
what freedom there is, we prove the following

Lemma. Let & € V. The following statements are equivalent. (i) © lies in a left-
irreducible subspace, (ii) 9 lies in a right irreducible subspace, (iii) U has expansion coeffi-

cients v{; = 6,,,a;b; for some complex valued n,-tuples {a;} and {b;}.
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Proof. We shall only prove (¢) < (#4i) since (1) < (21) is entirely analogous. (iii) = (7)
is trivial. Conversely, assuming that ¥ lies in a left-irreducible subspace, we know from
(2.5b) that it must lie in an n,-dimensional subspace of some V¥, which for the moment
we call L. This explains the 6., in (iit). We set § = }_, ,v;;€};. Left multiplications
by é, for all k,l € {1,...,n,} produces the n, x rank{v;;} linearly independent vectors
€y 0 = Ej vk;€% in L. But L is only n,-dimensional so that rank{v;;} = 1 & v;; = a;b; e

This shows that any other adapted basis, i.e., where each basis vector lies in an
irreducible subspace, is necessarily of the form (matrix notation)

A= Mé*N~' M,N € GL(n,,C), (2.23)
so that the left and right actions of G are now represented equivalently to (2.12):

§-o* =q*(ND*(g)N~1), (2.24a)
- g = (MD*(g)M™ )i, (2.24b)

So far we can therefore stick to any particular choice of representation matrices in (2.9a).

If we denote by {e;} the standard basis in C™+, we can employ the isomorphism
o:VH#F — C™ @ C™, defined by

o(&;) = e; @ e, (2.25)

to identify V# and C™* ® C™+ for each p. We shall occasionally use this identification
without explicitly mentioning o. As pointed out in (2.15), left and right multiplications
then act only on the left and right C™» respectively. From the previous Lemma we infer
that ¥ is an element in an irreducible subspace, iff it is a pure tensor product a & b,
a,b € C™ for some p. This set of pure tensor products (also called rank=1 vectors) is not
a linear space, but contains the linear spaces

R*(a) :=span{a®e1,...,a@ey, }, (2.26a)
L*(a) := span{e1 ® q,...,e,, @ a}, (2.26b)

which comprise all the left- and right-irreducible subspaces if @ runs through all of C™»
and p through all values of 1 to m. Two different vectors a and a' characterize the same
irreducible subspace, iff a = aa’ for some a € C—{0}. The space of left- or right-irreducible
subspaces within V# can thus be identified with the complex projective space CP™+ 1 of
real dimension 2(n, — 1).

Next we wish to introduce an inner product on Vi, denoted by (-|-) (antilinear in the
first entry). Since right Vg-multiplications will eventually play the role of gauge symmetries
in our application, we require it to be right invariant. This leads to the following string of
equations (generally an overbar over C-valued quantities denotes complex-conjugation):

(€iklerm) =(8ik - 9léln - 9) (2.27a)

], : .
== (e glét 9) (2.278)
geG
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- Z > D (9){er1€5m) (2.27¢)

QGG T8
1 P
=6 01— > (erles) (2.27d)
Hoop
= (5“ 61l8km’ (2276)

where we have used unitarity of the representation matrices D* in the second to last step
for the first time. So far no choice within the equivalence class of unitary representations
matrices was specified. A redefinition within the unitary equivalence class implies (matrix
notation)

DV s U*DH(UH)T, (2.28a)
g s UL (UMY, (2.28b)
St UrSH UM (2.28¢)

In general we could use it to diagonalize the Hermitean matrix S*. We call its eigenvalues
M, k=1,...,n,, and get from (2.27)

(AH ielm> = 6uu6il6km)\;: . (2.29)

This formula is still completely general. Choosing an inner product now corresponds to
picking Z,T:l n,, coefficients A}. For our later applications we make the particular choice:

nu

M= 2 = (2.30)

n2
Independence of the lower index is in fact a necessary and sufficient condition to make the
right-invariant inner product also left-invariant. It also means that we actually did not
restrict our choice of unitary representation matrices at all, so that all redefinitions (2.28)
are still at our disposal. Proportionality of A* to n, implies that § and h are orthogonal
for for g # h. Indeed, using (2.8b) and (2.9b), we obtain

ZD (hg™)A* == —6gh (2.31)

A linear operator on Vg is said to be right-invariant if its matrix elements satisfy the
analogous condition to (2.27a). If O is such an operator, we have in analogy to (2.27)

O':Lk:,ylm = (é1k|o'él ) = 6;Lvézl0km’ (232&)
L R ,
O’F:m = n_ Z(eﬁklokf:m) (2-32b)
I

T

On the other hand, using the completeness relation (where we now employ Dirac’s notation
of |bra) and (ket| vectors)

AR L
1=3" |e;*k)ﬁ(efk\, (2.33)

K.k



450 Giulini

we can write

wyi,km

so that O’s action on 9 can be reformulated, using (2.10b) and (2.29), as a left multiplication

1
Ob= Y 7 Ok Vil (2.35a)
iy kym
— 1w g s b
== Z FOikekﬁ. cD=:16-7. (2.35b)
IR

Clearly, O is Hermitean, iff O}, = O},. (2.35) says that any right-invariant Hermitean
operator is given by left multiplication with an element 6 € Vz whose coefficients with
respect to the bases {€;} and {g} satisfy respectively

oj; = 0f; « o(g) = a(g~ 1. , (2.36)
Since the algebra Vi acts as operators on its underlying vector space, these last relations
have intrinsic meaning on Vg once an inner product is introduced. In fact, any inner
product on Vg defines a *-operation Vg — Vg, which is antilinear and satisfies * o x = 1,
through, say, left multiplication:

()6 - B =: (6" - B|w). (2.37)

Alternatively, we could have defined the x-operation via right multiplication which in the
general case would have led to a different *-map. However, if the inner product is right-
and left-invariant, the two definitions for the x-operations agree. In this case it follows
immediately from (2.37) that

{Yot9a}) ZO(Q ) and { oo} = ael. (2.38)

,‘J.,T:,j H,t vJ

* ~

In particular, §* = ' and 6” = Aﬂ, which, by (2.13), implies that {V#}* = V# and
VY = VF
R i,L"

Algebras with such a *-operation are called H* algebras and elements invariant under
* are called self-adjoint, or Hermitean. The elements € introduced earlier correspond to
mutually orthogonal Hermitean idempotents, as do the elements é*. The latter ones are
however decomposable into the former, which are themselves indecomposable (i.e. so-called
primitive idempotents). The subalgebras V# are mutually orthogonal H* subalgebras. In
particular, the V#’s are also minimal 2-sided H* ideals. (The split (2.5a) is thus still valid
in the sense of H* algebras.) In contrast, since the subspaces V:f (LR} &re not invariant
under *, they do not form any H* ideals.

This basically concludes our presentation of the group algebra. In the fourth section
we shall discuss the decomposition of the quantum mechanical state space according to an
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inherited Vg-action. Not surprisingly, it will be very similar to the decomposition of Vg
under the regular representation. In fact, we can immediately build a finite-dimensional
toy model with all the essential features. This we will do first in order to introduce some

general concepts and notations in a simple context. Then we turn to the general quantum
mechanical case.

3 General Concepts and a Toy Model

Consider the n-dimensional Hilbert space H = Vi with inner product (-|-) and the right
regular representation of Vi on H. As we have seen, it is useful with respect to Vig’s action
to represent H as

H = éH“ = é C™ @ O™ (3.1)
p=1 pu=1

We call B(H) the algebra of bounded (a redundant adjective in finite dimensions) linear
operators, which here is isomorphic to the matrix algebra M(n,C). We wish to regard
G as a gauge group with gauge algebra V(;, that is, we require observables to commute
with the action of the group G (such transformations are called supersymmetries in [JM]).
The algebra of observables, O, is thus defined as the commutant of (the right-) Vg in
B('H), denoted by V}. Quite generally, given any set S C B(H), the set of operators
commuting elementwise with S forms an algebra, called the commutant, S, of S. The
double commutant, 5", is easily seen to be just the algebra generated by S. It is stated
in (2.35b) that @ is isomorphic to the algebra of left Vi multiplications, which, as e.g.
expressed by (2.15), one may identify with a direct sum of matrix algebras:

m

0 =P M(rn,,C), (3.2)

p=1

where each matrix algebra M (n,,C) acts on the left C™+-factor in (3.1). The representa-
tion of O in H is thus highly reducible. Whenever the algebra of observables is represented
in a reducible fashion, the pair (H, Q) is said to contain superselection rules. In what
follows, we shall investigate more into the structure of these rules. More precisely, we
are interested in the geometric structure of those subsets of H that represent pure states,
where this has always to be understood relative to O. As a word of principle, and as
indicated by the word ‘relative’ , we do not wish to regard states as being attributed with
any more status over and above that which suffices to answer all the questions contained

in O.

The centre of O is the m-dimensional algebra generated by the projection operators,
TH : 'H — H¥, given by left or right multiplications with é*. Obviously, vectors repre-
senting pure states must always lie in some H*, for, given the sum of two nonzero vectors
v € H* and w € H”, where p # v, the density matrix for the pure state |v) + |w), con-
sidered as a positive linear functional (the expectation value) on O, is identical to the
mixed state |v)(v| + |w)(w|. However, the converse is not true unless p labels an abelian
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representation. Let us therefore focus on a higher-dimensional H*. It may be considered
as the composite state space of two systems, called left and right, with individual state
spaces C™*, and where we have no observables for the right system. To say that a vector
in H" represent a pure state now means the following: express it as a density matrix,
form the reduced density matrix for the left system by tracing out the right system, then
this reduced density matrix is pure. We know from elementary quantum mechanics that
this is the case iff the original vector in H#* was a pure tensor product (i.e. of rank one).
Taken together with the lemma above, we arrive at the following statement: a vector in H
represents a pure state, iff it lies in a left invariant subspace L#(b). We can represent it by
a matrix with components a;b;. Observables act on the left index, gauge transformations
on the right. O acts irreducibly on L*(b) in which any two rays can be separated by O.
However, for each such ray there is a unique ray in each L*(b'), b’ # b, which gives the
same state for O. We have thus seen that, with respect to O, the different left invariant
subspaces are indistinguishable so that a pure state is represented by a ray in each left
invariant subspace. This is equivalent to saying that a pure state corresponds uniquely to a
whole right invariant subspace R*(a). That higher than one-dimensional subspaces should
represent quantum mechanical states has already been discussed in the mid 60’s in the
context of parastatistics [MG], where these subspaces were called generalized rays. There
is nothing inconsistent with this kind of higher-dimensional redundancy. For example, the
superposition principle takes the following form: three states (generalized rays) R*(a),
R*(a’), and R*(a") are said to be linearly dependent, iff a lies in the plane determined by
a’ and a”. Alternatively, given three rays in each left invariant subspace, then the three
states they define are said to be linearly dependent, iff in each left invariant subspace the
rays lie in a plane. It is clear that this is either simultaneously true in all or none of the
subspaces. This definition coincides with the more abstract prescription given in [Ho).

Although there is nothing wrong with generalized rays, they do seem to carry unnec-
essary redundancy as far as the representation of O is concerned{4}. This can be expressed
in rational terms in a variety of ways. For example, in ordinary quantum mechanics, one
often hears Dirac’s requirement: There exists a complete set of commuting observ-
ables [Di]. Let us call them {A;}. Here, by definition, completeness means that a set
of simultaneous eigenvalues determine a ray uniquely. This statement works for finite-
dimensional Hilbert spaces but has to be replaced in infinite dimensions, where, because
of continuous spectra, the proper notion of eigenvectors does not exist. But this can be
cured by a slight reformulation [J]: Let A = {A;}" C O be the abelian algebra generated
by the set {A;}. The set is said to be complete, iff A is a maximal abelian subalgebraf®} of
B(H), that is, iff A" = A. See [J][JM] for more details and [Wi2] for a recent review. The
generally valid replacement for Dirac’s formulation is Jauch’s requirement: O contains
a mazimal abelian subalgebra of B(H){6}. Tt is clear that in our case the failure to meet
these requirements has to do with the existence of different rays that cannot be separated
by O, or equivalently, that O does not contain all the projectors onto rays representing

{4} However, note that ‘H and © were not independently given: O was defined as the commutant of Vi in
B(H).

{5} The commutant {A;} is always a von Neumann algebra, that is, equal to its double commutant.

{6} Standard formulations in the literature usually do not make this explicit reference to B(H). We put it
to emphasize the dependence of this statement on H
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pure states. That this is entirely due to the non-commutativity of the gauge group G
is made manifest by an equivalent formulation of Jauch’s requirement, due to Wightman
[Wil]. It is also known as the requirement (or hypothesis) of commutative (or abelian)
superselection rules. We call it Wightman’s requirement: The commutant O’ of O in
B(H) is abelian. We emphasize that () was assumed to be a von Neumann algebral?}.
See e.g. [GMN)] for a simple proof of the equivalence. It tells us that we cannot keep a
non-commutative gauge group if we want to get rid of generalized rays.

Although generalized rays do no harm, they are also not necessary for the formulation
of a quantum mechanical state space incorporating all the pure states for 0. We demon-
strate this “elimination of the generalized ray” [HT] in our model, which highlights in an
elementary fashion the last remark of the previous paragraph. The method is simple: we
truncate H by selecting an a € C™, say a = e;, and keep only L¥(a) =: H}, for each pu.
Within this space we would then have the standard bijection between pure states and rays

representing them. This amounts to truncating the Hilbert space representing states for
O to

Htr = @Hf;) (33)
p=1

where of course Hj. = H*, iff u is abelian. Note that no pure state has been lost. Only
redundancies have been eliminated. Pure states are in bijective correspondence with rays
in the subset

U Hh cn (3.4)
p=1

In fact, the space of rays in this subset is just the disjoint union of the spaces of rays in
each HL . The representations of @ on H and H,, differ only by trivial multiplicities. In
both cases O is isomorphic to

O =P M(n,.,C) =P BHL). (3.5)

But in the first case each M(n,, C) appears with multiplicity n,. Representations related
in this fashion are therefore called phenomenologically equivalent [BLOT]. The price for
this elimination is that the symmetry group does not act on Hy, anymore. What remains
from the gauge algebra Vi is a residual action of its centre V§ which is now generated by
the projections T* : H;, — Hi,. Clearly the commutant @’ of O in B(Ht,) just satisfies
Wightman’s requirement. Equivalently, Jauch’s requirement is satisfied, since projectors
onto rays are now all in O and any abelian subalgebra generated by a complete set of
orthogonal projectors is maximal in B(H,). In a sense, H was too big for O and Hj, is the
most economical way to represent the pure states of O. As we have seen, the projectors

onto different L*(a) were not in O, only the sum of projectors onto the mutually orthogonal
L#(e;) was.

{7} The von Neumann property of @ is not necessary to prove the implication Wightman = Jauch, but
for the converse, therefore showing that without the von Neumann property Wightman’s requirement is
logically weaker.
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Finally we note that there is a way to satisfy the Jauch-Wightman requirement and
have the full gauge group G being reduced by the state space, and that is to just truncate
the sum in (3.3) to include only abelian representations. This in fact is an often adopted
point of view since it conforms with two seemingly obvious requirements. It has e.g. been
used to “prove” the impossibility of parastatistics in a quantum mechanical framework
[GMN]. In this work we reject this rather ad hoc procedure on the grounds that it un-
necessarily discards the potentially interesting non-abelian sectors (i.e. those for which
i labels a non-abelian representation). For example, non-abelian sectors are in fact used
in the theory of deformed nuclei. This is explained in appendix B. Generally speaking,
it is a perfectly legitimate procedure to use the gauge group to find all the sectors and
then, in order to conform with the Jauch-Wightman requirement, sacrifice its action up to
an abelian residue. Whoever wants to have the gauge group still acting might work with
generalized rays. This viewpoint is also expressed in [MG] and [HT].

Note that whereas it is true that only the centre of the gauge algebra acts on Hy, a
larger part of it does act on a specific H}, considered in isolation. Precisely that subalgebra
of Vg acts on H}. which commutes with Vi under the u-th representation. In the previous
section this subalgebra has been called Z* (compare (2.22)). As discussed there, the
corresponding part of the gauge group that still acts on H{, is given by C*. The way it
acts is obvious, since commutativity allows us to write it as left-multiplication.

4 The Non-Abelian Case

As in section 1, we denote by H the Hilbert space L?(Q, dq) with right invariant measure
dg. The right action of G on @ induces a right action of G on H, defined by

(9,9) = Typ := 9o Ry-1. (4.1)

It is an isometry due to the right-invariance of the measure. Linear extension yields a right
Vg-action on H:

(0,9) > Top:= Y v(g) o Ry (4.2)

geG
We also introduce a second Hilbert space, H, as completion of Vg-valued, equivariant
functions on ) which are square integrable. The point of doing this is that this Hilbert

space is unitarily isomorphic to H (see (4.9) below) but displays the representation prop-
erties under the action of Vz in a more direct way. Equivariance means

YoRy =G 1. (4.3)

The inner product on H, denoted by (-|-), is given by

(B19) == fQ B(@)1(@) da, (4.9)
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where (-|-) is defined by (2.31). Expanding v) € H in components,

=3 hm, (45)

heG

then (4.3) implies for the component functions

wh. o Rg = Tnbgh . (4.6)
We now define the linear maps
F:H-—-H, wa(¢):=Z§¢oRg, (4.7a)
geG
E: 'F(—)'H’ 1,5:—)8(1,[;) = (47b)

where 1), is the component of € in the expansion (4.5). It is easy to check that F(v) is
indeed equivariant. We have

Eo}":IdI , f05=1d|, (4.8)
H H

The first equation is obvious, the second follows from (4.6). Hence £& = F~'. Moreover,
we have (an overbar over 9 denotes complex conjugation)

] SCECTLED f $(d0)#(ah) dg = f F@e@ds,  (49)

where we used (2.31) in the last step. Hence F establishes an unitary isomorphism between
H and H. The action T of Vi on H can now be transferred to an action 7' of Vi on H via

(3,9) > T3(§), To:=FoTsof (4.10)

which yields, using (4.7) and (4.6),

To() = F o To(she) = F (Zv(h)«pe 0 Rh-l)

h
= Z (h)'l,be o Rh_—:! o Rg = Zg'v(h)’l/)e ° Rgh_1
g;h g,h
Foho(h)ps =1 0. (4.11)
f.h

Hence Vg '’s action on M just corresponds to pointwise right multiplication. Note that a
pointwise left multiplication is not defined within H since the resulting function would

generally not be equivariant. But there is such an action of left multiplications if one
restricts to the centre V§.
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Linear operators O on M whose integral kernels satisfy (1.12) ((1.13) for propagators)
define linear Operators O on H via O := FoOo & (for propagators: K (tht) = Fuo
K(t';,t) 0 E). As in (4.11), we can easily derive the following explicit expressions

(O9)(@) = [‘( . 0)$(@) dg; (4.120)
(K, )0 f K73, t)9(3) dg (4.12b)

which show that these operators just act componentwise on the functions aﬁ, thus displaying
manifestly the commutativity with the right Vg-action:

éOT{, =T,~,oé, R(t',t)o’f"ﬁ :Tﬁok(t',t). (413)

Since the algebra V; now acts on the infinite-dimensional space H (or H), we slightly
adapt the basic notations from the previous section. B(H) is the C*-algebra of all bounded
linear operators on H (similarly with H). Through the implementation (4.11), Vg is
mapped linearly and anti-homomorphically (because of the right-multiplication) onto a
subalgebra of B(’}:(), which we call Vg. It is not difficult to show that Vg is in fact a
von Neumann algebra. A proof may be found in [GMN]{S} The actions of § or efj on
H according to (4.11) are denoted by the linear operators T g Of Ti‘; respectively. Accord-
ingly, the linear operators corresponding to right éf’- and é*-multiplications are projection

operators which we call 7# and T*. They satisfy
T“Tkz 6#1’6.7"9,1?;’ (4.14)
which follows directly from (4.11) and (2.14).

All the H*-structural properties of Vg are inherited by Vg, which makes it at the
same time an H* and a von Neumann algebra. From the definition of the scalar product
(4.4) it is obvious that the two *-involutions so defined coincide. In particular, 7} and T*
are self-adjoint idempotents, i.e., projection operators. The image of the subalgebras V#,
V#, Z* and A will be called V¥, V¥ Z# and A respectively. For any subset S C B (H), 8’
is the commutant which is in fact a von Neumann algebra. S” is called the von Neumann
algebra generated by S, which is equal to S in case S is already a von Neumann algebra.

Let us now look at the Hilbert space H. We define the algebra of observables, O, by
O := (Vg)'. Its commutant then satisfies O = Vg. Further, the projection operators T*
and T} define a split analogous to (2.5)

H =P, (4.15a)
=1

H* = P H, (4.15b)
1=1

{8} Although this reference is primarily concerned with the symmetric group, the proof given there works
literally for any finite group.



Giulini 457

where H* = T»H and ﬂf = T;-“ H. The functions in these Hilbert spaces are just given by
the V#- and L#(e;)-valued functions in H respectively.

The second split of course inherits the non-uniqueness from (2.56). Under a redefi-
nition (2.28) we just have to analogously conjugate the matrix 7% by U*. For example,
given a normalized a =) a;e; € C™, we can choose it as the first basis vector of a new
basis e; = >, Ufie; with a; = Uf;. The projection operator onto L*(a)-valued functions

is then given by T“( ) =32 a,;a;jTij.

The operators and propagators in (4.12) now project into each subspace:

O =T*" 00 o T*, (4.16a)
O :=TF o0 o TH, (4.16b)

where, since O € O, the left projection operators are not really necessary. The analogous
formulae hold for the propagator. It is then obvious that the projected propagators in H%
satisfy the standard combination rule:

/Rf((j’ I —" ”) K‘u‘(q tﬂaqa )dq”zky(q_,at’;(jat)a (417)
Q

and the analogous relations for K# by summing over i. The latter ones are then exactly
the non-abelian versions of (1.19), only expressed in terms of H rather than H. Here, in
the non-abelian case, we have a finer splitting due to the n,-fold multiplicity (labeled by
the index %) of the u-th representation.

Clearly, everything said for H can be easily translated to H using the unitary equiva-
lence (4.7). For example, the projection maps T}, T%(a) and the projected integral kernels
of propagators and operators take the form

Ty = Z Dii(g) ¥ o Ry, (4.18a)
g€G’
KMt q,t) ZD )K(7'9,t3,t), (4.19)
gEG
07,9 ZD 0(7'9,9), (4.20)
gEG‘

and equivalently (by summing these expressions over i) for T# and O*. As explained
above, the most general expression for a projector is given for some normalized a € C™#
by
n
Tk — M ’ R 4.18b
()¢ = £ > aia; Dis(9) ¥ o (4.18b)
9,7
In the same way (4.19) and (4.20) can be written in terms of A. All these expressions

form the non-abelian generalization of (1.15), (1.18) and (1.20). An application of (4.18)
appears in appendix B. As already mentioned, (4.17) hold literally for K instead of K.
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In the present setting this is obvious from construction, though it can of course also be
verified explicitly from (4.19) and (2.8a). For many of the general aspects we consider here
it is however more convenient to work with H rather than H.

Coming back to the definition of observables on H, they do not only include those of
the form (4.12a), but also right multiplications with elements in the centre V& of Vg, that

is, the algebra generated by {T1 - ff‘m} We now state the main structural properties
of the pair (¥, ®) in the following

Theorem. (i) O is compIetely reducible. The subspaces ‘H'” are minimal invariant relative
to O@. (ii) A subspace H' C H reduces O and Vg, if H' = @ ued H*, where J is a subset

of {1,...,m}. (iii) A minimal invariant subspace ’Hf reduces Z*. It reduces Vg, iff the
p-th representation is abelian.

Proof. (i) Suppose 7‘2“ T“’H were reducible under @. Then there existed two orthogonal
self-adjoint idempotents $* and P* with T* = §* + P* and §*, P* € O' = V; (since Vg
is von Neumann). But thls cannot be, since from the structural properties of Vg we know
that the T}* are already minimal idempotents. (ii) From (i) we have H* = T*H c H' for
some pair pu,i. By hypothesis T H“ c H' for any k, and these subspaces are clearly non
null. Using (4.14), the left side can be rewritten as TT*H = TETIH C HY. Hence there
is a non trivial intersection H’ N'HY Vk, which by (i ) implies EBk 'H“ =H* C H'. (i) Tt
reduces Z* since it commutes with Vg. To reduce Vg it is clear from (i) and (ii) that p
must be such that the range of i is only 1, i.e., n, = 1. But this is the case iff the p-th
representation is abelian o

To conform with the Jauch-Wightman requirement, we proceed exactly as in the
previous section. For each p we truncate the Hilbert space so as to contain only one
summand in (4.15b), say H% =: H", and obtain

Ho = D (a.21)
pu=1

Accordingly, the algebra of observables can now be written as

m

o = @ B (4.22)

u=1

which is the general form of the algebra of observables in any theory with standard{®}
superselection rules [BLOT]. Its representation on Hy, is phenomenologically equivalent to

{9} Superselection rules are said to be standard, if they are commutative, and in addition the linear span
of the pure states lies dense in the Hilbert space. The latter condition is known as the condition of discrete
superselection rules, since it ensures the decomposability into a discrete direct sum (rather than a direct
integral) of irreducible representations (possibly with multiplicities) of the algebra of observables. In short:
commutative + discrete = standard. For the nomenclature, see e.g. [BLOT]. However, the condition of
discreteness is often violated even in standard quantum mechanics. For example, the mass superselection
rule in Galilean invariant quantum mechanics is continuous, since each mass value defines a separate sector
(compare [Gi]).
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its representation on H, but pure states are now in bijective correspondence with rays in
the set

U . (4.23)
p=1

In each sector ﬂﬁ‘r the group C* is still acting. All these features are just like in the
finite-dimensional model.

It is important to note that the definition © = V' yields a richer set of observables
than those coming from quantizing functions on the non-redundant classical phase space
T*(Q). This is obvious from (4.12a), since the operators do not act on the “internal” vector
space. But since O acts irreducibly in the sectors 7!, as asserted by the theorem above,
there must be additional observables for the non-abelian sectors [So|[Ba2]. For example,
for non-abelian sectors, any localization on the true configuration space Q still does not
specify in any way the direction of the “internal” vector. In order to fix it, additional
observables must be employed. These observables cannot simply be given by _pointwise
left Viz-multiplication, for, as we have seen above, only elements of Z#* act on Htr, where
they are necessarily proportional to the identity operator. However, if we first apply some
localization to the system in configuration space, we can indeed define observables acting
on the “internal” space. Let us explain this in more detail.

Let U C Q be a closed connected!®} subset and U C Q a connected covering set. We
call U admissible if UNUg = () Vg # e. Here, Ug is the right translation of U by g. We call
1,5 U-localized, iff its support is contained in the interior of | J ! Ug. This defines a linear
subspace Hy of U-localized states. Note that the variety of admissible subsets U is very
big. In particular they contain all contractible subsets of Q. Also, the set may be chosen
such as to leave a complement with arbitrarily small volume. However, physically it might
be more relevant to think of the admissible sets as being rather small portions of @ on which
realistic “filters” project. Any localized state is completely determined by its restriction to
U. Let xg be the characteristic function of U, and x ¢ = Xg ©Rg4—1 those of the translated
sets. We set 1/359 = XUggB Equivariance (4.3) implies that a,ﬁgg =§ 1 -Jgo R,—1. A
projection operator Py : H — Hy is then given by

Py(§) = tdgg= 8-v (4.24)

geG geG

and functions ¢ € Hy are determined by their restriction 1/)U Since 7 : U — U is a
diffeomorphism, we can also use the pullback vy : = v,bU o7=! on Q. Now, on Hy we can
define a left Viz-action as follows: for & =}, v(h)h we set

(9,9) = 15 () :== Y v(h) Y _§-h-PgoRy. (4.25)

heG geG

It is easily seen that this is indeed a map from Hy to Hy, in particular, ; (1/3) is equiv-
ariant. Moreover, this action commutes with Vg since it clearly commutes with right Vg

{10} Connectedness is not a relevant requirement and may without gain or loss just as well be dropped. It
does simplify the argument however.
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multiplif:ations. It therefore also defines an action on U-localized states in ’Fitr and each
sector Hi, separately. For general (i.e. non localized) states, observables may be defined
by first projecting with Py on any admissible U and then applying ~;:

Oz :=v; 0 Py. (4.26)

One easily verifies that this is a self-adjoint operator iff & = ¢*. On the local representative
Yy on U C @ this just corresponds to left o-multiplication. This construction seems to
implement some ideas presented in [So|[Ba2]. It would be interesting to explicitly construct
and interpret these observables in simple models.

Everything we have said could be rephrased in terms of the possibly more familiar
language of vector bundles over Q. Sections of this bundle could be represented by locally
defined functions like ;. This is explained in detail in the following appendix A. We have
deliberately avoided this language in order to always deal with globally defined functions
(on Q). In particular, the left G-action defined on localized states through (4.25) should
not be confused with gauge transformations. We refer to appendix A for more details.

Finally we make a few comments on the implementation of symmetries. The issue
is whether we can always assume the symmetries to respect the sector structur, that
is, whether symmetries that initially act on H are reduced by the subspaces H* and
H*(a) = T*(a)H. If the unitary symmetry operators commute with Vg, i.e., are elements
in O, all subspaces that reduce O also reduce the symmetry group and there is no problem
with its implementation in the sectors. This is the case for continuous groups whose
generators should correspond to physical quantities and therefore commute with V¢ (in the
sense of section VIIL5 in [RS]). But there are discrete symmetries which do not commute
with Vg, like time-reversal. In fact, if the complex conjugate representation, D*, of D* is
not equivalent to D*, i.e., D* = D* ) # p, complex conjugation will connect two different
sectors. The operation of time-reversal is therefore not implementable in these sectors.
They are said to ‘break’ time-reversal invariance. For abelian sectors this is the case iff the
representation is not real [Sch]. Conversely, if we have D* = UTD#U, then (4.18b) shows
TH(a)p = T*(Aa)y. Since the truncated Hilbert space Hf, can be identified with any of
the H*(a), which are mutually isomorphic in a natural way, we can use this isomorphism
to map back H*(Aa) to H*(a) and thus define the operator of time-reversal on Hi,. We
avoid to write down the details at this point which immediately follow from our general
discussion in section 3. We conclude that the p-th sector breakes time-reversal invariance,
iff the representation D* is inequivalent to its complex conjugate. (For a general criterion
see chapter 5-5 in [Ha).)

Appendix A

In this appendix we recall some basic features of principal bundles and their associated
vector bundles as applied to the universal covering space. As already stated in section 1, the
universal covering space Q is the total space of a principal fibre bundle with structure group
G = m1(Q, q), base Q and projection 7 : Q — Q. G acts on Q via right multiplications:
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R4(q) = dg, so that 7(gg) = 7(q) for all g € G. The action is transitive on each fibre 771(q).
Discreteness of the fibres implies that 7, : T3(Q) — T4(Q) and Ry, : T3(Q) — Tge(Q) are
both isomorphisms. We can thus trivially regard T,;(Q) as its own horizontal subspace.
This defines a naturally given connection as follows: given a loop, v : [0,1] — Q, based
at y(0) = (1) = ¢, we have for each § € 7"'(q) a unique (horizontal) lift, 7 : [0,1] — @,
such that 4(0) = g and 5(1) = gg for some uniquely determined g € G. Since G is discrete,
g depends only on the homotopy class [y] € 71(Q, ¢). This defines the family of maps

Ii:m(Q,q) = G, [v]—g=:L()- (A1)

Choosing a different point, ¢ = gh € 771(q), the lift of ~ starting at §’' is now given by
¥ = Ry, 09, which ends at 4'(1) = ¥(1)h = ggh = g h~1gh, so that

In = Ad(h™Y) o I, (A.2)

Moreover, I;([y1][v2]) is defined by lifting [y1y2]1*}: lifting 1 takes one from ¢ to §' =
ql3([71]), and the lift of v, then from g’ to q'Iz([v2]), which, using (A.2), is equal to
q15([v2])I3([1])- Hence each I; defines an anti-isomorphism:

I([nllve]) = Ig(fy2]) La([na])- (A.3)

As already mentioned in section 1, there is generally no natural isomorphism between
the fundamental groups at different points and G. For example, looping the basepoint
along v results in a conjugation with [y] (see e.g. [St], paragraph 16). Identifications
with an abstract group G are therefore only defined up to inner automorphisms. This
at least provides a natural identification of conjugacy classes of all m;(Q, ¢) with those of
G. Unless one refers to a basepoint, it generally does not make sense to talk about the
fundamental group, or a specific element thereof. But it does make sense to speak of a
particular conjugacy class. For example, if g € G, (the centre), it makes sense to call it
a particular element of the fundamental group. If restricted to the centre, the maps Iz,
are independent of k, as (A.2) shows. Right multiplication by the central element g might
therefore be interpreted as “parallelly transporting each element of @ along the loop g”.
For elements not in the centre this notion is not defined.

Since @ is a principal bundle, we can also apply the concept of gauge transformations.
These are given by diffeomorphisms F' : Q — Q such that F o R, = R, o F (bundle
automorphisms), and 7 o F = 7 (projecting to the identity on Q). It is easy to see that
any such function F can be written in the form F(§) = §f(g), with a uniquely determined
smooth function f : @ — G satisfying f o Ry, = Ad(g™!) o f. In that sense gauge
transformations uniquely correspond to Ad-equivariant, G-valued functions on . The
composition F' = F; o F, corresponds to the function f = f; fo, where juxtaposition on
the right hand side means pointwise multiplication in G. However, since in our case G is
discrete, the G-valued function f must be constant. Ad-equivariance then implies that it
must assume values in the centre G, of G. The group of gauge transformations is therefore

{11} We adopt the standard convention that products of paths are read from the left, that is, y1v2 is 11
followed by 2. If we read it from right to left, like maps, the I would be isomorphisms in (A.3)
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given by right G.-multiplications. In particular, the group of gauge transformations
does not contain the gauge group if G is non-abelian.

Vector Bundles

Let V be a (complex) vector space and D* an (irreducible) representation of G on V. We
can associate to the principal bundle @) a vector bundle, E(Q, V, G, n), with base @, fibre
V, structure group G, and total space E:

E={QxV}/~. »
where (q,v) ~ (p,w) < Ig€ G/p=qg, w= D*(g *)v. '
We denote the equivalence class of (g, v) by [g,v], and have the inherited projection map
5 : B — Q, 75([q,v]) := 7(q) = q. Parallel transportation of [q,v] € 75'(q) along a
curve v in @ from ¥(0) = ¢ to ¥(1) = p is defined as follows: Take the horizontal lift 7
of v on Q, such that 4(0) = g. This defines a curve 7 in E via 7 := [y,v]. Its end point,
(1) = [7(1),v] € 75 (p), then defines the parallel transport of [, v]. In particular, if y is a
loop at q € @, we have, using the notation above, (1) = [¥(1),v] = [gg, v] = [§, D*(g)v] =
[7, D*(I([]))v]. This defines a family of holonomy maps H,:

Hg : m(Q,q) — End(5" (),

A5

Ha(0)(.v]) = [2. DTl 49
which is an anti-homomorphism, due to (A.3). Note that the right action R, on Q does
generally not define an action — hypothetically denoted by v, — on E, since in this case
v4([2,v]) = [ag,v] = [g, D*(g)(v)] should equal 4([gh, D*(h=")v] = [ghg, D*(h™*)v] =
[q, D¥*(hgh—1)v] for all h. This is the case iff g € C#, where C* = {h € G/ D*(hg) =
DH(gh) Vg € G}; in words, C* is the largest subgroup of G which under D* maps into the
centre of D#(G). One also easily verifies that D*(g) = D*(gg) Vg € C*, where g¢ is the
conjugacy class of g. Thus, although there is generally no action of G on F, there is such
an action of C*:

Y9 : [3,v] — [39,v] = (3, D*(g)v] Vg € C*. (A.6)

Allowing some abuse of language, we may say that this corresponds to a parallel trans-
portation along a loop at ¢ representing g € C*. As explained above we should actually
refer to the whole class gg, but the ambiguity in assigning a particular member of gg to
each m1(Q,q) is projected out due to D* being constant on g¢.

Finally, given a cross section ¢ in F, we can define an action of C* on o. To see th_is
explicitly, recall that for each section o there is a unique D*-equivariant function & on Q:

:Q—-V, GoR,=D*g")a, (A7)

defined implicitly by
a(q) = [3,5(3)]. (A.8)
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Alternatively, sections in E can be described locally on Q. Given a local section A : U — Q
on an open subset U C @, we have the locally defined V-valued function on U:

ox:U—->V, oy:=d0l. (Ag)

On U it satisfies [A(q),0x(q)] = o(g). Any other local section, X' : U — @, is necessarily
of the form A = R}, o X for some h € G. We then have, using (A.9),

Oy = D“(hnl)(f)‘. ‘ (A.lO)

Now, an action (also denoted by v,) of C* on the section ¢ is just given by the obvious
choice

(vg0)(q) == [a9,5(2)] = [q, D*(9)5(q)]- (A.11)

Equivalently, expressed in terms of & or the local representative o), we have
(749)(@) = 3(ag™") = D*(9)a(2), (A.12)
(v9o2)(q) = D*(g)or(q)- (A.13)

As above, we could — again with some abuses of language — say that vy,0 is the result
of “parallelly transporting the section o along a loop representing (the class of) g in the
fundamental group”.

Quite generallyzin gauge theory one cannot use the local formula (A.13) as definition
of an action of the gauge group. The gauge group simply does not act on the space of
sections in the general case. However, in special circumstances meaning can be given to
a definition in the form (A.13) in the following way: Let U C @ and X as before and I'y;
the linear space of sections o : Q — E whose support is contained in U. We now use the
distinguished section A to define a G-action on I'y via (A.13). With respect to a different
section ' = Ry, o A the so defined action reads

YgO ' = D“(h_lgh)a;\: . (A.14)

The best way to see that this defines indeed a G-action on I'y is to express it in terms
of the globally defined (on Q) equivariant functions & and check that the result is again

equivariant. To do this, let A(U) = U C @ and recall that the restriction |, determines
all other restrictions 5|ﬁg by equivariance. From (A.7) one_has 5'_[79 = D‘“(g"l)ar|(7 oRg-1.
That o is in I'yy means here that & has support in |J 9eC Ug C Q. We define the function

o5 on @ to equal the restriction &|U within U and be identically zero otherwise. We can
then express & as a sum of terms with disjoint support:

5= D*(h)agoRy. (A.15)
heG
Since &y is essentially oy, the action defined by (A.13) now reads

ol = Z D"(hg)d o Rh, (A.16)
heG
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which is again equivariant. What happened here is that in the support component Uh
the function & is multiplied with D#(h~'gh), as required by (A.14). Here the additional
conjugation is necessary for the result to be equivariant. This definition would be contra-
dictory if the support were not inside the disjoint regions Ug. This is the reason why we
had to restrict to I'yy

There is a certain danger to misunderstand this construction in the following way: the
restriction to 'y effectively truncates the principal bundle Q to 7=1(U) which is itself a
trivial bundle. Given a distinguished section A in this truncated bundle there is a induced
trivialization 771 (U) — U x G given by{'?} X\(¢)h + (q,h). Then there is a left action
vy of G defined by «v,(q, k) = (g,gh) or v(A(q)h) = A(q)gh. This clearly defines a gauge
transformation F of 7=(U) which is easily seen to induce the action <, on sections.
This suggests the incorrect conclusion that our action 7, is really nothing but a gauge
transformation. The point is that the map F will not extend from 7=}(U) to @, so that
we are not dealing with a gauge transformation on Q or E.

Appendix B

A simple mechanical system with finite non-abelian fundamental group is the non-symmetric
rotor. It serves, for example, as a dynamical model for the collective rotational degrees

of freedom of deformed nuclei [BM]. In this appendix we explicitly construct the sectors

by applying formula (4.18) to the standard basis functions. This leads precisely to the

known symmetry classification of collective rotational modes of nuclei but interprets it in

the present formalism. In particular, the only sector for odd-A nuclei corresponds to non-

abelian representations of the fundamental group. This relevant sector would have been

lost if one restricted to abelian representations. This example therefore serves to illustrate

our discussion at the end of section 3.

The different configurations for the non-symmetric rotor are easily visualized as the
different orientations of a solid ellipsoid with pairwise different major axes. Its symmetries
are generated by m-rotations about any two of the three major axes and form the group
Za X Zy. The configuration space is thus given by SO(3)/Z2x Z3, but it is more conveniently
represented by SU(2)/Dg§, where D{ is the preimage of Z3 x Z3 under the 2-1 projection
SU(2) — SO(3). Djf is called the binary dihedral group of order eight and is conveniently
defined using unit quaternions: D} = {+1, +i, £j, +k}, where i? = j> =k = —1,ij =k
and cyclic. The configuration space is thus defined by @ := SU(2)/Dj}. Since SU(2) = 3
is simply connected, we have Q = S* and m(Q) & Dj.

We consider the Hilbert space H = L?(S%,dq) where dq is the measure induced by the
kinetic energy metric of the rotor. Such a metric is invariant under left SU(2) and right
D} multiplications{!3}, and so is the measure dg. Let {R4;n}, 2A = 0,1,2.., denote the

112} Any element in 7=Y(U) can be uniquely written as A(q)h.

{13} We adopt the standard convention that left multiplications correspond to rotations in the space-fixed
and right multiplications to rotations in the body-fixed frame. The identifications under Dj are therefore
done using the right multiplications.
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representation matrices for SU(2). We use the standard convention to label the 2A + 1
values for the indices M, N,.. by {—A,—A +1,...,A}. We can now expand each ¢ € H

in the form{14}: .
= > CrynBin- (B.1)
M,N,A

D3 has four one-dimensional irreducible representations, D°, D!, D? D3, and one two-
dimensional one, D*. The one-dimensional representations are labelled by three {-1,1}-
valued numbers, (ry,rp,rs), where D*(+i) = ry, D*(Lj) = 72, and D*(+k) = r3, so
that:

(1,1,1) for u = 0,

) (a,-1,-1) for p=1,
(roresrs) =0 (211 21) foru=2, (B

(-1,-1,1) for p=3.

One sees that it is in fact sufficient to uniquely characterize a one-dimensional representa-
tion by two of the three r;’s. We shall take r5 and r3. The two-dimensional representation,
D*, can be defined using the standard Pauli-matrices {m, 7, 73}:

D*(+£1) = 441,

D*(4i) = Fim, (B3)
D*(=£j) = Fir, '
D4(ik) = FiT3

Using standard results from finite group theoryt15} one easily finds that for even A,
D° occurs (4 +1)-times and D122 each 4-times, whereas for odd A D° occurs 452-times
and D™??* each &2!-times. D* is of course not contained in representations Wlth integer
A. Conversely, for A = % only the two-dimensional representation D* occurs, namely
(A + %)-times. All representations are equivalent to their complex conjugates. This is

trivial for the one-dimensional ones, which are real, and for D* we have D* = UTD*U
with U = it 2.

We are interested in the projection operators T%(a), written down in (4.18b). We
first deal with the abelian cases p = 0,1,2,3. Here R*(jk) = R*(kj). It is convenient to
introduce the four projector matrices:

(B.4)

{14} In order to properly normalize the basis functions we would have to multiply each RAM N With a factor

proportional to \/11 IpI3(2A + 1)/16w2. The moments of inertia, I;, appear because they need to be

cancelled from the measure denved from the kinetic energy metric.

{15} Here we just use the formula n® = « X*(9)x™(g) for the number of times D* is contained in
b= gepy X 9

RA. x* and x?(g) = sin((A + 5)0‘)/ sin(5) are the characters of D#(g) and R?(g) respectively, and « is
the rotation angle of g.
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We easily find
T#R = RMPAG)PA (), (B.5)

where the right hand side is understood as multiplication of the matrix-valued function R»
from the right with the projector matrices. Using Wigner’s formula for R%, 5 (see e.g. [Wi],
chapter XV, formula (27)) one has R4, (§) = (—1)A*Né_p v and R (k) = (=1)Vépn-
The projections of the basis functions can now be written in the final form

.

(T*RM MmN = 21 +ra(-1)") (RYyn + r2(-1)VRY _n) (B.6)
N >0andeven forrs =1

_ (pA _1\A+N pA z 5 ;

o (RMN +ra(-1) RM"N) {N >1and odd for r3 = —1. (B.7)

These are precisely the bases used in [BM] to describe collective rotational modes of even-
A nuclei. (Compare formula (4-276) in [BM].) From Wigners formula one has R4,y =
(—l)M_‘NRﬁM,_N, which for the basis functions By y := Ry + r2(-1)**VRj, _y im-
plies Bfyy = ro(-1)"*MBA, . This defines the operation of time-reversal — given by
complex conjugation — within each sector.

We now turn to the two-dimensional representation D*. Here we only have to consider
A, == %. Again we straightforwardly use formula (4.18b) with some normalized a € C?
Applied to the functions R4, , one obtains

T*(a)R* = R*P*(a), (B.8)
where the right side is again understood as matrix multiplication with

PMa) = lar? (1~ iBAW) + lazf? (1 +iBA(0) o)
+ aiaz (—?:RA(i) - RA(J)) + aiaz (—ERA(I) + RA(J))] :

It is not difficult to check explicitly that this is indeed a projection operator. Using
Wigner’s formulaf'®} for RA(j), R*(k) and the relation R*(i) = R*(j)R*(k) we find

Ry (i) = exp(inN)(—1)MN 6y = i(—1)2 8pr_ v (B.10)
Riyn () = (-1)"N 6y, _w, (B.11)
Ry (k) = exp(inN) Spenv = (=i)(-1)V*2 8w, (B.12)

where the first expressions on the right hand sides are valid for all A and the second
expressions specialize to 2A = odd (and hence 2N,2M = odd). Using them we obtain

i z'RA(k)]MN =117 (—1)N+%) SMN (B.13)
5 3 . 1 1
LR F RG] =30 (13 )V ) Suen, (BAY)
{16} We use Wigner’s convention which agrees with R3 (i,j,k) = —i71 2,3. It differs from other conventions

in use by a factor (—1)M~V adopted e.g. in [Ha], formula (9-76).
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which inserted into (B.9) gives for (B.8):

2 % ax (alRAMN + (—1)A+%a2R§\\J’_N) , for 2N =1 mod4

T*(a)Ryn =

az (a2Rfyy + (-1)"4a,RYy ), for 2N = ~1 mod4.
(B.15a,b)

If for fixed A we let M, N run through all (2A+1)? values, the right hand side of (B.15)
contains 7(2A + 1)? linearly independent functions. For ay = 0 they are {R} \, 2N =
1 mod4} and {R4;y, 2N = —1 mod 4} for a; = 0. If ajay # 0 the set of functions in
(B.15a) and (B.15b) are the same up to an overall factor. The general representation of
the truncated Hilbert space, H!*~*, is therefore given by

'H‘{fr:4 = spa.n{a1R%4N + (—1)A+Na2Rf\\‘4,_N 4 (B8
9A = odd, —A < M,N <A, 2N = 1mod4} ,

where we could set (—-1)A+% = (=1)A*N due to N = %mod 2. But this is precisely the
basis used in [BM] to describe collective rotational modes for odd-A nuclei. (Compare
formula (4-293) in [BM].)

Finally, if we set Bjy(a) := a1RY,y + (-1)**NayR}), _y, we have By y(a) =
—(=)A+MpA v (i72@). Since the canonical isomorphism I : H(a) — Hi(a') is just
given by I(B4;y(a)) := B4, y(a'), the operation of time reversal, 7, can be defined by

T(Byn) := (=)™ B2, v (plus antilinear extension) on the set of basis functions Bjyy
for fixed a.

This concludes the presentation of a relatively simple example for the usage of non-
abelian sectors within familiar quantum mechanics.
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