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Abstract. We investigate the orthoalgebras of certain non-Boolean models which have a classical
realization. Qur particular concern will be the partition logics arising from the investigation of the
empirical propositional structure of Moore and Mealy type automata.

1 Introduction

The investigation of classical models for non-Boolean algebraic structures has brought up
several interesting examples. Among them are Cohen’s “firefly-in-a-box” model [3], Wright’s
urn model [24], as well as Aerts’ vessel model [1] featuring stronger-than quantum corre-
lations. Another type of classical objects are automata models, one of which has been
introduced by Moore [17] in an attempt to model quantum complementarity in the context
of effective computation. D. Finkelstein and S.R. Finkelstein [4], and subsequently Grib
and Zapatrin [9, 10] investigated the propositional structure of certain automaton models
by lattice theoretical methods. Svozil [20] and Schaller and Svozil [21, 22, 23] introduced
partition logics, which appear to be a natural framework for the study of the propositional

1The paper has been partially supported by the grant G 229/94 SAV, Bratislava, Slovakia, and by the
Mitteln zur Forderung der Auslandsbeziehungen an der Technischen Universitat Wien.
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structure of Moore and Mealy type automata. Thereby, the set of automaton states is parti-
tioned with respect to identifiability in input/output experiments; and the single partitions
corresponding to Boolean algebras are pasted together to form more general structures.

We describe here how non-classical propositional structures, in particular partition logics
of automata, fit into the scheme of orthoalgebras.

2 Boolean Atlases

According to Lock and Hardegree [15, 16], we consider a family of Boolean algebras, a
Boolean atlas, which will be equivalent to quasi orthoalgebras. Many considerations about
co-measurable quantum propositional structures deal with Boolean subalgebras. In addition,
they are intuitively better understandable than general quantum propositional logics.

A family B = {B; : 1 € I} of Boolean algebras is called a Boolean atlas if it satisfies the
following conditions (here the operations in B; are denoted by an index ¢):

(i) if B; C Bj, then B; = B;;

(i) if a,b € B;N Bj, then a <; biff a <; b;

(iii) ; =1;=1and 0;, =0; =0 for all 4,5 € [;

(iv) if @ € B; N B;, then a* = a*s for all ¢, € I;

(v) ife,6€ BN B, and if aA; b=0;, thenaV;b=aV;b.

Note that a,b € B; N B; and yet a V;b# a V; b and a A; b # a A; b. We define a Boolean
manifold to be a Boolean atlas which satisfies the condition

ifa,b€ BN Bj,thenaV;b=aV;band aA;b=aA;b.
Let B = {B; :1 € I} be a Boolean atlas, a,b € U;c; b and S C U;¢; Bi. Then we say that

(i) a,b are compatible if there is 2 € I and a,b € B;;

(i) a,b are orthogonal if there is i € I such that a,b € B; and a A; b = 0;. A subset S is
called pairwise orthogonal if a,b are orthogonal for any a,b € S;

(iii) S is jointly compatible if there is ¢ € I with S C B;; S is pairwise compatible if a, b are
compatible for any a,b € S;
(iv) S is jointly orthogonal if there is ¢ € I with S C B; and S is pairwise orthogonal.
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3 Orthoalgebras

The notion of orthoalgebras (or quasi orthoalgebras) goes back to axiomatic models of quan-
tum mechanics introduced by Foulis and Randall [7, 19] as special algebraic structures de-
scribing propositional logics.

A quasi orthoalgebra is a set L endowed with two special elements 0,1 € L (0 # 1) and

equipped with a partially defined binary operation @ satisfying the following conditions for
all a,be L :

(oai) if a @ b is defined, then b @ a is defined and a @ b = b @ a (commutativity law);
(0aii) a @ 0 is defined for any a € L and a ® 0 = q;

(oaiii) for any a € L, there is a unique element a’ € L such that a®a’ is defined and a®a’ =1
(orthocomplementation law);

(caiv) if a @ (a’ @ b) is defined, then b = 0;
(oav) if a @ (a @ b) is defined, then a = 0;
(oavi) if a @ b is defined, then a @ (a @ b)' is defined and & = a @ (a B b)".

The following facts are true:

Proposition 3.1 Let L be a quasi orthoalgebra, a,b € L. Then

(a) 0'=1,1=0;

(b) (¢') = ¢;

(c) ifa®b=aec, then b= c;
(d) fa®b=1, thenb=2ad"

The unique element o’ is called orthocomplement of a € L, and the unary operation
': L — L defined by @ +— d’, a € L, is said to be an orthocomplementation. We shall say
that two elements a,b € L (i) are orthogonal, and write a L b, iff a @ b is defined in L (it is
clear that @ L biff b 1 a), and (ii) @ < b iff there is an element ¢ € L with a @ c = b.

It is easily to shown that the relation < is reflexive and antisymmetric, but needs not
to be transitive. An associative quasi orthoalgebra, i.e., a quasi orthoalgebra, for which the
associative law

(cavii) if a®b, (a®b)Dcare defined in L, so are b cand a®(bPc), and (a®b)Dc= a® (bPc)
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holds is said to be an orthoalgebra (OA in abbreviation). In any orthoalgebra, < is transitive.
On other hand it is possible to give an example of a quasi orthoalgebra with transitive <
which does not correspond to any orthoalgebra.

Due to Golfin [8], an orthoalgebra is a set L with two special elements 0,1 € L (0 # 1)
and endowed with a partial binary operation @ satisfying (oai), (oaiii), (oavii), and (cav*)
if a @ a is defined, then a = 0.

The original idea of the partial binary operation @ goes back to Boole’s pioneering paper
[2], where he wrote a + b as the logical disjunction of events a and b when the logical
conjunction ab = 0, so that, for mutually excluding events a and b, a + b is defined. This is
all that is needed for probability theory: if ab = 0, then P(a + b) = P(a) 4+ P(b). To avoid

confusion, we write a @ b for a + b when ab = 0.

Note that one can rewrite axioms for a Boolean algebra in terms of Boole’s ideas of a 4 b.
For more details, see Foulis and Bennett [6].

In addition, let L be an orthomodular poset (OMP for abbreviation) (or an orthomodular
lattice, OML in short), i.e., a poset L with the least and last elements 0 and 1 and a unary
operation * : L — L, called an orthocomplementation, such that, for all a,b € L,

(i) (a*)* = g;
(i) if @ < b, then b+ < a*;
(i) evValt =1;
(iv) if a < b* (and we write a L b), then a V b € L;
(v) ifa < b, then b=aV (aV bt)L.

(For OML, L has to be additionally a lattice). Then L can be organized into an OA if the
binary operation @ is defined via a @ b exists in L iff a < b* and a ® b := a V b. The unary
operation ' : L — L is defined via @’ :=a*, a € L.

We recall that if L is an OA and a,b € L are mutually orthogonal, then a,b < a ® b, and
a @ b is the minimal upper bound for a and b (i.e., a,b < a @ b, and if there is ¢ € L with
a,b < c<a@b, then ¢ = a @ b), but this does not mean that a V b exists in L, so that L
cannot be necessarily an OMP.

A subset A of a quasi OA (OA) L is a quasi suborthoalgebra (suborthoalgebra) of L is (i)
0,1 € A; (ii) if a € A, then a’ € A; (iii) a,b € A with a L bimpliesa @ b€ L.

If a (quasi) suborthoalgebra A of L is, in addition, a Boolean algebra with respect to
<, A is called a Boolean suborthoalgebra of L. Denote by V4 and A4 the join and the meet
taken only in A, respectively. Then, a @ b = a V4 b whenever a,b € A and L is an OA. A
maximal Boolean suborthoalgebra of L is called a block.
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4 Examples of Orthoalgebras

We shall give a few examples of orthoalgebras having classical physical interpretations.

Firefly in a box

According to Cohen [3], consider a system consisting of a firefly in a box with a clear plastic
window at the front and another one on the side pictured in Figure 1.

Fig. 1

Suppose each window has a thin vertical line drawn down the center to divide the window
in half. We shall consider two experiments on the system: The experiment A: Look at the
front window. The experiment B: Look at the side window. The outcomes of A and B are:
See a light in the left half (I4, lg), right half (r4, rg) of window or see no light (na,ng). It
is clear that ny = ng =: n and we put Iy =: 1, r4 =: v, lg =: f, rg =: b (f for the front, b
for the back).

The Greechie diagram of the corresponding propositional logic is given by Figure 2.
(Recall that here the small circles on one smooth line denote mutually orthogonal atoms
lying in the same block; for more details on Greechie diagrams, see [18].) The associated
Hasse diagram is given by Figure 3.

Fig. 2
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A quantum mechanical realization of the above experiment has been given by Foulis and
Randall [7], Exam. III: Consider a device which, from time to time, emits a particle and
projects it along a linear scale. We perform two experiments. Experiment A: We look to
see if there is a particle present. If there is not, we record the outcome of A as the symbol
n. If there is, we measure its position coordinate z. If z > 1, we record the outcome of
A as the symbol r, otherwise we record the symbol /. Similarly for experiment B: If there
is no particle, we record the outcome of B as the symbol n. If there is, we measure the
z—-component p, of its momentum. If p, > 1, we write b as for the outcome, otherwise we
write f. The propositional logic is the same as for the firefly box system.

Another interesting model equivalent to the firefly box system has been given by Wright
[24]. It uses a generalized urn model. Consider an urn having balls which are all black
except for one letter in red paint and one letter in green paint, limited to one of the five
combinations of letters r, [, n, f, b listed in Table 4.

Ball Type | Red | Green
1 1 b
2 1 f
3 ¥ b
4 r f
) n n

Tab. 4
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There are the two experiments Red and Green. To execute the Red experiment, draw a
ball from the urn and examine it under a red filter and record the letter you see. Note that
under the red filter, the green letter will appear black and will thus be invisible. There are
three outcomes [, r, n. The Green experiment executes using a green filter (all red letters
will appear invisible). The outcomes will be restricted to the letters b, f, n, which gives the
propositional logic described by Figures 2 and 3.

Firefly in a three-chamber box

Consider again a firefly, but now in a three-chamber box pictured in Figure 5.

IA Ta
Fig. 5

The firefly is free to roam among the three chambers and to light up to will. The sides of
the box are windows with vertical lines down their centers. We make three experiments, cor-
responding to the three windows A, B and C. For each experiment E, we record lg, rg, ng
if we see, respectively, a light to the left, right, of the center line or no light. It is clear
that we can identify r4 = lg =: e, r¢ = lg =: ¢, rg = l4 =: a, but now we do not identify
fe=na, &= np, d 1= ve.

The propositional logic of this model has the Greechie diagram given by Fig. 6 and the
corresponding Hasse diagram by Fig. 7,
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which is an orthoalgebra, called the Wright triangle, being no OMP. It is the most simple
case of an OA which is not an OMP. (Due to [13], an OA L is not an OML iff it contains the
Wright triangle as a suborthoalgebra of L in such a way that, for atoms a, ¢, e of the corners
of the triangle, a @ (c @ e) is not defined in L.)

In analogy with the generalized urn models, Wright [24], we can describe the firefly

three-chamber box system equivalently as follows. Consider an urn containing balls which
are all black except for one letter in red paint, one letter in green paint and one letter in blue
paint, limited to one of the following four combinations of letters a, b, ¢, d, e, f according to
Table 8. There are three experiments Red, Green and Blue using a red, green or blue filter.
Assume now (somewhat unphysically) that each one of these three filters lets light through
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only in its own colour, and that different colours are invisible; i.e., they appear black. The
corresponding propositional logic is again given by the Wright triangle.

Ball Type | Red | Green | Blue
1 a a d
2 c f ¢
3 b e e
4 b f d

Tab. 8

5 Relations among Boolean Atlases and Quasi Or-
thoalgebras

The following theorem has been proved by Lock and Hardegree and to be self-contained we
repeat their proof with small changes.

Theorem 5.1 (1) Every Boolean atlas defines a quasi orthoalgebra in o natural way.

(2) Fvery quasi orthoalgebra defines a Boolean atlas in a natural way.

Proof. (1) Let B = {B;: ¢ € I} be a Boolean atlas. We define a quasi orthoalgebra L
as follows: L := U;je; B;, 0 =0;,1 = 1;, @’ = a'¥ for any ¢ € I such that a € B;. We say
a L biff there is an 7 € I such that a,b € B; and a A; b= 0, and then a ® b := a V; b. The
operations are well-defined, and it can be shown that properties of quasi orthoalgebras are
satisfied.

We note that the relation < on L is defined as follows: a < b iff there is z € L with
a @ z = b. This means the following: there is an ¢ € I with a,z € B;,a A; z = 0, and
b=a®z = aV,;z. This implies @ <; b. On the other hand, if a <; b for some : € I,
then a A; b+ = 0, where a L; b*. Therefore, a @ b = a V; b' is defined, and, moreover,
al;(a®bl)t,sothat a L; (a®b )t =aV;(aV;bt)t =aV;(at A;b) = b, whence a < b.

(2) Let L be a quasi orthoalgebra. Let {B; : i € I} be the set of all blocks of L. Then
B ={B;: t € I} is a Boolean atlas. o

Example 5.2 Let @ = {1,2,3,4,5,6} and let B, and B, be the Boolean algebras gener-
ated by {1},{2},{3},{4},{5,6} and {1},{2},{3,4},{5},{6}, respectively (with respect the set-
theoretic inclusion and 1, = 13 = Q). Then B = { B, B,} is a Boolean atlas, and L = B,UB;
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i, according to Theorem 5.1, a quasi orthoalgebra. An easy calculation shows that the order
< induced by & in L is not transitive. Indeed, we have {3} < {3,4}, {3,4} < {3,4,5} but
{3} £ {3,4,5} although {3} C {3,4,5}, consequently, L is not an OA.

6 Partition Logics

In this section, we present a notion of partition logics which will have an intimate connection
with special types of automata, and which will generalize the results of Svozil [20] and Schaller

and Svozil [21, 22, 23].

Let L be a quasi orthoalgebra with < . A non-void subset I of L is said to be an ideal of
L if .

(1) fae I,be L,b< a,then b€ I;
(ii) a,b € I with @ L bimplya® b€ I.

It is clear that 0 € I. An ideal I of L is said to be (i) properif I # L or, equivalently, 1 ¢ I;
(i) prime if, for any a € L, either a € I or @’ € I. We denote by P(L) the set of all prime
ideals in L.

A probability measure (or also a state) on L is a mapping s : L — [0, 1] such that (i)
8(1) =1, and (ii) s(a®b) = s(a)+s(b) whenever a L b. A probability measure s is two-valued
if s(a) € {0,1} for any a € L.

We recall that there is a one-to-one correspondence between two-valued probability mea-
sures and prime ideals: If s is a two-valued probability measure, then I, = {a € L : s(a) = 0}
is a prime ideal; and if ] is a prime ideal, then s; : L — [0, 1] defined via s;(a) =0 iff a € I,
otherwise s;(a) = 1, is a two-valued probability measure on L.

A set S of probability measures on L is called separating if for all a,b € L, a # b, there
is a probability measure s € § such that s(a) # s(b). L is called prime iff it has a separating
set of two-valued probability measure or, equivalently, for any different elements a,b € L
there is a prime ideal I of L such that e € [ and b & I.

Let £ be a family of of quasi orthoalgebras (or OAs, OMP, Boolean algebras, etc.)
satisfying the following conditions: For all P,Q € £, PN @ is a quasi suborthoalgebra
(subOA, sub OMP, Boolean subalgebra, etc.) of both P and @), and the partial orderings
and orthocomplementations coincide on P N Q. Define the set L = (J:={P: P € L}, a
relation @ and the unary operation ’ as follows:

(i) a @ b iff there is a P € L such that a,b€ P and a Lp b, then a ® b= a ®p b;
(ii) @’ = b iff there is a P € P such that a,b € P and aP = b.



Dvurecenskij, Pulmannovd and Svozil 417

The set L with the above defined @ is called the pasting of the family L.

Let R be a family of partitions of a fixed set M. The pasting of the family of Boolean
algebras {Br: R € R} is called partition logic, and we denote it as a couple (M, R).

Remark 6.1 If B = {B;:¢ € I} is a Boolean atlas, then L = ;c; B; with @ and ' defined
by the last above (i) and (ii) is a pasting of a family of Boolean algebras {B; : i € I}.
Moreover, a® b is defined iff a,b € B; for somei € I with aA\;b=0, and then a®b = aV;b.

We recall that two quasi orthoalgebras L; and L, are isomorphic iff there is a one-to-one
mapping ¢ : Ly — Ly such that a @ b is defined in L, iff ¢(a) @ #(b) is defined in L, and
¢(a ®b) = d(a) ® ().

Theorem 6.2 A quasi orthoalgebra L is isomorphic to a partition logic if and only if L is
prime.

Proof. (i) Suppose that L is isomorphic to a partition logic R = (M, R). Without loss
of generality, we may assume that L = R. Take A, B € R such that A # B. Then there
is a point ¢ € (A\ B)U(B\ A). Put P:={C € R: q ¢ C}. Then P is a prime ideal in
L. Indeed, let C' € P, and D < C. Then there is a partition U € R such that the Boolean
algebra B(U) generated by U contains D,C, and D <pw) C implies D C C. It follows
g & D, hence D € P.

If E,F € Rand E L F, there is a Boolean algebra B(V) generated by a partition V such
that £ Npy F = 0. Moreover, E @ I' = E Vp) F' = EU F in M. Therefore, ¢ ¢ EUF,
which gives E@ F € P.

Finally, for every C € R, either g € C or ¢ € M \ C, hence P is a prime ideal.

(i1) Conversely, suppose that L is prime. Let M be the set of all prime ideals in L, i.e.,
M = P(L). For « € L, we set p(z) := {P € P(L): = ¢ P}. Since L is prime, the mapping
p: L — 2M is injective. Moreover, z L y gives p(z) N p(y) = 0 and p(z @ y) = p(z) U p(y).
Indeed, for any P € P(L), z,y € P iff t®y € P, consequently, z @y ¢ P iff either = & P or
y & P; since either z € P or y € P for any P € P(L) and all orthogonal elements « and y.

In other words, we have proved that L y implies that the system R(z,y) := {p(z), p(y),
p((z®y)")} 1s a partition of M. Let R = {R(z,y) : =,y € L,z L y} and let R be the partition
logic (M, R). For every x € L, p(z) € R(z,z'), so that p: L — R is an injection, and by
the definition, also a surjection.

Let A, B € R with A Lg B. That is, there is a partition P € R with A, B € B(P), and
AN —B(P)B = . By the definition of the partitions in R, there are elements z,y € L such
that A = p(z), B = p(y) for some orthogonal elements z,y € L. This proves that p is an
1somorphism in question. d
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We say that two elements a and b of an OA L have a Mackey decomposition if there are
three jointly orthogonal elements ay,b,c in L such that a = a; @ ¢, b = by & ¢. In OMPs
any Mackey decomposition is unique, for OAs this is not true, in general, however for prime
orthoalgebras we have the following result.

Proposition 6.3 A prime orthoalgebra has a unique Mackey decomposition.

Proof. Assume that a and b have two Mackey decompositions, i.e., there are two jointly
orthogonal systems {aq, b1,¢1} and {a3,b2,¢2} such that a = a1 ®c1 = a2 @ e, =0, D¢ =

by cy. Put dy := (a1 ® by @ 1) and dy := (az B by B ¢3)'. We assert that d; = ds.

Assume the converse. Then there is a two—valued probability measure s on L such that
s(d1) =1 and s(dy) = 0. Hence, s(a;) = s(by) = s(c¢;) = 0, but one of s(as3), s(b2), s(cz) is 1.
This leads to a contradiction, since a1 @ ¢; = a = ay@ ¢y and by B e; = b = by, @ ¢y. Therefore,
d; = d;, and hence a1 ® by D ¢; = ay H by @ cy. This entails a B b, = a H by, so that by = b,
and c¢; = ¢, consequently, a; = a,. o

7 Partition Logics and Automata logics

Let an alphabet be a finite nonvoid set. The elements of an alphabet are called symbols. A
word (or string) is a finite (possibly empty) sequence of symbols. The length of a word w,
denoted by |w|, is the number of symbols composing the string. The empty word is denoted
by e. ¥* denotes the set of all words over an alphabet £. The concatenation of two words
18 the word formed by writing the first, followed by the second, with no intervening space.
Let ¥ be an alphabet. ¥* with the concatenation as operation forms a monoid, where the
empty word e is the identity. A (formal) language over an alphabet ¥ is a subset of £*.

Definition 7.1 A Moore automaton M is a five-tuple M = (Q, X, A, 6, X), where

(i) @ is a finite set, called the set of states;
(ii) X is an alphabet, called the input alphabet;

)
(iii) A is an alphabet, called the output alphabet;
(iv) é is a mapping @ x ¥ to @), called the transition function;
)

(v) X is a mapping Q) to A, called the output function.

Definition 7.2 A Mealy automaton is a five-tuple M = (Q, X, A, 6, ), where Q, X, A, § are
as in the Moore automaton and X is a mapping from @Q x ¥ to A.
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Informally, a Moore automaton is in a state ¢ € @, emitting the output A(g) € A at any
time. If an input @ € ¥ is applied to the machine, in the next discrete time step the machine
instantly assumes the state p = 6(¢,a) and emits the output A(p). A Mealy machine emits
the output at the instant of the transition from one state to another, the output depending
both on the previous state and the input.

Suppose now an observer is performing experiments with a Moore or Mealy automaton
which is contained in a black box with input-output interface. Thus we are only allowed to
observe the input and output sequences associated with the box. To conduct an experiment,
the observer applies an input sequence and notes the resulting output sequence. Using this
output sequence, the observer tries to interpret the information contained in the sequence
to determine the values of the unknown parameters.

Suppose the observer conducts experiments on an automaton with a known transition
table (i.e., the five-tuple (@, %, A, 4, A)) but unknown initial state. This will be called the
initial state identification problem. Suppose further that only a single copy of the machine
1s available.

The logical structure of the initial-state identification problem can be defined as follows.
Let us call a proposition concerning the initial state of the machine experimentally decidable
if there is an experiment F which determines the truth value of that proposition. This can
be done by performing E, i.e., by the input of a sequence of input symbols a1, as,as,...,a,
associated with F, and by observing the output sequence
Ae(q) = )\(al,q),...,)\(§(---6(q,a1)---,an),an). The most general form of a prediction

n ti?nes
concerning the initial state ¢ of the machine is that the initial state ¢ is contained in a

subset P of the state set (). Therefore, we may identify propositions concerning the initial
state with subsets of (). A subset P of @) is then identified with the proposition that the
initial state is contained in P.

Definition 7.3 Let E be an experiment (a preset or adaptive one), and let Ag(q) denote
the obtained output of an initial state q. Ag defines a mapping of Q) to the set of output
sequences A*. We define an equivalence relation on the state set Q) by

E . "
q =p iff As(q) = Ae(p) - -
for any q,p € Q. We denote the partition of ) corresponding to = by @)/ =. Obviously, the
propositions decidable by the experiment E are the elements of the Boolean algebra generated

by Q/ é, denoted by Bg. There is also another way to construct the experimentally decidable
propositions of an experiment E. Let Ag(P) = U Ag(q) be the direct image of P under Ag
qEP

for any P C Q. We denote the direct image of Q by Og, Og = A\g(Q).

It follows that the most general form of a prediction concerning the outcome W of the
experiment E is that W lays in a subset of Og. Therefore, the experimentally decidable
propositions consist of all inverse images \5'(S) of subsets S of Og, a procedure which can
be constructively formulated (e.g., as an effectively computable algorithm), and which also
leads to the Boolean algebra Bg. Let B be the set of all Boolean algebras Bg. We call the
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partition logic R = (@), B) an automaton propositional calculus.

Proposition 7.4 To every partition logic R there exists an automaton M such that R =
R(M).

Proof. Let R = (Q,R) be a partition logic. Every P € R can be rewritten as an indexed
family P = (P,)ie1,, where the index set I,, denotes the set {1,...,n} of natural numbers.
We assume that P; # P; for 1 # j. N denotes the greatest number of elements in any
partition P € R. Let M = (Q,R,In,6,)) denote the automaton corresponding to the
partition logic R = (@, R). What remains to be defined are the transition function 6 and
the output function A. Let p be an arbitrary element of (). Then, for all ¢ € ) and for all
P eR,let (i) 6(¢,P) = p and (ii) A(¢g,P) =1 iff g € P,.

8 Partition Logics in Examples

Example 8.1 A “Fano plane” pictured at Fig. 9 is not a partition logic (it is not prime, i
has only unique s probability measure, namely, s(z) = 1/3 for any atom « € L.

Fig. 9

Example 8.2 The Wright triangle, pictured by Fig. 6, is a partition logic. It has a sepa-
rating set of two-valued probability measures given by Table 10.

measure [a | b|c|d|e| f
1 1{0|0|1]0]0
2 o(0f(1(0|0]1
3 0/1(0(0|1]0
4 0(1(0]1]0]1
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Tab. 10

It is isomorphic to the following partition logic given by O = {1,2,3,4} and three decom-
positions of Q):
{{1}, {2}, {3,4}}, {{2}, {3}, {1,4}} and {{1}, {3},{2,4}}. The transition and output table
of a Mealy automaton realizing the Wright triangle is given by Table 11.

6 11234
({1}, {2}, {3,4}} | 1| 1|1 |1
{{2}, {3}, {L4}} |1 1|11
{{1}, {3}, {2,4}} |1 1|11

A 11234
{{1}, {2}, {3,4}} | 1]2]33
{{2}, {3}, {1,4}} |3 1123
({1}, {3}, {2,4}} [1]3]2]3

Tab. 11

We recall that according to [24], it cannot be modeled in a Hilbert space.

Example 8.3 An orthoalgebra given by Fig. 12 is a partition logic. Its system of all two
valued probability measures is given in Table 13. A possible Mealy automaton realization is
given in Table 14.
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The corresponding decompositions of = {1,2,3,4,5,6} are {{1,2},{3,4,6}, {5}} for
the block a, b, c,

{{5}’;{1’2’3‘)4}’{6}} for C,d, e) {{]‘72}7{37475}? {6}} for G"e’fi {{6}7{17375}7{274}} for
6797 7

{{2?4}a{1,316}5{5}} for h,i,c.

measure |a | b|c|d|e| flg|h]|:
1 1fojo[1]ofo[1T[0[1

2 1lojo|1]|oloj0|1]0

3 o{tjo|1]|o]1l1]0]1

4 o|l1]o|l1|0o]|1|0|1]0O

5 olofl1]ofo|1|1]0]0

6 oj1|lo]lof1]0|0]0]1

Tab. 13
) 112|3[4|5]6
{{1,25,{3,4,6}, {60 |1 (1|1 1|11
{{5},{1,2,3,4},{6}} |1 |1 |1]|1|1]1
{{1,2},{3,4,5},{6}} |1 |1]|1]|1]|1|1
{{6}3{133’5}3{2,4}} 1 1111111 1
{{2,4},{1,3,6},{5}} |1 [1|1|1|1]1
A 1{2|3(4(5]6
{12, {3,4,6}, {5 ) |1 |1]2[2[32
{{5},{1,2,3,4},{6}} |2 |2|2|2|1|3
{{1,2},{3,4,5},{6}} |1 |1]2|2|2(3
{{6},{1,3,5},{2,4}} |2 |3 |2[3 |21
{{2,4},{1,3,6},{5}} |2 |1|2|1|3]|2
Tab. 14

Example 8.4 Orthoalgebras given by Fig. 15 and Fig. 16 are partition logics.
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We note that combining the Wright triangles we can obtain plenty of orthoalgebras which
are partition logics.

9 Partition Test Spaces

Foulis and Randall 7, 19] gave a new mathematical foundation of an operational probability
theory and statistics based upon a generalization of the conventional notion of a sample
space in the sense of Kolmogorov [14].

Let us recall briefly main notions of their approach according to [5]:

Let X be a non-void set, elements of X are called outcomes. We say that a pair (X,7)
is a test space iff T is a non-empty family of subsets of X such that (i) for any € X, there
isa T € T containing z, and (ii) if 5,7 € 7 and S C T, then S =T.
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Any element of 7 is said to be a test. We say that a subsets G of X is an event iff there
is a test T' € T such that G C T. Let us denote the set of all events in X by £ = £(X,T).
We say that two events F' and G are (i) orthogonal to each other, in symbols F' L G, iff
F NG =0 and there is a test T € T such that F UG C T (ii) local complements of each
other, in symbols F'locG, iff FF L G and there is a test T € T such that FF UG = T; (iii)
perspective with azis H iff they share a common local complement H. We write F' ~g G or
F =~ G if the axis is not emphasized.

The test space (X, 7) is algebraic iff, for F,G,H € £, F = G and F loc H entail G'loc H.
Then & is the relation of an equivalence, and, for any A € £(X,7T), we put n(A) := {B €
E(X,T): B~ A}. Then II(X) := {n(A): A€ E(X,T)} is an orthoalgebra [5].

Conversely, for any orthoalgebra L, there is an algebraic test space (X,7) such that
II(X) is isomorphic with L, [5, 11].

For example, if X is a unit sphere of a Hilbert space H, then (X,B(H)), where B(H)
is the system of all orthonormal bases in H, is an algebraic test space, such that II(X) is
isomorphic to the complete OML L(H) consisting of all closed subspaces of H.

Let (X,7) be a test space. A weight on X is a function w : X — [0,1] such that, for
every ' €T

w(T) := Zw(w) e I

€T

A weight w is two-valued if w(z) € {0,1} for any z € T and any T € 7. A set A of weights
on X is separating if, for every z,2, € X, £, # x,, there is a weight w on X such that

w(zy) # w(zy).

We concentrate now on the relationship between partition logics with a special type of
test spaces.

Let X be a non-void set and Y a non-void family of subsets of a set X. A couple (Y, 7),
where 7 C 2Y, is said to be a partition test space of X if

(i) Every T € T is a partition of X;
(ii)) For every y € Y, thereis a T € 7 such that y € T.

Proposition 9.1 A partition test space is a test space.

Proof. We have to show that if Ty C T,, for T7,T5 € 7, then Ty = T3. It follows from
the fact that Ty and T, are partitions of X. O

Proposition 9.2 Let (Y,T) be a partition test space for X. If E,F € E(Y,T) and E = F,
then UE = F.
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Proof. Let G be a common complement of £ and F. Then z € UFE iff z ¢ UG iff
z eUPF. m]

Proposition 9.3 A partition test space (Y,T) of X is algebraic if every partition of X
consisting of elements of Y belongs to T.

Proof. Let E, F,G, H be events such that FE ~¢g F and FlocH.

For an event E,put UF := {r € X : z € y, y € E}. From E ~g F we obtain, for
reX,zeUEiff z & UG iff ¢ € UF, and from Floc H we obtain z € |JF implies
r¢UH.

(From this it follows that F' U H is a partition of X and so FUH € 7. a

Proposition 9.2 implies that every partition test space (Y,7) of X can be enlarged to
an algebraic partition test space (Y,U), where 7 C U, and U contains all partitions of X
which consist of elements of Y. The partition test space (Y,U) with the latter property will
be called a completion of (Y,T). If T and U coincide, we say that (¥Y,7) is complete.

If (Y,7T) is a complete partition test space, then for any events E, F with UE = UF
we have £ =~ F. Indeed, let JE = | F, and let G be any local complement of E. Then
UG=(UE)=X\UE=X\UF, hence G is also a local complement of F.

Proposition 9.4 Let (Y,T) be a partition test space of the set X. Then

(1) I(Y) isan OMP {f E,F,Ge EY) with ELF,F 1 G,G L E imply(EUF) L G.
(ii) T(Y) is a concrete OMP? if (UEL)N(UE;) =0 iff Ey L Es.

Proof. (i) It is evident.

(ii) According to Proposition 9.2, m(E) can be identified with UE C X. ]

Remark 9.5 The same set L can be the logic of several partition test spaces. A concrete logic
L can have a test space not satisfying the condition (ii). Indeed, let X = {1,2,3,4} and take
(YvT)v where Y = {{1}3{3a4}’{2}>{274}5 {3}}a T = {TlaT2} and Ty = {{1}!{3,4}7{2}}7
T, = {{1},{2,4},{3}}. Then II(Y) is a concrete OMP (it is isomorphic to Fig. 2) with
{2} n {3} =0, but {2} L {3}.

Theorem 9.6 A test space (X,T) is isomorphic to a partition test space if and only if it
possesses a separating family of two—valued weights.

2An OMP L is a concrete logic if it is isomorphic to a family £ of subsets of a set {2 such that (i) Q € £.;
‘() fA,BeLand ANB =0, then AUB € L.
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Proof. Let (Y,7) be a partition test space of X. If y1,y2 € Y, y1 # ya2, then (y1 \ y2) U
(y2 \ y1) possesses at least one point, say z, of X. Define a function w : ¥ — {0,1} by
putting w(y) = 1 iff z € y, otherwise we put w(y) = 0. Then w is a two—valued weight on

(Y,T), and w(y1) # w(ya).

Conversely, let (X,T) be a test space with a separating family A of two-valued weights.
Define ¢(z) ;=== {w € A: w(z) =1}, € X, and ¢(T):={d(z): 2 €T}, T € T.

Consider (¢(X), ¢(T)), where ¢(X) := {¢(z) : 2 € X} and ¢(T) :={(T): T € T}.
We claim that (¢(X), ¢(7)) is a partition test space of X, where ¢(X) C 22, ¢(T) is a
partition of A for any T' € T. Observe that, for any w € A, w(T) =1 =¥ .7 w(z), so that
there is a point zo € T such that w(ze) = 1 and w(z) = 0 for any & # zo. That is, for any
w € A and for any T € 7, there is a unique = € T such that w € ¢(z). This implies that
every ¢(T') is a partition of A. O

Theorem 9.7 There is a one-to-one correspondence (up to isomorphism) between partition
logics and partition test spaces.

Proof. Let (Y,7) be a partition test space for a set X. For any event E C T, T € T,
define u(E) := UE. We have if E &~ F, then UE = JF. Define L := {UE : E € £(Y)}.
For every T € T, u(T) := {u(E) : E C T} is a Boolean algebra. Indeed, every u(FE) is
a union of some sets from the partition T of X. For a,b € L, define a L b iff there are
disjoint £, F' € £(Y') with EUF C T for some T € T, and a = u(F), b = u(F); and define
a®b=u(EUF),a =u(T\FE)when a = u(E), ECT € T. Clearly, u(T") = X for every
T € T is the greatest elements in L (by the ordering a < biff a L o'). Clearly, L is a pasting
of Boolean algebras {u(T"): T € T}. This L will be called the logic of (Y,7T) in X.

Conversely, if L is a partition logic, that is, L is a pasting of Boolean algebras B (T;), e € 1,
where T is a partition of a set X # () for any 7 € I, then put

Y=U{y: yeT}.
i€l
The couple (Y,{T; : i € I}) is a partition test space of X, and its logic is isomorphic with
L, and the proof is complete. O

We recall that all examples in the previous section are arising by the way described in
Theorem 9.6 and Theorem 9.7,

10 Concluding remarks

We have thus far established a relationship between quasi orthoalgebras, partition test spaces
and (automaton) partition logics. Thereby we have made use of concepts and techniques used
in the foundations of quantum mechanics. These considerations may also have some relevance
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for the intrinsic perception of computer-generated universes (in “pop-science” jargon: virtual
realities), since the input-output analysis underlying the automaton propositional calculus
and thus partition logics are exactly those structures which are recovered by investigating
those universes with methods which are operational therein.
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