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On the Difference Between Conformal and
Minimal Couplings in General Relativity

By A.A.Grib and E.A.Poberii

A A Friedmann Laboratory for Theoretical Physics,
Department of Mathematics, SPb UEF,

Griboedov Can. 30/32,

St.Petersburg 191023,

Russia

(2.II1.1995, revised 12.IX.1995)

Abstract. Various aspects of conformal and minimal couplings in general relativity are studied in
detail. It is shown that the free minimally coupled scalar field has a pathological and unexpected
quasiclassical behavior. The equivalence principle of general relativity rejects the free minimally
coupled scalar field as is shown by studying the behavior of the Feynman propagator in curved
space-time. The self-interaction can “cure” the minimally coupled scalar field from pathological
behavior via the mechanism of spontaneous symmetry breaking. Some physical consequences of
obtained results are discussed in brief.

1 Introduction

Modern relativistic field theory deals with fields of different nature, the simplest of which
is a real scalar field ¢ describing neutral zero spin particles of the mass m. The action
and the corresponding Euler-Lagrange equation for such a field in Minkowski space-time,
respectively, have the form: !

B = %V/(n”"aucp(z)&,ﬂp(m) - m?‘cp2(3:)) dz (1.1)

TWe use units h = c= 1.




Grib and Poberii 381

(78,9, +m?) p(a) = 0 (1.2)
where 7, = diag(1, —1, —1, —1) is the metric tensor in Minkowski space-time.

Everyone studying general relativity encounters an ambiguity when trying to consider
the action for the scalar field in curved space-time. From one hand, following the standard
prescription of textbooks (see,e.g., [1]), when going from Minkowski space-time to curved
Riemannian with the metric g, one should only replace ordinary derivatives 8, by covariant
derivatives V,, and the volume d*z by the covariant volume /—gd*z (this is a so-called rule
“a comma transforms to the semicolon” [1]):

4, —V, ;
d*z — /—gd'z.

Then in curved space-time (1.1) and (1.2) respectively have the form:

Suin = & [ (9,0 V.0(2) - m2(@)) VG s
V=3 (g"V,.V, +m?) p(z) = 0. (1.6)

The interaction of scalar field ¢ with gravity deduced in this way is called the minimal
coupling for the reason that the field ¢ “feels” gravity through covariant derivatives only.
We have provided the corresponding action with the subscript “min”.

From the other hand, one may observe that Eq.(1.6) in the massless case m = 0 is not
invariant under conformal scale transformations of the metric: g,, — exp [2\()]gu, (A(=)
is an arbitrary smooth function of spacetime point) provided that the field ¢ transforms as
@ — exp[—A(z)]. The physical meaning of the conformal invariance is that the massless
field does not possess an internal scale of length (for a massive field the scale is its Compton
length A\c = m™!, provided that the gravitational coupling constant is fixed). This fact
indicates that for compatibility with the massless case Eq.(1.6) should be improved.

To account the conformal invariance in the massless case one must take the action

1 1

Secont = 3 f (g“”V,ch(a?)VUga(x) —m?p*(z) — ER(T)(,OZ(.T)) V—gd'z (1.7)

where R(z) is the scalar curvature of space-time. This action gives the following equation
of motion for the field ¢(z):

1
vy (9‘“’V,LV,, +m? + ER) e(z) = 0. (1.8)

The interaction of a scalar field with gravity obtained in this way is called the conformal
coupling. We have provided the corresponding action with the subscript “conf”.

Usually both cases (1.5),(1.6) and (1.7),(1.8) are written in a uniform way:
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5= [ [ V(@) Vepl@) - (m? + ER)Ha)] v gd: (1.9)
V=g (g“”VuV,, +m? + gR) o(z) = 0. (1.10)

where ¢ is a numerical constant taking the value & = 0 for the minimal coupling and ¢ = 1/6
for the conformal. But the representation (1.9),(1.10) means more than the above two cases
because, from the mathematical point of view, £ may take any real value. Thus, instead of
the above two types of couplings, we are led to a one parameter family of interactions of scalar
field with gravity. However, as we shall show below, this is not so from the physical point
of view because Eq.(1.10) for different £ leads to drastically different physical consequenses.
What value of £ is correct? Does general relativity prescribe a definite value to £, or may
one choose it according to taste? This problem has a long history and, in our opinion, has
a definite solution: the correct value prescribed by general relativity is £ = 1/6. This result
has been established in the paper of Chernikov and Tagirov [2]. Unfortunately this fact is not
widely known to physical community and there is a misunderstanding in modern physical
literature according to which the choice of the value of ¢ is a matter of taste. Moreover
in some textbooks (see for example [3]) one can find a claim that the conformal coupling
(¢ = 1/6) is wrong and the correct one is the minimal coupling (¢ = 0). Recently an
investigation in this direction was undertaken by Sonego and Faraoni [4]. They analyzed
the behavior of the retarded Green’s function of scalar field in curved background and have
shown that the correct behaviour in the limit of coinciding points can be obtained for the
conformal coupling (£ = 1/6) only.

The aim of this paper is to show that the rule “a comma transforms to the semicolon”
when one is going from special to general relativity is not so simple, and it may easily lead
one to wrong results without careful accounting of basic principles of general relativity. We
also shall try to prove more or less rigorously that basic principles of field theory and general
relativity inevitably lead to the unique value of £, namely £ = 1/6. All the other values of
£ for the free scalar field turn out to be unphysical. However, as we show in the paper, the
situation can be improved by taking into consideration its self-interaction. We hope that
our consideration will help to remove the above misunderstanding among physicists.

The paper is organized as follows. In sec.2 we analyze in detail the problem of “anomalous
R-forces” and prove that no such forces arise for the conformally coupled scalar field. We
demonstrate the drastical difference in quasiclassical behavior between conformal and mini-
mal couplings and show that the minimal coupling leads to the tachyonic behavior whereas
the conformal coupling have the correct quasiclassical limit. In sec.3 by calculating exactly
the difference between the Feynman propagator of scalar field in Minkowski space-time and
the corresponding one in Riemannian space-time in Riemannian normal coordinates we show
that it tends to zero only in the case of conformal coupling (6 = 1/6). In the case of non-
conformal couplung & # 1/6 there exists a finite remainder contradicting physical reality.
In sec.4 we study the effect of spontaneous symmetry breaking for the minimally coupled
scalar field and show that via this effect the minimally coupled scalar field can be cured
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from tachyonic behaviour. Sec.5 contains the discussion of some crucial consequences of the
obtained results.

2 The Problem of Anomalous R-forces in Minimal
and Conformal Couplings

In the literature (see, e.g.,[3]) one can find claims that Eq. (1.8) violates the strong equiva-
lence principle and leads to the appearance of anomalous R-term forces between two “scalar
charged” particles. In this section we show that the situation is quite opposite and such
claims are caused by incorrect applications of basic principles of general relativity. Let us
clarify our point of view by analyzing in detail the problem suggested in [3] indicating exactly
where the authors of [3] are wrong.

Consider the conformally coupled massless scalar field in curved space-time with a point-
like source. The equation of motion for such a field is

1 ’
v—g (g“”V“VU + ER) ¢ = mé(z, 7). (2.1)

To extract anomalous R-forces from this equation the authors of [3] suggest the following
argumentation. Let us write Eq.(2.1) in a locally Lorentz coordinate system where the
point-like source is at rest in the form

(70,0, + ZR) ¢ = ps(r). (22
Let us comment that in writing down Eq.(2.2) the following replacements were done:
vV-g—-1 ¢ =7 V,—3d, 6bg)—ér); R-R (2.3)
The correctness of these replacements is discussed at the end of this section.

Using (2.3) one immediately obtains a Yukawa’s potential solution to Eq.(2.2):

o =—"exp (——L) , (2.4)
ar/'6

~1/2

where a = R which leads to the anomalous R-force.

It is easy to see, however, that, if we find the exact solution of Eq. (2.1), we do not
obtain the Yukawa solution. Let us demonstrate this in the most simple case of conformally
flat Friedmann quasi-Euclidean space-time with the metric:

ds® = a®(n)(dn® — dI*);

2.5
di? = dz?® + dy® + d2?, (2:5)
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where 7 is the conformal time. Eq. (2.1) for the frame where a point-like source is at rest
has the form:

i )
(V.90 + 3R) p = i1~ (2.6)
6 g®

Here §(r) is the ordinary é-function but we must have 1/¢® where ¢® is the determinant of
the 3-metric, i.e., /¢ = o in the metric (2.5). Eq.(2.6) in the metric (2.5) takes the form

18% 2 ,0p 1 R 5(r)
b AT N PPNl a3 2.7
a? on? a3’ on  a? P 6" Mg (27)
where the prime denotes differentiation in 7.
Let us look for a solution of (2.7) in the form:
p—@  p=ad. (2.8)

Substituting this into (2.7), ater some calculations, we get the following equation:

1 . j;
E[SDH — AQ] = 5#15("“), (2.9)

and the static solution to this equation is the usual Coulomb potential but with the conformal
factor

Bl amd  p=-EL (2.10)
T ar

On the contrary, for the minimal coupling instead of Eq. (2.9) we have
@ .
¢ = —p—Ag | = mb(r). (2.11)

The situation is the same as if in flat space-time we had a mass term due to "‘T” # 0. This is
the reason why, contrary to [3], we have no usual massless behavior.

For a dust-like universe we have R # 0 and a(n) = agn?, so that the term "7" > 0, and

for 7 & const it has properties of m2a? < 0, i.e., of “tachyonic mass”.

Now let us return to the question: what is the error when the authors of [3] naively write
Eq.(2.1) in a locally Lorentz coordinate system in the form (2.2) by making the replacements
(2.3)7 The answer to this question has a great methodological meaning.

The operator ¢V ,V, in (2.1) acting on the scalar field has one Christoffel symbol only,
so it seems that “at the point” one can write n*¥9,0, as in Minkowsky space-time. But in
order to find a solution to the differential equation at a given point of the manifold one must
study properties of this solution in the neighorhood of the point taking into account the
boundary conditions properly. If {¢#} are locally Lorentz coordinates and {z*} are arbitrary
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coordinates, and {X*} are the coordinates of P, (the origin of the locally Lorentz frame),
then

o a 1 [0 ] v v
§*(x) = a® + 05z — X*) + 56/\1’21,()()(:6” - X" (z¥ — X), (2.12)
with a* = £%(z) B = %i; :
=X =X

Also

Fg’w(é”) £3‘= _'% ( gw(g ) 'rﬁ.u(g'u))

Then, for " # £*(Fo) = &, quantities I'§ (£*) are not zero and the simple replacements
(2.3) are correct at the single point only, namely at the origin of the frame. This means
that, in order to obtain a solution to Eq.(2.1) with a source term in the {£*} coordinates
valid for a neighborhood of the origin of the frame and taking into account the boundary
conditions properly one must solve instead of Eq. (2.2) a very complicated equation in these
coordinates. The problem is not so simple in general but if this is done carefully (as we do
it in the next section) one must obtain the correct result founded in this section for the case
of conformally flat manifold.

Now let us discuss for this case the quasiclassical behavior when ¢ has the form

o= lpe}cp (z-s—) . (2.13)
a h
Then for the conformal coupling we find the following equations valid up to the order A~

9S dS i aS 88

on on — O; 07,
{85’ as 2 8S as } .
=

=0 for m = 0; (2.14)

on On - Ox; Ox;

for m#0, (2.15)

which is just
0005 0S ; 08 85 3

on on g’ ox; (93']

For the minimal coupling we obtain

{88 as & a8s 85} a’ R

ittt = —— = ——, 2.16
on on IZ: Oz; Ox; a3 6 (2.16)

So, it is easy to see that geodesics for these particles cannot live on light cones. Even
worse, they can be spacelike.

Before ending this section we find instructive to discuss how to solve Eq.(1.8) for m =0
in the coordinate system used by astronomers. To do this, besides the sinchronous reference
frame
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ds® = dt? — a®(t)dl* = c2dt® — a*(t)[dr? 4 r?(sin® §'dp® + d6'?)) (2.17)

connected with the conformal one by cdt = adn, we introduce another coordinate system
where the space distance is given by D = a(t)r, so, that

dD = adr + rda (2.18)

and

. 2 .
ds? = (1- D*——)cdt? + 2D—dDecdt —
c2a? ca
dD? — D?(sin? 8dy® + db?). (2.19)

The advantage of the reference frame associated to these coordinates is that for the observer

a :
on the Earth, when € = D— is small, one has a good approximation to the Minkowski

ca
metric, and only for large enough D one has curved spacetime. Really, we can use the
parameter ¢ as a small parameter. Let us write equation (1.8) in these coordinates. From:

Dé\?
=]}

2\ 2.20)
gor = 2D (EQE) 19 = —1; 900 = —D?, (@
9pp = —D?sin? ¢’

and using the relations
97 gr0 + %900 = 1
990 +97g0=0 (2.21)
29"°gor + 9" grr = 1

we obtaln

. 2D
= —e (2.22)
1+7(DE)
Then, in the first approximation in € we have:
Or a
¢ =2D— = gor (2.23)
ca

Putting this into eq (1.8) for m = 0, noting that terms depending on £? after differentia-
tion still will contain e, we can put them away when £ — 0. The only term which cannot be
put away is the one containing derivatives in D of ¢. So, taking for ,/—g the Minkowski
value, we obtain the equation:
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1 62 a d R

—_— = A —_— —p = »
[czatz ] (p+2ca6t('0+ 67 0 (224)

So, the nondiagonal components gy, lead to an extra term in the approximation € — 0.

But in order to solve this equation we must take

1
== 2.2
¥ a‘P (2.25)

which, as in the previous case of conformal time, immediately leads to the cancellation of

the 3 term, so that we end with:

1. 1,

a o
c?a Ot

R . a
can see that for usual cosmological models we must put away the term — if we take . the

R . . ,
Can we put away the term 2 i but retain the i term? From Einstein’s equations, we

Hubble’s constant, equal to zero. At the modern epoch of evolution of the universe we can
do this and use the Minkowski metric as a very good approximation near the Earth.

But for R large enough in the early epochs one cannot do this. But, then, the nondi-
agonal terms g% # 0 lead to the impossibility of having a unique time and to define space
distance unambiguously. It follows that we cannot write the usual §(r)-function for the
charge distribution and eq (2.2) does not have unambiguous sense.

At last to finish the story about “Yukawa forces” for the conformal massless case we con-
sider the de Sitter universe. As is well known, the de Sitter metric can be written, depending
on coordinates used, in nonstationary or stationary forms. In “curvature" coordinates the
interval can be written as

P r2\ 7 ;
ds? = (1 — —2) dt* — (1 - m) dr? — r*(sin® 8dy® + d6?) =

ap ap
r? r2\ 7!
(1 - —2) dt® — (1 - —2) dr? — r’do’ (2.27)
ap ap
a
In “orispheric” coordinates it can be written as (2.5) with a(n) = ;0.

In the synchronous reference frame one has due to a(n)dn = dr that apfnn = 7 leading

|
to a(7) =exp——7, and for k=0
Qo

ds* = c*dr? — e_%f;'(a!)(2 + x?(sin® 8d? + d?)) (2.28)
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Here we use notations 7, x instead of ¢, used for the stationary case.

The connection between coordinates 7, x,t,7 is given by the following formula. First
from t,r one goes to

—a
(2.29)
d
R=t+ ] =4
(1-2)f(r)
and f(r) = -ai. Then
0
R — T =agbnr (2.30)
and R
e (B1) 23
o
The interval (2.27) is written as
2 T
ds® = dr* — :_3dR2 — r’do? = dr* - e":_o(d!)(2 + x°do?) (2.32)
, R
if x = exp (—-)
Qg

But then it is easy to write our general solution of the Klein-Gordon equation for the
massless conformal coupling case as:

1 1 R -
p=—— Bl exp (—T) exp (—E) = — 1 €Xp (— T) =2 (2.33)
a(t) x ag ao Qo T

so it is just the usual Coulomb potential and we consider this to be the end of “Yukawa-like"
forces for the massless conformal coupling case!

3 Feynman Propagator in Curved Space-Time and
the Equivalence Principle

In flat Minkowski space-time the Feynman propagator for the equation

(78,0, + m?) p(z) = b(z, ') (3.1)
has the form [5]: 2
1 71 _ oM(x,x'
GY¥(z,z') = (4n)? / Tl {—z [mzs + -—~LQ—;~—~)*] } ds (3.2)
0

?We have provided all important quantities referred to Minkowski space-time with the superscript M.
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where oM (z,z') is the half of the square of the interval between the points z and z':

1

oM(3,5) = Sn(a* — o) (@ — 2

) (3.3)

G¥(x,z') is a complex function and can be decomposed in real and imaginary parts:
¥ (2,2') = GM(2, ') + 3G (z, /) (3.9)

where GOM(z, z') is the Hadamard function in Minkowski space-time.

Now let us turn to the curved space-time. Here instead of (3.1) one should solve the
following equation:

V=9 (¢VuV, +m’ + £R(z)) o(z) = b(z, ) (3:5)

This problem is not so simple in arbitrary curved space-time, so that the solution in general
can be found in the WKB approximation [5, 6, 7]. The corresponding Feynman propagator
Gr(z,z") in curved space-time has the form [7]:

oo

LA Fds (T @)\ &
Ge(@7') = o G/ S—2exp{—z {m s+m—]} S an(z,2) (is) (3.6)

2s =0

where o(z, z’) is the so-called geodesic interval equal to the half of the square of the geodesic
connecting the points z and z’ in curved space-time:

n v\ 1/2
dz d:c) , (3.7)

A
o(e,a') = /2 1= ] ax (ga:\—ﬁ

2 /
0o(z,z')
dxtozY

decomposition satisfying recurrent equations.

AV3(z,z') = —det ( ) [9(z)g(z')] 72, and a,,(x, z') are the coefficients of the WKB

3

As in the flat space Gr(z,z’) can be split in real and imaginary parts

Gr(z,7) = G(z,7') + %G(I)(m, z'). (3.8)

Now let us apply the equivalence principle to Eq. (3.6) which states that in a local
inertial frame of reference all the gravitational effects disappear. This means that in such a
frame there must be no difference between (3.2) and (3.6).

Let us introduce in the neighborhood of the point z' a system of Riemannian normal
coordinates y* for the point = with the origin at z’. In such coordinates the decomposition

3For simplicity we do not write down these equations. Details can be found in [5, 6, 7).
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of the metric tensor g, has the form [6]:

1 1 o
Iw(T) = N+ gRuavﬁyayﬁ = E(V’YR#aVﬁ)y 9697
1 2
i i _V'YV(SR;Lavﬁ + _Rauﬁ)\R;\«uﬂ yay5y7y6 + o (39)

20 45

where 7, is the metric tensor of Minkowski space, and all the coefficients are calculated in
the origin of the frame (y = 0).

To what extent can one use these coordinates as locally Minkowskian? Let in the neigh-
borhood of z’ one has

RPEPAR s v g (3.10)

where p is a characteristic curvature radius. Then, as is seen from (3.9), our frame will be
locally Lorenzian up to the distances of the order of p from the point z’. All the gravitational
effects in such a frame will be contained in terms of the second order and higher.

Let us use the DeWitt decomposition of the Feynman propagator in curved space-time
[5] taken in the Riemannian normal coordinates (3.9) and compare it with the analogous
decomposition in Minkowski space. Then, for the difference Gg(z,z') — G¥(z,z’) we have:

)01 = o o) (3](3 -9 e (- 6) o]

+ 01(y*/p?) - 8 (M (=,2)) — Oa(y?/p) - 0 (—0™(x, 7))

+ Os3(y*/p%); (3.11)
GO (z,z") — GOM(z,2') = ——2% (fy - %1112 + % In |2m20M(:c,$’)|)

X

({T6-gn-4-9nrl)
1 {[az(m,m')+G3(I:$')_’_a4($’m’)+..} +}

2?2 4m? 4mA 2mS$

+ O4(y?/p*)

1 1
— L O«(v?/0%) —
dogM (z,z') +Os(y"/p) 272

1 1
X (ﬂ/ - 51112 + —2—ln |2m20M(at,ar')[) +06(y*/p%)  (3.12)

where terms O;(y%/p?), i = 1,2,3,4,5,6 contain corrections of the order of y%/p? and
higher. We see that for £ # z these differences have non-gravitational origin because all
gravitationally induced corrections are gathered in terms O;(y?/p?). For £ = 1/6 we have no
difference between Gr(z,z’) and G¥ (z,z') up to the order of y*/p?.

The second term in (3.12) has also a pure gravitational origin. Really, introducing the
Compton length of a particle, \c = m™, one can represent this term in the form
1

5 {m2 [Xéag(:c, ') + A&az(x, ') + Adaqy(z, :c')] +.. } :
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Of the order of magnitude the products AZ*a,,(x,z') are

')‘%nan(x: .’IJ’) ~ ()‘C/p)zn ?
so that this term is responsible for particle creation by gravitational field.

Therefore we see that for & = ¢ the difference Gp(x,z') — Gif(z,2) in Riemannian
normal coordinates is completely induced by gravitational field that is in accordance with the
equivalence principle, whereas for £ # % it contains terms violating the equivalence principle.
From this we conclude that general relativity does prescribe the definite value £ = é for
interaction of gravity with scalar field. The “minimal coupling” for the free scalar field turns
out to be unphysical. In the next section we discuss how this situation can be improved.

4 Spontaneous Symmetry Breaking of the Minimally
Coupled Scalar Field in Curved Space-Time

Now let us investigate what happens if we shall try to account a self-interaction of minimally
coupled scalar field. For simplicity consider the massless field with the action

* /\ *
5= [ V73|00 - oo e (41)
The corresponding Euler-Lagrange equation is

A
VoV + 20" =0 (4.2)

Consider the most simplest homogeneous Friedmann metric
ds* = a®(n)(dn* — dl®) (4.3)

where 7 is the “conformal time”: dn = a(t)dt, and the spatial part dl” of the metric has the
form (7, 8, ¢ are spherical coordinates):

_ dr?
1 —kr?

dl’ — r? (d82 + sin® 9dg02) (4.4)

where k = +1,0, —1 for closed, Euclidean, and open space respectively.

Let us denote by |0 > the Heisenberg vacuum state defined at ¢ = 0. From the spatial
homogeneity of the metric it follows that, if the vacuum expectation value < 0|p|0 > is
nonzero, then it can depend on t only (hereafter we shall use the conformal time 7):

< Olep(n, z)|0 >=< 0lp(n, 0)|0 >= g(n) (4.5)
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Its nonzero value means spontaneous symmetry breaking. Let us show that such a situation
really takes place.

Averaging Eq.(4.2) in the state |0 > and setting (in the tree approximation)

(01p"%[0) = (0]¢"[0) (0lp]0)* = g°, (4.6)
we can write it in the form g
2 1
9"+ 7&9’ + _;1_93 = 0. (4.7)
Making in this equation the replacement
3 f(n
o =352 (45)
we obtain for f(n) the equation of Duffing’s type:
n
”_%f+f3:[)_ (4.9)

If %” > 0 then this term plays the role of negative mass. It is well known that for GT” >0
the trivial solution f = 0 to equations of such type is unstable. To find exact solutions to
Eq. (4.9) is not a simple problem. Nevertheless it is possible to investigate the behavior of

solutions to this equation in physically relevant situations.

For this goal consider the effective potential V(f) corresponding to (4.9)

Vi) =1f* (;f . —) . (410

This potential has minima at f = f, where

" m\ 2
fomtyfZ vt =3 (%) (4.11)

so that f = fy turns out to be energetically preferable compared to f = 0. But the problem
is that f, depends on 1. Nevertheless it is reasonable to take this value at the initial moment
of time to define initial conditions.

. " 2 4 8
Consider now the case % =const (for example, it corresponds to the Miln universe for

k = —1, but our consideration does not depend on k). Let us pass from the field ¢ to the
fields ¢9 and ¢, with nonzero vacuum expectation values:

1 . 6 fi
‘PZE(%—H%) ; ‘szﬂpl —\/;EO- (4.12)

Substituting (4.12) into (4.1) we find (¢- numbers and 4-divergences are dropped out):

! v 3f8 o2 fs
S =3 / d'z/~g [9” Qupi0t = —F Q1 + 9" Bupaduipr = ~3 03

2X 1 2 A g2
-~ \/gzoao?(ﬂp? +¢3) = 5 + )’ (4.13)
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Therefore, due to the spontaneous symmetry breaking instead of the massless field there
arise two real fields with masses

my 2

35 f3
2= ol (4.14)

For the de Sitter universe where a(n) = ao/n and k = 0 one obtains the constant masses:

2 _ 6
m1'~—_2-,
ap

me = (4.15)

EX®

From different considerations the similar result was obtained within the framework of infla-
tionary model in [8].

It is easy to see that these masses have a purely geometrical origin because

g S (4.16)

Equations of motion following from (4.13) drastically differ from the free minimal coupling
case. Their main feature is that now they have correct quasiclassical behavior. Really, taking
quasiclassical approximation for 9 and ¢, in the form

1 S 1 5.

@) = —pexp ('L——l) , (P2 = —pexp (2-3) (4.17)
a h a h

one obtains for S; and S, respectively

"
00951051 ;05105 _ §+%=2(E——k—)=2a—20, (4.18)

on On Yoo T a

00$108, _

on On ozt Ox?
so that 9 describes the massive particle and ¢, corresponds to the Goldstone massless
meson.

ijaSZ%:mg_E+£m0, (4.19)

If the initial mass of the field is nonzero and the curvature is large enough then one
obtains similar results with

a
fo = 44/ — — m2a? (420)
a
for the epoch when ‘%: > m2a?.
As is easy to see the above consideration is correct also for %~ s#const at any given

a
moment of time 7 = 7y or within the interval ny < n < m; where 2 is slowly varied.

Therefore the self-interaction can “cure” the minimally coupled scalar field from patho-
logical behavior via the mechanism of spontaneous symmetry breaking. Here we have some
sort of “tachyon conspiracy”: Nature prohibits observation of classical tachyons.
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5 Concluding Remarks

From our consideration it is seen that for the massless case there are serious reasons to take
the conformal coupling for a scalar field in curved space-time. For the massive field, if the
scalar curvature is large enough, the conformal coupling is also preferable if one does not
want to deal with the “tachyonic type” behavior. Nevertheless, if one takes into account the
self-interaction for the minimal coupling, one can have the spontaneous symmetry breaking
effect leading to the change of the physical mass of the scalar field, so that there will be no
“tachyonic” behavior as it is in the usual case for the Goldstone model.

It is well known that the minimally coupled massive scalar field is important in the
inflationary scenario where it plays the role of the “inflaton”. Its unusual properties are
also used to obtain galaxy formations in the Friedmann universe due to the growth of small
primordial fluctuations in the de Sitter stage. That is why we think that our remarks are
important for understanding the inflation scenario.

Despite that the conformal coupling is preferable there are cases when one must deal
with some kind of the minimally coupled scalar field. These are cases of gravitons and vector
massive mesons. As is known the equation of motion of the graviton is not conformally
invariant [7], so that for R # 0 they are not really massless particles. For the longitudinal
component of massive vector bosons in curved space-time one also has the minimally coupled
equation. Therefore both gravitons and massive vector bosons in curved space-time with R
large enough must have features described in this paper, and we think that nonlinear terms
(the self-interaction) must be taken into account.
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