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Abstract. We first show the self-averaging property in the sense of almost sure convergence for the
free energy of the spin glass model and of the Hopfield model with an infinite number of patterns.
Then we prove the strong law of large number(SLLN) of the free energy in the Hopfield type
model with finite number of patterns. Here the Hopfield type model implies that the interaction

among neurons is higher order, the patterns embedded in the neural network are assumed to be

independent random variables rather than only taking value +1 and —1 and i.i.d. The model with
weighted patterns is certainly included in. The SLLN of the free energy in the Little model is

proved. The convergence rate for above two cases is also estimated.

Introduction

We deal with the problem of convergence of the free energy /at, associated to a large class

of important models of disordered systems, to its mean value (P/at) with respect of the
probability distribution of the disorder when the number N of components of the system
goes to infinity. We consider models of systems with a random interaction described by
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an assigned probability distribution. We call self-averaging the above convergence. This
property is important because the free energy contains the main information about the
system and we want to know whether its main features depend on the particular choice of
the disorder or not. Also we look for what kind of convergence one has i.e. if /at —? P/at in
probability or almost everywhere with respect to the disorder. The disordered systems we
are concerned with are the neural networks systems (Hopfield model [2] [7]) and the spin glass

model[13]. The neural neworks models are interesting because they exhibit the property of
associative memory which is fundamental for the development of artificial intelligence. The

spin glass model is connected to the neural networks since they share many properties with
each other.

The self-averaging property for the free energy of the Hopfield model with a finite number

of patterns has been proved in [3] and there the convergence was shown to be almost
everywhere. Also the large deviation has been established for this model[9] [4], In [17]

the self-averaging property in probability is shown for the Hopfield model with an infinite
number of patterns p such that p/N —> a as N —> oo, a a constant. This property was
used in [16] for obtaining further important results. Pastur and Shcherbina [15] proved the
self-averaging property also in the mean square sense for the free energy of the spin glass
model. We improve the results in [17] and [15] showing the self-averaging property in the
almost sure sense for the free energy of the spin glass model and the Hopfield model with
p/N —» a, as N —> oo, which is the content of section 2 and section 3.

In section 4 and section 5, we consider the property of the free energy in the Hopfield
type model, i.e. the patterns embedded in the model is only assumed to be independent and
the interaction among neurons is higher order ([1] [8] [10] [14]). Based upon the similar idea
as above, under the restriction of the finiteness of the expectation of the fourth order of the
imbedded patterns, we proved the SLLN, or self-average in the a.s. sense, for the free energy
of the model. It is well known that the equilibrium of the Hopfield network is achieved in
terms of asynchronous dynamics[2][ll][12]. If we realize the retrieving dynamics in terms of
the synchronous dynamics, which is called Little network, the free energy of it is different
from that of the Hopfield type network. In the present paper, we also showed the SLLN,
or self-average property in the a.s. sense, for the free energy of the Little network. The

convergence rate is estimated in above two cases.

2 Models and Results for Hopfield and Spin Glass
Model

2.1 Hopfield Model

For a given nonnegative number a, suppose that £f ,i 1, • • ¦ ,N, p 1, • • ¦ ,p with

lim ¦£ a (2.1)
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are i.i.d. random variables taking values in { — 1,1}. The connection strength Ty is obtained
by the Hebb learning law [2] [6] [7], i.e.

iy ß=i

The Hamiltonian for the Hopfield model is defined by

HhN(t,S) -Wt>AS> ~ET,^iSiSi (2-3)

where 5 (Si, ¦ ¦ ¦, Sn), Si is the neural activity of the i-th neuron, Si ±1,i 1, ¦ • •,N.
The partition function and free energy are given by

ZhN(0= E eM-ßHNtt,S)) (2.4)
S€{-l,l}w

and

fhN(t) -^ogZhN(0 (2.5)

respectively. The purpose of the present paper is to prove the self-averaging property of the
free function fN(£).

In [17], it is verified that
E(EfhN(()-fhN(O)2-*0 (2-6)

as N goes to infinity, here we prove that

Theorem 1 Va > 0, we have

EfhN(O-fN(O->0 as. (2.7)

Because of the boundness of the free energy, we see that the conclusion in Theorem 1

implies the Theorem 1 in [17], i.e. conclusion (2.6). Combining Theorem 1 and Theorem 2

in [17], we obtain immediately that

Corollary 1 If p/N -»OosJV goes to infinity, then

1 C2
lim In(0 min[--log2cosh^C+ —], a.s.

N—>oo C h Z



(2.11)
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2.2 Spin Glass Model

The Hamiltonian for the spin glass model is

Hsn(J,S) -\EJ'ASj (2-8)
«Vi

where the J's are independent Gaussian random variables with mean zero and variance l/N
JlJ J1„i,j l,---,N. (2.9)

Let ZN(J) be the partition function defined by

ZsN(J) zZeM-ßHsN(J,S)) (2.10)
s

and f^(J) he the free energy, i.e.

mJ) -j^l°ezZeM-ßHsN(J,s))

-~^zN(J).

We have the following theorem similar to Theorem l(see [15], Theorem 2).

Theorem 2 For the free energy of the spin glass model, we have

EfsN(O-m)^0 a.s.

The conclusion in the Theorem 2 implies the Theorem 2 in [15] because of the boundness
of the free energy of the spin glass model.

3 Proofs of Theorem 1 and Theorem 2

In order to prove the Theorem 1, we first rewrite Ef^(i) — fN(i) in terms of a sum of a

sequence of martingale difference.

EfhN(0-fN(0 EfUO-E(m)\ri(N)) + E(fN(0\fi(N))
+^... + E(fN(o\rN-i(N))-fN(0

(31)
zZlE(M)\^-i(N)) - E(fN(0\MN))]
k=l

where the sigma-algebras {Tk(N), k 1, • • ¦ N} are defined in the following way:

T0(N) {d>,fi},

W) {il, j<k, p=l,---,p}, k l,---,N. y->
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Note that the sigma algebra Tk(N) dépendes on N since p ~ [aN],

Furthermore, let ipk(N) l/ßE(logZN(()\fk(N)) - l/ßE(\ogZhN(i)\Tk-i(N)), we have

EfN(Ì)-fN(Ì) ^zZMN). (3.3)
k=l

Hence for fixing N and a, {iFk(N)} is a family of increasing sigma algebra with respect to
k and {ipk(N),Fk(N), k 1, • • •, N} is a sequence martingale difference.

Lemma 1 Vg > 0, an integer, Eipk(N)2q < C,k 1, ¦ • •, N where C is a constant independent

of N.

Proof As in [17], define the Hamiltonians

m,S) -^j: E tftfrSi (3.4)

',l*k

obtained by dropping the terms with Sk in HN(i,S), and

Hk(i,S;t) Hk(i,S) + tRk(i,S) (3.5)

where t G R1,

M,S) 4EE«^ (3-6)

Hence Hk(i, S; 1) HN(i, S), Hk(i, S; 0) Hk(i, S). Let

^ ^1Og^(Pfc(ç,5;0))= V°g ZW(Ä«,5))
(3-7)

for Zm(H) representing the partition function with the Hamiltonian H defined similar to
that in section 2.

^From the independence of Hk(i, S; 0) and Ìk,p 1, ¦ • • ,p, we see that

^E(logZN(Hk(i,S;0))\Tk(N)) ±E(logZN(Hk(i,S;0))\fk-i(N)). (3.8)

Hence we can rewrite ipk(N) as follows

MN) ^E(\ogZN(i)\Fk(N))-^E(logZN(i)\Fk-i(N))

ip(log ZN(i)]Tk(N)) - -ßE(\og ZN(i)\Tk-i(N))
(3 g)

-^E(logZN(Ék(Ì,S;0))\Fk(N)) + ±E(\ogZN(Hk(i,S;0))\Tk-i(N))

-E(h(i, \)\rk(N)) + E(h(i, l)\Tk-i(N))
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which, togehter with the basic inequality (a + b)2q < 22q~1(a2q + b2q) for a > 0, b > 0 and the
Jensen inequality E((fk(i,l))2q\Tk(N)) > [E(\fk(Ì, l)\\Fk(N))]2q, imply that

Eipf(N) < 22q^E([E(\fk(i,l)\\Tk(N))]2q + [E(\fk(Ì,lWk-i(N))]2q)
< 22^E(E(fk(i,l)2q\Tk(N)) + E(fk(i,l)2q\Tk.i(N))) (3.10)
< 22qE(fk(i,l))2q.

On the other hand, we note that

¦^m,t)<o, (3.11)

and fk(i, 0) 0. One thus obtain that

h(i,i)'<h(i,i)<fk(i,oy. (3.12)

We can use the following formula

f iy ZsRk(i,S)exp(-ßHk(j,S;l))
' ZN(Hk(Ì,S;l))

1 Es EMEjjtk JkSkjjSj exp(-ßHk(j, S; 1))
,g ^,

iV ZAr(â*«,5;l))

-^»(EE«5i)
where we use P! to represent the expectation with respect to the random probability measure

eM-ßm,S;D)
ZN(Hk(i,S;l))

on {-1,1}^ and

f oy EsRk(i,S)exP(-ßHk(j,S;0))
{ ]

ZN(Hk(i,S;0))
E E E tïSktfSj exp(-ßHk(i, S; 0))

1 s ß rfk (3.15)
N

~

ZN(Hk(i,S;0))

ß ]£k

where P0 represents the expectation with respect to the random probability measure

a ' ZN(Hk(i,S;0))
y

Next we are going to estimate two terms fk(i, 1)' and fk(Ì,0)' above. Because of the sym-
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metry of the H and of its E-expectation with respect to the indexes, we see that

E(fk(i,l)')2" P((P1E^Ä5()2')
tyk

< E(Ei( £ TkhSh---TkhqSl2q))
h,-;hqïk

^E(M E E Tkh---TkhìSh---Sl2q)) (3.17)

hi—,hq-2¥zk hq-lìhq
< E(Ei( Y \\T\\2Tkh---Tkl2q_2S!l---Sl2q_2))

h,—,hq-2+k
< •••<PIIPII2'

where ||T|| is the largest eigenvalue of the mtrix T. ^From Lemma 4.2[17], we have that

P||T||2î<Ci (3.18)

where Ci is a constant independent of N. Furthermore, we have a similar estimate for

fk(i,oy

E(fk(i,o)T < -Le(Eo( E E eC^-'-C'C5^))
h,---,l2qïk Pl,-,P2q

< j^ E i + j^ewj: E s.C«1 (319)
¦ ' ¦ Shq-lihl-lShgihl))

< C3a2«+ <J4P||T||9
< c2

where C2,C3 and C4 are all constants independent of N. So we have finally proven the
Lemma.

Now we are able to prove Theorem 1.

Proof of Theorem 1 To prove the theorem, according the definition of almost surely

convergence and equation (3.3), we only need to consider that

P(^Pkl<NÌf\EMN)\>e) < EktKNPihYMWZe)
- N k=i " iv k=i (3.20)

< v E(J2tiMN))4
S Lk!<N £4^y4

^,From the Burkholder inequality [5], we know that

E(ZtiMN))4 < b2EÇ£MN)2)2
k=l

< 62P(f>(A04)(E 1) (3.21)
k=l k=l

< b2(]VEMN)4)N
k=l
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where b2 18(4)3/'2(31/'2) is a constant independent of N. From Lemma 1 and the inequality
above, we yield that

pr,,m l\r» ù(mi>A < v EÇZtiMN))*
^AsuPfc!<JV 771 E/t=i WK-A)! > e) < Ea^jv -

< k'EkiKN
Ci + C2 (3.22)

e A2
—+0

as ki goes to infinity.

Proof of Theorem 2 We omit the proof of it here since it is similar to that of Theorem 1.

4 Models and Results for the Hopfield type model
and the Little model

Suppose that {i?,/J, l,---,p,i 1,---,N} are random variables and {ii,p 1, •¦-,»}
are independent for different i, where p is fixed and finite. In the terminology of neural
netwrok {£f,i 1, • • •, N} is called the p-ih pattern, embedded in the neural network in
terms of the Hebb law as in section 2, i.e.

1 p

!1'"'r AJr-l Z-, »t'iStj ' ' "
S,iT V*-*-)

JV ß=l

and to be retrieved, where t'i, ¦ • ¦ ,iT 1, • • •, JV, r is a fixed number. For each S e {—1,1}",
we associate a Hamiltonian

Hn{Ì,S) — E T,1...,rSi1S,2--- Sir
!V'2#-Vir

1 " (4-2)
— E lyr-1 E &i StJ

" " ' *Mr ^«1 6fj • " * '-'•V

to it. So TJj...,•,., ii, • • •, ir 1, • • •, JV are r-order interaction among neurons. Let Z^d) be
the partition function defined by

Zn(Ì)= E exph/J/fo&S)] (4.3)
se{-i,i}N

and /jv(0 be the free energy, i.e.

1 (4-4)
-^7log E exP[-/?Pw(£,S)].

^iV Sg{_l,l}AT

Now we state one of our main results of the present section
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Theorem 3 i)If E\tf\4 < M < oo,Wi,p, we have

lim\fN(Ì)-EfN(Ì)\=0, a.e.
N—?oo

ii)If E\ii \2q < M < oo, i 1, • ¦ •, JV, p 1,- ¦ ¦ ,p and q an integer, we have

bq22qp2qMr
E\fN(Ì)-EfN(Ì)\2q<

Nq

wherebq \8(2qfl2(2q-lfl2.

As a simple Corollary, we obtain the self-average property for the Hopfield model with
higher order weighted patterns.

Corollary 2 If (a^^f,^ +1 or, -1 i 1, • ¦ •, N, p 1,- • - ,p and i.i.d.,where
aß,p 1, • • • ,p are positive constants, we have

lim \fN(i) - EfN(i)\ 0,
N—*-oo

and

E\fN(i)-EfN(i)\2q<h^lMr
where bq 18(2q)3>2(2q - l)1'2.

Next, we consider the SLLN for the Little Network, in this case the Hamiltonian is[2]

HN(i,S) «Eloglcodi/?£(«)] (4-5)
" «=1 3=1

for S (Si, ¦ • ¦, Sn) and Ty defined as before, i.e.

j~\0, i£i=j.

Remark 1. In fact, we can obtain the same conclusion for high order Little network, we
consider 2-order case here only for the simplicity of notation.

The partition function and free energy are defined respectively by

Zn(() E exp(-ßHN(i,S))
se{-i,i}N

N N (4.6)

E exp{Elog[cosn(/?ET'J5'j)]}
se{-i,i}w f=i j=i
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fN(i) ~iogZN(()
1 n n (4.7)

_^?log E exp{Elog[cosh(/3E7iJ5'j)]}-
P1S S€{-1,1}" «'=1 3=1

As in the case of Hopfield model, we have the following self-average property in the a.s.
sense for the free energy in the Little network.

Theorem 4 i)If E\t£\4 < M < oo,Vi,p, we have

lim \JN(Ì) - EjN(i)\ 0, o.e.
JV—t-oo

it)If E\£i \2q < M < oo, %'¦¦ 1, • ¦ •, JV, \i 1, ¦ • • ,p awe? g an integer, we have

E\jN(i)-E7N(ir<bq24q^M2

where bq 18(2ç)3/2(2ç - l)1/2.

5 Proof of the Theorem 3 and Theorem 4

The main tool we emploit here to prove the Theorems is similar to that in section 3. So we

only sketch the proof here. Rewrite /jv(£) — P/jv(^) in the sum of a sequence of martingale
difference.

(5.1)

(5.2)

EfN(Ì)-fN(Ì) EfN(Ì)-E(fN(Ì)\Ti) + E(fN(Ì)\Ti)+
¦¦¦ + E(fN(Ì)\fN-i)-fN(Ì)

z2lE(fN(Ì)\fk-i) - E(fN(i)\fk)]
k=l

where
Po {$,fi},
•Pt {ij,j < k,p l,---,p)

for k 1,---,JV.

Let us consider each term of the equation (5.1)

p (MOIPfc-i)-PCMOI^)
Ih^logZ^OI^-O + ^aogZN«)^*)] (5.3)

jfM*)
where V*(/V) l/ßE(\ogZN(i)\Tk) - l//?P(logZN(0|P*-i).
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Hence we have that

EfN(Ì)-fN(Ì) ^EMN) (5.4)

and note that only for fixed JV, the sequence {ipk(N),Tk, k 1, • • •, N} is a sequence of
martingale difference due to the fact that

E(iPk(N)\Tk_i) -ßE(E(\ogZN(i)\Tk)\Tk-i)--ßE(\ogZN(i)\rk-i) (5_g)
0.

Lemma 2 If E\if ]q < M < co,Vi,/*, we Aawe that

E]ipk\> <2qpqMr, k=l,---,N.

Proof Define the Hamiltonian

4%,^) --^ E ètftë-tfS^-Sr (5-6)
>'n"29'-3"r M=l
«l.t2,.".»r^*

for fc 1, ¦ • ¦, A. Note that PJ^ is obtained by cancelling all terms ralated to ££, /u 1, • • • ,p
in HN(i,S), i.e.

PJV(^,5) PJvA)(^^ + ^)U^) (5-7)

for

R{n\ì,S) --k4zì E ê^-^*5i,---Sir.
JV ;29î-9"r ß=l

i2,-,ir*k
Let

f(t)m__ii Esexp(-/JP^(^,5))' {°~ ß eJlSexP(-ßH^(i,S)y
then we have the following expression for tpk(N), k 1, • • •, N

(5-8)

MN) ^E(logZN(i)\fk)-}-E(logZN(i)\fk-i)

^E(logZN(i)\Tk) - -ßE(\ogZN(i)\Tk-i)

-\E[\og^M-ßH(N\i,s))\rk]
" s

+ ìp[log£exp(-/3P«(c-,S))|Pfc_1] (59)

lm ESexp(-ßHN(i,S))
ß [0gZseM-ßH(Nk)(i,S))\

lpn ESexp(-/?P^,g))
P ESexp(-ßHN (Ì,S))

-E(f(k\i)\rk)--ßE(f(k\i)\Tk-i)
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where in the second equality, we use the independent of {Ìk,p 1, • ¦ • ,p} for different k.

Therefore, after processing the same as in inequality (3.10), we have that

E\MN)\g < 2qE\fW(i)\q (5.10)

On the other hand, we note that

|fWM)| - il W Esexp(-ßHN(j,S))" lf)l - ßli0gEsexP(-ßH^(i,S))1

ln Es exp(-ßH^(j, S)) ¦ exP(-ßBp(j, S)),
ß Zsexp(-ßH$\i,S))

Zsexp(-ßH(Nk)(i,S)).ex?[-^ E E ItfIKSI • • ' ICH (5.11)
- <2*-*ir ß=l1 * i2,-,ir*k

ZseM-ßHF(i,S))
< i E E Itflfêl •••Isti-

iV h*~*ir ß=l
«2,--,!r**

(5.12)

Hence we derive that

£i^(A)i' < 2q(-^)«pq-i±E( e i«i-o'
< 2»(-i)V_1 EC^1)'"1 E £|tflW---l#l'JV (i=l ¦Jî'- -^'r

zv-^E E ^r
JV 0 ia)<--5(.V

•V-.'V**
< 2qpqMT.

Now we are ready to prove Theorem 3.

Proof of Theorem 3

i). We omit it here since it is the same as in the proof of Theorem 1.

ii). From equation (5.4), we see that

E(EfN(i) - fN(Ì))2q E^(f: MN))2q
JV k=i

After repeating the similar procedure of the proof of i) and by using of Burkholder's inequality
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again, we have

E(EfN(i) - fN(i))2q < E±-bq(J:ipk(N)2q)N^

\ k=1 (5-13)

A'
where bq is the constant in the Burkhold's inequality.

Proof of Corollary 1 We only need to check that the conditions in Theorem 1 is fulfilled.
In fact, it is straightforward.

Proof of Theorem 4 After taking similar procedure as the the proof of Theorem 1, we
arrive at that

E7n(Ì)-7n(0 ^ÌZMN) (5.14)
iv k=l

where

$k(N) p-E(\ogZN(i)\Tk)-±E(\ogZN(0\Fk-i)

-ßE(tk)(i)\7k) - -ßE(fk)(i)\Tk-i)
(5.15)

for

7«(£) -I log
£«{i,-i>" expK'=i loë(cosh(/3 Ef=1 TijSj))]

ß Es6{i,-i}wexP[Ei7tilog(cosh(/9E^fcî1iiS'j))]'

Therefore, again after processing the same as in the inequality (3.10) we have that

and

E\tpk(N)\* < 2qE\fik)(i)\q (5.17)

J{k)(i) -^log{ E exp[Elog(cosh(^Er!J^))]
p se{i,-i}w fjt* 3=1

¦ exp[log(cosh(/? E TkjSj))]} (5.18)
&k

+ilog{ J2 exp[Elog(cosh(/3E^i^))]}-" S6{1,-1}« tjtk frk
Furthermore, by noting that

exp(-/?Ef=1 TjjSj) + exp(ßT,7=iTvSi)
log cosh(/? Eli TijSj) log-

2

< Y
eM-ßZ&kTijSj) + exy(ß'E,:J¥:kTijSj)

|

(5.19)
and

logcosh(/9ET0.5i) > logexp(-/3E^T^J) + exp(/JE^T1J5J)_ ^^ (ß ^j'=i l
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we obtain

\?"\t)\ < 4log{ E exp[Elog(cosh(^^2>i5i))]
P S€{l,-l}w «V* jjé*
¦expE filiti] expE^|rw|]}

i^k j^k
-ìlog{ E expEMcosh^Eîii^))]} (5.21)

p se{i,-i}w «V* i*k
< El^-I + El^l

j^k i^k

< fEEI«I-
3 f

Hence we obtain Theorem 4 after treating similarly as in the proof of Theorem 3.
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