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1. Introduction

When electrons move in a random potential, subtle interference effects may localise their
wavepacket in an essentially finite region of space. Since Anderson’s first prediction [An]
of the phenomenon,both the physics and mathematics of the subject have been much
developped [LiPa], [CaLa]. It is well established that, typically, the states corresponding to
energies near the edge of spectral bands are exponentially localised. Mathematical proofs of
this fact exist for a wide class of one-dimensional lattice or continuum models, where in fact
all states are localised. We refer the reader to [GoMoPal, [KuSo] for early works and the
book [CaLa| for more recent material. In two or higher dimensions exponential localisation
near a band edge is proven mostly for lattice models (see [FrSp| and the review [MaSc] for
the first proofs, and [Sp], [DrKl], [CaLa], [AiMo] for more recent progress) and for a special
class of continuous models where the random potential takes constant uncorrelated values
on cells or blocks of R¢ [HoMa), [KoSi]. In [BeGrMaSc]| it was noticed that the original
techniques and results of [FrSp] and [FrMaScSp| remain unchanged if the hopping matrix
of the lattice model has a complex phase factor representing the effect of a magnetic field.
For a continuum setting with magnetic fields (let us say in d = 2), while the existence of
localised states is accepted, it has not yet been established in a rigorous way. This problem
is particularly important in connection with the Quantum Hall Effect where the following
picture is an essential ingredient for the explanation of the effect [GiPr], [Ma]. The random
potential broadens the discrete, highly degenerate, Landau levels which become "Landau
bands", with a density of states taking large values near the original levels and being small
for energies between the levels. The latter energies are at the "edges" of the Landau bands
and correspond to localised states. Since the conductivity is non-vanishing this implies
that there must exist at least one energy, presumably near the center of the band, where
the localisation length diverges [Ha]. See [Ku] for a rigorous discussion based on the Kubo
formula. Whether there exists in fact a whole non-zero range of energies corresponding
to "extended states", and what is the nature of the spectrum (e.g. absolutely or singular
continuous) is still not at all clear (see for example [Th], [AoAn], [Tr]). In this paper
we are concerned only with the first, easier aspect, of localisation at the edges of the
Landau bands. At first sight it would seem that a magnetic field would have a localising
effect. However, this cannot be so since in two dimensions without magnetic fields, scaling
theories [AALR|, [Wel] predict all states to be localised while as we have just discussed
the magnetic field must "delocalise" at least one energy. The classical picture does not
take into account the Aharonov-Bohm type phases introduced by the field, which may
drastically modify the underlying interference effects.

In the present work we consider an electron, allowed to move in an infinite two-dimensional
plane R? = C, submitted to a uniform, perpendicular magnetic field B. The random po-
tential V(z), z € R? (or C) takes constant values v, € R for z € B(z), where B(z) is a
unit square centered at x € Z2. The v,, € Z?, are independent identically distributed
random variables. Our precise hypotheses on the probability distribution are stated in
Sect. 2. In axial gauge A(z) = %(—Imz,Rez) the usual Hamiltonian is

(V) = (=iV — A(2))? + V(2). (1.1)

In our model, however, we only consider electron states belonging to the first Landau
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level. This means that we consider states in the infinite-dimensional subspace of L?(IR?)
corresponding to the projection P onto the first Landau level. The Hamiltonian is

H(V)=PH(V)Py = gpo + P,V Py (1.2)

where the first term comes from the projection of the kinetic part. Since this term only
changes the energy by a constant we will drop it. Our Hamiltonian thus reduces to
H(V) = PoV Py. The projection Py has an integral kernel so H (V) is a random integral op-
erator. The main result of this paper is Theorem 4.1. In this theorem we obtain sufficient
conditions for an eigenstate to be exponentially localised. This theorem is then applied to
show that, if the distribution of the potential is unbounded then the eigenfunctions corre-
sponding to high enough energies are exponentially localised (Theorem 5). Our result is
in particular applicable in the physical range of energies corresponding to the first Landau
band (centered at the origin for convenience), i.e. F << —1 and 1 << E << B , for B
large. In a companion paper [DoMaPu] the same theorem is applied to prove localisation
in the case when the distribution is bounded.

We now discuss briefly the approximation involved in (1.2). For large enough magnetic
field B this approximation is considered to be good because the overlap of the eigenfunc-
tions corresponding to different Landau bands is small. This is particularly so in the case
of bounded potential distributions but should also hold in the unbounded case if the dis-
tribution decays rapidly enough at infinity. The density of states associated with (1.1) has
been studied by several authors. Wegner succeeded to compute it analytically [We3]| in the
case when the potential has a white noise distribution. Soon after, this was extended to
other distributions using a different technique [BrGrlt], [K1Pe]. Finally, in [MaPu], it was
shown that the true density of states converges to the one of the projected Hamiltonian

in the limit B — oo. Further results in the same direction have been obtained recently
[Wal].

In the model studied here the kernel of the Hamiltonian has Gaussian decay. Apart
from its continuum nature, the model is therefore very similar to a lattice model with an
infinite range hopping matrix. For this reason it turns out that the techniques of [Sp| and
[DrK]] can be adapted to our situation. However, the modifications required are highly
non-trivial due to the continuum setting of the model. In particular, the relevant Green
identities are considerably more complicated.

A full understanding of the phenomenon of localisation involves the study of Lifshitz
tails [LiPa], i.e. the rate of decay of the density of states near the band edges. This is a
problem in its own right but it only arises in the case of bounded potentials. We therefore
leave the discussion of this problem to [DoMaPul].

The paper is organised in the following way. In Section 2 we define the Hamiltonian,
discuss its self-adjointness and gather some general material specific to our setting. Then
the restriction of the Hamiltonian and the relevant Green identities are treated in Section
3. Section 4 contains the main theorem which gives the existence of localised states under
two conditions (as in [DrKIl]). These conditions are verified in Section 5 for the case of
unbounded potentials and sufficiently high energies. The main theorem (Theorem 4.1) is
proved in Sections 6 and 7.
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While this paper was being written we received a preprint by Combes and Hislop [CoH2]
on the same subject. At the I.A.M.P satellite conference on ’Disordered Systems’ (Paris,

July 1994) W.M Wang informed us that she had also been working on this problem, see
[Wa2].

2. Definition and Self-Adjointness of the Hamiltonian

As explained in the introduction, the Hamiltonian of the model we consider is given by
H(V)=PFRV P, (2.1)

where P, is the projection operator onto the first Landau level of a free particle in a
magnetic field and V is a random block potential. In axial gauge, Py is given by its kernel

B B J
Pilz ) = o €XP [—le -2+ %Bz AZ| (2.2)
for z,2' € R? = C. Here the exterior product is given by 2Az’ = Re(z)Im(2’)—Im(z)Re(2’).
Notice that P, is invariant under magnetic translations defined by

T(8) = eP-A()a, (2.3)
Indeed, one easily derives that
(T(@)) (2) = e 2" *(2 + a) (2.4)
and hence that
T(@)PT(@) ' =P, (2.5)
and also
T@H(V)T(@) ™ = HV(-+a)). (2.6)

The random potential V is given by

V = Z Vg 1B{x)7 (2.7)
T€Z?

where the v, are real-valued, i.i.d. random variables with distribution given by a proba-
bility measure p, and the B(z) are unit blocks centred at z:

1 1
B(m):{zeRzlmi—agzi<mi+§(i:1,2)}. (2.8)
We shall write P for the product measure P = [], ;. # describing the distribution of
the potential V', and [E for the expectation w.r.t. this measure. We shall need several
assumptions on the measure p in the following:
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1. p is absolutely continuous with respect to the Lebesgue measure with density p(v).

2. p is continuous on its support, which is either a closed interval supp(p) = [a,b] or a
half-line supp(p) = [0, 00) or the whole real line: supp(p) =

3. In case supp(p) = [0,00) or R,
u{v €R|Jo] > L} < L7 (29)

for some n > 1/2.(In fact any n > 0 will do).

4. Also in case supp(p) = [0, 00) or R, we shall assume that all moments exist and satisfy

f ok u(dv) < M* k! (2.10)

for some constant M > 0.

The last assumption is needed only in the proof of self-adjointness of the Hamiltonian.
We have not been able to prove the self-adjointness without this assumption. Notice
that all the above assumptions are satisfied for the normal distribution and also for the
exponential distribution.

To prove the self-adjointness of the Hamiltonian we first need a suitable domain. Obvi-
ously, H(V)1y = 0 for ¢ € Hg, the orthogonal complement of the range of P,. Morcover,

H(V)u,, is well-defined for all m > 0, where u,,, is the unit vector in the range of P given
by

U (2) = (2™ em!) " Y2 BMFD/2,m exp [—%B|z|2]. (2.11)
This follows immediately from the following useful lemma:

Lemma 2.1 For almost every V, there exists Cy > 0 such that |V (z)] < Cy(1+|z|?)
for all z € R2.

Proof. By assumption 3 about the measure p,

> oezP{V | |va] > 2P} = 3 wfv]| vl > |z}

z€Z2

<1+ Z |m|_2":1+SZL1*2” < o0.
z€Z2\ {0} L=1

(2.12)

By the Borel-Cantelli lemma, therefore, with probability 1, |v.| < |z|? except for a finite
number of x’s. QED

Theorem 2.1 The Hamiltonian H(V') defined by (2.1) is almost surely essentially
self-adjoint on the span of {u,}>_, and Hg .

Proof. By Nelson’s analytic vector theorem ([ReSi|, Theorem X.39) it suffices to prove
that, for almost all V,

Z I P"VPO Vumll gk o (2.13)
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for some t > 0. To prove (2.13) we use the fact that if F(V') is a positive function of V
and if the expectation E(F(V)) < oo then F(V) < oo for almost every V. Noticing also
that by the Cauchy-Schwarz inequality, E(||A*u||) < (]E(||A’“uH2))1/ ? we conclude that it
suffices to show that 1

i ||(P0VP0) ’Uvaz))

k=0

th < oo (2.14)

for some t > 0. Now,

E(||[(PoV P) umH fdz/dz U (2)um (2 fdzl dzak Po(z, 21)
Po(z1,22) + Po(zak, 2 )E(V (21)V (22) - - - V(22¢))-

(2.15)

The z1,...,22; are in a certain number of distinct blocks B(z1),...,B(z;). If p; (i =
1,...,0) is the number of 2’s in block B(z;) then

l
E(V(z1)---V(208)) = f VP pu(d) - - / (o) < [ MPpil < M?* (2) (2.16)

=1

by Assumption 4, equation (2.10). If Kp(z,2’) denotes the absolute value of the kernel

(2.2),

Kplz2) = Ee‘Blz_zllz/‘l, (2.17)

27

then we can write

E(|[(PoV Po)*uml|?)

= ]dzm/dz’um(z')[dzz--'/dzzk_1P0(Zs22)

P0(22,23 PO(ZZk 1,2 E(V() ( 2) "V(zzk—l)v(z,)) (2.18)

< M (2k)! fdzlum |fdz |t (2"

/dzz e f dzok-1KB(2, 22) - - K (2261, 2").
Next we can iterate the identity
f oK o VK 20 = 2 B () (2.19)

to write

E(||(PoV Po)*uml[?)

< i(2M)2k(2k)! f dz|um (2)| f A2’ [um (2)| K g/ (26-1) (2, 2) (2.20)

< (2M)2k(2k)!-m—‘?1)? (fdz|um(z)|)2.
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Inserting (2.11) we see that ||u,,||; < co. Therefore, if we insert (2.20) into (2.14) we find

(E(| POVPO) U] V2
Z I A1)

t
" _ . (2.21)
51+(8%) 3 (2 = 1)L 2L ek < o

k!
k=1

provided ¢ < 1/4M. QED

REMARK. If u has bounded support then V is almost surely bounded and H(V) is
obviously self-adjoint.

We next prove as in [KuSo| that the spectrum of H(V) is the support of . This uses
the following simple lemma:

Lemma 2.2 Let E € R and suppose that for all § > 0 there exist Q with P(2) > 0
and P € Py(L*(R?)) = Hy with |||| = 1 such that ||[(H(V) — E)¢|| < § for all V € Q.
Then E € a(H(V)).

Theorem 2.2 With probability 1, the spectrum of H(V') is given by
o(H(V)) = supp(p) U {0}.

Proof. We follow [KuSo]. Notice first that it follows from the ergodicity with respect to
magnetic translations (2.3) that the spectrum o(H(V')) is almost surely independent of V.
To see that it equals the support of u, suppose first that E # 0, E ¢ supp(u). Obviously,
if A is a self-adjoint operator satisfying A > a1 for some a > 0 then ||Ay|| > «||y|| for all
9 € D(A). Since supp(p) is an interval, if d = d(F, supp()) then either V — E > d1 or
E —V > d1. In either case we have

I(H(V) = E)g|I> = ||Po(V — E)Pogl|* + |E| |1 - Po)¢ll*
< d||Pog|]” + |E| |I(1 = Po)o|[* < (dA|E]I4]*
Moreover, one easily sees that (H(V) — E)(L?) is dense in L2. It follows that H(V) — E

is invertible, that is F is not in the spectrum of H(V).

Next suppose that E € supp(u) and let ¥ € Ho with ||4p|| = 1. For R > 0, write A(R)
for the disk with radius R and centre 0, and put g = FPolp(r)¥. Given § > 0, choose
R large enough so that ||[¢g|| > 1/2. Define Q' = {V||V(z) — E| < §/2Vz € A(2R)}.
Since E € supp(u) and A(2R) intersects only a finite number of unit blocks, P(2") > 0.
Taking C > |E| + /2 large enough it follows from Lemma 2.1 that & = Q' n{V ||V (z)| <
C(1 + |z|?Vz € R?} also satisfies P(Q) > 0. Note that ||t — ¥g|| < [[1ar)-¥||- Now,

I(H(V) — E)prl* = ||Po(V — E) Polamy ¥
< |V — E)Polary®ll

_ j &2 (V(2) — BV on(z)? (2.22)
A(2R)
h [ &z (V(2) - B)ln(2)|P.
A(2R)¢
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The first integral is bounded by
1
| @2(V() - B < 8 unl? < /4. (2.23)
A(2R) 4

In the second integral we have
onep= B ([ sty
br@)P = o | [ s e B Ty
47T2 A(R)

2
2
o« f 24 o= Blz—=1/2
471'2 A(R)

by the Cauchy-Schwarz inequality and the fact that ||4)|]] = 1. Since z € A(2R)¢ and
z' € A(R) we can bound the exponential in the integrand by
exp [-BR?/4] x exp [-B|z — Z'|?/4]. Thus we have

(2.24)

o, 2 V) = BV IoR()

2 2
<o POR [ [ (O el + 1B e
4m A(R) A(2R)® (2.25)
B?R _pe ’
< ——e5F “f d*¢[2C + |E| + 2R + 2|¢||?e~BleI /4
]RZ

< 2rBRe BR'/4[(2C + 2R? + |E|?)? + 16B~ 1] < §%/2

if R is large enough. QED

We want to prove that the Hamiltonian H(V') has almost surely pure-point spectrum in
the neighbourhood of the edges of its spectrum given by Theorem 2.2. This will be done
by proving that the corresponding generalised eigenfunctions decay exponentially. The
pure-point spectrum is then a consequence of the following general result:

Theorem 2.3 Let H C E be a Hilbert subspace of a conuclear space E. Suppose
that 7 : E — E is a continuous linear map such that its restriction T' to a dense
subset D of H defines a self-adjoint operator on H. Then, with respect to the spectral

measure of T', almost every A € R s a generalised eigenvalue, that is, there exists a
non-zero £ € E such that 7(£) = A¢.

Corollary. If, for a given A € o(T), 7(€) = A implies that £ € D for any £ € E
then A € Upp(T)

The standard references for this theorem are [Ber| and [Mau|. However, we prefer the
approach developed by Thomas in [Thol] and [Tho2]. We apply the theorem to the case
E = 8'(R?) and H = L%(R?). To prove that the theorem is indeed applicable we must
show:

Lemma 2.3. For almost all V, H(V) maps S8'(R?) continuously into itself.
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Proof. We need to define H(V)¢ for £ € §'(R?). This is, however, straightforward if
we first prove that H(V) maps S(R?) into itself. We can then define H(V) on &’(R?) by
duality as the adjoint map. This is consistent because of the fact that H(V) is Hermitian

on L*(R?). Continuity in the strong topology of §'(R?) then follows from the corollary of
Prop. 6 of Chap. 4, §4.2 in Bourbaki [Bo].

To prove that H(V) is continuous on S(R?) consider the general seminorm p,y, o, where
m is a non-negative integer and o = (a, az) is a double index (a; € Z4 ), is defined by

Pr.m(¥) = sup sup(l + |2|2)™ 0% (2)|. (2.26)
la|<r z€C

It suffices to show that for all m and r, there exists a constant K and integers m’,»’ > 0
such that

p,-,m(H(V)’lj)) < Kp'r’,m' (’l,b) (2.27)
Now,
(H(V)9)(2) = f &2 / 22" Py(z, 2V (') Po(, " (") (2.28)

so differentiating underneath the integral sign,

prom(H(V)p) = sup sup(l + |2|*)™
la|<r z€C

(2.29)
‘/dzz'fdzz"ag‘Po(z,z')V(z')Po(z’,z")l,b(z”) :

It is not difficult to prove the following relation for the derivative of Py analogous to formula
(I.18b) in Simon [Si2]:

0%Py(2,2') = Fy,(21 — 2/)Fa, (22 + i2") Po(z,2") (2.30)
where z; = Re(z), 2z = Im(z) and
[n/2] k n—2k
n! B B
() = AN _ 2.31
Fa(z) kzﬂk!(n—zk)!( 4) ( 22) 231)

We use the following rough estimate to bound F,(z):

wime(Pe(EE) e

This yields

n/2

|Frn(2)| < ([(n+1)/2])! (B - (§|z|) ) <an(l+ |z|2)n/2 (2.33)



338 Dorlas, Macris and Pulé

for some constant a,. Using Lemma 2.1 and the simple estimate 1 + |z — 2/|? < 2(1 +
|212)(1 + |2’|?) we obtain

p’r,m(H(V)'ﬂb) S |31|1p 2la'/2C"Vaafxurﬁ’7n+|r.\c|/2 (I{B(1 -+ |212)1+|a]/2KB|¢I) . (234)
a|<r

(Here we have written p,, for po.. and || = a3 + a3 and ay = @a,as,.) It now follows
from Lemma 2.4 below that there is a constant K such that

Prm(H(V)Y) < Kpmir1(9). (2.35)
QED

Lemma 2.4 Given m € Z, m > 0, there exists a constant Cg ,, such that

/KB(z,z')(l + 2|2 ™d?2’ < Cpm(1 + |2*) ™. (2.36)

Proof. Tt is easy to prove that In(1 +t) < i + et for t > 0 and € > 0. Therefore, if we
take

. am\? 4
R? =c¢; + |2|?/4 with ¢; = (?) + B In2 (2.36)
then
f Kp(z, 2 )22 = 2" BR/4 < (1 4+ |22)~™. (2.38)
|z—2z'|>R

On the other hand, if |2'—z| < Rthen |z|? < (|2/|+R)? < 2(|2'|?+R?) < 2(c1+]2'|*)+]2|?/2
and hence

A+2z22) ™™ 240+ +|2P)™> @01 +ce)) ™1+ |2'|%)~™. (2.39)

Inserting this into the integral we have

f Ki(z, 2)(1+|2|?)™d
o/ 2l<R

<@+ e+ )™ [ Kol #)d (2.40)

= 2(4(1 + )1 + [=5) ™
It follows that we can take Cg ,m =1+ 2(4(1 4 ¢1))™. QED

The distributions H(V)¢ are in fact regular:

Lemma 2.5 For almost all V, the distributions H(V)& are in fact C* functions
for all £ € §'(R?).

Proof. It is clear that H(V)¢ is the function given by

(HV)E)(Z') = (H(z,2)|6(2)), (2.41)
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where

H(z,2') = f 22" Po(z, 2"V (") P (", ) (2.42)

and the angled brackets denote the (anti-)duality between S and §’. (We take it to be
antilinear in the first argument.) As £ € S’(R2), there exist integers m and r and a
constant M > 0 such that

(D1E)| < M pr,m(9) (2.43)

for all § € S(R?). It therefore suffices to show that, for any double index 8 and any
compact set K C R?,

SUP Prm (af,H(-, z’)) < 00. (2.44)
ZeK

This is proved in the same way as (2.35) in the proof of Lemma 2.3. QED
This lemma has the following important consequence:

Lemma 2.6 Suppose that £ € §'(R?) is a generalised eigenfunction of H(V) with
etgenvalue E # 0. Assume that € is exponentially decaying on blocks, that is,

(L) [€]) < Ae™™I"! (2.45)

for some constants A and m > 0. Then £ is a C*°- function which decays exponen-
tially with rate m: There exists a constant A’ such that

£(2)] < A" e ™, (2.46)

Proof. As ¢ is an eigenfunction of H(V) = PV P, and PZ¢ = Pof even for £ € §' it
follows that FPpé = £, that is

)= [ Pole, e (2.47
Taking absolute values we find
€(2)] < fKB(z,z’)|g(z')|d2z’
=¥ Kp(z, 2)|E(z")|d22.

y€ZZ B(y)

(2.48)

Now suppose z € B(z). We split the above sum into two pieces: the first, denoted S,
will contain the terms for which |z — y|o, < 1, the other, denoted S3, the remaining terms.
Here | | is the sup-norm which is convenient for the square lattice: |T|e = sup;_; 5 |zil-
Obviously, S; contains only 9 terms. In these we can replace Kg(z,2') by its maximum
value. The remaining integral is just (2.45). Thus

8y € A% > el < Al (2.49)
|Iy_35[c>o§1
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where B
3m

(We use the fact that |y| > |z| — |y — 2| > |z| — 3/v/2.) The second part of the sum can be
bounded as follows. In the kernel Kg(z,2') weuse |z —2'| > |z —y| — |z — 2| — [y — 2| >
|z — y| — V2 and in the bound (2.45), |y| > |z| — |z — y| — 1/+/2. Inserting this we have

B 2
S, < A% Z e~ Bllz—yl-v2)*/4 ,—mly| < AL gl (2.51)
|y —=|o0 22
where B
I A em/V2 —Bly'|-v2)* /4 ,ml|y’|
A, —Azwem Iezzze ¥ e" V! < o, (2.52)
y

We can thus take A’ = A} + A,. QED

3. Truncation and Green’s Functions

For regions A C R? we define truncated Hamiltonians Hy = Hx(V) by
Ha (V) = PAVAFY, (3.1)
where
Py =1, F, (3.2)
and Vi = 1, V. Hp(V) acts on L%(A). If E ¢ o(Hx(V)) then the Green function

GA(V,E) = (Ha(V) - E)™* (3.3)
is well-defined. In particular, we shall consider the regions
Ap(z) = {z € R?||z — 2[00 < L/2} (3-4)

for z € Z? and L > 0, Ap(zx) is a square of size L? and, if L is an integer, it is a union
of unit squares B(y). We derive some important relations for the Green function. In the
following we write G or G5 (V') or GA(F) for G5 (V, E) when there is no ambiguity. Using
the resolvent identity

Bl -A'=A"YA-B)B™! (3.5)

with A = HAI oD I‘IA2 — F and B = HAlqu — FE this gives, when A1 N A2 = @,

Gaun, = G, ©Ga, + (Ga, © G, )(Hp, © Hpy, — Hpyun,)GALun,

3.6
=Gp, ®Gr, — (G, ® GA)TAL A, GAuAS, 36)
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where
Pavne = PayVayun, Py, + PayVayun, PRy + Pa,Va, PR, + Pa,Va, Py, (3.7)
In particular, if A; U Ay = R?, we can write A; = A and Ay = A° and (3.6) becomes
G = Gp®Gae — (G ® Gac)Ta G (3.8)

with
Fpaae = IaH1pe + 1pc H1p + PAVpe Py + Ppc VA Ppe. (3.9)

Now suppose that £ € S’(R?) is a generalised eigenfunction of H with eigenvalue F ¢
o(Ha). Then it follows that for € > 0,

£ =ieG(E —ie)¢

i (GA(E — i€) ® Gae(E — i€)) € — (GA(E — i€) @ Gne (B —i€)) Tanct. 10
For z € A this yields
£(z) = ie(GA(E — i€)€)(z) — (GA(E — 1€)T'p 7€) (2). (3.11)
Taking € — 0 this yields
£(2) = ~(Ga(ETact)(2) 512

= —(GA(E)(H1pe + PyVpePr)€)(2),

where we have used (3.9).
We finish this short section with an important definition.

Definition. Fiz constants g € (0,1) and s € (%,I)_ Given a potential V, a
square Ap(z) is called (m, E)-regular for some m > 0 and E € R if the following two
conditions are satisfied:

1 ;8
(RA) d(B,0(Hp,@)(V))) > 5e L
(RB) (Lav(@) | 1GaL@) 15, @) B)) € €115, (o) 8ll2

for all ¢ € L?, where Ar(z) = Ap(z) \Aj(z) with L =L—-L° Ap(z) is called singular
if it s not regular.

4. The Main Theorem

In this section we state the main theorem which is an analogue of the main theorem proved
in [DrKl|. It states conditions under which the spectrum of our random Schroedinger
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Hamiltonian is pure-point near the edges. We shall check these conditions in the next
section in the case of unbounded support: supp(u) = R. The case of bounded support is
more complicated and will be analysed in a separate paper [DoMaPu].

Theorem 4.1 Fiz constants 3 € (0,1), s € (%, 1), p>2,¢>4p+12, vy € (6,1) and
€0 > 0. There exists Qo > 0 depending on all these constants such that the following
holds:

If, for some Eg € R\ [—¢€o,¢€0] the conditions (P1) and (P2) are satisfied, where
(P1) There exist Lo > Qo and mg > Ly 17 such that

P{AL,(0) is (mo, Ep)-regular} > 1 — Lg* (4.1)
(P2) There existsn € (0,|Eg|/2) such that, for all E € (Eg—n, Eo+n) and for all L > Ly,

P{d (B0 (Hy, ) <e ¥} <179, (4.2)

then, for all m € (0,mg), there exists § > 0 depending on m,mg, Lo, and n such
that, almost surely, o(H)N(FEq— 6, Eg+8) is pure-point and the corresponding etgen-
functions decay exponentially with rate > m.

Asin [DrKl], the proof of this theorem can be split into two parts: one in which condition
(P1) is iterated to pairs of larger and larger blocks, and one in which the iterated condition

is shown to imply exponential decay. The latter part is formulated in the following analogue
of Theorem 2.3 of [DrKl|:

Theorem 4.2 Let I CR, Ly > 1, 8 €(0,1), s € (%,1), a€(1,2), p>a and m > 0.
Define Ly = L§ for k =0,1,2,.... Suppose that, for any k = 0,1,2,... and any
z,y € Z? with |z — yloo > L + 1,

P{3Eel: Ap (z) and Ay, (y) are (m, E)-singular} < L™2P. (4.3)
Then, with probability 1, the generalised eigenfunctions of H corresponding to gen-

eralised eigenvalues in I decay exponentially with rate > m' for any m' < m.

The proof of this theorem is similar to the one of [DrKl], but more complicated. We
shall indicate the main differences in Section 7. The deterministic part of Theorem 4.1
is the analogue of Theorem 2.2 in [DrKl]. However, it is considerably more complicated
due to the infinite range of the Hamiltonian and the more difficult form of the resolvent
identity (3.12). Before we formulate the theorem it is convenient to define the conditions

(K1) There exists mg > L~ such that R(Lg,mo) holds, where
R(L,m) For all z,y € Z? with |z — y|eo > L + 1,

P{3E € I: Ar(x) and A (y) are (m, E)-singular} < L™2P (4.4)

and
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(K2) For all L > Lo and all E with d(E, I) < le=’

’

P {d(E,O’ (HAL(O))) < e_Lﬂ} & L, (4.5)

Theorem 4.3 Let I C R\ [—¢o,€6]. Fizx 8 € (0,1), s € (1/2,1), p > 2, and
g > 4p + 12. There exists Q(8, s,p,q,€) > 0 such that the following holds:
If, for some Ly > Q the conditions (K1) and (K2) hold then there exists o € (1,2s)
such that, with Ly, = LY for k = 0,1,2,..., R(Lg,m) holds for all m < mg and
k=1,2,....

This theorem will be proved in Section 7. We now prove Theorem 4.1 assuming that
Theorems 4.2 and 4.3 are valid.

Proof of Theorem 4.1
Suppose that (P1) and (P2) are satisfied for some Lo. By the resolvent identity (3.5),

Ghar,(0)(E) = Gpy 0)(Eo) + (B — Eo)Ga,, (0)(E)GAL, 0)(Eo)- (4.6)

If ||Ga,, 0)(Eo)l| < exp [LE] and |E — Eo| < %exp[—Lg], then it follows from (4.6) that
IGAL, 0)(B)ll < 2exp [LP]. Moreover,

(1A1(0) l IGALO(O)(E)II\LO(O)¢|) < <1A1(0) l |GAL0(0)(E0)1ALO(0)¢|>

+ 1B = Bol Gy @ BN IGany @ Bl 15, bl "
Thus, if Ay, (0) is (mg, Fo)-regular then
(1, 0) | 1Garo @ (B, 0)@l) < (7™ +2{E — Eole?™) |15, ol (48)
Given myg € (0,m0) and p’ € (2, p) define
= %e_zl‘oﬁ (e_maL" — g~ TBaknl, (4.9)
Then, if |E — Ey| < 6,
(10,0 G ALy () (B)1K, (02} < e_mé’LHlALO(O)fﬁH- (4.10)

This is the second regularity condition (RB). If we also assume that
d (Eo,a (HALO(O))) = exp[—Lg] then it follows, since § < 1 exp [—Lg], that Az, (0) is
(mg, E)-regular. We may now conclude that

P{VE € (Ey — 6,Ey +8) : Ap,(0) is (mg, E)-regular}
>P {ALO (0) is (mo, Eo)-regular and d (EO,O' (HALO (0))) > e_Lg} (4.11)

21=EP - 51~ L7
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provided Ly is large enough: Ly > Q’. (Here we used (P1) and (P2).) Now let z,y € Z?
with |z — y|eo > Lo + 1. Then

P{VE € (Ey — 6,Ey + 8) : either A (z) or Ap,(y) is (mgy, E)-regular}
>1— [P ({VE € (Eo — 6, Eo +6) : AL,(0) is (m}, E)-regular}®)]” (4.12)
> 1= LT,
Thus (K1) of Theorem 4.3 is satisfied with p replaced by p’, I = (Ey — 6, Eg + 6) and myg
replaced by my. (P2) implies that (K2) is also satisfied provided é < 7, so that Theorem

4.3 applies. Therefore the conditions for Theorem 4.2 are satisfied and the conclusion
combined with Theorem 2.3 implies Theorem 4.1 with Qo = Q V @Q'.

5. Proof of the Conditions (P1) and (P2) for Large
Energies

In this section we prove the conditions (P1) and (P2) in the case of a probability measure u
with supp(i) = R satisfying the additional condition that there exists a function p(v) > 0
such that, for 0 < A < 1/2, [ v*p(v) dv < co and

p((1+ A)w) = p((1 = A)(v))] < Alv|*5(0). (5.1)

We will prove localisation for large energies: |E| > 1. This is the simplest case because,
for large |E|, the density of states is small. (We do not actually use this fact explicitly.)
For the more physical case of a probability distribution with bounded support the proof
of (P1) when F is near the band edge is much more delicate and will be presented in a
separate publication [DoMaPul].

Lemma 5.1 Fiz e > 0, L > 0 and By > 0. One can find W large enough, but
independent of B > By, such that

P (1A1(0)| |GAL(0)1RL(O)¢I) < 8A1€_1 exp(—GAgL)HlAE(O)H,
(5.2)
E Q’O‘(HAL(O)), |E| >FEg| >21—¢€

with By = 2W and A; = exp( , Ay = Wexp(%).

2\/%«42 )
Proof. We use a Combes-Thomas type of argument [CT]. Let U be the operator on
Hp, o, defined by (U f)(z) = e*® f(x) where zo € R? with |zo| < 1 and let

Q= UI:[AL(O)U_1 - HAL(O) (5'3)
Then @ has a kernel Q(z,y) where

Q(z,y) = (%Y — 1)Hy, ,, (2,), (5.4)
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Hhy (z,y) being the kernel of H AL+ Now we suppose that the potential satisfies

VAL @)ll = SUp,, (o) |vz| < W, for some W that we choose later. We have (c is a positive
constant)

(Q9) ()| < cBW f e =¥ — 1]e= F1==4" | (y) dy. (5.5)
and

ez =) — 1]e=#le=31" < |zg - (2 — y)[eloo eVl Flovl’
< |zol|a — y|el=olle—vlg= ==yl (5.6)

>From (5.5) and (5.6)
(Q¢)(x)] < clzole® ®(Tel)() (5.7)

where T is the operator with kernel T'(z,y) = BWe—%l==v*| Thus
1Qll < [Tg[ll |zol < [Tl lzol |2l (5.8)

The operator norm of T is ||T|| = supy, |T'(k)| where T'(k) is the Fourier transform of the
kernel T(x,y) as a function of (z — y). Now T(k) = We*/B < W. Thus T|| = W,
which gives ||Q| < Az|zo| because of (5.8). Since € is fixed (small), for W large and
E > Ey = 2W we have that d(E,c(Hy)) > e. We choose zg such that |zg| < €/(2A43) so
that ||Q|| < 1e. Then, by (5.3),

o _ 2
10G @B = (Hagio +@ - B) M < 2. (59)
Now we split up Ay, into four parts:
~ 4 ~ .
Ay =|JAY,
=1

where f\g) ={z : z€A, e-z2>|z|/vV2} and e; = (1,0), e = (—1,0), es = (0,1),
eq = (0,—1). We have

4
(1a,,|GL15, 6l <> (1a,, IGLlz0dl)- (5.10)
i=1
Now .
(11\11 |GL11~\(1)¢7|> = (1A1,U—1|UGLU_ Ul/"\(l)¢|>
L I 2
< UL, VLU U130 15, 41 (5.11)
Do
<-lv 11A1||||U1;,(L1)||||1f11,¢||-
Clearly

[T, ]l € Ay (5.12)
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and by choosing zy = (—5—\7%2:, 0) we get

U159l = [ e lb(o)fde < ey (5.13)
L

from which it follows that
U150l < =T E—E) ¢ szl (5.14)
L

for L sufficiently large. Thus using (5.11) to (5.14) we get

2A1 P S
(1a, |GLlzmel) < —— v 115, 2l (5.15)
and similarly for 7 = 2,3, 4. Therefore

8A1 __o
(a 1GL1z, ) < ——e ™15, 4. (5.16)

So far we have shown that for ||V), )| < W and E > Ey, (5.16) holds. Thus the
probability in the left hand side of the inequality (5.2) is greater than [P [HVA Lol < W] ;

The Lemma follows from

w N
P [HVALO(O)H < W] = [/WP(U) dv} (5.17)

where N is the number of unit squares intersecting Ay, (0), since for any € > 0, we can make
the right-hand side of (5.17) larger than 1 — ¢ by taking W large enough, but independent
of B. QED

>From the Lemma we conclude that (P1) holds for Ey large enough, independent of
B> By > 0.

It remains to prove (P2). The main idea goes back to Wegner [We2] who reduced the
estimate to one on the difference of the density of states for energies £ — € and E + €. In
the present case, however, Hy is a compact operator so that there is an infinite number of
energy eigenvalues accumulating at zero. We are therefore forced to define the density of
states in a non-standard way: for £ > 0 we define

NZ (V,E) = #{A > E| A cigenvalue of Hx(V)}. (5.18)

Note that, since Hx(V') is compact for bounded regions A, N7 (V, E) is finite. Moreover,
it is a decreasing function of E and an increasing function of V. Also, it is easy to verify
that, for any a > 0, NJ(V,E) = N7 (aV,aE). So, replacing E by E + € and choosing
a=E/(E + €) we get

NZ(V,E+¢) =N} (E%VE) (5.19)
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and similarly, with F replaced by E — € and a = E/(E — ¢€),
NZ(V,E —¢€) = N} (Efwv E) : (5.20)
—€
If E < 0 we define
NS(V,E) =t#{A < E| X eigenvalue of Hx(V)} (5.21)
and similar inequalities hold true.

Lemma 5.2 There exists a constant K, independent of V, such that for E > 0,

NE(KE)SKE‘ZIAI( 3 w). (5.22)

z: B(z)NA#D
The same tnequality holds for NS (V,E) if E < 0.

Proof. By definition, N7 (V, E) is the number of eigenvalues A such that A\/E > 1. It
is therefore smaller than the sum of ();/E)? over all eigenvalues A;. This is just Trace(H3):

1
NZ(V,E) € —Trace (H3)

E12 Trace (1AP0VAP01APQVAP01A)

] (5.23)
= ﬁ'l‘race [(VAPO].APQVA)PO].APO]
< EHVAHZT‘TH.CG (Po].AP()).
Now,
Trace (PglAPg) = Trace (IAP()IA) = f dzzIKB(Z Z) |A| (5.24)
A

>From (5.23), (5.24) and the fact that ||[VA|| < 3°.. p(a)nazo V=] we get the final inequality.
QED

For the rest of the argument we just imitate the usual proofs. Using (5.19) and (5.20)
we have for the expectation value of the density of states

E(NZ(V,E—€) — N7 (V,E+¢))

~ [Nz v.B) [T - 2061 - )l

TEA

- [ M) [T+ 26 + 5 )us)dos

TEA

<[ T A0-5)e((0-5)%) o) o
)

yEA zEMN Ty

I1 {(1+ ) ((1+6 vz)dvm}

zEAN; >y

xfdvy|p((1——) ) p((l )vy)|NAVE).
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To get the second inequality we have ordered the unit squares in A. Using Lemma 5.2 and
the hypothesis (5.1) on the probability distribution we find

E (N3 (V,E —¢) - N3 (V,E +¢))

<SKIALY f { I1 dep(‘vm)} {H dvmp(vx)}

yeEA <y >y

xfdvyvf,ﬁ('uy) ((1—-%)—1va+(1+§)_1va+vy) ;

<y >y

(5.26)

By the Cauchy-Schwarz inequality and assuming ¢/ F < -;—,

(-3 S (45)" Surn) smfog e gana)

<y >y <y >y

<4ALY 02

zEA

SO
E(NZ(V,E-¢) —NZ(V,E+¢)) <

€ _ . €
4Kﬁ|j\|2 (2|A|E(vg)/p(v)v2 dv+[p('u)v4 d'u) < K'—E—§|A|3.

Finally we use the fact [W] that P[d(E,o(Hy)) < €] is bounded by the left-hand side of
(5.28) and we set A = A7 (0) and € = exp [~ L] to get

(5.28)

L8 exp [~ LP]

P [d(E,0(Hp,())) < exp[-LF]] < K'——;

£ Lire (5.29)

provided L and E are large enough. This proves condition (P2).
We can now apply Theorem 4.1 to conclude that

Theorem 5.1 Suppose that the probability distribution p has support R and sat-
isfies the conditions 1,2,3 and 4 of Section 2 as well as (5.1). Then there exists
Ey such that, almost surely with respect to the product measure P, the spectrum
o(H)N{E||E| > Eo} is pure-point and the corresponding eigenfunctions decay expo-
nentially. Moreover one can choose By such that for all B > By, Ey is independent

of B.

Remark: Here we have restricted ourselves to the first Landau band so that we get pure
localisation for all |E| > Ey. However for the full hamiltonian (1.1), when the magnetic
field is large, there are many Landau bands separated by an energy of order B. Therefore
the physically relevant range of energies where the theorem should be applied is E < Ey,
Eo < E << B. Theorem 5.1 covers this case since for B large enough (B > Byj) we can
choose Ey independent of B, i.e. of order one with respect to the magnetic field strenght.
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6. Proof of Theorem 4.2

In this section we prove Theorem 4.2. As part of this proof is analogous to the one of Ref.
[DrKl], we shall abbreviate some of the arguments which need no modification. We first
need some technical lemmas:

Lemma 6.1 The kernel H(z,z') of the Hamiltonian H satisfies the following
bounds. For every double-index a,

02 H (2,2')| < Aa(1 + |2|?)lel/ 241 = Blz==T/16 (6.1)

for some constants A, depending on V.

Proof. By formulas (2.28) and (2.31),

|07 H(2,2')| < Cvaq /dz»’«‘-”(l + 21 — 2”22 (1 + |2 + 82" [?)2/? (6.2)
KB(Z, Z”)(l i 'ZIIIQ)KB(Z”,Z,).

In the product Kg(z, 2" )Kg(2",2') we use the identity |z — 2 |> + |2/ — 2| = 2|2" — (z +
2')/2|? 4+ |z — 2/|?/2. Next we change variables to w.= 2" — (z + 2’)/2. This leads to

(1 T |21 _ ZHIZ)al/Z(l P |32 —i—iz”|2)a2/2

1
=(1+ |%(2 ~2/) — w2 /2(1 + |5z + 2') + sw|?)*2/2

< (2014 )2+ (2 ) 2P (5
< (21 + )L+ (121 v 1))
Inserting this we obtain
02 H (2,2 < 293 Cya 1+ (|2] v [&/])?)l/ e Ble==' /2
(2 [+ yeiase-sis (64)

< Al(1+ ‘212)Ia|/2+1e—Blzsz|2/16

for some constant A,. QED

Lemma 6.2 Suppose that ¢ € S'(R?) is a generalised eigenvector of H with
eigenvalue E # 0. Then & € C*°(R?) and ¢ is polynomially bounded, that is,

€(2)] < K(1+ |2/*)P (6.5)

for certain constants K and p > 0.

Proof. As £ € 8'(R?), there exists a constant M and integers 7 and n such that

(P €] < M prn(eh). (6.6)
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for all ¢ € S(R?). Now,

(H(V)E)(2) = (H(-,2) |€), (6.7)
so to prove that H(V)£ is C™ it suffices that

SUp Pron (Bf,H(-,z’)) < oo0. (6.8)

z'eC

This is analogous to Lemma 6.1. Since H(V')§ = E¢ it follows that £ is itself a C*°-function.
Moreover,

E3

€(2)| < = [(H(-,2) €
FIHCD10
M
< =Prn (H(: 2))
i
< ];JE-’? sup(l + |zr|2)n+|a|+le—BEz——z’l2/16 (6.9)
< 2n—|—|aH—1 MA(]. . |ZI2)n+|a|+1 sup(l s t)n—}-loz[—i—le—Bt/lS
|E| teR

<K(1+ |z|2)n+la|+1
This proves the lemma. QED

Lemma 6.3 Suppose that N is an operator on L?(R?) with kernel N(z,2') sat-
isfying
12
IN(2,2')| < Ag(1 + |2|?)e "= | (6.10)
for some constants Ag and ko and suppose that ¥ € C(R?) is polynomially bounded:

[¥(z)| < K(1+|z|*)?. Then, for any m > 0, there exist constants Ay and Lo > 0 such
that, if L > Lo and Ap(z) is (m, E)-regular then

(1a, ()| 1GAL () N1aL @) ])

6.11
< A LA+ [o2)p (e%ﬁ/s remt [ |¢<z')!d2z'-) (o1
AzL(CL‘)
Proof. We write
1a, () | IGAy (v N LA, (2)e
( Aq( )ll Ap(x) Ar(z) 'QbI) (612)

= (Ia; (@) | IGAL@) N1 @\aL @ %) + (Lay@) | 1GAL @) N1, (2) %))

We start by considering the first term: Suppose first that z € A;(z). In that case
|z— 2’| > L*/2 and, moreover, since 2’ € Ay (), |2/|> < 2(|z|* + |2’ — z|?) < 2(|z|* +2L?)
and hence certainly 1+ |2|?2 < 5L%(1 + |z|?). Thus we have

| (N1p,\a@)¥) (2)] < Aof (14 |2/ 2)e=1===1 (") |22’
el Rl) (6.13)

< 5AL2(1 + |$|2)e_"Lza/4/ (2)|d27'.
AzL(iB)
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Using the inequality ||fg||2 < ||f||co||g]|2 this implies that

1AL (@) N 1Ay @)\AL @)Y

2s .14
S 5A0L3(1 + |$I2)6—-RL /4/ |w(zl)|d2zl. (6 )
AQL(.’B)
Using the regularity condition we now find that
(ni@)] 1GAL 1Az @ N Asp @A @ Y1)

< 5AL3 (1 4 |zf?)e—"E™ /4 f (') |d22"

(1+=[%) Azs(z) (6.15)
< 5A0L% e ™E(1 + |z|?) l(2")|d2 2’
Azp ()

provided L is so large that xL?°/4 > LP 4+ mL.

Next suppose that z € Az (z). In that case we can simply write |N(z,2')| < Ao(1 +
|2’|2) < 5A40(1 + |z|?)L? and hence, using the regularity condition,

(11\1(2)‘ ‘GAL(-'E)IAL(E)NlAQL(m)\AL($)¢|) < 5A0L3(1 + lxlz)e”ijj; (=) qub(z,)ldzz"
2L T
(6.16)
Next we consider the second term of (6.12). For z € Ar(z) and 2’ € Azr(z)S,

14+ |22 <14+3(z)2 + L?/2+ |2 - 2%
<2LA1 + =) + |2 = 2) (6.17)
<8(1+|z*)(1+ |z — &%)

assuming L? > 2. Therefore, if |1(2)| < K (1 + |z|?)? then
[(N1a,, @)<%)(2)] < AgK 422/ (1 + |2 [2)Prie—nlz==T"
AgL(.'E)C

& SAOK(l 4. l‘,L_’z)p+1 [ d2z1(1 % sz|2)P+1e—Fv§z’|2
|#'|>L/2 (6.18)

< 8mAGK(1 + |z|*)PH! f dt(1 4 t)Ptlent
L2/4

< 8T AGK (p + 1)I(2/K)PT2e /2 (1 + |z|2)PTlerL /8,
(6.15),(6.16) and (6.18) prove the lemma with A} equal to the minimum of 104, and
8w Ao K (p + 1)1(2/k)P+2e%/2, and with Ly = (4(m + 1)/k)Y/(?s=1), QED

Proof of Theorem 4.2
Let b be a positive integer to be determined below. As in [DrKl] we define for zo € Z2,

Ap+1 = Ao, (o) \ A2p, (m0). (B =0,1,2,....) (6.19)
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We also define the events

Er(zo) ={V | AL, (z0) and Ap, (z) are

6.20
(m, E)-singular for some E € I and some z € Agy;(zo) N Z2}. 620

If
Qo = {V|Vzo € Z% : §{k|V € Ex(z0)} < o0} (6.21)

then it follows from the Borel-Cantelli Lemma that P(Qg) = 1. (See [DrKl]).

Now let V € 4 and E € I and suppose that £ € §'(R?) is a generalised eigenvector of
H(V). It follows that £ € C>(R?). Choose zo € Z* such that (14,4, | |€]) # 0. Suppose
that Ay, (zo) is (m, E)-regular. Then, by formula (3.12),

(]‘B(fro) | |§|> (13(350) | ‘GALk(mO)HlALk(mU)cé )

<
N ; (6.22)
+ <1B($0) I IGALk (mO)POVALk (-'BD)CPALk (m0)€|)
By Lemma 6.3 with N = H the first term on the right-hand side is bounded by
(1B(zo) | |GAL, (o) H 1AL, (z0)<El)
2 6.23
< A'LR(1 + |ao[?)P (e-BLk/lﬁ + ek f . |£(z’)\d2z’) e
Ar, (zo

Notice that, by Lemma 6.1, the kernel of H satisfies (6.10) and B(zo) = A1(zo)-

As to the second term of (6.22), we can use Lemma 6.3 with N = BV and ¢ =
PR‘L (IO)E to conclude
k

(1B(20) |G AL, (20) PoVAL, (z0)e PA L, (z0)&)

2 6.24
< AL (1 + |z|?)Pt! | e BE/32 4 gmmin f |¢(z)|dzz) (624
A2z, (zo)
Notice that ) is also polynomially bounded:
[?.,D(z)| < ZPK(B/Z‘.'T)(l s |z\2)p /dZZI(l i izI|2)pe—B|zflzf4
I (6.25)
< KB+ 1N2/mP e (1 + 2P
Moreover, since
[rcotb@ldtz< [ @[ @il
Ao, (z Ar, (zo
i 20) () (6.26)

sz] 2216,
Azr, (o)
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both terms in (6.22) satisfy the same bound and we have

(15(z0)| [€]) < A1LE(1 + |2o)%)PH (e—BLi/32+e—mLk fA [g(z)|d2z). (6.27)

2L, (%o)

Combining this with the polyniomial bound on £ (Lemma 6.2) we find
(Laeo)| 1€ < A1LE(1-+loo?)P* (e7BEE/2 4 KLR(1 + 2lmol® + 4L e~ ) . (6.28)

If there were to exist an infinite number of k’s such that Ay, (zo) was (m, E)-regular, then
it would follow from (6.28) that (1p(s,) |||} = 0, a contradiction. Therefore, there exists
k1 such that for all k > k1, Ay, (z0) is (m, E)-singular. By the definition of €y this implies,
as in [DrKl], that there is k; such that Az, (z) is regular for all z € Ag41(zo) N Z2.

Now let p € (0,1) and choose b > (1 + p)/(1 — p). Define
A1 = Aapr, 7(1400) (o) \ Az - p) (o) (6.29)

Let k > k3 so that Az, (y) is (m, E)-regular for all y € Ajy1(zo) N Z2. Inserting in (6.27)
the obvious bound

fA EENESIE (g D) (6.30)
2L, \Y

Yy E€Aar, (y)NZ?

we have

(La)| l€]) < ALLE(1+ |y|*)P*? (e"BLi/”JrLze—mLk sup <1B<y'>||af|>)' (6.31)
y' €Az, (y)NZ?

>From now on we shall keep x fixed and all constants may depend on zg. If y € Ag41NZ2
then |y| < |zo| + bLry1v2 < cL$ so

(Lay)| IED) < CL; (e‘BLi/""" +e™  sup  (Ipgy)

y'€AzL, (y)NZL?

|€|)) (6.32)

where r = 5 + (14 p)a. As Jik_‘_l(xo) C Agy1(zo) and d(z, dAg+1(z0)) = plz — zo| for
z € Art1(zo), we can iterate (6.32) at least n = p|x — zo|/ Ly, times to obtain

(Lp| € < P (nem BIA/® 4 Kemmian2p)

< (leLk)p|a:—m0| (L;/Lk)lﬂm—mcﬂ e—mP]z“xotx

plz — o B o a(l+p) (6.33)
4 -ZL _ _
( e l g2k gpyp |° ol Hmelw ol | +

K(1= p)?la - a0l
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If p' < p then for k sufficiently large, this yields
(1| [€]) < Memm'la=wol (6.34)

for some constant M. It then follows from Lemma 2.6 that £ is exponentially decaying
with rate mp’. QED

7. Proof of Theorem 4.3

As in [DrKl], the proof is by induction on k. The induction step is
Lemma 7.1 Let p > 2, 8 € (0,1) and s € (3,1) be given. Let J, be the smallest
odd integer > (p+2)/(p — 2) and define
— (Jp +1)p
o = .
2(p+ Jp+1)

(7.1)

Pick a € (1,0 A (23)).

There exists Q = Q(a, B,5,p) such that if | > Q and my > 4J/117F then if R(l,m;)
holds and (K2) holds for all L >l and for some q > 4p+ 12 then R(L,m) holds with
L=1% and

mp = my — [(21_(2_G)/4 + l_a(l_s)) my 4+ o(v+4)in 1+ l“a(l“ﬁ)]

(7.2)
> 4,17,

Again, the proof of this lemma has a probabilistic part and a deterministic part. The
latter is much more complicated than in [DrKl] and will be split into several lemmas.

Lemma 7.2 Suppose that N is an operator on L?(R?) with kernel N(z,2’) sat-
1sfying
IN(2,2")] < Age™®1==#1", (7.3)
Then, if Ay, Ay C R? are disjoint regions with distance d = d(Ay, A3),

T \1/2 il
14, N1a, || € Ao (%) AL 2em (7.4)

Proof. Since the operator norm is bounded by the Hilbert-Schmidt norm we have

1/2
o Nl < | [ @ [ @]
A1 As

1/2
j dzzf dzz’e—%%z—z'iz] { (7.5)
Aq Ag

< AO(W/zﬁ)l/zlAlll/ze—nf

< Ap
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since, for any z € A4,
f d2zf6—2n!z—z'|2 < / dZZIe-—-Zn{z—z'|2 — (ﬂ/zﬁ:)e—2nd2‘ (76)
A |z!—z|>d
QED

Lemma 7.3 Let A; C A = Ap(z) with L € N and z € Z* and let ¢ € L*(A) with
9]l # 0. Then

) B
1LaP;,Gadll < - LIl sup  ga(u) (1.7)
™ wEAL (x)NZ2

where gp(u) is defined by

_ {1pw) |GA1N>_

uw) = 7.8
QA( ) ”¢” ( )
Proof. For any z € A,
| (P1.Ga®) (2)] < fA 2 K5 (z, ) (Ga) ()
<o [ G
T Ay
5 (7.9)
=5 > (lpw|IGav)

u€A,NZ2

B
32—L2||¢l| sup  ga(u).
i

u€A,NZ2

The Lemma follows by integration over z € A. QED
We now come to the main deterministic lemma, the analogue of Lemma 4.2 in [DrKl].

Lemma 7.4 Let J €N, 8 € (0,1), s € (3,1), @ € (1,25), and E € R be given. Fix
x € Z* and assume that for all L > 1, |V(2)| < L* for all z € AL(z), where v < co.
Then there exists Q' = Q' («, 8, s, J,v) such that the following holds:
Ifl > Q' and m; > 4JI"'*P then the three conditions below imply that Ap(zx) is
(mg, E)-regular with

4J
Ak

my > my (1 S e L l—(z—“)/“) —wfy -+ — R s (7.10)

(i) Ar(z) satisfies (RA) in the definition of regularity.

(i) Av(y) satisfies (RA) for alll' € Jy = {I,1+1+1,2(1+1+1),...,J(I+1+1)}, where
[=1+1+2/4 and for all y € Ay (x) NZ? such that Ap(y) C Aj(z).

(iii) There are at most J squares Aj(u;) C Aj(z) with centres u; € Z* and with
d(ui,uj) > 141 # 7), which are (my, E)-singular.
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Proof. We want to prove that, provided ! is large enough, conditions (i), (ii) and
(iii) above imply that A = Ap(z) is (my, E)-regular. Suppose, therefore, that (i), (ii)
and (iii) are satisfied and choose a maximal set Aj(u;) (¢ = 1,...,r) of non-overlapping
squares with centres u; € Z* contained in Aj;(z) which are (my, E)-singular. By (iii),
r < J and if Ay(u) C Aj(z) and w ¢ |J;_, Azi(u;) then Ay(u) is (my, E)-regular. An easy
geometric induction argument shows that this impies that there are squares A;, C Aj(zx)
(i=1,...,t; t <r) with centres on Z* and with [; € J; such that Ay, N A, # 0 for i # j,

t r t
YNol<Jl+T+1)and | JA g (w)C A, (7.11)
=1

i=1 j=1
Clearly, if u ¢ A;, for any j = 1,...,t, where I[; = 1; — 1+2)/% and v € Z? and Ay(u) C
Aj(z) then u ¢ Agy(u;) (4 =1,...,7) and hence Ay(u) is (my, E)-regular.

To prove that A = A (z) is regular, choose an arbitrary ¢ € L?(A). From (3.6) we
have that, if Ay, A» C A are disjoint and A} € A; and A}, C A, then

Gayun Iard = Ga,lard — (Ga, @ Ga, )lay 4, G un, 19 (7.12)
Using (3.7) this yields
(1a ] 1G a0, 18y 8l) = (Lag | 1GA, DA, 0, Gayun, 1y 8l)

< (Lag | |Gy PoVayuas PR, Gayunz 1ay @) (7.13)
+ (La1 | |G A, PoVa, Py, Gayun, 1ay8))-
We now specialise to A; = Aj(u), Ay = Ap(z) \ A(w), A = A;(u) and Ay = Ap(x), as-

suming that A;(u) is (my, E)-regular. (Notice that A, C Ay because u € Aj(z).) Denoting
17\L(m)¢ = 1), we find

[9]] ga(u) < I(u) + Ln(u), (7.14)
where
I (u) = (1pw)| |GAz(u)POVAPK\Al(u)GA'¢I> (7.14a)
and
Io(u) = (L) |G ) PoVarauw) Ph, ) Ga¥) (7.14b)

and where ga(u) was defined in (7.8). We will now bound the two terms /;(u) and I5(u)
in similar fashions using Lemmas 7.2 and 7.3. We split /;(u) into three terms:

I1(u) < ()| |Ga ) PoVaPiya, () Ga¥l)
+ (Lp@)| 1G A () 1as6u) POVAPR A (up\ Ay () GAY]) (7.15)
+ (Leu) | |G )17, () PoVAPRnA (A (w) TA YD)
The first term on the right-hand side can be bounded with the help of Lemma 7.2. By (i)
and (ii), ||Gal| < 2¢L” and |G )l < 2¢!” . Moreover, since VaL | < L¥,

|PoVaFs(2,2")| < LV/KB(Z:ZI)KB(zlazI)dZZI = Lyge_Blz_z,lz/s (7.16)
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using (2.16). With Lemma 7.2 this yields

(1500)] 1G A w PoVa Py a sy Gadl) < 4(B/m) /2L 1" e BL/8) 1
4(B/W)1/Zlau+lelﬁ+l“'ﬂ—Bl(“+2)/2/8“,¢|l (7_17)

_pglat2)/2
e P! /19|

IA

a1
provided | > @, = (48/B)Y/" with v; = 1 — /2, where ¢; = 4(B/7)/2((av + 1) /e)**+1.

(We use that 8 < Ba < a < (a+2)/2 and also 7 < (y/e)e!) The second term is estimated
in the same way:

(1B |G A () 1as () PoOVAPR anup\au () GAY]) < cre”BU/18 (7.18)
provided I > Qz = (48/B)Y"2 with 4, = (25 — &) A (25 — 1). (The wedge denotes the
minimum.) To estimate the third term of (7.15) we use the assumption that A;(u) is
(my, E)-regular. This gives

* v _—m op
(1B(u) G A () 18, () PO VAPRAA (A (u) GAYI) < 2L7e Hel™ g (7.19)

On the other hand we can also use Lemma 7.3 with A; = AN Aj(u) \ Ay(u):

()| 1G A w14, () PoVa PR i w) Ga¥l)

B 7.20
< L™yl sup  ga(w). -
2m wEA1NZ2
Collecting terms we find
Il(u) < 2cle—Bl5/16 + laue—m;l 2610:/3 /\ _B_laa sup QA(U) . (7'21)
”TP“ 27 wEANA;{u)NZ2

The second term of (7.14) is estimated in the same way:

Ix(w) < (1| |G A w) PoVara;(w) P, ) Ga¥])
+ (1)l 1G A (u) 1, () Fo Vana;(w)\As () PR, (u) GA¥ ) (7.22)
+ (1) | 1G A () 17, () FoVANA )\ A1 () PR, () Ga¥ ) -

In the first term we use Lemma, 7.2 with N = P:

" B 1/2 v B a8 _ platz)/2
(1B(u)\|GAz(u)P0VA\A;(u)PAl(u)GMl’D34(2_7?> ertlel e |- (7.23)

Similarly, for the second term,

(1B | 1G a1 (w) 1, () PoVAna ()\As (w) P, () Ga¥)

sl (7.24)
< 4(2m BY21ev 1R o= BE /4 )|
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In the third term we have as before

(15| 1G A ) 17, () PoVana w\as ) Py u) Ga¥)

< 1@ e~mil||g|| | 2¢¢ ’ A =3 sup  galw)|.

Il |27 A ot sup  ga(u)
Collecting terms,

I3(u) —Bl%/186 —mal |1 A B

< 2cie /16 4 ove—mil | 9¢ —B3*  sup ga(w)]. 7.26)
o] AT S (
It now follows from (7.21), (7.26) and (7.14) that, if A;(u) is (my, E)-regular, then
—Bl°/16 av —myl [ B 34
ga(u) < 4dcje + 2[%%e™™" | 2e /\ —] sup  ga(w)]| . (7.27)
2 weA(u)NZ2

Next, suppose that A;(u) is not (m;, E)-regular. Then u € Ay, for some j € {1,...,t}.
We use (7.13) with A; = Ay, Ay = A\ Ay, A} = B(u) and A; = Ar(u) to write an
analogue of (7.14):

|19 ga(w) < I3 (w) + I3(u) (7.28)

with
I(u) = (1pu)| G, PoVaPi\a, Gadl) (7.28a)

and
I(w) = (Law| |G, PoVaa,, PR, Gattl)- (7.28b)

Notice that the only difference between I (u) and I7(u) is that A;(w) has been replaced by
Ay;. We can split I (u) into three terms analogous to (7.15), where the first two terms are

~

bounded as in (7.23) and (7.24) with [ replaced by I; < (I +1)J < 3JI. For the third term
there is no analogue of (7.25) but (7.26) still holds. We thus obtain

i B
1(u) S 26,18—316/16 + 2___la(l/+3)el? sup gA('U))’ (729)
o1 2n e,

wez?

where ¢} = 3Je¢;. We split up I5(u) differently:

I(u) < (1| 1Ga, PoViaa,, PA, Gavl)

. (7.30)
+ (15w |Gy, PoVaa,, Py, \Ar, Gayl)-
We obtain, using Lemma 7.2 and 7.3 respectively,
45 B
2(”) < C.;-e—B.l'S/lES +2_la(y+3)el? sup gA(w) (731)
{[]] 2m we (A \Ag )NZ?
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In all we have, if Aj(u) is (my, E)-singular,

B
ga(u) < 3cle=BE/16 4 2;1"‘("+3)elfgL(w) (7.32)

for some w € (AN A \A;,) NZ2. But, if we Ay \ Ay, thenw ¢ Ay, forany i =1,....t

If, therefore, d(A;,, OA;(x)) > [ then Ay(w) C Aj(z) and hence Aj(w) is (my, E)-regular.
We can then insert (7.27) into (7.32) and conclude that

2B*

8B
ga(u) < (303 + "ﬂ_—Clla(y+3)el?) 6_316/16 + _W_lea(v+3)el?e~mzlgA(w!) (733)

for some w’ € AN Aj(w) NZ2 We are now going to iterate the inequalities (7.27) and
(7.33). We first simplify these inequalities as follows. There exist Q3(a, 3, J,v) such that
if I > @3 then

2
l2a(v+3)e"-Jlﬁ < fé? A % (734)

and there exists Q4(«, 8, s, J,v) such that if [ > Q4 then

(3.1 + @za("”)e?’”") ¢ < ief‘l‘s/”. (7.35)
T

Using the fact that m; > 4J17'*# we now have

1
ga(u) < 16—3”/32 + Z(u)ga(w) (7.36)
where B ja(u+3) ' i - 1
D JalVv —TI 2 3 ¥
Z(u) = { f e 1 1(u) TS (my, E) rt-agu ar (7.37)
5 if Aj(u) is (my, E)-singular

and where w € ANA;j(u) if Aj(u) is regular and w € ANA;(w’) for some w’ € (ANA; )\ Ay,
if Aj(u) is singular. If we can iterate (7.36) N times, starting at u = z then we get

ga(z) < 6—316/32 {1 + Z(a:) Z_: Z(wl)Z(wg) ---Z(wn)}
+2Z(z)Z(wq) - - Z(wN_l)e‘“ﬂ (7.38)

[oH

< ZeBU/32 2Z(z)Z(wy) - Z(wn-1)e

DN =

(In the final step we have used the other bound on g, in (7.27).) If N; is the number of
n such that A\;(w,) is regular (wo = z) then the procedure can be repeated as long as

t t
L - (N1i+ Zz}-+ti) > \/ L +1. (7.39)



360 Dorlas, Macris and Pulé

For this it suffices that N; < (L — (9J + 1)l)/f Let, therefore, N; be the integer satisfying

L—(97+1) L - (9 +1)

< N; < (7.40)
Then 1
galz) < 56—315/32 £ 2(B/W)N1 je(V+3)N1 g—mi N1l 17 (7.41)
Define
= 1 B 2 a(6-1)
my = — (m;l In - a(v +3) lnl) 7 In2-1 . (7.42)
Inserting the first inequality (7.40) and the relation
E — La(l_s) > 1 — [mel-s) _ j(@=2)/4 (7.43)
T B e '
it easily follows that
ML > m (1 _gmali=e) _ z-<2-a)/4) —a(v+4)I" nl — (~2(-A) (7.44)
provided [ > (9J + 1)? V (B/x). Therefore
LB, > 4ie-101-F) (1 _ gp—a(l-s) _ l—(z—a)/4)
(7.45)

—a(y+ )Pl —1 > 4J

if l is large enough: | > Qs(«, 8, s, J,v). Finally, we define my, = mp A 31—23l‘5'a. Asé > «a,
we then have gj (z) < e”™2% and my, > 4JL~1*8 provided I > Q' = Q1VQ2VQ3VQ4VQs,
which proves the lemma QED

To prove Lemma 7.1 we introduce another definition. Given an interval I C R, let

B

o' (Ha) = o(Hp) N {E|d(E, 1) < %e—r 1. (7.46)

We shall assume that d(I,0) > €, and e < y. Then o/(Hy,) C R\ [—%€0, 3€0). As in
[DrKl] we now have
Lemma 7.5 Suppose that (K2) is satisfied and thatl; > l; > Lo V (—% Inepy). Let

the squares Aj, and Ay, have centres on Z? and distance d(A;,,A;,) > 1. Then there
exists a constant ¢ > 0 such that

’ ! —1 l%
P [d(O’ (HAzl)va (HAIZ)) <e 2:| <c

< ¢ (7.47)
2
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Proof. Let V] = VAzl and V5 = VAzz' Since d(A;,,A,) > 1, V4 and V; are independent
random variables. We denote the corresponding probability measures by P; and P;. Let
A (V1);- ., An(vy) (V1) be the eigenvalues of Hy, (V1) in o'(Hy, (V1)) Then d(Xi(V1),I) <

%e‘l? < %e“‘lf and hence by (K2),

P [d (o' (Ha,, (V0)),0'(Hn,, (V) < 7]
n(V1)

szl(dvl)P2 U {vld (). o' (Ha,, (V) < e )

- /Pl(dvl)ng)Pz [{%Id()\i(%),a’(ﬂmz(%))) < e—té’”

< 9B, (V) (1.4)
<% (NZ, (V.eo/2) + N5, (Vi ~co/2))

< 2,7 (NZ, (V],eo/2))

< 413 %5 'E (Trace Ha, (VA1)

4|A 4B|A
< ’q ZII]E(|'UO3D sup dzz,KB(Z,Z,)Z & I l1|
1260 z€Ay, Ay meQ

E(Jvz)l5*-

This proves the lemma. QED

Proof of Lemma 7.1
The proof now proceeds exactly as in [DrKl]. Taking @ > Q' of Lemma. 7.2, it suffices to
show that if Q is large enough and I > Q then, for any z,y € Z? with |z — y|leo > L + 1,

P[VE € I : (i), (ii) and (iii) of Lemma 7.4 hold either for z or for y] > 1 — L™?P. (7.49)

Indeed, one proves as in Lemma 2.1 that, for given z € Z?, |V (z)| < L? for all z € A, (z)
provided L is large enough (independently of z).

Fix, therefore, z,y € Z? with |z — y|ee > L + 1. We may assume that
d (O" (HAll (a:’):gl(HAL2(y’))) 5 e—(h/\lz)ﬁ (750)

forall 2’ € Ap(z) NZ? and v/ € AL(y) NZ? and all I1,1, € J; U{L} with Ay, (z') C Ap(z)
and Ay, (y') C Ar(y). Indeed, by Lemma 7.5, the probability that this is not the case is
less than L*(J + 2)2cL?177 = /L8179, Tt is easy to see that if (7.50) holds for all z’,y/, 4
and Iy as above then, for all E € I, (i) and (ii) of Lemma 7.4 hold either for z or for y.
Hence,

P[VE € I : (i) and (ii) hold either for x or for y] > 1 — ¢/L%~<. (7.51)
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As to condition (iii) we have, moreover,

IP’[ElE € I : there are at least J + 1(m,, F)-singular squares A;(u) with

distance > 1 contained in Ay (z)]

< P[3F € I : there are at least two (m;, E)-singular squares A;(u), A;(v) C (7.52)

Ap(z) with |u — v|e > 1}('”'1)/2

S (LZZ—p)J-!-l

and similarly for the square Ap(y). It follows that (7.49) holds since
d L8179 + 2L2U+1)]=P(J+1) < [,=2P for | large enough. (Remember that ¢ > 4p + 12 >
20p + 6 and @ < ap < 2.) QED

Proof of Theorem 4.3
Let ag and J, be as in Lemma 7.1. Starting from [ = Ly and m; = mo we can iterate
Lemma 7.1 to find that R(Ly, my) holds for Ly, = L¢ and a sequence {my} satisfying

Mpy1 > My — [(2L;(2ha)/4 + L;a(l"s)) my, +a(v+4)L; ' In Ly + L;a(l_ﬁ)] . (T1:53)

Given m < myg it remains to show that Z;:Ozl(mk — mgt1) < mo —m for Lo large enough.
But this follows immediately from the inequality (7.53). QED
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