Zeitschrift: Helvetica Physica Acta

Band: 68 (1995)

Heft: 3

Artikel: Sur la dynamique du Fléau

Autor: Choquard, Ph. / Bonjour, F. / Blanc, J.-C.
DOl: https://doi.org/10.5169/seals-116738

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 03.02.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-116738
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Helv Phys Acta 0018-0238/95/030235-29$1.50+0.20/0
Vol. 68 (1995) (c) Birkhiuser Verlag, Basel

Sur la Dynamique du Fléau
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J.-C. Blanc
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Abteilung fir Klima- und Umweltphysik
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Abstract. The purpose of this paper is to present a continous time, one (small) parameter theory
of bifurcations which appear in two periodic orbits, the so called resonances 1/2 and 1/1, of an
articulated, planar, friction less pendulum driven periodically, as shown in figure 1, a mechanical
system called flail. Basically, this model is characterized by two parameters: I; /l; and g/l,w? and
its equation of motion is given by (1.1). Here we consider the symmetric case where w? = g/I; and
we take (1.2) as our starting one-parameter differential equation.

Our investigations are based on the following ingredients: 1) accurate computer simulations
of interesting orbits and construction of their Poincaré sections, 2) analytical determination of
relevant periodic orbits, 3) band theory approach, commented below, to the stability analysis
of periodic orbits and 4) bifurcation theory based on Fredholm’s alternative (Appendix A). The
band theory approach is based on the study of the Hill equations which can be associated to any
linearized equations of motion around periodic orbits. This study amounts to analyse particularly
how the bands change their shapes and move across the zero eigenvalue level in fonction of the
parameter which appears explicitly and implicitly in the periodic coefficients of the Hill equations.
A fundamental monotony theorem of band theory (Appendix B) is systematically invoked to tell
us why and when a certain bifurcation will occur. The way how the bifurcating orbit develops
afterwards is treated according to the fourth point of our procedure. An important result of the
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band theory approach is to indicate how the Floquet multipliers of the linearized equations move
on the unit circle of the complex plane in function of the parameter.

In the second chapter we show and explain why the resonance 1/2 (figure 10 (a)) experiences
first a period doubling bifurcation (figure 10 (b)), then a symmetry breaking bifurcation of the
mean angular position of the pendulum (figure 10 (c)) and last a period doubling bifurcation again.
We find that the Floquet multiplier p executes 1° half a circle in the trigonometric sense, 2° the
reverse path and 3° a quarter of a circle in the trigonometric sense again.

In the third chapter we present an analytical method to determine accurately the resonance
1/1, we study in detail the onset of the strong resonances 1/4 and 1/3 and we offer a detailed theory
of the squeeze effect which accompanies the 1/3 resonance. We investigate lastly the stability limit
of the 1/1 resonance and the period doubling which follows (figure 21). Whithin the parameter
range investigated, the Floquet multiplier of the resonance 1/1 execute half a circle.

We conclude with the suggestion that a “complex band” approach can be proposed to deal with
dissipative systems.

1 Introduction et Résumé

Le modele mécanique considéré ici est un pendule double plan dont le premier entraine
le second dans un mouvement tournant avec une vitesse angulaire constante w et dont le
second est porteur, a son extrémité libre, d’'une masse m sujette a I’action de la pesanteur
mg (figure 1). Le systéme est supposé exempt de frottement. La description de ce modele
évoquant un fléau, c’est ainsi qu’on I’a baptisé. Ce pendule articulé fait partie des systémes
hamiltoniens non-autonomes a un degré de liberté qui exhibent une dynamique complete
comportant des régimes ordonnés, chaotiques et mixtes comme nous |'illustrerons plus bas.

Un intérét supplémentaire de ce modéle est qu’il est isomorphe & deux autres modeles
célebres soit 1° celui de V. Croquette [1], qui consiste en une aiguille aimantée soumise a
Paction de deux champs magnétiques dont I'un est fixe et 'autre tournant et 2° celui de
D.F. Escande [2], qui consiste en un électron soumis a 'action de deux champs électriques
longitudinaux dont 1'un est périodique dans I’espace et 'autre est périodique dans 1’espace et
le temps, le fléau correspondant au cas particulier ou les deux périodes spatiales coincident.
C’est dire la somme de connaissances qualitatives et quantitatives acquises sur les propriétés
dynamiques de ce systéme et, comme corollaire, la nécessité de situer notre contribution.
Celle-ci est de fournir une explication complete concernant les quand, comment et pourquoi
de ’apparition de certaines bifurcations dans I’évolution en fonction des parametres de cou-
plage d’orbites périodiques du fléau choisies & propos, notamment celles qui sont illustrées
dans la figure 7 de la référence [1].

Le modele mathématique associé au fléau a été élaboré en détail dans la référence [3,
paragraphe 5.2]. Soient 0 = wt et ¢ les angles que font respectivement le bras, de longueur
I, et le pendule, de longueur I, du fléau par rapport a I’axe vertical. Soient mi3w? 1'unité
d’énergie, v = g/law? et A = [1/1; les parametres gravitationnel et d’entrainement du fléau.
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Figure 1: Le modele du fléau.

On montre alors que I’équation du mouvement est donnée par

fle = —ysin(¢) — Asin(¢ — 0) (1.1)

On a affaire a une théorie a deux parametres, v et \. En principe plusieurs stratégies s’offrent
pour couvrir le plan des parametres, par exemple faire varier A a - fixe ou inversément, ou
encore les varier ensemble. Dans nos travaux initiés dans la référence [4] nous avons choisi le

cas symétrique ¥ = A et considérons donc dans ce qui suit I’équation différentielle du fléau
symétrique

d*¢ , ,

¥ i — A {sin(¢) + sin(¢ — )} (1.2)

Quatre ingrédients constitueront le support de notre démarche:

e la construction par simulation numérique des orbites intéressantes et de leurs coupes
de Poincaré;

e la détermination analytique des orbites périodiques relevantes;

e les conséquences de la théorie des bandes appliquée aux équations linéarisées de 1’équa-
tion (1.2) autour de solutions périodiques et plongées dans les équations aux valeurs
propres de type Hill qu’on peut leur associer;

e la théorie des bifurcations [5, chapitre 9] basée sur I’alternative de Fredholm, appliquée
a ’évolution d’orbites périodiques précises en fonction du parametre de couplage A ou
du parametre p = 8A.

Disons d’emblée que c’est dans 'idée du plongement que résidera la clef des explications
évoquées plus haut, les autres ingrédients étant plus ou moins standards.

Afin de déterminer le cadre de ce travail, il importe d’illustrer les comportements du fléau
symétrique dans les trois régimes de couplage faible, moyen et fort évoqués au début de cette
introduction. C’est l'occasion de rappeler ce que sont les coupes de Poincaré: 'espace des
phases étendu nécessaire a la description des trajectoires du modele est & trois dimensions
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(P, ¢,0); les coupes de Poincaré sont alors les projections stroboscopiques de période 27
sur le plan (Fy,#). Le moment conjugué P, étant dans notre cas égal & d¢/df = ¢, 'usage
courant dans la théorie des EDO du couple de variables (¢, ¢) sera aussi admis.

La figure 2, avec A = 0.01, illustre le régime essentiellement fait d’orbites périodiques,
quasi-périodiques et de tores invariants. La figure 3, en A = 0.108, illustre le régime mixte
avec coexistence de zones régulieres et chaotiques et la figure 4, avec A = 1.0, le régime

essentiellement désordonné: l’illustration comprend les coupes de Poincaré d’une centaine
d’orbites chaotiques.

1.2 — .

Figure 2: Coupe de Poincaré du fléau symétrique pour A = 0.01.

Revenons a la premiere figure qui nous permettra de préciser le choix des orbites périodi-
ques dont nous voulons étudier ’évolution en fonction de A. On observe une symétrie autour
de I'axe Py = 1/2 qui résulte évidemment du fait que v = A\. On remarque notamment
Porbite de période 47 représentée par les centres de deux ellipses (représentant elles-mémes
des orbites quasi-périodiques) de coordonnées Py = 1/2,¢ = 0 mod 27 et ¢ = m. Cette
orbite 4w-périodique est appelée résonance 1/2 dans le sens ou le bras fait un tour alors que
le pendule en fait deux (cf. figure 10 (a)). On remarque aussi 'orbite de période 27 au centre
de D'ellipse supérieure et dont les coordonnées sont Py 2 1,¢ = 0 et symétriquement Porbite
piégée par la gravité avec Py £ 0,¢ = 0. Ces deux orbites portent le nom de résonances
principales. On remarque leur robustesse puisqu’elles persistent dans la zone réguliere de
la figure 3 ou I'on devine notamment deux orbites 67-périodiques dont nous reparlerons au
chapitre 3. Dans la figure 4, en revanche, toute zone réguliere parait avoir disparu.

Nous pouvons maintenant préciser notre programme: il s’agira d’examiner ce qu'il advient
de l'orbite 47-périodique (résonance 1/2) dans le domaine 0 < A £ 0.0702 et de Porbite 2x-
périodique (résonance principale) dans le domaine 0 < A50.19.
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Figure 4: Coupe de Poincaré du fléau symétrique pour A = 1.0.



240 Choquard, Bonjour and Blanc

Dans le deuxiéme chapitre, nous présenterons I’histoire de la résonance 1/2 dans le do-
maine précité: nous montrerons pourquoi elle subit un doublement de période en A = 0.05675
puis, découverte inattendue, pourquoi cette nouvelle orbite double subit une brisure de
symétrie sans changement de période en A = 0.0689 et enfin un doublement de période
en A = 0.07051. La limite de la précision numérique ne permettra pas de conclure si la
cascade sous-harmonique se poursuit ou non jusqu’a ’apparition de la premieére fenétre de
comportement chaotique en A & 0.0703. C’est une analyse théorique qui devrait trancher.

Dans le troisieme chapitre nous présenterons quelques aspects de ’histoire de la résonance
principale 1/1, notamment un quadruplement de période intervenant en A = 0.0621, puis,
par l'effet de pincement décrit en détail, un triplement de période intervenant en A = 0.1077
et enfin sa limite de stabilité par doublement de période en A = 0.1780. Les schémas de
bifurcation correspondants seront établis et commentés.

Deux appendices sont conscrées, I'une au rappel d’un théoréme important de la théorie
des bandes et 'autre a la facon d’utiliser ’alternative de Fredholm.

Quelques remarques finales serviront de conclusion a ce travail.

2 L’Histoire de la Résonance 1/2

2.1 Son Domaine de Stabilité

On peut réécrire ’équation (1.2) sous la forme

&4

T —2X cos(¢p/2)sin(¢ — 6/2) (2.1)

et remarquer que ¢ = 0/2 est solution exacte de cette équation ¥V A. C’est la résonance
1/2 évoquée plus haut. Il s’agit alors de connaitre le domaine de stabilité de cette solution
et les bifurcations qu’elle subira. Par commodité on ramene la périodicité du mouvement a
2m en posant x = §/2. On pose en outre &g — j%‘f = 14", 8X = y et I'on introduit dans

il
I’équation (2.1):

d(u,z) =z + x(p, ) (2.2)
Cette substitution donne I’équation de base
— x" — pcos(z) sin(x) =0 (2:3)

On commence par étudier la stabilité de ¢ = z, en linéarisant (2.3) pour obtenir au premier
ordre

—x{ —pcos(z)x1 =0 (2.4)

C’est ici que nous introduisons ’équation de Mathieu associée a (2.4), soit

—y" —pcos(z)y =ey (2.5)
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et que 'on évoque ce que 'on sait de la théorie des bandes du probléeme de Schrodinger
équivalent, mais plus général, de celui d’une particule se mouvant sur la droite IR' dans un
potentiel périodique de période 27 (cf. appendice A.) Soit n I'indice de la bande, v le nombre
d’onde avec |v| < 1/2 et {e,(v, )} le spectre des valeurs propres. Un théoréme important
nous dit que e, (v, 1) est paire en v, monotone croissante (décroissante) en v pour n
pair (impair) et que en41 > €5, avec des intervalles interdits entre les bandes.

Ce qui nous intéresse, ce sont les zéros des valeurs propres et la facon dont ils se déplacent
sur I’axe des v quand le parameétre u augmente. Pour u petit la bande n = 0 exhibe une
portion négative car le potentiel v(z) = —pcos(z) est attrattif (cf. figure 5.) Il y a deux
zéros symétriques £uo(p) qui permettent de donner naissance & une perturbation de nombre
d’onde v bornée autour de ¢ = z. Il est alors manifeste que, la premiére bande continuant a
descendre avec u croissant, la limite de stabilité de la résonance 1/2 est atteinte en v = 1/2
et ceci pour une valeur p., de p (cf. figure 6) au-dela de laquelle le zéro de ’énergie se trouve
dans le premier intervalle interdit qui impliquerait un v complexe, donc une perturbation
exponentiellement croissante. Notons ici qu’avec p croissant on retrouverait de nouveaux
domaines de stabilité correspondant aux bandes permises qui traverseraient ’axe des v. Mais
revenons a la premiere bande. Si, en y = p,, il y a émergence d’une nouvelle orbite, celle-ci
doit étre de période double en vertu du théoréme de monotonie évoqué ci-dessus.

A ce stade il est instructif de considérer les multiplicateurs de Floquet de 1’équation (2.4)
soit py = p = €¥™ et p_ = p* = e~ %™ pour v = vy(p). On constate que chaque multiplica-
teur parcourt un demi-cercle unité dans € quand p varie de 0 a g, = 0.454. Alternativement
et d’utilité équivalente, on peut s’intéresser au résidu

2 _ x
R(v) = (p+p7)
4
avec v = vo(p): R varie de 0 a 1 quand y varie de 0 & p, .

= sin*(7v)

On peut conclure ce paragraphe en affirmant que le quand (g., = 0.454) et le pourquoi
(théoréme de monotonie) du doublement de période sont expliqués. Reste le comment, sujet
du prochain paragraphe.

2.2 Son Premier Doublement de Période

Pour p > p., on fait ’Ansatz

b=z +x(u,2/2) (2:6)
On repart de I’équation (2.3) et on y applique la théorie des bifurcations [5, chapitre 9]. La
dépendance algébrique de ’amplitude de la nouvelle orbite de période 47 en z en fonction

de p — p., n’étant pas connue, on introduit un parametre de développement auxiliaire ¢ et,
en posant u., = po on écrit

ple) = potem+ %521“2 T (2.7)
X(6:2/2) = 0+exi(z)2)+ %szz(m /2) + éESXS(x/z) b (2.8)
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Figure 5: Diagramme de bandes de I’équation (2.5) pour p = 0.24.
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Figure 6: Diagramme de bandes de I’équation (2.5) pour p = p,, = 0.454.
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On développe ensuite

) 1
sin(x) = x-— 6)(3 +0(x%)

1 1
= €X1+§52X2+E€3(X3"X§)+‘“ (2.9)

En insérant les développements (2.7) et (2.9) dans (2.3), en posant C(z) = cos(z), en
annulant les termes de méme puissance en ¢ et en définissant ’opérateur

&2 &2
H= 0 poC(a) =~y +o(12)

on trouve les équations des trois premiéres amplitudes
Hy; = 0 (2.10)
Hx: = 2mC(z)xa (2.11)
Hys = C(z){3uaxa +3mixa — pox3) (2.12)

La solution cherchée pour ; est conditionnée par le fait que la vitesse initiale d¢/df = 1/2
en § = 0V u, ce qui implique le choix d’une solution paire de I’équation (2.10).

Il est toutefois intéressant de considérer au préalable la résolution de (2.5) pour un
potentiel plus général 2r-périodique. Cette derniére se résoud en développant ’onde de

Bloch '

g = y”('uv :D) =& p(,u,:c), p(,u,w) = P(ﬂvl‘ + 27")
et le potentiel v(y,z) en séries de Fourier:

vo(pz) = D yn(p) e
o(p,z) = Y vm(n)e™
pour obtenir une équation matricielle (—oco < n < o0)

[(n +v) — €] yalp) + D vm (1) Yn-m (1) = 0

que Pon peut écrire Ay = ey. Le probléme est alors ramené & la recherche des valeurs
propres et vecteurs propres de la matrice réelle et symétrique A. Pour ’équation (2.10) on
a besoin du cas particulier v = 1/2 et e = 0. L’analyse numérique fournit

o = e = 0.454
)
x1 = 1.248 cos(g) + 0.126 cos(%x) + 0.005 cos(ix)

L’accord de p., calculé avec le résultat de la simulation numérique est excellent.

Remarquons ici que dans le domaine de stabilité de 'orbite 1/2 on peut étudier I’émer-
gence d’orbites-satellites sous-harmoniques périodiques et quasi-périodiques. A titre d’illus-
tration, la table 1 donne la liste des valeurs critiques ps0 de p en fonction de v, = 1/n
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| Période en § | Multiplicité n | ps0 | Ao |

407 10 0.1392 | 0.01740
36m 9 0.1541 | 0.01926
32m 8 0.1725 | 0.02156
28w 7 0.1956 | 0.02445
24 6 0.22535 | 0.02819
20 5 0.2654 | 0.03317
167 4 0.3197 | 0.03996
127 3 0.3923 | 0.04904
8w 2 0.4540 | 0.05675

Table 1: Valeurs critiques de p correspondant a des bifurcations sous-harmoniques de la
résonance 1/2.

telles que ep[vs, ts0] = 0 et ceci pour n = 10, ...,2, cette derniére coincidant avec la limite
de stabilité. Le calcul de ces bifurcations se fait par la méme méthode que celle que nous
appliquons maintenant au cas n = 2.

Il nous faut déterminer maintenant les autres coefficients des développements (2.7, 2.8),
41 et x2 notamment, les deux inconnues de I’équation (2.11). L’alternative de Fredholm (cf.
appendice B) nous livre la valeur de p; en exigeant la condition:

2 4
(92:)(1) = -4#?1 ./0 dz cos(a:)xf(m) =0

Or, l'intégrale n’étant pas nulle, la condition n’est satisfaite que pour gy = 0. On doit
alors calculer y, en la développant, ainsi que g2, dans la base des vecteurs propres de IH
pour v = 1/2, sauf celui correspondant a la valeur propre nulle. Cette derniére condition
(x2,x1) = 0, qui ne découle pas de I’alternative de Fredholm, est nécessaire. En fait, si x2
contenait des termes non-orthogonaux a xi, il faudrait les inclure dans x; lui-méme. Dans
le cas présent, lorsque l'on pose p; = 0 dans (2.11), on constate que x» doit satisfaire la
méme équation que x; et que la condition (y2,x1) = 0 n’est vérifiée que pour x2 = 0. Pour
déterminer py on exige

1 4r
(93:31) =~ | dw cos(z) {3p2x3(z) — poxi(w)} =0

Les deux intégrales étant non-nulles, on trouve apres quelques calculs po = 0.243.
Au plus bas ordre on n’a pas besoin de connaitre ys. Nous obtenons alors
x(e,z/2) = exi(z/2) + O(e)
p—po = %#262 +0(&)

Ainsi, pour p — o petit, on trouve

xa(z/2) = + 3(””‘2—""&1(33/2) (2.13)
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Il existe donc localement autour de pq deux solutions 47-périodiques en z (87 en #) qui sont
proportionnelles a £x;. Le diagramme de cette bifurcation-fourche est donné sur la figure 7.

1.5 T T T T T T T
stab
1F J
05} J
(1) 0 stable instable

05+ -
1L il

15 1 1 1 1 1 I 1

0.4 0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56
1]

Figure 7: Diagramme de bifurcation correspondant au premier doublement de période de la
résonance 1/2. La fonction ¢(u) est évaluée en z = 0.

La solution ¢ = z est donc instable dans le voisinage positif de pu.,. Toutefois, et s’il ne
se passait rien d’autre, les solutions de I’équation de Mathieu (2.5) nous apprendraient que,
quand g augmente, une seconde puis une troisitme bande d’énergie permises traverseraient
le niveau e = 0 et ainsi de suite, stabilisant de nouveau par bifurcation inverse la solution
¢ = z! Que se passe-t-il donc au-dela de p., 7 C’est ce que le paragraphe 2.3 nous apprendra
en partie.

2.3 Sa Premiere Brisure de Symétrie

Pour y > p.,, on repart de ’Ansatz (2.6) et on cherche & déterminer x(u,z/2) solution
paire de (2.3). Une méthode analytique sera présentée a cette fin au chapitre 3. Ici, nous
nous contenterons des résultats de simulations numériques et nous donnerons les raisons qui
font que la bifurcation discutée s’est révélée étre une brisure de symétrie avec maintien du
caractere 4r-périodique en 'z de ’orbite. La démarche est encore un fois basée sur I’examen de
I’équation de Hill associée & ce probléme. Le résultat sera aisément transposé sur 1’évolution
des multiplicateurs de Floquet p[v(u)].

On suppose x(u,z/2) solution paire de (2.3) connue pour p., < g < ., et, en posant
¢ =ax+x(g,7/2) +5(p,z/2) on examine la question de sa stabilité via I’équivalent de (2.4),
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soit
— &1 — pcos(z) cos[x(p,z/2)] k1 =0 (2.14)

A ce stade on introduit ’équation de Hill associée a (2.14) sous la forme

—y" — u cos(z) cos[x(u,z/2)]y = ey (2.15)

On remarque que le potentiel de I’équation de Mathieu (2.5) est remplacé ici par ’expression
q

v(u, ) = —p cos(z) cos [x(p,z/2)] (2.16)

Deux faits importants sont alors a signaler:

1. On sait que x(p,z/2) est 47-périodique en z, mais cos[x(y,z/2)] redevient 2w-
périodique ! Donc, v(g, z) est 2r-périodique en z.

2. L’inspection superficielle de (2.16) suggére que, quand g augmente, le potentiel s’appro-
fondit. Or, cet effet est plus que compensé par 'action de cos[x(y,z/2)]. Le
résultat net est que le minimum du potentiel remonte avec y > p., alors que son
maximum demeure inchangé. Cela veut dire que la bande n = 0 remonte et que les
zéros qui étaient en v = £1/2 pour p = p., se rapprochent de l'origine.

En vertu du fameux théoreme de monotonie, la limite de stabilité sera atteinte quand le
minimum de la bande n = 0 repassera par zéro. Cela signifie que, s’il y a bifurcation, c’est
en v = 0 qu’elle aura lieu. Mais on sait que I’onde de Bloch yo(ge,, ), qui est 27-périodique
en z, peut avoir une composante constante non-nulle ! Cela implique qu’apres la bifurcation
la position moyenne du pendule, qui était nulle jusqu’ici pourra devenir non-nulle, positive
ou négative par symétrie. Cette situation rappelle celle du parametre d’ordre dans la théorie
de Landau. Pour rendre cette explication convaincante nous représentons sur la figure 8
I’allure du potentiel v(g,z) pour g = 0.548 ainsi que la bande n = 0 de son équation de
Hill et dans la figure 9 la situation en g = 0.551. En outre la figure 10 montre clairement
la succession des bifurcations que subit la résonance 1/2 du fléau. La transposition de ce
résultat sur I’évolution des parametres de Floquet est que ceux-ci exécutent un demi-cercle

dans le sens inverse quand p., = 0.454 < p < p., = 0.551. Il reste a déterminer la nature
de la bifurcation.

On part de I’Ansatz
¢u,x) =z + x(p, 2/2) + £(p, 2/2) (2.17)

et I’on suppose connue x(g,z/2), solution paire de (2.3) pour g > p.,. ’équation pour «
devient

— k" — pcos(z) {sin(x + &) —sin(x)} =0 (2.18)
— & — pcos(z) cos(x) sin(k) — pcos(z)sin(x) cos(k — 1) = 0 (2.19)
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Figure 8: Situation entre les deux bifurcations, en u = 0.548. La figure de gauche montre le
potentiel et celle de droite le spectre de bandes qui en résulte.

0.2

" L
-0,2 F ;
0.4 F
~0.4 F : p

~0.6 + E 0.2

=0.8

<1

Figure 9: Situation a la nouvelle bifurcation, en g = 0.551. La figure de gauche montre le
potentiel et celle de droite le spectre de bandes qui en résulte.
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1.5 . . . . . . 2

A5 =5 0 05 1 15 A5 1 05 0 05 1 15
(©) (d)

Figure 10: Trajectoires (z,y) de la masse du second pendule pour p valant respectivement
(a) 0.08, (b) 0.52 et (c)-(d) 0.5736, montrant le doublement de période en y = 0.454 puis la
brisure de symétrie en u = 0.551, conduisant a deux orbites de positions moyennes négative
et positive. Les longueurs des pendules ont été ramenées a 1 pour faciliter la visualisation
de la figure.
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A ce stade on développe p, k, cos(x) et sin(x) autour de p., = fio soit

Bo= po+Ap=flo+efs+ %Ezﬁz s (2.20)
k£ = 0+4er + %e%z 4. (2.21)

Clz,p) = cos(z)cos[x(u,z/2)] = C(z, pe, + Apr)
= CotenCy+ e (1aCh + CH) (222)

S(z,u) = cos(z)sinx(p,2/2)] = S(z, pe, + Ap)
= So+efiSh+ %52 (28} + E2SY) (2.23)

ot

Co = —8oxp,  Cq=—Coxg — Soxo (2.24)
So = CoXos 85 = —Soxg + Coxo (2.25)

Les indices “’” désignent les dérivées par rapport a p, évaluées en g = fig = Y. En
insérant les développements dans (2.18), en regroupant les termes de méme puissance en €
et en définissant 'opérateur

2 _ d? _
H = ——3 — Ho cos(z) cos[x(fio)] = — + v(jio, )

on trouve les équations pour les trois premiers termes de &:
Hg; = 0 (2.26)
Her, = 2 (Co+ oCh) k1 — fioSok; = g2 (2.27)
Hrs = 3, (Co+ f10Co) k1 +
31 [(Co + ioCy) K2 — (So + 0Sh) 3]
371} (25 + toCy) k1 — fio (Corel + 3Sok1fz) = ga (2.28)

Il nous reste a trouver «;, a calculer ji; en exigeant que (g, %1) = 0, puis & déterminer
ko comme solution de I’équation inhomogene. Pour cela on développe k2 dans les fonctions
propres de IH pour v = 0 et ’on projette g, sur cette base. Puis on cherche a déterminer i,
via (g3, k1) = 0. Cette analyse numérique fournit les résultats suivants:

he, = 0.551
fp =0
k1 = 0.93815 + 0.346 cos(z) — 0.00064 cos(2z) — 0.0026 cos(3x)
-
k2 = —1.95 cos(g) —0.207 cos(g-:r) —0.00053 cos(-g:c) +0.00126 cos(—Q-x)

Le résultat est

+ 2(# - /""Cz) K1 + 2(/“" - I'J’C'.z).,{,2 (229)
H2 M2



250

Choquard, Bonjour and Blanc

en accord avec les simulations numériques. (2.29) fait intervenir p,, dont la détermination

numérique est ardue. Remarquons que k; est de période 27, & cause de la périodicité du
potentiel, mais «; a la période désirée 47 en z (figure 11), ce qui est di a la périodicité 4=
du terme de source.

Figure 11: Fonctions x4 pour la brisure de symétrie. k4 est en trait plein et k_ en traits
tillés. Leurs moyennes ne sont visiblement pas nulles.

2.4 Son Deuxiéme Doublement de Période

En principe, la méthode que nous avons utilisée par deux fois jusqu’ici peut étre employée
pour déterminer n’importe quelle bifurcation. En pratique il en va tout autrement, en raison
des imprécisions inhérantes a tout calcul numérique. Lors de la bifurcation précédante, le

calcul g, avait déja été ardu, mais maintenant il n’est méme plus possible de trouver la
valeur critique a laquelle la bifurcation a lieu.

Il est cependant possible d’appliquer d’autres méthodes, notamment celle de Newton,

permettant de trouver p., = 0.7015, mais au prix de I’abandon de la théorie des bandes qui
nous était utile car elle nous donnait une vision plus large des bifurcations. Une simulation
numérique montre alors que cette bifurcation est un nouveau doublement de période; ceci
s’accorde bien avec le fait qu'immeédiatement apreés la brisure la premiere bande se trouve

au-dessus de ’axe des v, et ne peut que redescendre jusqu’a toucher ’axe en bord de zone

Celle-ci se trouve en v = £1/4 car la période du “potentiel” de I’équation de Hill aura doublé
lors de la brisure de symétrie.
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Figure 12: Trajectoire (z,y) de la masse du second pendule pour p = 0.56248, apres le
deuxieme doublement de période.

3 L’Histoire de la Résonance 1/1

3.1 La Résonance 1/1

Pour réaliser le programme de ce chapitre nous avons besoin de la solution impaire de (1.2)
qui, pour A = 0 vaut ¢(0,8) = 0. Nous posons cette fois

B(L8) = 3 () sin(nd) (32)

En insérant ce développement dans (1.2) on obtient & gauche

=Y n*(,sin(nd)

n>0

et a droite
___)_‘__{[eie + 1] H (6iCnsin(n3)) . [e—ie + 1] H (e—i(nsin(nﬂ))}
23 i A

Posons maintenant: e#nsin(n6) — K=* e'™n? avec K* des coefficients de Fourier.
mnEZ n,Mp \ DN
On obtient alors:

A : .
—E{[eza £ 1] ZZ‘-‘K;mOKf:ml ---exp(zZmnf))—

mg Mg
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e 41 Koy Koy - exp(i Y ma) } (3.3)

mop My

s+ A .
Les K7, sont donnés par:

1 2T . . .
Kimall) = 57 ), d0eTmoem0l = Jan(G), n 0
Ky (G) = (—1)% Jma(G), n#0
K&, (G) = e7C6,0

ou J,(z) désigne la fonction de Bessel de premiere espéce et ot les seuls coeflicients non nuls
sont ceux pour lesquels m, = p, n, p, € Z. En introduisant ces coefficients dans (3.3) et en
remplacant la m,, par p, n on trouve

S nasin(nd) = zz rexp [i 32(n0)] Jp, (1) I (C2) -

n>0 P P2

He’e + 1] e _ (—1)21’” [e‘w + 1] eiCO}

Finalement, pour pouvoir exploiter cette derniere il nous reste a la projeter sur e=*?, obtenant
ainsi:
> PG (8 =8 =AY T (G (G2) -
n>0 1 P2
—1{o £ n .o
{ [61+E S 62 n:on] (—1 )ZP { —1+4> npn + 62 npn ]} (3-4)

Dans la formule ci-dessus, valable V £, p, parcourt les entiers positifs et négatifs et les
sommes dans les Kroneckers portent sur n > 0.

Maintenant il s’agit de résoudre (3.4). Pour ce faire, on commence par le cas ou il n’y
a qu’une amplitude: {, = 0V n > 2. Puis on passe au cas a deux amplitudes, puis a trois,
etc... Nous donnons ici explicitement le cas a trois amplitudes, les cas plus simples pouvant
étre obtenus en imposant la nullité d’une ou plusieurs amplitudes.

Si on convient de noter J(g,r,s) = Jy((1) J-((2) J5((3), on trouve:
G

v = J(0,0,0) +27(1,0,0) +.7(0,1,0) + 7(1,0,1) = J(2,0,0)

% = 7(1,0,0) +27(0,1,0) + J(0,0,1) — 27(1,1,0) — J(0,1,1) — 27 (1, 1,1) +
j(?,(],l)—J(O,Z,l)—J(1,2,0)+j(3,0,0)

g% >~ 7(1,1,0) +27(0,0,1) — 27(1,0,1) — 27 (1,1,1) + J(2,0,0) — J(0,2,0) —

27(1,2,0) — J(0,1,2) — J(1,2,1) + J(2,1,0) — J(0,2,2) — J(2,2,0) +
J(2,0,2) +27(3,0,0) — 7 (4,0,0)

Finalement ces dernieres équations peuvent étre résolues facilement par itération. On obtient
alors (,,(A), qui sont les coefficients de la série. En 'occurrence les calculs montrent que pour
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Apetit 3 ~ A, (o ~ A% et (3 ~ A3, Toutefois, I'intérét de la méthode développée ci-dessus est

qu’elle est aussi valable pour de grandes valeurs de X. Ceci résulte directement des propriétés
des fonctions de Bessel.

3.2 Les Orbites-Satellites

Ayant construit une bonne représentation de la résonance principale on peut s’intéresser a
I’émergence d’orbites satellites de nombre d’onde donné v,. On part de nouveau de

(A, 0) =04+ (A, 0) + x5(A, 0)

et I’on répeéte la méthode utilisée au chapitre 2. En définissant par Xy la valeur critique de
A pour laquelle la valeur propre eg(vs, Ao) de la bande n = 0 de ’équation de Hill associée a
Porbite 8 + (A, #) est nulle et en posant

C = C(\8)=cos[t(A,0)+ 8] + cos[v(A, 0)]
S = S(A\6) = sin[(),8) + 6] + sinfw(}, 0)]

1
A= /\0+€)\1+§€2/\2+“'
]‘2
Y = 6X311+§€ Xs,2+...

on obtient, mutatis mutandis, le méme jeu d’équations (2.26-2.28). A titre indicatif, on
donne dans la table 2 la valeur de A\ pour v, = 1/n,n = 10,...,2. Les valeurs pour le
doublement (limite de stabilité), le triplement et le quadruplement (résonances fortes) ont

été calculées avec plus de précision que les autres étant donné leur intérét pour la suite de
I’analyse.

‘ Période ] Multiplicité n ] Ao I
20 10 0.01000
187 9 0.01234
167 8 0.01562
14r 7 0.02030
127 6 0.02775
107 H 0.03990
8w 4 0.0620571168
6 3 0.1077472608
4 2 0.1779885337

Table 2: Valeurs de Ay correspondant aux bifurcations sous-harmoniques de la résonance
principale.
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3.3 Son Quadruplement de Période

La simulation montre qu’en A = 0.06206 la résonance ¢ = 6 + (), ) subit une bifurcation
conduisant a la création de deux orbites de période quadruple, I'une stable et ’autre instable;
de plus, ces orbites contiennent des composantes paires et impaires, comme le montre la

figure 13.

1.3 T T T T

125t

0.95 |

09}

085-1 l- : |- 1 1 1 1 1 L

< O

Figure 13: Coupe de Poincaré pour le fléau symétrique en A = 0.063.

En procédant selon le schéma maintenant rodé, on résoud le systéme matriciel évoqué
plus haut pour v, = +1/4. Cette fois, les fonctions propres sont complexes et il faut combiner
linéairement les solutions en v; = +1/4 pour obtenir les deux solutions réelles, 'une paire
x5 et autre impaire x¢, suivantes:

= = yocos (g) + T§ {yn cos [(n + i) 9] + Y-n cOs {(n - i) 9]} (3.5)

)5'2—1 = ypsin (g) + ni)% {yn sin [(n + i) 9] — Y_p Sin [(n —= i) 9]} (3_6)

ou Y+, sont les élements du vecteur solution pour v, = 1/4. Nous posons finalement

P
s!

>~

N

Xs1(0) = sin(a) x5, (6) + cos() x5, (9)

L’analyse numérique fournit alors les résultats suivants:

o Quelque soit 'angle “de mélange pair-impair” a = A; =0 et x;2(0) = 0;
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e La valeur de A; est périodique de période 7/2 en « et est symétrique autour de = /4.
Cela signifie en particulier qu’a 'ordre O(e®) les cas totalement pair et totalement
impair sont identiques, ce qui correspond a ce que I’on peut observer sur la coupe 13.

Utilisant ce que nous venons de voir, nous choisissons pour décrire I’orbite instable o =
m/2 et pour décrire l'orbite stable @ = 7/4. Ces valeurs sont bien entendu choisies modulo
7/2. Nous obtenons finalement pour le cas instable A\; = 0.0429 et pour le cas stable
Az = 0.0274; le diagramme de cette bifurcation est donné sur la figure 14.

22 . T T

21
1.8}
1.6

1.4}

12l instab .

o(A,0=1) 3 stable : stable

0.8}
06}
0.4}
0.2}

8.05 0:052 0,064 0.056 0.058 0.06 0.062 0.064 0066 0.068 0.07
Y

Figure 14: Diagramme de bifurcation pour le quadruplement de période de la résonance 1/1.

3.4 Son Triplement de Période. L’effet de Pincement

Puisque 'on considére la méme orbite ¢ = 0 + 1), les équations (2.26-2.28) sont toujours
valables. La différence par rapport au paragraphe précédant est la périodicité des solutions
recherchées, c’est-a-dire que I’on considére maintenant v, = +1/3 et qu’il faut changer de
produit scalaire, suivant la définition donnée dans ’appendice B.

Considérant que la simulation nous impose de trouver x(#) impaire, nous aboutissons
alors concretement aux résultats suivants:
Ao = 0.10775
A1 = —0.01850
Ay = 0.07114
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qui impliquent

i Xs2 2
Ksk = Xs,1€i+ 2 €t

_ —ﬂid/\%ﬁu_%)

A\ A2 B

€+

avec X,1 donné par (3.6) ou ’on remplace §/4 par 6/3.
Arrétons-nous un moment sur la série de A(¢):

A =0.10775 — 0.01850 € + 0.03557 £

Elle explique I'effet dit “de pincement” que nous avons déja mentionné dans I'introduction et
dont voici une bréve description basée sur les coupes de Poincaré 15-18, auxquelles on peut
se référer. Dans la plupart des cas, lorsqu’une orbite génere des orbites sous-harmoniques,
celles-ci naissent en A sur l'orbite-mere, puis s’en éloignent. Dans le cas particulier de
cette bifurcation, la simulation montre que les deux orbites naissent awvant la bifurcation
(figures 15-16) et loin de lorbite-meére, en A = 0.1051. L’orbite stable s’éloigne alors de
la résonance 1/1, tandis que l'orbite instable au contraire s’en approche et la croise a la
bifurcation (figure 17). Tout ceci trouve une explication dans le graphe 19, qui représente
[A—Xo](g). La bifurcation est donnée par le croisement, a ’origine, de la branche de parabole
représentant 1’orbite instable avec 'axe € = 0 représentant quant a lui la résonance 1/1.
Remarquons que sur la figure 16 I'orbite instable se trouve entre l’orbite stable et la résonance
1/1, alors qu’apres le pincement les orbites stable et instable s’alternent autour de cette
résonance, comme c’était par exemple le cas lors du quadruplement de période (figure 13).

Il devient clair qu’a l'ordre O(&®) une condition nécessaire pour que I'orbite soit pincée
est la non-nullité du parametre A, puisque si Ay = 0 — comme c’était le cas pour toutes
les autres bifurcations que nous avons rencontrées jusqu’a maintenant — il n’apparait de
solution réelle e4 (A — Ag) qu’a lorigine, c’est-a-dire a la bifurcation. Ici en revanche il existe
deux solutions dés A = 0.1053 < Ay, en assez bon accord avec la valeur mentionnée plus
haut. Ces deux nouvelles orbites naissent en outre loin de la résonance 1/1, comme on peut
le voir sur un diagramme de bifurcation, par exemple a la figure 20. Il est intéressant de
remarquer que le cas général \; # 0 est moins commun que le cas a priori particulier A; = 0.

Signalons enfin que Van der Weele et al. ont publié [6] une théorie de I’effet de pincement
décrit plus haut. Ces auteurs partent d’une application qui préserve les aires et qui produit
bien cet effet dans des conditions appropriées. Comme exemple physique susceptible de
manifester ce type de pincement ils citent le modele de Croquette sans pour autant faire
aucun lien entre les équations du mouvement du modéle et les équations de leur application.

3.5 Son Domaine de Stabilité

Pour A = 0.1780 les zéros de la premiere bande atteignent le bord de la zone et la résonance
1/1 devient instable par dédoublement de période selon le schéma habituel. Contrairement
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Figure 15: Coupe de Poincaré pour A = 0.104, sur laquelle on ne distingue encore que la
résonance 1/1.
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Figure 16: Coupe de Poincaré pour A = 0.106, lorsque les orbites triples ont été crées.
L’orbite instable se dirige vers la résonance.
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Figure 17: Coupe de Poincaré pour A = Ay = 0.1077. 1l s’agit de la bifurcation, lorsque
I’orbite instable croise la résonance 1/1.
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Figure 18: Coupe de Poincaré pour A = 0.109 (détail). Par comparaison avec la coupe 16,
on remarque que ’orbite instable semble avoir traversé la résonance principale.
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Figure 19: Fonction [A — Ag](e) pour Veffet de pincement.
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Figure 20: Diagramme de bifurcation pour le triplement de période de la résonance 1/1.
L’orbite instable est celle croisant la résonance.
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au cas de la résonance 1/2, cependant, la nouvelle orbite double posséde des composantes
paires et impaires, comme le montre la figure 21. Remarquons ici de nouveau que pour
0 < A < 0.1780 les multiplicateurs de Floquet exécutent un demi-cercle.

1.25 . :

1.24 +

1.23}
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6 1.22
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Figure 21: Coupe de Poincaré pour A = 0.18, apres le doublement de période de la résonance
1/1.

4 Conclusion

La compréhension des mécanismes sous-jacents aux phénomeénes de bifurcations dans un
systeme sans friction a été enrichi par le point de vue de la théorie des bandes. Ceci suggere
qu’il en soit de méme pour les systemes dissipatifs. Cela implique une généralisation de
I’équation de Hill ou les valeurs propres deviennent complexes. Des travaux préliminaires
effectués sur le fléau et le pendule forcé dissipatifs [7] paraissent encourageants dans ce sens.
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A Equations Différentielles Linéaires a Coefficients
Périodiques. Théorie des Bandes

Soit ’équation de Hill (de Mathieu si v(z) ~ cos(z)):
—y"(Az) +v(de)y(Az) = ey(Mz) (A1)
v(Az) = v(Az+27)
dont les solutions sont, d’aprés le théoréeme de Bloch, de la forme

y(hz) = y(\z)=e""p() ) (A.2)
p(X,z) = p(Az+2n)

Le théoréme suivant ([8], [9]) considére cette équation et en détermine les propriétés des
valeurs propres, dites propriétés de bandes.

Théoréme 1 (de Monotonie) A chaque équation (A.1) on peut associer deuz suites mo-
notones, croissantes et infinies de réels 0q,01,03,... et 04,0y, 0y, ... telles que (A.1) a une
solution 2m-périodique < o = 0, ¥ n et une solution mm-périodique < o = 0, ¥ n. Les oy,
et o, satisfont les inégalités suivantes:

00< 0, <0, <01 <03<0,<0,<03< ...

avec
lim o' = 0
n—00
. ’_1
limo,™ = 0
n—ro0

Les solutions sont stables dans les intervalles
(001 00)1 (017 01)# (0-27 02)1 (031 0-3)7 s
et instables ailleurs, ainsi que sur les bords de ces intervalles.

Pour n pair (impair), le spectre est monotone strictement crotssant (décroissant) lorsque

v va de 0 @ 1/m, c’est-a-dire que les o, sont les valeurs propres pour v = 0 et les o pour
= L,

B Alternative de Fredholm

En développant la solution x de 1’équation du mouvement et le parametre de couplage u en
séries d’un parametre arbitraire ¢, nous obtenons le jeu suivant d’équations:

Hy, = 0
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Hy: = g2(x1,#0,41)
II'IXS = g3(X13X2)tu0’)u’1}0u2)

]HXn = gn(XlaX?v“‘aXTL—laﬂ'D:'"7#71—1)

L’équation pour x; est du type Schrodinger avec valeur propre nulle et nous avons vu com-
ment en déterminer les solutions. Pour les autres équations du jeu: il nous faut déterminer

en premier lieu le parametre y, pour lequel chaque équation admet une solution et ensuite
la rechercher. Cela se fait 4 I’aide du théoréme suivant.

Théoréme 2 (Alternative de Fredholm) Soit H : C*(IR x IR") — C*(IR x IR") un
opérateur et (-,-) un produit scalaire. Alors I’équation Hyx = g admet une solution x <
(9,v) =0V v tel que H*v = 0. La croiz dénote la conjugaison hermitienne.

Ce théoreme, appliqué a la n*™¢ ’equation du set permet de déterminer la valeur de la
constante pu,_; telle que la solution x, existe.

Si la solution recherchée est de période mT, nous choisissons pour produit scalaire:

(£,9)=rglnr = —= [ di F(2)5(0)

avec lequel la condition exigée par 1’alternative se ramene a (¢, x1) = 0 V n, soit
gee p g

[ @ =0 (B.1)
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