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Sur la Dynamique du Fléau
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Abstract. The purpose of this paper is to present a continous time, one (small) parameter theory
of bifurcations which appear in two periodic orbits, the so called resonances 1/2 and 1/1, of an
articulated, planar, friction less pendulum driven periodically, as shown in figure 1, a mechanical

system called flail. Basically, this model is characterized by two parameters: li/l2 and g/l2u> and
its equation of motion is given by (1.1). Here we consider the symmetric case where u2 g/l-i and

we take (1.2) as our starting one-parameter differential equation.

Our investigations are based on the following ingredients: 1) accurate computer simulations
of interesting orbits and construction of their Poincaré sections, 2) analytical determination of
relevant periodic orbits, 3) band theory approach, commented below, to the stability analysis
of periodic orbits and 4) bifurcation theory based on Fredholm's alternative (Appendix A). The
band theory approach is based on the study of the Hill equations which can be associated to any
linearized equations of motion around periodic orbits. This study amounts to analyse particularly
how the bands change their shapes and move across the zero eigenvalue level in fonction of the

parameter which appears explicitly and implicitly in the periodic coefficients of the Hill equations.
A fundamental monotony theorem of band theory (Appendix B) is systematically invoked to tell
us why and when a certain bifurcation will occur. The way how the bifurcating orbit develops
afterwards is treated according to the fourth point of our procedure. An important result of the
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band theory approach is to indicate how the Floquet multipliers of the linearized equations move
on the unit circle of the complex plane in function of the parameter.

In the second chapter we show and explain why the resonance 1/2 (figure 10 (a)) experiences
first a period doubling bifurcation (figure 10 (b)), then a symmetry breaking bifurcation of the
mean angular position of the pendulum (figure 10 (c)) and last a period doubling bifurcation again.
We find that the Floquet multiplier p executes 1° half a circle in the trigonometric sense, 2° the

reverse path and 3° a quarter of a circle in the trigonometric sense again.

In the third chapter we present an analytical method to determine accurately the resonance
1/1, we study in detail the onset of the strong resonances 1/4 and 1/3 and we offer a detailed theory
of the squeeze effect which accompanies the 1/3 resonance. We investigate lastly the stability limit
of the 1/1 resonance and the period doubling which follows (figure 21). Whithin the parameter
range investigated, the Floquet multiplier of the resonance 1/1 execute half a circle.

We conclude with the suggestion that a "complex band" approach can be proposed to deal with
dissipative systems.

1 Introduction et Resume

Le modèle mécanique considéré ici est un pendule double plan dont le premier entraîne
le second dans un mouvement tournant avec une vitesse angulaire constante u> et dont le
second est porteur, à son extrémité libre, d'une masse m sujette à l'action de la pesanteur
mg (figure 1). Le système est supposé exempt de frottement. La description de ce modèle
évoquant un fléau, c'est ainsi qu'on l'a baptisé. Ce pendule articulé fait partie des systèmes
hamiltoniens non-autonomes à un degré de liberté qui exhibent une dynamique complète
comportant des régimes ordonnés, chaotiques et mixtes comme nous l'illustrerons plus bas.

Un intérêt supplémentaire de ce modèle est qu'il est isomorphe à deux autres modèles
célèbres soit 1° celui de V. Croquette [1], qui consiste en une aiguille aimantée soumise à

l'action de deux champs magnétiques dont l'un est fixe et l'autre tournant et 2° celui de

D.F. Escande [2], qui consiste en un électron soumis à l'action de deux champs électriques
longitudinaux dont l'un est périodique dans l'espace et l'autre est périodique dans l'espace et
le temps, le fléau correspondant au cas particulier où les deux périodes spatiales coïncident.
C'est dire la somme de connaissances qualitatives et quantitatives acquises sur les propriétés
dynamiques de ce système et, comme corollaire, la nécessité de situer notre contribution.
Celle-ci est de fournir une explication complète concernant les quand, comment et pourquoi
de l'apparition de certaines bifurcations dans l'évolution en fonction des paramètres de

couplage d'orbites périodiques du fléau choisies à propos, notamment celles qui sont illustrées
dans la figure 7 de la référence [1].

Le modèle mathématique associé au fléau a été élaboré en détail dans la référence [3,

paragraphe 5.2]. Soient $ — tot et <j> les angles que font respectivement le bras, de longueur
li, et le pendule, de longueur l2, du fléau par rapport à l'axe vertical. Soient ml\iû2 l'unité
d'énergie, 7 g/l2w2 et A l\/l2 les paramètres gravitationnel et d'entraînement du fléau.
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Figure 1: Le modèle du fléau.

On montre alors que l'équation du mouvement est donnée par

— -7 sin(<f>) - A sin(o6 - 9) (1.1)

On a affaire à une théorie à deux paramètres, 7 et A. En principe plusieurs stratégies s'offrent

pour couvrir le plan des paramètres, par exemple faire varier A à 7 fixe ou inversement, ou

encore les varier ensemble. Dans nos travaux initiés dans la référence [4] nous avons choisi le

cas symétrique 7 A et considérons donc dans ce qui suit l'équation différentielle du fléau

symétrique

^ -A{Sin(0) + sin(oi-t9)} (1.2)

Quatre ingrédients constitueront le support de notre démarche:

• la construction par simulation numérique des orbites intéressantes et de leurs coupes
de Poincaré;

• la détermination analytique des orbites périodiques relevantes;

• les conséquences de la théorie des bandes appliquée aux équations linéarisées de l'équation

(1.2) autour de solutions périodiques et plongées dans les équations aux valeurs

propres de type Hill qu'on peut leur associer;

• la théorie des bifurcations [5, chapitre 9] basée sur l'alternative de Fredholm, appliquée
à l'évolution d'orbites périodiques précises en fonction du paramètre de couplage A ou
du paramètre p 8A.

Disons d'emblée que c'est dans l'idée du plongement que résidera la clef des explications
évoquées plus haut, les autres ingrédients étant plus ou moins standards.

Afin de déterminer le cadre de ce travail, il importe d'illustrer les comportements du fléau

symétrique dans les trois régimes de couplage faible, moyen et fort évoqués au début de cette
introduction. C'est l'occasion de rappeler ce que sont les coupes de Poincaré: l'espace des

phases étendu nécessaire à la description des trajectoires du modèle est à trois dimensions
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(P$,4>,9); les coupes de Poincaré sont alors les projections stroboscopiques de période 27r

sur le plan (P^,<j>). Le moment conjugué P$ étant dans notre cas égal à dçS/dO — <f>, l'usage
courant dans la théorie des EDO du couple de variables (<f>, </>) sera aussi admis.

La figure 2, avec A 0.01, illustre le régime essentiellement fait d'orbites périodiques,
quasi-périodiques et de tores invariants. La figure 3, en A 0.108, illustre le régime mixte
avec coexistence de zones régulières et chaotiques et la figure 4, avec A 1.0, le régime
essentiellement désordonné: l'illustration comprend les coupes de Poincaré d'une centaine
d'orbites chaotiques.

1.2

<f^2a»

0.8 -

0.6

0.4

0.2

0.2

Figure 2: Coupe de Poincaré du fléau symétrique pour A 0.01.

Revenons à la première figure qui nous permettra de préciser le choix des orbites périodiques

dont nous voulons étudier l'évolution en fonction de A. On observe une symétrie autour
de l'axe P^, 1/2 qui résulte évidemment du fait que 7 A. On remarque notamment
l'orbite de période 47r représentée par les centres de deux ellipses (représentant elles-mêmes
des orbites quasi-périodiques) de coordonnées P^ 1/2, <f> 0 mod 27r et <j> ir. Cette
orbite 47r-périodique est appelée résonance 1/2 dans le sens où le bras fait un tour alors que
le pendule en fait deux (cf. figure 10 (a)). On remarque aussi l'orbite de période 2-7T au centre
de l'ellipse supérieure et dont les coordonnées sont P^ ~ 1, </> 0 et symétriquement l'orbite
piégée par la gravité avec P^ ~ 0,(j> — 0. Ces deux orbites portent le nom de résonances

principales. On remarque leur robustesse puisqu'elles persistent dans la zone régulière de

la figure 3 où l'on devine notamment deux orbites 67r-périodiques dont nous reparlerons au
chapitre 3. Dans la figure 4, en revanche, toute zone régulière paraît avoir disparu.

Nous pouvons maintenant préciser notre programme: il s'agira d'examiner ce qu'il advient
de l'orbite 47r-périodique (résonance 1/2) dans le domaine 0 < A ~ 0.0702 et de l'orbite 27r-

périodique (résonance principale) dans le domaine 0 < A ~ 0.19.
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Figure 3: Coupe de Poincaré du fléau symétrique pour A 0.108.
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Figure 4: Coupe de Poincaré du fléau symétrique pour A 1.0.
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Dans le deuxième chapitre, nous présenterons l'histoire de la résonance 1/2 dans le
domaine précité: nous montrerons pourquoi elle subit un doublement de période en A 0.05675

puis, découverte inattendue, pourquoi cette nouvelle orbite double subit une brisure de

symétrie sans changement de période en A 0.0689 et enfin un doublement de période
en A 0.07051. La limite de la précision numérique ne permettra pas de conclure si la
cascade sous-harmonique se poursuit ou non jusqu'à l'apparition de la première fenêtre de

comportement chaotique en A « 0.0703. C'est une analyse théorique qui devrait trancher.

Dans le troisième chapitre nous présenterons quelques aspects de l'histoire de la résonance

principale 1/1, notamment un quadruplement de période intervenant en A 0.0621, puis,
par l'effet de pincement décrit en détail, un triplement de période intervenant en A 0.1077
et enfin sa limite de stabilité par doublement de période en A 0.1780. Les schémas de

bifurcation correspondants seront établis et commentés.

Deux appendices sont conscrées, l'une au rappel d'un théorème important de la théorie
des bandes et l'autre à la façon d'utiliser l'alternative de Fredholm.

Quelques remarques finales serviront de conclusion à ce travail.

2 L'Histoire de la Résonance 1/2

2.1 Son Domaine de Stabilité

On peut réécrire l'équation (1.2) sous la forme

^ -2Acos(>/2)srm>-0/2) (2.1)

et remarquer que <j> 9/2 est solution exacte de cette équation V A. C'est la résonance

1/2 évoquée plus haut. Il s'agit alors de connaître le domaine de stabilité de cette solution
et les bifurcations qu'elle subira. Par commodité on ramène la périodicité du mouvement à

2-K en posant x 9/2. On pose en outre ^r j^t \<t>", 8A p et l'on introduit dans

l'équation (2.1):
<f>(p,x) x + x(ß,x) (2.2)

Cette substitution donne l'équation de base

- x" - P cos(x) sin(x) 0 (2.3)

On commence par étudier la stabilité de <f> x, en linéarisant (2.3) pour obtenir au premier
ordre

-Xl-pœs(x)Xi 0 (2.4)

C'est ici que nous introduisons l'équation de Mathieu associée à (2.4), soit

-y" - pcos(x)y ey (2.5)
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et que l'on évoque ce que l'on sait de la théorie des bandes du problème de Schrödinger
équivalent, mais plus général, de celui d'une particule se mouvant sur la droite IR1 dans un
potentiel périodique de période 2ir (cf. appendice A.) Soit n l'indice de la bande, v le nombre
d'onde avec \v\ < 1/2 et {en(v, p)} le spectre des valeurs propres. Un théorème important
nous dit que en(v, p) est paire en v, monotone croissante (décroissante) en v pour n
pair (impair) et que en+i > en, avec des intervalles interdits entre les bandes.

Ce qui nous intéresse, ce sont les zéros des valeurs propres et la façon dont ils se déplacent
sur l'axe des v quand le paramètre p augmente. Pour p petit la bande n 0 exhibe une
portion négative car le potentiel v(x) —pcos(x) est attrattif (cf. figure 5.) Il y a deux
zéros symétriques ±v0(p) qui permettent de donner naissance à une perturbation de nombre
d'onde v bornée autour de <j> x. Il est alors manifeste que, la première bande continuant à

descendre avec p croissant, la limite de stabilité de la résonance 1/2 est atteinte en v 1/2
et ceci pour une valeur pci de p (cf. figure 6) au-delà de laquelle le zéro de l'énergie se trouve
dans le premier intervalle interdit qui impliquerait un v complexe, donc une perturbation
exponentiellement croissante. Notons ici qu'avec p croissant on retrouverait de nouveaux
domaines de stabilité correspondant aux bandes permises qui traverseraient l'axe des v. Mais
revenons à la première bande. Si, en p pci il y a émergence d'une nouvelle orbite, celle-ci
doit être de période double en vertu du théorème de monotonie évoqué ci-dessus.

A ce stade il est instructif de considérer les multiplicateurs de Floquet de l'équation (2.4)
soit p+ p e2'*" et p_ p* er2™" pour v Vo(p). On constate que chaque multiplicateur

parcourt un demi-cercle unité dans C quand p varie de 0 à pci 0.454. Alternativement
et d'utilité équivalente, on peut s'intéresser au résidu

R(v) 2-(p + ^=s-in2(w)

avec v u0(p): R varie de 0 à 1 quand p varie de 0 à pCl.

On peut conclure ce paragraphe en affirmant que le quand (pCl 0.454) et le pourquoi
(théorème de monotonie) du doublement de période sont expliqués. Reste le comment, sujet
du prochain paragraphe.

2.2 Son Premier Doublement de Période

Pour p > pCl on fait PAnsatz
4> x + x(p,x/2) (2.6)

On repart de l'équation (2.3) et on y applique la théorie des bifurcations [5, chapitre 9]. La
dépendance algébrique de l'amplitude de la nouvelle orbite de période 4îr en x en fonction
de p — pCl n'étant pas connue, on introduit un paramètre de développement auxiliaire e et,
en posant pCl p0 on écrit

p(e) po + epi + -e2p2 + --- (2.7)

x(e,x/2) 0 + sxi(x/2) + ±e2X2(x/2)+l-e3X3(x/2) + --- (2.8)
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Figure 5: Diagramme de bandes de l'équation (2.5) pour p 0.24.
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Figure 6: Diagramme de bandes de l'équation (2.5) pour p pCl 0.454.
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On développe ensuite

sin(x) X-gX3 + 0(x5)

£X1 + ^2X2 + ^3(X3-X1)+--- (2-9)

En insérant les développements (2.7) et (2.9) dans (2.3), en posant C(x) cos(x), en
annulant les termes de même puissance en e et en définissant l'opérateur

M^-d^-ßoC{x) -^ + V^X)

on trouve les équations des trois premières amplitudes

Hxi 0 (2.10)

HX2 2piC(x)xi (2.11)

HX3 C(x){3p2Xi + ^iX2-poXÎ} (2-12)

La solution cherchée pour Xi est conditionnée par le fait que la vitesse initiale d(p/d9 1/2
en 9 0 V p, ce qui implique le choix d'une solution paire de l'équation (2.10).

Il est toutefois intéressant de considérer au préalable la résolution de (2.5) pour un
potentiel plus général 2-7T-périodique. Cette dernière se résoud en développant l'onde de

Bloch

V Vv(p, x) évx p(p, x), p(p, x) p(p, x + 2tt)

et le potentiel v(p,x) en séries de Fourier:

yv(p,x) Yvn(p)z,(n+U)X
n

v(P-,x) Y^ir1)6'"1*
m

pour obtenir une équation matricielle (—oo < n < oo)

{(n + v) -e] yn(p) + Yvm(p)yn-m(p) =0
m

que l'on peut écrire Ay ey. Le problème est alors ramené à la recherche des valeurs

propres et vecteurs propres de la matrice réelle et symétrique A. Pour l'équation (2.10) on
a besoin du cas particulier v 1/2 et e 0. L'analyse numérique fournit

^o Pc! 0.454

x 3 5

Xi 1.248cos(-) +0.126 cos(-a:) + 0.005 cos(-a:)

L'accord de pCl calculé avec le résultat de la simulation numérique est excellent.

Remarquons ici que dans le domaine de stabilité de l'orbite 1/2 on peut étudier l'émergence

d'orbites-satellites sous-harmoniques périodiques et quasi-périodiques. A titre
d'illustration, la table 1 donne la liste des valeurs critiques ps<0 de p en fonction de vs 1/n
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Période en 9 Multiplicité re P-sfi ^s,0

40tt 10 0.1392 0.01740
36tt 9 0.1541 0.01926
32tt 8 0.1725 0.02156
28tT 7 0.1956 0.02445
247T 6 0.2255 0.02819
20tt 5 0.2654 0.03317
16tt 4 0.3197 0.03996
12tt 3 0.3923 0.04904
8tt 2 0.4540 0.05675

Table 1: Valeurs critiques de p correspondant à des bifurcations sous-harmoniques de la
résonance 1/2.

telles que eo{vs,ps,o] 0 et ceci pour re 10,... ,2, cette dernière coïncidant avec la limite
de stabilité. Le calcul de ces bifurcations se fait par la même méthode que celle que nous
appliquons maintenant au cas re 2.

Il nous faut déterminer maintenant les autres coefficients des développements (2.7, 2.8),

Pi et X2 notamment, les deux inconnues de l'équation (2.11). L'alternative de Fredholm (cf.
appendice B) nous livre la valeur de pi en exigeant la condition:

2h-, r*"-
(92, Xi) -r— / dx cos(x)xl(x) 0

47T Jo

Or, l'intégrale n'étant pas nulle, la condition n'est satisfaite que pour p\ 0. On doit
alors calculer X2 en la développant, ainsi que g2, dans la base des vecteurs propres de IH

pour v 1/2, sauf celui correspondant à la valeur propre nulle. Cette dernière condition
(X2>Xi) 0) qui ne découle pas de l'alternative de Fredholm, est nécessaire. En fait, si X2
contenait des termes non-orthogonaux à xt> il faudrait les inclure dans xi lui-même. Dans
le cas présent, lorsque l'on pose pi 0 dans (2.11), on constate que X2 doit satisfaire la
même équation que xi et que la condition (x2iXi) — 0 n'est vérifiée que pour X2 0. Pour
déterminer p2 on exige

(93, Xi) 7^ J dx cos(:r) \Zp2x\(x) - Pox\(x)} 0

Les deux intégrales étant non-nulles, on trouve après quelques calculs p2 0.243.

Au plus bas ordre on n'a pas besoin de connaître X3- Nous obtenons alors

x(e,x/2) eXl(x/2) + 0(e3)

p- Po

Ainsi, pour p — po petit, on trouve

-p2e2 + 0(e3)

X,(.x/2)--+#i^xt(*/2)
1^2

(2.13)
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Il existe donc localement autour de p0 deux solutions 47r-périodiques en x (8ir en 9) qui sont
proportionnelles à ±Xi- Le diagramme de cette bifurcation-fourche est donné sur la figure 7.

4>00

1.5

stab

0.5

stabe instabe

0.5

1.5
0.4 0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56

Figure 7: Diagramme de bifurcation correspondant au premier doublement de période de la
résonance 1/2. La fonction cj>(p) est évaluée en x 0.

La solution <fi x est donc instable dans le voisinage positif de pci. Toutefois, et s'il ne
se passait rien d'autre, les solutions de l'équation de Mathieu (2.5) nous apprendraient que,
quand p augmente, une seconde puis une troisième bande d'énergie permises traverseraient
le niveau e 0 et ainsi de suite, stabilisant de nouveau par bifurcation inverse la solution
<j> — x Que se passe-t-il donc au-delà de pCl C'est ce que le paragraphe 2.3 nous apprendra
en partie.

2.3 Sa Première Brisure de Symétrie

Pour p > pCl, on repart de PAnsatz (2.6) et on cherche à déterminer x(p, x/2) solution
paire de (2.3). Une méthode analytique sera présentée à cette fin au chapitre 3. Ici, nous

nous contenterons des résultats de simulations numériques et nous donnerons les raisons qui
font que la bifurcation discutée s'est révélée être une brisure de symétrie avec maintien du
caractère 4-7r-périodique en x de l'orbite. La démarche est encore un fois basée sur l'examen de

l'équation de Hill associée à ce problème. Le résultat sera aisément transposé sur l'évolution
des multiplicateurs de Floquet p{v(p)\.

On suppose x{p,xl2) solution paire de (2.3) connue pour pci < p < pC2 et, en posant
<f> x + x(p, x/2) + k(p, x/2) on examine la question de sa stabilité via l'équivalent de (2.4),
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soit
— k" — p cos(a:) cos[x(^, x/2)] K\ 0 (2-14)

A ce stade on introduit l'équation de Hill associée à (2.14) sous la forme

-y" - p cos(a:) cos[x(/t, x/2)] y e y (2.15)

On remarque que le potentiel de l'équation de Mathieu (2.5) est remplacé ici par l'expression

v(p,x) —p cos(a;) cos{x(p,x/2)] (2.16)

Deux faits importants sont alors à signaler:

1. On sait que x{ß,x/%) est 47r-périodique en x, mais cos {x(p, x/2)] redevient 27t-

périodique Donc, v(p, x) est 2îr-périodique en x.

2. L'inspection superficielle de (2.16) suggère que, quand p augmente, le potentiel s'appro¬
fondit. Or, cet effet est plus que compensé par l'action de cos{x(p,x/2)]. Le
résultat net est que le minimum du potentiel remonte avec p > pCl alors que son
maximum demeure inchangé. Cela veut dire que la bande re 0 remonte et que les

zéros qui étaient en v ±1/2 pour p pci se rapprochent de l'origine.

En vertu du fameux théorème de monotonie, la limite de stabilité sera atteinte quand le

minimum de la bande n 0 repassera par zéro. Cela signifie que, s'il y a bifurcation, c'est

en v — 0 qu'elle aura lieu. Mais on sait que l'onde de Bloch y0(pc2,x), 9ui es^ 2?r-périodique
en x, peut avoir une composante constante non-nulle Cela implique qu'après la bifurcation
la position moyenne du pendule, qui était nulle jusqu'ici pourra devenir non-nulle, positive
ou négative par symétrie. Cette situation rappelle celle du paramètre d'ordre dans la théorie
de Landau. Pour rendre cette explication convaincante nous représentons sur la figure 8

l'allure du potentiel v(p, x) pour p 0.548 ainsi que la bande re 0 de son équation de

Hill et dans la figure 9 la situation en p 0.551. En outre la figure 10 montre clairement
la succession des bifurcations que subit la résonance 1/2 du fléau. La transposition de ce
résultat sur l'évolution des paramètres de Floquet est que ceux-ci exécutent un demi-cercle
dans le sens inverse quand pci — 0.454 < p < pC2 — 0.551. Il reste à déterminer la nature
de la bifurcation.

On part de PAnsatz
<j>(p, x) x + x(p, x/2) + K(p, x/2) (2.17)

et l'on suppose connue x(p,x/fy, solution paire de (2.3) pour p > pCl. l'équation pour k
devient

- k" - p cos(a:) {sin(x + k) - sin(x)} 0 (2.18)

ou encore
— k" — p cos(z) cos(x) sin(re) — p cos(a:) sin(x) cos(k — 1) 0 (2-19)
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-0.6 -0

Figure 8: Situation entre les deux bifurcations, en p 0.548. La figure de gauche montre le

potentiel et celle de droite le spectre de bandes qui en résulte.

—Ti -2 0 2 %

Figure 9: Situation à la nouvelle bifurcation, en p 0.551. La figure de gauche montre le

potentiel et celle de droite le spectre de bandes qui en résulte.
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Figure 10: Trajectoires (x,y) de la masse du second pendule pour p valant respectivement
(a) 0.08, (b) 0.52 et (c)-(d) 0.5736, montrant le doublement de période en p 0.454 puis la
brisure de symétrie en p 0.551, conduisant à deux orbites de positions moyennes négative
et positive. Les longueurs des pendules ont été ramenées à 1 pour faciliter la visualisation
de la figure.
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A ce stade on développe p, k, cos(x) et sin(x) autour de pC2 p0 soit

p pC2 + Ap po + epi + -e2fi2 + ¦¦¦ (2.20)

k 0 + ski + -e2K2 + ¦¦¦ (2.21)

C(x, p) cos(:c) cos[x(m> x/2)] C(x, pC2 + Ap)

Co + epiC0 + -e2 (p2C0 + plC'A (2.22)

ou

2

S(x,p) cos(x)sin{x(p,x/2)]= S(x,pC2+Ap)

So + ep^o+^faSo + filSï) (2.23)

H "IZ2 ~ P° coa(x) cos[x(^o)] —J~2 + V(P0, X)

C0 -Sox'o, Cl -CoXo2 - Soxl (2-24)

S'o CoXo, 50'=-5oXo2 + CoXo (2-25)

Les indices "'" désignent les dérivées par rapport à p, évaluées en p — p0 pC2- En
insérant les développements dans (2.18), en regroupant les termes de même puissance en £

et en définissant l'opérateur

dx2 rU V ' LAVruyj ^x2

on trouve les équations pour les trois premiers termes de k:

H«! 0 (2.26)

Mk2 2pi (C0 + ßoC0) Ki - poS0k\ g2 (2.27)

E«3 Zp2 (C0 + ßoC'o) ni +
3/2l [(Co + floC'o) K2 - (S0 + poS'0) k2]

?,p\ (2C'o + ßoCÖ) Ki - po (Cok\ + ZS0kik2) g3 (2.28)

Il nous reste à trouver «i, à calculer fii en exigeant que (g2,Ki) 0, puis à déterminer
k2 comme solution de l'équation inhomogène. Pour cela on développe k2 dans les fonctions

propres de IH pour v 0 et l'on projette g2 sur cette base. Puis on cherche à déterminer p2
via (#3, Ki) 0. Cette analyse numérique fournit les résultats suivants:

pC2 0.551

fii 0

ki 0.93815 + 0.346cos(x) - 0.00064cos(2x) - 0.0026cos(3z)

k2 -1.95 cos(^)-0.207 costar)-0.00053 cos(|a:) +0.00126 cos(-z)

Le résultat est ^_^
K± ± 2(P-Pc.)Ki + 1(P-P*)K2 (2.29)

P2 P2



250 Choquard, Bonjour and Blanc

en accord avec les simulations numériques. (2.29) fait intervenir p2, dont la détermination
numérique est ardue. Remarquons que kx est de période 27r, à cause de la périodicité du
potentiel, mais re2 a la période désirée 47r en x (figure 11), ce qui est dû à la périodicité 4ir
du terme de source.

Figure 11: Fonctions k± pour la brisure de symétrie. k+ est en trait plein et k_ en traits
tilles. Leurs moyennes ne sont visiblement pas nulles.

2.4 Son Deuxième Doublement de Période

En principe, la méthode que nous avons utilisée par deux fois jusqu'ici peut être employée

pour déterminer n'importe quelle bifurcation. En pratique il en va tout autrement, en raison
des imprécisions inhérantes à tout calcul numérique. Lors de la bifurcation précédante, le

calcul p2 avait déjà été ardu, mais maintenant il n'est même plus possible de trouver la
valeur critique à laquelle la bifurcation a lieu.

Il est cependant possible d'appliquer d'autres méthodes, notamment celle de Newton,
permettant de trouver pC3 0.7015, mais au prix de l'abandon de la théorie des bandes qui
nous était utile car elle nous donnait une vision plus large des bifurcations. Une simulation
numérique montre alors que cette bifurcation est un nouveau doublement de période; ceci
s'accorde bien avec le fait qu'immédiatement après la brisure la première bande se trouve
au-dessus de l'axe des v, et ne peut que redescendre jusqu'à toucher l'axe en bord de zone.
Celle-ci se trouve en v ±1/4 car la période du "potentiel" de l'équation de Hill aura doublé
lors de la brisure de symétrie.
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Figure 12: Trajectoire (x,y) de la masse du second pendule pour p 0.56248, après le
deuxième doublement de période.

3 L'Histoire de la Résonance 1/1

3.1 La Résonance 1/1

Pour réaliser le programme de ce chapitre nous avons besoin de la solution impaire de (1.2)
qui, pour A 0 vaut </>(0,9) 9. Nous posons cette fois

4{\,0) 9 + xp(\,9)

HK9) Y C»(A) sin(nfl)

(3.1)

(3.2)

En insérant ce développement dans (1.2) on obtient à gauche

- Y "2 £" sin(reö)

et à droite

^* l n>0 n>0 J

Posons maintenant: ei'C»8111^8) X)m„e2 ^n,m„(Cn)e!m"9 avec iv"* des coefficients de Fourier.
On obtient alors:

-è{[e" + 1]EE-^«.n-,-«pŒ
V. m0 mi

mn0)-
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[e"'9 + l] Y E " ' Kô,moK^mi • • • exP(î Y ™n9)\ (3.3)
ma mi

Les Knmn son^ donnés par:

KmACn) ±- rd9e~'m"s+'^^^ J^(Q, re/0
Z7T JO

K-mn((n) (-l)^J^(Cn), n^O
K^iCo) e*<°6m0to

où Jn(z) désigne la fonction de Bessel de première espèce et où les seuls coefficients non nuls
sont ceux pour lesquels m„ pn re, pn £ Z. En introduisant ces coefficients dans (3.3) et en

remplaçant la mn par pn re on trouve

Y "2Cn sin(reö) y^y^...eXp[iY^(reö)] JPl(Ci)JP2(C2)---
n>0 a pi P2

{ [ée + l] e-<0 - (-1)I> [e"'9 + l] e1^}

Finalement, pour pouvoir exploiter cette dernière il nous reste à la projeter sur e obtenant
ainsi:

Y:re2cn(^-^) AEE'"^(CiyP2(C2)---
rc>0 pi P2

(e-C0 K+E- + %J - (-l)Ep-e!C° [«ii+E«. + %J } (3-4)

Dans la formule ci-dessus, valable V £, pH parcourt les entiers positifs et négatifs et les

sommes dans les Kroneckers portent sur n > 0.

Maintenant il s'agit de résoudre (3.4). Pour ce faire, on commence par le cas où il n'y
a qu'une amplitude: (n — 0 V re > 2. Puis on passe au cas à deux amplitudes, puis à trois,
etc... Nous donnons ici explicitement le cas à trois amplitudes, les cas plus simples pouvant
être obtenus en imposant la nullité d'une ou plusieurs amplitudes.

Si on convient de noter J(q,r,s) 7j(Ci) JT(C,2) Jsdi), °n trouve:

j S 7(0,0,0)+27(1,0,0) + 7(0,1,0)+7(1,0,1)-7(2,0,0)

4A 7(1,0,0)+ 27(0,1,0)+ 7(0,0,1)-27(1,1,0)-7(0,1,1)-27(1,1,1) +

C:

;
C2

\
7(2,0,1)-7(0,2,1)-7(1,2,0)+ 7(3,0,0)

^ S* 7(1, 1,0) + 27(0,0,1)- 2J(1,0,1) - 2.7(1,1,1) + J(2,0,0) -.7(0,2,0) -
2J(1,2,0)-7(0,1,2)-7(1,2,1)+7(2,1,0)-7(0,2,2)-7(2,2,0) +
7(2,0,2)+27(3,0,0)-7(4,0,0)

Finalement ces dernières équations peuvent être résolues facilement par itération. On obtient
alors Cn(A), qui sont les coefficients de la série. En l'occurrence les calculs montrent que pour
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A petit Ci ~ A, (2 ~ A2 et {3 ~ A3. Toutefois, l'intérêt de la méthode développée ci-dessus est

qu'elle est aussi valable pour de grandes valeurs de A. Ceci résulte directement des propriétés
des fonctions de Bessel.

3.2 Les Orbites-Satellites

Ayant construit une bonne représentation de la résonance principale on peut s'intéresser à

l'émergence d'orbites satellites de nombre d'onde donné vs. On part de nouveau de

4>(\,9) 9 + ^(\,9) + Xs(\,9)

et l'on répète la méthode utilisée au chapitre 2. En définissant par A0 la valeur critique de
A pour laquelle la valeur propre eo(vs, A0) de la bande re 0 de l'équation de Hill associée à

l'orbite 9 + ip(X, 9) est nulle et en posant

C

S

A

C(X, 9) cos[ip(\, 9)+ 9] + cos[V>(A, 9)]

S(X, 9) sin[y>(A, 9)+ 9]+ sinh/>(A, 9)]

Xo + eXi + -e2X2 + ¦¦¦
1

2
Xs ex.,i + -e Xs,2 + ¦¦¦

on obtient, mutatis mutandis, le même jeu d'équations (2.26-2.28). A titre indicatif, on
donne dans la table 2 la valeur de A0 pour vs l/n,n 10,...,2. Les valeurs pour le

doublement (limite de stabilité), le triplement et le quadruplement (résonances fortes) ont
été calculées avec plus de précision que les autres étant donné leur intérêt pour la suite de

l'analyse.

Période Multiplicité re Ao

20tt 10 0.01000
18tt 9 0.01234
16tt 8 0.01562
14tT 7 0.02030
12tt 6 0.02775
IOtt 5 0.03990
8tt 4 0.0620571168
6n 3 0.1077472608
4-ïï 2 0.1779885337

Table 2: Valeurs de A0 correspondant aux bifurcations sous-harmoniques de la résonance

principale.
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3.3 Son Quadruplement de Période

La simulation montre qu'en A 0.06206 la résonance <j> 9 + tp(X, 9) subit une bifurcation
conduisant à la création de deux orbites de période quadruple, l'une stable et l'autre instable;
de plus, ces orbites contiennent des composantes paires et impaires, comme le montre la
figure 13.
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-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Figure 13: Coupe de Poincaré pour le fléau symétrique en A 0.063.

En procédant selon le schéma maintenant rodé, on résoud le système matriciel évoqué
plus haut pour vs ±1/4. Cette fois, les fonctions propres sont complexes et il faut combiner
linéairement les solutions en vs ±1/4 pour obtenir les deux solutions réelles, l'une paire
xï et l'autre impaire xî, suivantes:

V
Xs.l

V2

X's.l

V2

y° cos 7 + H 12/" cos
'4' n>0

yosm l - I +Y [î/nsin

n +

n +

1 / i\ i
+ y-n COS K* -i)e\

- y-n sin (»-¦i)«]

(3.5)

(3.6)

°ù y±n sont les éléments du vecteur solution pour vs 1/4. Nous posons finalement

Xs,i(9) sin(a)xl,i(9) + cos(a) XPs,i(9)

L'analyse numérique fournit alors les résultats suivants:

• Quelque soit l'angle "de mélange pair-impair" a => Ai 0 et Xs,2(#) 0;
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• La valeur de A2 est périodique de période 7t/2 en a et est symétrique autour de 7r/4.
Cela signifie en particulier qu'à l'ordre 0(e3) les cas totalement pair et totalement
impair sont identiques, ce qui correspond à ce que l'on peut observer sur la coupe 13.

Utilisant ce que nous venons de voir, nous choisissons pour décrire l'orbite instable a
ir/2 et pour décrire l'orbite stable a — ir/4. Ces valeurs sont bien entendu choisies modulo
7r/2. Nous obtenons finalement pour le cas instable A2 0.0429 et pour le cas stable
A2 0.0274; le diagramme de cette bifurcation est donné sur la figure 14.
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X

Figure 14: Diagramme de bifurcation pour le quadruplement de période de la résonance 1/1.

3.4 Son Triplement de Période. L'effet de Pincement

Puisque l'on considère la même orbite <j> 9 + tp, les équations (2.26-2.28) sont toujours
valables. La différence par rapport au paragraphe précédant est la périodicité des solutions
recherchées, c'est-à-dire que l'on considère maintenant vs ±1/3 et qu'il faut changer de

produit scalaire, suivant la définition donnée dans l'appendice B.

Considérant que la simulation nous impose de trouver x(^) impaire, nous aboutissons
alors concrètement aux résultats suivants:

Ao 0.10775

Xi -0.01850
A2 0.07114



Xi,i£± + X.,2 2

~Y£±

A2±\
X\ 2(A-A0)
A2 A2
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qui impliquent

Xs,±

e±

avec Xs,i donné par (3.6) où l'on remplace 9/4 par 9/3.

Arrêtons-nous un moment sur la série de A(e):

A 0.10775 - 0.01850 e + 0.03557 e2

Elle explique l'effet dit "de pincement" que nous avons déjà mentionné dans l'introduction et
dont voici une brève description basée sur les coupes de Poincaré 15-18, auxquelles on peut
se référer. Dans la plupart des cas, lorsqu'une orbite génère des orbites sous-harmoniques,
celles-ci naissent en A0 sur l'orbite-mère, puis s'en éloignent. Dans le cas particulier de

cette bifurcation, la simulation montre que les deux orbites naissent avant la bifurcation
(figures 15-16) et loin de l'orbite-mère, en A w 0.1051. L'orbite stable s'éloigne alors de

la résonance 1/1, tandis que l'orbite instable au contraire s'en approche et la croise à la
bifurcation (figure 17). Tout ceci trouve une explication dans le graphe 19, qui représente
[A — A0](e). La bifurcation est donnée par le croisement, à l'origine, de la branche de parabole
représentant l'orbite instable avec l'axe e 0 représentant quant à lui la résonance 1/1.
Remarquons que sur la figure 16 l'orbite instable se trouve entre l'orbite stable et la résonance

1/1, alors qu'après le pincement les orbites stable et instable s'alternent autour de cette
résonance, comme c'était par exemple le cas lors du quadruplement de période (figure 13).

Il devient clair qu'à l'ordre 0(e3) une condition nécessaire pour que l'orbite soit pincée
est la non-nullité du paramètre Ai, puisque si Ai 0 — comme c'était le cas pour toutes
les autres bifurcations que nous avons rencontrées jusqu'à maintenant — il n'apparaît de

solution réelle £±(A — A0) qu'à l'origine, c'est-à-dire à la bifurcation. Ici en revanche il existe
deux solutions dès A 0.1053 < Ao, en assez bon accord avec la valeur mentionnée plus
haut. Ces deux nouvelles orbites naissent en outre loin de la résonance 1/1, comme on peut
le voir sur un diagramme de bifurcation, par exemple à la figure 20. Il est intéressant de

remarquer que le cas général Ai ^ 0 est moins commun que le cas a priori particulier Ai 0.

Signalons enfin que Van der Weele et al. ont publié [6] une théorie de l'effet de pincement
décrit plus haut. Ces auteurs partent d'une application qui préserve les aires et qui produit
bien cet effet dans des conditions appropriées. Comme exemple physique susceptible de

manifester ce type de pincement ils citent le modèle de Croquette sans pour autant faire
aucun lien entre les équations du mouvement du modèle et les équations de leur application.

3.5 Son Domaine de Stabilité

Pour A 0.1780 les zéros de la première bande atteignent le bord de la zone et la résonance

1/1 devient instable par dédoublement de période selon le schéma habituel. Contrairement
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Figure 15: Coupe de Poincaré pour A 0.104, sur laquelle on ne distingue encore que la
résonance 1/1.
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Figure 16: Coupe de Poincaré pour A 0.106, lorsque les orbites triples ont été crées.

L'orbite instable se dirige vers la résonance.
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Figure 17: Coupe de Poincaré pour A A0 0.1077. Il s'agit de la bifurcation, lorsque
l'orbite instable croise la résonance 1/1.
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Figure 18: Coupe de Poincaré pour A 0.109 (détail). Par comparaison avec la coupe 16,

on remarque que l'orbite instable semble avoir traversé la résonance principale.
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Figure 19: Fonction [A — A0](e) pour l'effet de pincement.
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Figure 20: Diagramme de bifurcation pour le triplement de période de la résonance 1/1.
L'orbite instable est celle croisant la résonance.
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au cas de la résonance 1/2, cependant, la nouvelle orbite double possède des composantes
paires et impaires, comme le montre la figure 21. Remarquons ici de nouveau que pour
0 < A < 0.1780 les multiplicateurs de Floquet exécutent un demi-cercle.
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Figure 21: Coupe de Poincaré pour A 0.18, après le doublement de période de la résonance

1/1.

4 Conclusion

La compréhension des mécanismes sous-jacents aux phénomènes de bifurcations dans un
système sans friction a été enrichi par le point de vue de la théorie des bandes. Ceci suggère
qu'il en soit de même pour les systèmes dissipatifs. Cela implique une généralisation de

l'équation de Hill où les valeurs propres deviennent complexes. Des travaux préliminaires
effectués sur le fléau et le pendule forcé dissipatifs [7] paraissent encourageants dans ce sens.
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A Equations Différentielles Linéaires à Coefficients
Périodiques. Théorie des Bandes

Soit l'équation de Hill (de Mathieu si v(x) ~ cos(a:)):

-y"(X,x) + v(X,x)y(X,x) ey(X,x) (A.l)
v(X,x) v(X,x + 2ir)

dont les solutions sont, d'après le théorème de Bloch, de la forme

y(X,x) yv(\x) évxp(X,x) (A.2)

p(X,x) p(A,x + 27t)

Le théorème suivant ([8], [9]) considère cette équation et en détermine les propriétés des

valeurs propres, dites propriétés de bandes.

Théorème 1 (de Monotonie) A chaque équation (A.l) on peut associer deux suites
monotones, croissantes et infinies de réels o~o,o~i,°~2,--- el ao, °~i, a2, ¦ ¦ ¦ le^es aue (A.l) a une
solution 2ir-périodique •£> a on V n et une solution mit-périodique & a on V re. Les un
et on satisfont les inégalités suivantes:

o~o < o0 < ox < ai < o2 < cr2 < o~3 < o3 <

avec

lim a'1 0
n—»-oo

lim a''1 0

Les solutions sont stables dans les intervalles

(o'o,o-0),(o1,Oi),(a2,cr2),(a3,a3),...

et instables ailleurs, ainsi que sur les bords de ces intervalles.

Pour n pair (impair), le spectre est monotone strictement croissant (décroissant) lorsque
v va de 0 à 1/m, c'est-à-dire que les on sont les valeurs propres pour v 0 et les an pour
v 1/m.

B Alternative de Fredholm

En développant la solution x de l'équation du mouvement et le paramètre de couplage p en
séries d'un paramètre arbitraire £, nous obtenons le jeu suivant d'équations:

Hxi 0
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IHX2 ff2(xi,Mo,/"i)
HX3 g3(Xl,X2,P0,ßl,P2)

HXn fln(Xl,X2,-.-,Xn-l,/^0,...,AIn-l)

L'équation pour xi est du type Schrödinger avec valeur propre nulle et nous avons vu
comment en déterminer les solutions. Pour les autres équations du jeu: il nous faut déterminer
en premier lieu le paramètre pn pour lequel chaque équation admet une solution et ensuite
la rechercher. Cela se fait à l'aide du théorème suivant.

Théorème 2 (Alternative de Fredholm) Soit ttî : CS(H x HT) ^ CS(IR x IR") un
opérateur et (-,-) un produit scalaire. Alors l'équation Hx g admet une solution x &
(g,v) 0 V v tel que TR+v 0. La croix dénote la conjugaison hermitienne.

Ce théorème, appliqué à la reeme Pequation du set permet de déterminer la valeur de la
constante pn-i telle que la solution Xn existe.

Si la solution recherchée est de période mT, nous choisissons pour produit scalaire:

(/,») [/, Skr =~ H7 dtf(t)g(t)ml Jo

avec lequel la condition exigée par l'alternative se ramène à (gn,Xi) — 0 V re, soit

i-mT

/ dtXi(t)gn(t) 0 (B.l)
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