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Algebraic Solution for Certain Noncentral Potentials

By L. Chetouani, L.. Guechi and A. Lecheheb

Département de Physique Théorique, Université de Constantine
Route Ain El Bey, CONSTANTINE, Algeria

and T. F. Hammann

Laboratoire de Mathématiques, Physique Mathématique et Informatique
Faculté des Sciences et Techniques, Université de Haute Alsace
4 rue des Fréres Lumiere, F-68093 MULHOUSE, France

Abstract. The Green’s function relative to certain noncentral potentials is constructed via the
s0(2,1) algebraic approach in cylindrical parabolic coordinates. The energy spectrum and the
correctly normalized wave functions are deduced. A particular case of Smorodinsky-Winternitz
potentials is also analyzed.

PACS 03.65 Fd - Algebraic methods
PACS 03.65 Ge - Solutions of wave equations: bound states
PACS 03.65 Nk - Nonrelativistic scattering theory

1 Introduction

The application of the algebraic approach of Kleinert [1] to quantum mechanical problems
has seen rapid expansion in recent years. A variant of this method was proposed by Milshtein
and Strakhovenko [2] (hereafter, MS) to build the Green’s function for a Dirac electron
in a static Coulomb field. It has received renewed attention following the development of
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path integration techniques and it has been demonstrated that a certain number of systems
displaying dynamical symmetry can be treated with this variant of the algebraic technique
3, 4, 5, 6].
We shall want to present here a rigorous algebraic treatment of the nonrelativistic quantum
mechanical system corresponding to the three dimensional noncentral potential

o 8 x 3
—m+y—2+"——-—y2‘/a%?+a’z2+§, (1)
where a, 3,7,a, and 3 are positive constants. It looks intractable in cartesian coordinates
as well as in polar coordinates. If & = o = 0, we have a separable potential in different
coordinates systems which belongs to the large class of Smorodinsky-Winternitz potentials
with dynamical symmetries [7]. This class of potentials has been discussed by path integra-
tion very recently (8, 9, 10].
The algebraic solution for the potential (1) via the MS technique is facilitated by using the
cylindrical parabolic variables (u;,us, z) defined by

Vilr) = -

z=ud—ul y = 2ujug, g =g (2)
with —oo < u3,u2,z < 0o. Note that due to the strong singularities at y = 0 and z = 0,
creating impenetrable barriers, the potential (1) can be analyzed into four completely sepa-
rated regions such that is sufficient to consider only the domain 0 < y,z < o0 and = € R,
respectively 0 < uy,uq, 2 < 00.

2 Green’s function via so(2,1) algebra

By using the Schwinger’s integral representation [11], the Green'’s function associated with
the potential (1) is given by
, oo 18 R 5 ) ,
G’(r,r;E)zf dsexp{ —— | —=——=V*+ Vi(r) — E —i0| ; 6(r — 1). (3)
0 h | 2M

Since the z-variable is separable from others, we can express the Green’s function as a Fourier
transform of a product of two kernels,

Glr,vs E) = [ dsexp | 2(E+i0)| K(5, 71 9)K (x #35), (4
0
where
K( s) = ex s —h—2V2+V(") b(p—p) =
p’p’ = p h 2M p 1 p p p =
1 i s no(& P B=n , By : .
EEXP{_ﬁIp [—QM (B'u% + &u%) + & + 2 —4a gﬂuj — U;);
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() 2

and
K(z,2;s) = v —h—2V2+V() §(z — 2
2hs) = exp g —— | =5 Vo + Vi(z z—2z
is R 92 g . 4
— B T — f —_ —_ ,‘ 6
exp{ h{ 2M822+az +22‘|}5(z 2') (6)

Both of expressions (5) and (6) can be treated algebraically using the non compact Lie
algebra so(2,1) characterized by the commutation relations

[Tl,Tz] = —?;Tl, [Tz,T3] = —'f;Ta,aIld [Tl,Tg] = —iTg. (7)

The form of the Hamiltonian in (5) and (6) makes it convenient to use the differential
realization of the operators:

_ B -
h6) = _2M[8£2 = ]
(.0 1
Ta(6) = 3656 + 3
Ty(6) = 156 ®)

for 0 < £ < 00,

A. Axial propagator

First, we see that the kernel (6) is the propagator of an harmonic oscillator with a constant
frequency, constrained to a centrifugal repulsion. It can easily be expressed in terms of these
operators as

K(z,2';s) = exp {—% [Tl(z) + 2h2w2T3(z)]} 5z —2'), (9)

(10

o f 2
Wherew—(M) .

By using the same procedure as the one described in our previous paper [6] based upon the
Baker-Campbell-Hausdorff formulas [12], we get

Mw 1
foo) ni
K(z25s) = ihsin(ws) (22) I2U(

Mwz2' iMuw
)) p{

= (2% + z’z)cotg(fws)} : (10)

ihsin(ws
1

where v = i(l—l—%’ﬂﬁ)z.

The energy spectrum and the wave functions can be obtained from the Green’s function

which is the Fourier transform of the propagator (10)

G(z,7;FE) = Lm ds exp [%“S] K(z,2';s). (11)
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To evaluate this, we make use of a standard integral involving Bessel functions [13]

/ dq e exp[—%(w + y)cothq} I, ( m) = Clp+v+1/2) M_,,(2)W_p.(y);

smhq nhgq VEyl'(2v + 1)
(Re(1/2 +v+p) >0,Re(v) >0,y > :c), (12)
where M_,, ,(z) and W_, ,(y) are the standard Whittaker functions. This yields
~ Flp+v+1/2) Mw , Mw
G(z 7 E) = Mgy (S Wep (5222) 13
st 2] wyVzZT(2v +1) ™\ h ? h (13)
where p = —% and z > 2.

The poles of the Green’s function, coming from the I'-function in the numerator, are

= =T, m=0,1,2...,00, (14)

or

E= 2hw(m+v+%).

From the residues of the Green’s function (13), corresponding to the poles (14), we extract
the wave functions

(15)

1 Mw
Zm(z) = Amz_aMm+u+1/2,u (ng) ) (16)

with the normalized factor

1
A = 2(m+2v+1) |2
™| mIl2(2v +1)
Consequently, the propagator (6) describing the motion along the z axis has the spectral
representation

(17)

Kz, 2:8)= i Zn(2)Z3, (2 )exp (—%Ems) ; (18)

m=0

B. Polar Green’s function

In order to evaluate the p part of the problem, let us go back to the expression (4) and
let us insert (18). This leads to

G(r,r'; E) ZZ 2VGm(p, 3 E - Ep), (19)

m=0

where

Gu(p, P E f dsexp[ (E — E,, +10)| K(p,7';s). (20)
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Now we perform the time transformation defined by

s
T = ZE 5 (21)
the Green’s function (20) is then written as
2
Gum(p, g E — f drexp [h 4o + i0) ] H (uj, u (22)
with
: iT R (0% NN —-1) . y
K(uj,?.Lj;T) = exp {__E [_2M (Bu;‘” _ 2 :,,? — 4(F — Em)u;" &(u; — uj)
1T ;
= eXp {—E [Tl ('U,j) + 2&292113(11,_7')] } (5(?.1,3 — ’U.j), (23)
where .
1 1 2M Nk .
N=g+ gt (B =12 (24)
and .
8 . 1%
Q=|-—(F-E,| . 25
=378~ B 2

Thus the kernel (23) is identical in form with the radial propagator of an harmonic oscillator
placed in an inverse square potential. As the solution is quite similar to that of (6), we

obtain ,
_— . — o 1 . 1
Gum(p, 7 E — Ep) fo drexp [h(4a< + ZO)T] (zhsmﬂ’r) 1;[ )2
tMSQ MQu;u';
N 26
X exp{ (u? + ' )cotgﬂfr} Iy, ( o ) , (26)
with ;
1 2 _
w1+ B M), =12 (27)

Using the polar coordinates (p, ¢) in two dimensions,
¢ g B
Uy = \/ECOSE, 1y = \/ﬁsm§, (28)
and the Bateman’s expansion formula [14]

1
52L,(zsinasinﬁ)] ,.(zcosacosf) = (sinasinf)”(cosacosF)*

kad Twv+p+n+1
XYy (v+p+2n+1) nl(v + p )

I v T P(V’H) 2 P(U,,u.) .2 , 29
—t Tv+n+)l(p+n+1) rvront1(2) YoM (cos2a) W (cos23), (29)
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the Green’s function associated with the g’ part of the problem can then be given as follows

Cn(5, 75 E — E) =Y Gulp, 0 E — En)®(¢)20(4), (30)
n=0
where
1 1 1
2(n+ ¢)n!T(n + 2q) L ks ¢ Aty (2u2,2111)
@n = 31N — i P 12,4101 '
(¢) T2 +n+ DT (2m +nt 1) sing cos 05 (cosg)
(31)
with )
¢=f1tptsy (32)

The P{*)(x) denote the Jacobi polynomials. Note that the angular wave functions (31) are
correctly normalized. )
The radial Green'’s function G,(p,¢’; E — E,,) appearing in (30) has the form

- Q foo 1 MS)
Gulp, ', E— E,,) = ZM _dT exp[ (da + 10)7 + ——(p + p')cotgQr]
th  Jo sinfdr
MQ(pp)?
% Jantm (Tﬁn_ - )

Eventually, with the help of the formula (12), we get

" i alp+n+g+3) MQ , MQ
LE—B )=~ Mo [ 22V W [220), (34
Gn(p’p7 ) Z.Q (pp) z 1‘\(2n+q+ 1) p,n+q h p p,ntq ﬁ’ p ( )

where 9
o
RN bt 35
g (m) (35)
The discrete energy spectrum can be obtained from the poles of the gamma function I'(p +
n+q+3),le, whenp+n+gq+1i=-n,(n=012.).
The energy eigenvalues are then given by

i Ma?
E m Em = - 36
Y 2h* (11 + p2 + N)? (36)

where N =n'4+n+1.
The radial wave functions, properly normalized, are obtained at the poles of (34). This result
in

L MaT(2g+ N +n)]* MQ
R m = M .
) (N+g—1/2T(1+2n+2q) | 4* T(N —n) P2 MN+g-1/2,n+q (_h
(37)
Adding (15) and (36) gives the energy levels of the system
1 Mo?
Erm = 20 5) = . 38
N w(m+u+2) 22 (12 + 2 + N)? (38)

The normalized wave functions of the bound states are

lIJNWm(r) = RNm(p)(bn(¢)Zvn(z): (39)
where Rym(p), ®n(¢) and Z,,(z) are given by (37), (31) and (16) respectively.
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3 Special case

By setting o = o' = 0 in the expression (1), we obtain the potential

x@(r)zﬁ+--i{—-~—+ﬁl (40)

U SVEES A
which belongs to the class of the three-dimensional maximally super-integrable Smorodinsky-
Winternitz potentials. This potential has already been studied by the path integral approach
inref [8, 9, 10]. It is obvious that the physical system moving in this potential is characterized
by the absence of bound states. In order to find the corresponding Green’s function, we shall
first let w approach zero in (10); thus we can readily obtain

M Mz M
K ' 8) = —+/z2 —s — {72 PN 41
b =18) ha 7 L ( ihs ) exp {Zhs Cad )} 14

With the help of the formula [13] which allows the separation of the variables z, 2z’ and s,

fom dzexp(—azx)J,(26vT)J,(27V/x) = “3;-1-1/ (2%}/) exp (—ﬁ ki ) ; (42)

(67

the propagator (41) takes the following form:

o0 ] h2k2
K(z,7';8) =V zz’/ k.dk,Jo, (k. 2)J2, (k.2")exp (—3 zs) . (43)
0 h2M

In this case the Green’s function (19) becomes

~

G(r,r'; E) :/0 dk.Zy,(2) Z; (2)) Gy, (0, 05 E)

= 3 8(¢)0.(0) | dk.20. ()2, ()G o, B) (44)

n=0

where G,,(p, p'; E‘) is the radial part of the Green’s function, with

232
E=FE- (gﬂ%) (45)

By letting o approach zero, thus from (34) it follows that

. 2 1 Th+g+d) M MQ
Gn(p, i E) = — 2" Mo nio | —0" ) Wonsg | —
(p7p7 ) ZQWP(Q”+2(]+1) 0, +q h p 0, “+q h IO

ih 1 T(n+q+3) do MQ MSQ
= — = My, —p | Wy —0p] . 46
27r /pp, 1-1(2” + 2q + 1) L E + ZO _ h’:&z D, +q h p 0, +q h p ( )
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We take for C the closed contour

" o=k k€[-R,R|

o= Re®,0 € (m,2m) (47)

and consider the limit B — oo. Taking into account the asymptotic behaviour [13] of the
Whittaker functions, it is easy to show that the integral over the semi-circle vanishes. So we
get

L~ ih 1 T(n+4qg+3i) [t dk
Gn(pap;E):_ 7 ( 2) f e E thZ
2 T(2n+ 29+ 1) /- E+i0 - Lk
X MO,n+q (—Qik;p') WO,n+q (27”,6/0) \ (48)
Now we replace
el L
My,u(2) = e_w(‘Hz)M—A,u(_z) (49)
and use the relation [13]
x| Woru(=2) | _ingurdy_ Wau(2)
M =D(2u+ 1 i N 4 ir(p+3) o , 50
) = P 1) |2 T (50
valid for argz € (5, %), 2u # —1,—2,—3,.. ., to find
i, oy = M1 Pn+q+3) [+ dEj,
Bt om k2 pp T2(2n 4+ 29+ 1) %ig+i0_ﬁ(’_;%’ﬁl
2| ) .
X _M()7n+q (—‘27,ka) WO,n+q (ZZ’CP) f (51)

k
Thanks to the relations between the M ,(z) Whittaker functions, the first and second-kind
Bessel functions [13]

z
MO,;L(Z) - ZQ”F(M + 1)\/31;1(5) (52)
L(z) = e 5 J,.(iz), (53)
as well as the doubling formula of the gamma function
1
VAT(2p+1) = 2%T(p+ DT (e + ), (54)

the Green’s function (51) can be written as follows:

L by
h JE% B 440 — B (k2 + k2)

Gu(p, s E) = Insq(kp') Tutq(kp)- (55)

The comp'ete wave functions and the energy spectrum can then be easily deduced

Ve (08,7) = (F7he) Jualb0)@u(d) o (ke2), (56)

2

Epr, = —(k°+ k). 57
kk 2M (k kz) ( )
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4 Conclusion

By using the cylindrical coordinates, it becomes apparent that the potential V}(r) possesses
S0(2,1) ® SO(2,1) ASO(2,1) as a dynamical group of symmetry. We have thus calculated
the Green’s function in the Schwinger’s integral representation via the so(2,1) algebraic
approach. The purely scattering potential V(r) which belongs to Smorodinsky-Winternitz
class of potentials may also be considered as a particular case of the potential V;(r).
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