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Deterministic Evolutions and Schrodinger Flows:

By Cl.-A. Faure, D. J. Moore and C. Piron

Département de Physique Théorique, Université de Geneve
CH-1211 Geneve 4, Switzerland

Abstract. Deterministic evolutions are defined without ad hoc hypotheses but in the context of
the axiomatic approach due to Aerts and Piron. For systems described by a family of Hilbert
spaces one can prove necessary conditions on the resulting flow using the tools of projective
geometry. In particular we show that a deterministic evolution is always given by a family of
partially defined unitary operators.

1 Introduction

In order to find a natural definition of a concept such as deterministic evolution one should

take into account the meaning of the primitive notions of the underlying theory. We will
therefore analyse the structure of an evolution in terms of the New Quantum Mechanics
following the approach of Aerts [1982] and Piron [1990]. We insist on the fact that our
approach is realistic and is based on the usual logic. Further, we remark that if some
probability appears in a calculation it is just the classical standard one.

Our aim is to capture as much as possible of the essence of an evolution by taking a
complete set of Einstein elements of reality of the system. Of course we will not be able
to specify all kinds of evolution, since obviously the very nature of the system may be
changed in the course of an evolution. For example, if one violently accelerates an electron
it will create pairs (and not even just lepton pairs).

In the following we will therefore restrict ourselves to smooth evolutions, which do not
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suffer such processes. Here one can physically define maps which tell us much about the
structure of an evolution. The starting point is the following remark due to Daniel [1989]:
given an evolution one can induce an associated map from the set of final properties into
the set of initial ones.

2 Preliminaries

We will base our definition of the evolution on the approach to physical theories developed

by Aerts and Piron. In this section we briefly review the definitions that we will need in
the following. In particular we will discuss the general structure of physical theories and
the special case where the state space can be canonically realised by a family of Hilbert
spaces.

Let us recall the following fundamental concepts. A property is defined by an ex-
perimental project that one could realise with the system and where one has chosen in
advance what would be the positive result if one were to perform the experiment. For a
given well-defined particular system such a property is said to be actual for the system if
it is such that if one were to perform the project then the positive result would be certain.
Thus an actual property is nothing else than an Einstein element of reality possessed by
the system. In general a given property of the system is only potential, it is actual only in

some special well-defined cases and according to a given preparation of the system [Piron
1990).

On a collection Q of experimental projects relative to a given system we can define
a partial preorder relation. An experimental project « is said stronger than another 3,
written o < (3, if in each case that the positive response would be certain for a the
positive response would also be certain for 3. The properties can then be identified with
the equivalence classes of experimental projects and so they form a set £ equipped with a
partial order relation.

We will also need the notion of state as defined by Aerts and Piron: the state of a
given well-defined particular system is the complete subset of its actual properties (here
complete means complete for the realisable experimental projects). Hence, knowing the
state we know everything that can be obtained from it with certainty. Naturally, since
the time by its very nature is always changing, any state also changes, either by itself or
under some external influence. Hence we can associate to each system the set X of all of
its possible states.

Here we have considered states as being subsets of the set of properties. Dually, one
can consider as given in the beginning the set X of all possible states and then represent
each property by that subset comprising exactly those possible states for which the given
property is actual. So, by their very definitions, the order relation on £ then coincides
with the set theoretical inclusion, and the greatest lower bound with the intersection.

In addition to this first mathematical structure, the partial order defined on L, we
will also introduce a second mathematical structure, the orthogonality relation, defined on
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.. Following Aerts and Piron we call two states &; and &£; orthogonal, written &; L &;,
if there exists an experimental project o for which the positive result would be certain in
the state £ and impossible in the state £; (if we were indeed to perform the experiment).
Such an o will be said to separate &; and &; in the following.

By applying some old widely accepted physical principles one can show that the
properties of the system are the biorthogonal subsets of ¥. Further, one can also prove
that each singleton p is already biorthogonal, is an atom of £, and corresponds to a well
defined possible state, £ = {a € L|p < a}. It can then be proved that the property
lattice decomposes into irreducible components which turn out to be indexed by classical
variables (variables taking well defined values in each one of the possible states) [Piron
1990, §1.7].

For a wide class of physical systems one can in fact say more. These are entities, that is
systems which exist as indivisible individuals [Aerts 1982]. For an entity the experimental
projects act on the system as a whole: in the classical case an entity is in general nothing
else that a point particle, whereas in the quantum case it is also called a particle but it is
intrinsically a nonlocal object.

In such a case the system satisfies further laws (weak modularity and covering) and
one can then prove that its set of possible states ¥ defines a projective geometry. In this
geometry a point is a state of ¥ and a line defined by two different points &; and &; is the
subset of states contained in the least upper bound &; V &;. The irreducible components
of the lattice correspond exactly to the irreducible components of the projective geometry
and each such component is a Hilbert geometry: the biorthogonal subsets (closed linear
manifolds) of some Hilbert space [Piron 1976, §3.1].

An (almost stable) particle is defined as an entity which admits essentially just the
observables position, momentum and time, each one defined by some covariance relation
called an imprimitivity system. For such systems the time is always a classical variable
and so the lattice £ is just the direct union £ = \/,£;, where in the elementary cases each
L; can be realised in the Schrodinger representation as a copy of the lattice of biorthogonal
subsets of L2(IR®) or €*® L2(IR3)[Piron 1976, §5.1]. In the following we will in fact consider
more general systems which nevertheless can also be decomposed in this way.

3 Evolutions

Obviously the possibility of choosing an evolution for the system generates a prior: new
possible experimental projects. Indeed a given evolution is nothing more than a part
of an experimental project. For the internal consistency of the theory, and in fact from
the very definition of the state, these new projects must already have their equivalent
in the collection of all possible experimental projects. This remark allows us to derive
conditions on the physically imposable evolutions of a system in the following way. Given
an experimental project o; in Q;, for some future time t;, the given evolution defines
at the present time f; a new experimental project ag in Q;, by the prescription “evolve
the system as required from time to to time t; and perform «;” [Daniel 1989]. We write
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O = @010{1.

According to the usual ideas of causality in time, we will make the hypothesis that
during the evolution the system cannot anticipate the experimental project which will be
performed at time t;. With such a hypothesis we can deduce the following;:

Lemma 3.1 ®¢; induces a map ¢o; : L4, — Ly, which preserves the order and greatest
lower bound, and maps O, to Oy.

Proof: By hypothesis, the positive response for ®g;a; is certain at time £ if and only if
the final state obtained at time t; by the evolutjon is such that a; is certain. This means
that the property defined by ®;; does not depend on the choice in the equivalence class
of ;. In other words ®y; defines a map ¢¢; : £;, — Ly, which preserves the order given
by the set theoretical inclusion and the greatest lower bound given by the intersection.
Finally it is clear that O is mapped to Oy. u

The existence of such a map translates the fact that the given evolution must satisfy
certain conditions. In fact ag < ¢p1(a1) means that if the property ap was actual at time
to and if we were to perform the evolution, then the property a; would be actual at time
t1. Of course for ag < ¢o1(ay) it is necessary that ap < ¢o1(f1), since ¢o; preserves the
order. Recall that I; is the maximal property of the lattice, which asserts the existence
of the system at time ¢,. Indeed not all states defined at time ty would produce a final
state since the system can very well disappear. For example, if we describe an atom in a
superconducting cavity at low temperature and high quality factor, the future state of the
system will only exist if the atom has stayed in the cavity.

Since ¢o; : L4, — L, preserves the greatest lower bound we can define a map ;g :
[Oo, ¢01(I1)] — L4, which is called the Galois dual since ap < ¢o1(a1) implies ¢10(ao) < a1
and the converse.

Theorem 3.2 Let us define ¥ : [Og, d01([1)] — Lt, by ¥10(a0) = A{a1|ao < ¢o1(a1)}-
Then 11 is the Galois dual of ¢y, and so preserves the order and least upper bound, and
maps Oqg to O;.

Proof: We show that 119 is a Galois dual. By the very definition of 110, ap < ¢o1(a1)
implies that v1(ag) < a;. For the converse we first remark that, since ag < ¢o1(/1),

ap < Af{éo1(a1)|ao < go1(a1)} = do1%10(a0).

Then if 1¥10(ap) < a; we have that ag < ¢o1910(a0) < ¢o1(a1) since ¢g1 preserves the
order.

Next, we first show that ;¢ preserves the order. Let ag < bg. Then

Y1o(ao) = A{z1lao < do1(z1)} < Afzi|bo < dor(z1)} = ¥10(bo).
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Second %19 then also preserves the greatest lower bound. Indeed let us consider a family
of properties {a o} indexed by a. Since 11y preserves the order, 1/)10(Va ﬂ'l,a) is an upper
bound, and it is the least upper bound. Indeed, if b; is an upper bound, ¥10(a1,e) < b1
for all a;q, then a; o < ¢o1(b1) by Galois duality and so Vea1a < ¢o1(b1). Hence
P10( Va @1,0) < by also by Galois duality. Finally $10(00) = A{z1|00 < do1(z1)} = O
since ¢01(01) = Op.

For the sake of completeness we also show the unicity of the Galois dual. We have just
proved that ag < ¢o1910(ao). If x10 is also a Galois dual then this implies that x10(ag) <
P10(ao) and by interchanging the roles of 110 and x10 we have also ¥10(ap) < x10(ag). ®

The property ¥10(po) is the strongest property which is actual by the evolution for
the initial state defined by the atom pgy. If this property is also an atom, then the final
state is completely defined and in this situation we will call the motion deterministic. If
the motion is deterministic for each of the initial states contained in ¢ (I;) we will call
the evolution maximal deterministic, since for the others the final state is not even defined,
the system having the possibility to disappear.

This is exactly the situation which occurs in the classical Kepler problem: some
initial states lead to a collision with the sun, and this collision is not deterministic and
not described within Newtonian theory alone. Another simple example is given by a
measurement made with a Stern-Gerlach apparatus. To realise such an apparatus we put
an absorbing screen in one of the outgoing beams, and it is only for some initial states
that the particle will certainly not be absorbed. By definition, such initial states are in
®01(I1), and only for these states is the evolution deterministic.

From the philosophical point of view, we must suppose strong determinism and so a
maximal deterministic evolution. However, to be able to predict exactly the final state we
must know completely the initial state, a situation which is in fact almost never realisable
in practice. This all the more since to define precisely the state one must also define its
classical variables, and these can be chaotic.

4 Maximal Deterministic Evolutions of Entities

In this section we will restrict our attention to the particular case of an entity which is
described by a family of complex Hilbert spaces indexed by the time. As discussed in
section 2, in this case the set X;, of atoms of £;, and the set ¥, of atoms of £;, each define
projective geometries. According to the above philosophy we suppose that the evolution
is maximally deterministic. The evolution then defines a map 1o from the projective
geometry Sto built with the subsets of states in @g1(/1) to that built with 3, .

This map is then a particular case (in fact with empty kernel) of a morphism of
projective geometries as recently defined by Faure and Frolicher [1993]. Indeed let three

atoms be such that Po < qgVry < ¢01 (I]_), then 7,[)10(;00) < 1,[)10((]0\/7'0) == "/JIO(QO) thlO('rO)-
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The morphism ;9 decomposes (the irreducible equivalence classes of states are mapped
into irreducible equivalence classes). We recall that two distinct points p and ¢ are
called equivalent if there exists a third point r on the line defined by p and ¢q. Now
let po,g0 < @01(I1) be distinct and equivalent so that there exists ro < po V qo. Then
h10(r0) < Y10(Po) V ¥10(q0)- If ¥10(po) = 110(go) then the two are clearly equivalent. If
P10(Po) # ¥10(g0) then t10(po) < 10(70) V P10(go) so that P10(ro) # 10(go)- A similar
argument shows that v19(ro) # ¥10(po) and so ¥10(po) and ¥10(go) are equivalent. Hence
the evolution is described by its action on the classical variables which label the equivalence
classes and by its restrictions to the corresponding irreducible components.

Let V;, be the Hilbert spaces associated to the irreducible components of [Og, ¢o1(I1)]
and let V;, be the corresponding Hilbert spaces associated to the irreducible components
of £;,. If the morphisms are non-trivial, their images are more than a single line, then
each component of their restrictions can be represented up to a factor by a semilinear map
Ujp : ‘7;0 — V4,. Recall that a map o : V; — V; is called semilinear if it is additive and
o(af) = s(a)o(f), where s is a homomorphism of the underlying fields.

This is a direct application of the following beautiful result proved only recently by
Faure and Frolicher [1994]:

Theorem: Let g : Gy \ By — G5 be a nontrivial morphism between irreducible projective
geometries. Then g induces a semilinear map on the underlying vector spaces V; and V;
with kernel F;.

Note that if we ask for some continuity, like just the continuity of the underlying
homomorphism s : C — C, then s is either the identity or the usual conjugation, or
in other words U is quasilinear (only the axiom of choice can exhibit non-continuous
homomorphisms).

Further, if two final states 110(po) and 10(go) are orthogonal, then by definition there
exists an experimental project o defined at time £; which separates them. In principle
the experimental project ®p;c; then separates py and gqg, since py < ¢o1¥10(po) and
9o < $01%10(q0). Thus

Theorem 4.1 If the motions of py and qq are deterministic then

P10(po) L ¥10(q0) = po L qo.

In fact this result imposes more stringent conditions on the family of operators Ujg:

Theorem 4.2 If the evolution is maximal deterministic and Uyq is quasilinear then it is
unitary (or antiunitary) on a given subspace.

Proof: The proof rests on the surprising fact that since the map U;o preserves orthogonality
in the reverse direction, then it must also preserve orthogonality in the forward direction.
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First note that Uyp is injective since it has kernel {0} and is in fact bijective on each line
due to the fact that as discussed above s is always an isomorphism. Now let fy and gg
be two non-zero orthogonal vectors. We prove that Ujggo and Uy fo are orthogonal. In
any case there exists a vector on the line (Uyg fo, U1090) Which is orthogonal to Uy fo. Let
this vector be called h;. Since Uy is bijective on the line (fo, go) there exists ho such that
Uioho = hi. However, as we have already shown Ui always preserves orthogonality in the
reverse direction and so hg must be orthogonal to fy. This implies that hg is of the form
ago and so Ujgge is orthogonal to Uig fo as required.

As is well known, the fact that U, preserves orthogonality in both senses implies that
{Ur0fo,Ur0g0)1 is also an inner product on ‘71&0. Since by hypothesis Vto has dimension
at least three this inner product is equivalent to {fo, go)o, which means by definition that
there exists a real positive number o such that s—! ((U10 fo, U1090>1) = (fo,go)oc for all

fo,90 € ‘7,50, completing the proof. u

This result justifies the remark that the system either follows a deterministic evolution
or consists of a random process: in the case of a maximal deterministic evolution, if the
system were to disappear it would do so randomly.

5 Schrodinger Flows

So far we have considered globally the evolution between the initial and final times. Now
it is clear that such an evolution must pass through each intermediate time. As one would
expect we have the following composition law:

Theorem 5.1 On [Oo, ¢02(IQ)] we have @Dgﬂ,bl() = 1,[)20.

Proof: We start by noting that ®¢,®P,, = ®gp. This translates the fact that to evolve the
system from time to to time ¢y we must pass through the intermediate time ¢; and so the
experimental project ®gzas is identical to ®g; (P120a2) by definition. This of course implies
that ¢p1¢12 = do2 by lemma 3.1. Moreover on [Og, o2(l2)] we have that 91910 = P20
since po < ¢o1¢12(p2) if and only if 910(po) < P12(p2)- n

Such a restricted composition law allows us to define a Schrodinger flow in perfect
analogy with classical dynamics. Let us write ¥;;,, for the domain of ¢4, and U =
{('r, (t,pt)) |pt € Ziprt}. Then the Schrodinger flow is the map W : U — X defined by
Wopt = Yiqr tpr-

Each flow is generated by a field of derivations which is determined by the equation
satisfied by the motion. In the classical case these derivations are always exterior and so
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given by a vector field [Godbillon 1969, chapter 5]. It is essential in the classical case to
make the distinction between a point in the state space ¥ and its coordinate functions p, q
and t defined on all ¥. In the quantum case, if we represent the state by its one-dimensional
projector, any derivation is given by an interior derivation defined by a commutator added
to an exterior one defined by a vector field on the classical variables.

The formalism developed above is compatible with many phenomenological equations
used in the literature, if we interpret them as equations for certain mean values. This is
equally true for some nonlinear equations, where the nonlinearity arises just because we
insist to have a normalised vector throughout the process [Piron 1976, §5.3(b)]. Neverthe-
less, it is possible to make further generalisations, for example to systems where the value
of the time is not considered as given a prior: [Piron 1978].

References

D. Aerts 1982; Found. Phys. 12 1131.
W. Daniel 1989; Helv. Phys. Acta 62 941.
Cl.-A. Faure and A. Frolicher 1993; Geom. Dedicata 47 25.

Cl.-A. Faure and A. Frolicher 1994; Morphisms of projective geometries and semilinear
maps To appear in Geom. Dedicata.

C. Godbillon 1969; Géometrie différentielle et mécanique analytique: Hermann (Paris).

C. Piron 1976; Foundations of Quantum Physics: W. A. Benjamin (Reading, Mas-
sachusetts).

C. Piron 1978; C. R. Acad. Sci. A 286 713.

C. Piron 1990; Mécanique quantique bases et applications: Presses polytechniques et
universitaires romande (Lausanne).



	Deterministic evolutions and Schrödinger flows

