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Self-Organized Criticality and Percolation

By P. Haner

Institut fiir Physik, Klingelbergstr. 82
CH-4056 Basel, Switzerland

Abstract. Self-organized criticality (SOC) is interpreted in terms of a second-order phase transition
endowed with an order parameter/control parameter coupling. A simple argument for explaining
the frequently observed similarity of SOC systems with percolation problems is presented. For a
general subclass of systems a criterion for SOC is deduced. These ideas are applied to the sandpile
model to approximately determine its critical point.

1 Transport on a Cluster

Many systems that show self-organized critical behavior, such as the sandpile model [1, 2]
and mechanical models [3, 4], are composed of a large number of well distinguished parts.
The state of the system may then be described by attributing to each component & a state
variable u(k) such its mass, momentum or strain.

If the system is in a stationary state, it is useful to examine its response to a perturbation.
In order to discuss global transport properties, we first investigate the local ones: Let the
permeability 7,; be the flow (e.g. of mass or momentum) from component ¢ to site j, which
is induced by a disturbance at i. ! The directed bond between elements 7 and j is called
open if m;; > 0 and closed otherwise.

!Note that the local description is very crude: for instance no dependence of the characteristics of the
perturbation is assumed. This simplification seems however to be admissible, since in SOC systems, much
like in ordinary critical phenomena, only global properties matter.
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Figure 1: Propagation of a perturbation

A perturbation starting at component k propagates hence essentially 2 on the directed
graph (cluster) consisting of open bonds emanating from k (Figure 1, where open (closed)
bonds are denoted by (dotted) arrows, and the cluster is emphasized).

The statistical properties of the system in the long-time limit are therefore determined
by the weights p(x) of the percolation clusters (k) associated with states k on the attractor
of the dynamics.

From the picture presented here it follows that the correlation length ¢ may be identified
with the linear dimension of the cluster. In contrast to a static percolation problem, where
the density of open bonds acting as control parameter is fixed by the experimental setup,
the bond density is here subject to a time evolution induced by the dynamics of the state
variable u.

In order to discuss the the long-time behavior of the system, the permeabilities and
dynamic equations for the state variable have to be specified.

It is now assumed that the invariant density p(k) can be expressed in terms of a den-
sity o(k,p) at the percolation threshold p,:

p(k) = o(x,pc) (1.1)
1 B
P = Tl & 5

(i7)
(© is the Heaviside function,(j) denotes the set of ordered neighboring sites and |(i7)| its
cardinality). The density o in (1.1) is required to be such that the associated ensemble

2When loops are neglected.
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averages (-)o(x,p) lead to consistent results, e.g. larger bond densities lead to larger correlation
lengths:

L2 >0 (p<pe)

00 (p > pe)

‘E(p) = <£>o(ﬁ,p) = {

For the simplest case of a SOC system for instance, where the transport on the attrac-

tor takes place on critical Bernoulli clusters, and each configuration is visited with equal
probability, the density o may be expressed by:

oB(k,p) x Opl(i)], 3~ ©(ms3) (Bernoulli). (1.2)
(ig)

If the system is to show self-organized criticality, i.e. to develop infinite correlation
lengths for long times, a sufficient condition is thus, that the probability for open bonds
increases or diminishes for states in the sub- or supercritical phase respectively:

@_{>0@<m)

dt | <0 (p>pe) 1)

To discuss equation (1.3) we get more specific and regard the simplest case, where the
permeability ;; is a function 7 (v, w) of the state variables (%) and u(j) at neighboring parts
i and j: m; = m(u(i),u(j)). For the time dependence of the bond density one obtains *

Elg 1

& = T2 (14

x Y (6(w(u(i),u(j)))a“(“(2;”U)) s 6(7r(u(j),u(i)))a7r(ug30’u(i))) |

neighbors j of ¢

An important quantity, that can be easily accessed by numerical simulation or by exper-
iment is the average of the state variable y = & ¥, u(¢). By approximating in (1.4) averages
of products by products of averages, an equation for the temporal evolution of y is deduced:

> (6(w(u(z'>,u(j)))a“(“(;'{;“(" L +5<w<uu),uu»f’“(“gg;“(i)>)>.

|(1'.7 )l neighbors j of 4

(1.5)

In systems with a local conservation law * driven by the force K that releases the flow J
through the boundary, the average system parameter evolves according to (%) o« (K) — (J).

3Continuum notation is used here and later for conciseness.
4The lack of a local conservation law does not influence our line of thought, it just renders the criteria
for SOC more complicated.
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Inserting this into equation (1.5) yields

dp

(55) o cw)((K) = {J))- (1.6)
It can be demonstrated that the flow (J) vanishes only if p < p. and hence essentially
corresponds to the order parameter M ® of a percolation problem:

J~ M. (1.7)

From this we conclude that equation (1.6) describes a coupling of the control parameter to
the order parameter.

Typically self-organized critical systems are weakly driven. In the limit of infinitesimal
driving force (K) = 0% condition (1.3), which guarantees self-organized criticality, holds for

c(y) > 0. (1.8)

The starting point of our discussion was a dynamic percolation picture we heuristically
introduced to describe the transport on a composite system. It was then argued, that the
dynamics of SOC systems may be described in terms of a control parameter/ order parameter
coupling. We now present an argument that further justifies this approach.

Departing from systems that show second-order phase transitions, self-organized systems
are constructed, and it is investigated what restrictions are imposed to the dynamics:

Let 1 and M be the control parameter and the order parameter of a system showing a
second-order phase transition. In order to contruct a self-organized critical system © , the
control parameter is coupled to the order parameter

dy
— = ) 1.9
2 = (M) (19)
such that
tlirglo Bt ) = (1.10)

As the system is to be self-organized, the critical value y. must not explicitly enter the
equations, rather its implicit definition
fe= SUp W (1.11)
(M) ()=

has to be used.

From (1.10) we conclude, that

fIM) = Z-g(M) (1.12)
0 for M =1/
gM) = { > 0 for other values of M
(E) =

5Le. the probability P.. for an infinite cluster.
%See also [5] for related ideas.
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is a sufficient condition for (1.11). The quantity Z plays the réle of a driving force and may
be a stochastic variable.

Since equation (1.9) is required to correspond to the time-evolution of the state variable
u, its both sides are assumed to be local functionals of u:

po= fa(u,c?ku,...)dda: (1.13)
M = fb(u,aku,...)ddac.

The time evolution of the state variable is required to be local, which is the case for

9@@) =3, E=[((@)d%
in (1.12) and (1.13), corresponding to

da(u, Oy, .. .)
ot

== b(u,8u,...), M>1. (1.14)

These criteria are observed by percolation problems, but not for instance by a Ginzburg-
Landau model, where the control parameter cannot be expressed as functional of the field
u, and the order parameter is not positive.

2 Example: The Sandpile Model

The sandpile model was originally introduced by Bak et al. [1, 2] to describe the temporal
evolution of the local heights u(z) of a sandpile by a d-dimensional cellular automaton. Using
continuum notation, the time evolution is given by

_aué%t) =  AO(u(x,t) — u.) + K(z,t) (ue = 2d)
where
6z —E&(t) ifu<u. Vo
Blat) = { O( i else
and
u(z,t) = 0 on the boundary

£(t) form a set of independent random variables with uniform distribution on the grid.
A comparison with (1.14) shows that

a(u,Ou,...) = u
b(u,dhu,...) = —AB(u(z,t) — u.)

I
=
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which yields for the contol parameter and the order parameter ¢ and M

1
BoCYy = V/u(az)ddx
v

Mx T —faVVG(u(m)—uc)dS‘ ,

agreeing with (1.7).

When disregarding loops of the cluster, a perturbation propagates if u(i) = u, — 1, and
the permeability is thus approximatively m,; = ©(u(¢) — u, — 1). Criterion (1.8) for SOC is
hence fulfilled as expected.

The statistical properties of the percolation-cluster are then approximated” by a Bernoulli
cluster with density ¢ ~ ¢f from (1.2) which leads to an approximate bond-density p(y)
determined by

p(y) = Pu-1)(y)
Pu(y) = (buu(x))obmpw)):

Using standard combinatorial enumeration techniques [7] and a saddlepoint approxima-
tion [8], one shows that

Puy) = C(y)umll_}g‘ji 1)
(W) S (k- 9@t =o.

The critical average height y, is then approximately determined in terms of the corresponding
threshold value for Bernoulli percolation pZ:

D= Pf = P(uc—l)(yc)v

which is in good agreement with the numerical results [9] (Table 1).  For d = 1 the
trivial result y, = 1 is reproduced. For large d, the critical value converges toward the
mean-field value with a correction which originates from the fact that the mean-field critical

bond density is =~ and not -, resulting in a breaking of the equipartition property of the

2d—1 2d?
probabilities for u.

In spite of the good agreement of the values obtained by the method presented here with
the exact ones, it must be kept in mind that percolation and the sandpile model do not
belong to the same universality class (e.g., their critical dimensions disagree). This may be
understood as a consequence of the fact that the distribution oZ used in the approximation
does neither take into account forbidden configurations nor does it deal with correlations
between neighboring bonds.

"Dhar [6] actually proved, that all configurations on the attractor are visited with equal probability.
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d Simulation Percolation Mean-field
1 Ye 1.000 1.000 0.500
Po(ys)  0.000 0.000 0.500
Pi(y)  1.000 1.000 0.500
2 i 2.125 2.191 1.500
Po(y.)  0.074 0.080 0.250
P1(y.) 0.174 0.148 0.250
Pa(y.)  0.306 0.272 0.250
Ps(y.) 0.446 0.500 0.250
3 Ye 3.135 3.077 2.500
Po(ye) 0.054 0.102 0.167
Pi(y) 0117 0.122 0.167
Ps(y.) 0.166 0.145 0.167
Ps(y.) - 0.201 0.174 0.167
Pa(y.)*  0.223 0.208 0.167
Ps(y.)  0.238 0.249 0.167
d — oo Ye — —3+0(1/4d) d—7
Puw)  —  &+0(1/d) i

Table 1: Comparison of numerical [9], percolation and mean-field [10] results.
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