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Abstract The configuration-space topology in canonical General Relativity depends on the choice
of the initial data 3-manifold. If the latter is represented as a connected sum of prime 3-manifolds,
the topology receives contributions from all configuration spaces associated to each individual
prime factor. There are by now strong results available concerning the diffeomorphism group
of prime 3-manifolds which are exploited to examine the topology of the configuration spaces
in terms of their homotopy groups. We explicitly show how to obtain these for the class of
homogeneous spherical primes, and communicate the results for all other known primes except
the non-sufficiently large ones of infinite fundamental group.

Section 1. Introduction

In recent years mathematicians have made progress in understanding the diffeomorphism
group of 3-dimensional manifolds. The object of this paper is to show how this can be
exploited to deepen our topological understanding of configuration spaces occurring in
pure General Relativity. In particular, we shall investigate their homotopy groups and
thus generalize already existing work on the fundamental group [Wi]. Besides for its
intrinsic interest, a major motivation to study these topological structures stems from the
canonical quantization programme for General Relativity. Here, general arguments suggest
a topological origin of certain interesting features of quantum gravity (e.g. degenerate
vacuum structure, absence of anomalies, superselection sectors), resembling those already
familiar from other (successfully quantized) theories. Certainly, the arguments given in the
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context of quantum gravity are primarily meant to be of heuristic value, that is, they are
believed to really give insight into some aspects of quantum gravity by using methods which
are not necessarily believed to survive an eventual rigorous formulation. Amongst others,
there are two reasons that entertain this belief: Firstly, arguments identical in structure
have been successfully applied in other field theories (e.g. Yang-Mills) where there is a
quantum theory that takes notice of the topological features in question. Secondly, all
approaches to canonical quantum gravity need to implement the diffeomorphism group of
the underlying 3-manifold as transformation group on the state space. Although being a
difficult technical problem on its own, this implementation quite generally suggests itself
as a mechanism for the quantum theory to encode information about the underlying 3-
manifold. Note that topological invariants of the diffeomorphism group are also topological
invariants of the underlying 3-manifold. In this respect a natural first step is therefore to
study some obvious topological characteristics of the diffeomorphism group and see how
accurately they determine the underlying 3-manifold. This particular question can now

be studied to some degree by using the table presented in Section 4 together with formula
(1.7).

In any generally covariant theory the topological structure of configuration space
receives characteristic imprints from the diffeomorphism group, which is used to mutually
identify physically equivalent points on an auxiliary space that labels physical states in
a redundant way. If this auxiliary space is topologically trivial, as it is in the case of
General Relativity, all the topological information in the homotopy groups of the quotient
is determined by those of the diffeomorphism group. Generally, this holds whenever the
configuration space is given as the base of a principal fiber-bundle with structure group the
diffeomorphisms and contractible total space, as will be explained below. In this case the
topology of the base is directly related to the topology of the fibres, and it is their topology
which we are going to investigate. In theories where besides the diffeomorphisms there is
an additional gauge group acting (which also occurs in the “connection” formulation of
General Relativity [Ash]), additional topological structure is induced. In these cases our
analysis can be used to provide the diffeomorphism contribution. In order to work within
a fixed framework, we shall argue within standard General Relativity. But, as will become
apparent, the investigation is really of a more general kind.

In the sequel of this introductory section and Section 2 we shall provide some basic
material concerning the notion of configuration spaces in General Relativity, 3 - manifolds,
and their diffeomorphism groups. In particular, the notion of a spinorial manifold is
introduced. A more technical point is deferred to Appendix 1. Proofs of already existing
results were only included when it seemed appropriate. Their setting given here might
differ from the one originally given. This sets the stage for the derivations of some new
results in Section 3. In Section 4 all the results next to some other useful information
is combined in a table, and some first observations are made. This section should be
accessible without going through the main body of the paper. Appendix 2 combines into
five theorems some scattered results from the literature which we made essential use of.
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Configuration Spaces, 3-Manifolds and Diffeomorphisms

The specification of initial data in General Relativity starts with the selection of a 3-
manifold, ¥, on which initial data are constructed in the form of a Riemannian 3-metric
and the extrinsic curvature. Together they satisfy an elliptic system of four differential
equations, the constraints, which are separate from the evolution equations. As config-
uration space we address the quotient-space obtained from the space of all 3-metrics on
>, where those metrics which label the same physical state are mutually identified. This
reduces three (the so-called momentum constraints, which are linear in momenta) of the
four constraint equations, the remaining one being the so called Hamiltonian constraint
(which is quadratic in the momenta). The identification is generically given by the action
of some normal subgroup (possibly the whole group) of the diffeomorphism group, which
we choose to call its gauge part, since it connects redundant labels for the same physical
state. General covariance then implies that the quotient of the full diffeomorphism group
with respect to the gauge part acts on the configuration space as proper symmetries, which
now connect different physical states. We shall refer to those simply as symmetries. In
case the gauge part exhausts all of the diffeomorphism group, there will simply be no
symmetries.

Exactly how much of all diffeomorphisms are considered to be gauge part depends
on the physical situation one likes to describe and cannot be answered a priori within
the formalism. In General Relativity two major situations arise: Firstly, ¥ is closed and
represents the whole universe, in which case there are no symmetries and the gauge part is
the whole diffeomorphism group. This situation we shall refer to as the closed case. It is
usually employed in classical- and quantum-cosmology. Secondly, 3. represents an isolated
part of the universe, so that ¥ is a manifold that outside some connected compact set is
homeomorphic to the complement of a closed ball in R3, i.e., to the cylinder R x S2. This
cylinder can be thought of as the transition region between the system under study and the
ambient universe relative to which the system is described. The gauge part is then given by
those diffeomorphisms of ¥ that asymptotically die-off as one moves along the cylinder in
an outward direction. Slightly more precise, we may compactify ¥ by a 2-sphere boundary
at the outer end of the cylinder and take the gauge part as those diffeomorphisms that fix
the boundary. They form a proper normal subgroup within the full diffeomorphism group
of ¥. The action of symmetries is then interpreted as changing the relative positions of
the system with respect to the ambient universe. This situation we shall refer to as the
open case.

Mathematically the situations just described are surprisingly unique, in the sense that
essentially (i.e. up to discrete groups) no other choice of a quotient symmetry group could
have been made. This is due to two facts. Firstly, that the identity component of the
diffeomorphism group of a closed manifold is simple (as group), and, secondly, that the
identity component of the group of boundary-fixing diffeomorphisms of a manifold with
connected boundary is simple and given by the unique non-trivial normal subgroup of the
identity component of all diffeomorphisms [McD]. For more than one boundary component
(i.e. a ¥ with more than one asymptotic region, a case which we do not consider here),
there will be more normal subgroups according to those diffeomorphisms that fix only some
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of the boundary components [McD]. For a closed manifold, a minimal non-trivial normal
subgroup of the diffeomorphism group is given by its identity component, whereas in the
open case a minimal choice is given by the identity component of asymptotically trivial
diffeomorphisms (larger choices would be the identity component of all diffeomorphisms, or
all asymptotically trivial diffeomorphisms). In any case, the only way in which continuous
symmetry groups can arise is via asymptotic regions or boundaries. Clearly, selecting
minimal normal subgroups as gauge part corresponds to a maximal choice of symmetries.

As it stands, the open and closed case do not seem to be intimately related. We will
argue, however, that, in a sense explained below, our topological investigations cover both
situations at the same time. Recall that in the closed case the configuration space, as
defined above, namely as the quotient of the space of metrics modulo all diffeomorphisms,
has a non-trivial singularity structure (described in [Fi 1]) due to the changing dimensions
of isotropy groups at metrics with different isometries. Rather then working with this
singular configuration space S(3) (for superspace), where e.g. the global dynamics is
only defined by some regular dynamics on a singularity free resolution space (reflection
conditions etc.), one may instead use the resolution space from the start. First arguments
as to why canonical quantum gravity should also be formulated on a resolution space of
superspace were already given in [DeW]. It turns out that there is a natural resolution
space for S(X) which we call Qr(X). Its construction is explained in lucid detail in [Fi 2]
(see also [Sw]).

On the other hand, in the open case, an admissible and convenient way for our topo-
logical investigations is to consider the one-point compactification ¥ := X U {oo} of T by
a point called co. In this case one requires ¥ to be asymptotically regular in the sense
that there exists a compact connected set K C ¥ so that ¥ — K is homeomorphic to the
complement of a closed ball in R3. This also ensures that the one-point compactification &
is a manifold. The configuration space, Q(¥), is then defined by the space of all metrics on
¥, Riem(%), modulo the diffeomorphisms that fix the frames at co. To answer topological
questions we neither need to specify fall-off conditions nor the precise function space for
the metric. To start the construction, we fix an oriented frame u at co. A general linear
transformation of the tangent space T\ (L) is said to be € SO(3), if its matrix represen-
tative with respect to u is € SO(3). Clearly, all conclusions to follow are independent of
the choice of u. Let us now define:

D(X) : = {orientation preserving C'* —diffeomorphisms on £}
Doo(£):={p €D [ ¢p(c0) =00, ¢« € SO(3)} (1.1)
Dp(2):={¢ € Doy | duloo = id}

Here, D (%) represents those diffeomorphisms of ¥ which induce “rigid” rotations on the
2-sphere at the end of the cylinder. It is easy to see that D is a normal (invariant)
subgroup of D, whereas neither of them is a normal subgroup of D. Since the space
of orientation-preserving diffeomorphisms of the 2-sphere is homotopy equivalent to its
isometries SO(3) [Sm|, we may for our topological purposes represent D(Z) by Dy (%).
As an important example let us consider the particular class of open cases, where the
system under consideration is represented by asymptotically flat metrics. Here the re-
quirement on the gauge part to lie within Dy is well motivated since we certainly want
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to include states with non-vanishing angular momentum at spatial infinity (co). These
are included in the phase space over Riem(X)/Dr(Z), but not in the smaller one over
Riem(X)/Dy(%). Diffeomorphisms on ¥ must not disturb the fixed asymptotically eu-
clidean structure and are therefore faithfully represented by Do, (X). But the Hamiltonian
theory does not tell us to regard Dg(X) as its gauge part, rather, it only requires the
constraints (the diffeomorphism- or gauge constraints) to generate gauge transformations.
The group generated by them is the identity component D% (%) of Dr(E). Declaring no
further invariances as gauge than what is really required by the formalism leaves us with

the (maximal) symmetry group G(X), given by:
G(5) = Doo(5)/DY(S) . (12)

It is now true that Q(X) is the basis of a Dp- principal fibre bundle with total space
Riem(X) [Bou|[Fi 2]:

Dp(¥) — Riem(%)

|~ (1.3)
(%)

The action of D on Riem is free since D cannot contain non-trivial isometries. A simple
proof for this is obtained by using the exponential map at co. We can now compare this
to the closed case by considering the space Qr(Z) for the closed manifold ¥. If we denote
by F(X) the bundle of oriented frames over ¥, the resolved configuration space is defined
as the base of the following principal fibre bundle [Fi2]:

D(X) — Riem(%) x F(2)
| (14)
Qr(%)

Here, D(E) acts on F(X) by its standard lift, and the action is free by the same argument
as above. We now have the following result which is part of Theorem 6.1 in [Fi 2]:

Theorem 1. The spaces Q(%) and Qg(X) are diffeomorphic (as ILH-manifolds).

For us this implies that we can focus attention to Q(X). All the statements we are
going to make about the abstract topology of Q(X) hold equally well for Qz(¥). Keeping
this in mind we shall never mention Qr(X) again. In [Sw]| a smaller (in fact minimal)
resolution space is considered which is obtained from (1.4) by restricting the total space
to the subset {(g,u)|u € O(g, %)}, where O(g,X) is the bundle of oriented frames which
are orthogonal with respect to the metric g.

Riem(%) is a convex open cone in the topological vector space of smooth (0,2)-tensor
fields. Dp is topologized to make it a topological group (i.e. at least as fine as compact
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open) with topological action on Riem(Z). Q is given the quotient topology which is the
finest topology for which 7 is continuous (for more information on topologies of mapping
spaces see [Mic]). There are two important points to make.

1. The map 7 is open and hence Q’s topology unique.

Proof: take an open set O in Riem(%). Since Dy acts as a topological group, its orbit, given by 7 —1 (m(O)),
is also open. Hence 7(©) is an open set and therefore 7 an open map. Conversely, let ™ be an open map
and U C Q(X) an arbitrary set such that 71 (U) is open. Then U = w(7~1(U)) is open and therefore
Q(X)’s topology equal or stronger than the quotient topology. But the quotient topology is already the
strongest one compatible with the continuity of w. Hence it is unique. With respect to @ it therefore
makes sense to refer to its topology.

2. Under the hypothesis of the validity of the Smale conjecture, Cerf proved that
the diffeomorphism and homeomorphism groups of ¥ are weakly homotopy equivalent
spaces, i.e., there exists a map from one space to the other inducing isomorphisms on all
fundamental groups. But the Smale conjecture is now proven [Ha 4]. As far as we are
interested in the homotopy groups only, these results allows us to be imprecise about the
degree of differentiability we work with. In particular, it allows us to use interchangeably

Dp(Y) and Hp(Y), where the latter denotes the space of homeomorphisms fixing a disc
containing oo, which is more often employed in the literature (e.g.[FW],[HL]).

From the contractibility of Riem(X) and the homotopy exact sequence associated with
the bundle (1.3), we immediately obtain for all n > 0 the isomorphism:

T (D (5)) 2 141 (Q(E)) (15)

The investigation of the homotopy groups of Q(%) is thus reduced to those of Dp(%). No
reference to the space of metrics is made anymore. It has dropped out of the homotopy
exact sequence due to its contractibility (Q(Z) is a classifying space for the group Dp(2))
and the only topological features are those of Dr. This is why investigations of this type
bear a high degree of generality. For example, in so-called higher-derivative theories of
gravity, Riem(X) is replaced by Riem(%) x K, where K is the linear (and hence con-
tractible) space of sections in some tensor bundle. The Dy action is then still free and the
total space still contractible. The corresponding configuration spaces therefore still satisfy
(1.5).

Let us now decompose ¥ into its prime factors, ¥;, explicitly separating the irreducible
primes P; from the non-irreducible handle §? x St. (A prime %; is irreducible, < every

2-sphere in ¥; bounds a disc. The only closed, orientable, non-irreducible prime is the
handle 2 x St.)

We write:

n

ntl l
E:E—JZ-(H—JR)&J(H—JS‘szl), P2 S?x ST, (1.6)
g =1

i=1
where we used W to denote the operation of taking the connected sum. It is known (see
e.g. [McCu]) that there is a homotopy equivalence (~):

t=1
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where the symbol Q(-) stands for the loop-space of (-), and where C(X) is a space that
(vaguely speakmg) labels and topologizes the relative configurations (sites) of the prime-
manifolds ¥; in the connected sum £. In general its determination seems to be difficult
and we refer to [McCu|[HL] for more elaborate treatments. What interests us here is that
consequently the homotopy groups of Dy(%) satisfy:

Te(Dr(Z) H’frk(DF(P)) X H Te+1(SO(3)) | x T 41(C(E)) (1.8a)
mo(Dp(E)) H’.'TQ(DF ) % H Zy | X m(C(%)), (1.8b)

where we used the general relation mp(2X) = mr4+1(X) We had to separate the case
k = 0 from all others for the reason that the homotopy equivalence (1.7) does not imply a
direct product structure for the zeroth homotopy groups, as it does for all the higher ones
(expressed by (1.8a)). Note also that the zeroth homotopies, which generally do not form
groups, are indeed groups in the present case due to the fact that the spaces they are taken
from are themselves topological groups. We write X to indicate that the product structure
holds only on the level of sets but not groups. It is possible to obtain more information
about the group structure of (1.8b) [Gil]. At this point we only remark that the factor in
brackets in (1.8b) forms a subgroup, though generally not a normal one.

This structure (1.7) rests on the restriction to asymptotically trivial diffeomorphisms
Dp, for only in this case there is no topological intertwinement of the diffeomorphisms with
support inside the prime factors ¥; (called internal diffeomorphisms) with those of general
support (called external diffeomorphisms). This would fail to hold if one considered D
instead of Dp, as a simple counterexample shows (see e.g. [Gil]). As far as the homotopy
groups are concerned, we now see how the determination of Q(X)’s topology is directly
related to the determination of those for its prime factors Q(%;). Following ref. [McCul,
a more elaborate discussion of of formula (1.7) is given in ref. [Gil], which also contains
an application of (1.8b) to the case of where ¥ is given by the connected sum of [ handles.

Section 2. Some Preparatory Material

At the end of this section and the whole of Section 3 we will perform explicit calculations
for mo(Dp (X)) and mp(Dr (X)) (k > 1) respectively, where ¥ is taken from the subclass
of homogeneous spherical primes. In order not to overload the actual proofs, we shall
establish some preparatory material first.

A Closer Look at Diffeomorphisms

The strategy for our calculations is very simple: there are hard theorems available con-
cerning the topological structure of D(X) for ¥ prime. For convenience we collect somé
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of them in Appendix 2. Most interesting for us is the question of validity of a conjecture
made by Hatcher [Ha 2] (abbreviated HC, in the literature also referred to as the general-
ized Smale conjecture). It asserts that for spherical primes the spaces of diffeomorphisms
and isometries are homotopy equivalent. Restricted to the 3-sphere, this is known as the
Smale conjecture which has been shown to hold in [Ha 4]. Some of the proofs presented in
this paper require the validity of HC, the status of which has been indicated in the table
presented in Section 4.

From now on we shall sometimes drop the explicit reference to the manifold ¥ by
just writing D, D, etc., without any argument. We obtain information about Dg by
relating it to D by some standard fibrations which we shall now describe. First note that
orientable 3-manifolds are always parallelizable. Their bundle of oriented frames, F'(3), is
thus given by the product ¥ x GL*(3,R). The different diffeomorphism groups in (1.1)
are topologically related by the following three principal fibre bundles (u still denotes the
fixed frame at oo):

D — D
[# B(8) =Tolu) = (#(00), beloo (w) (2.1)

F(5)

Do - D
R ORI CY (2.2)

=

Dr — D
l;ﬁ F(6) 1= oo (2.3)
S0(3)

As a first application we introduce the concept of spinoriality of a manifold X. Asso-
ciated with (2.3) is the fibration

Dp(E)/D%E) — G(®)
J,; (2.4)
SO(3)

where G(X) is the symmetry group defined in (1.2). Note that since Dp is normal in Do,
Dp /D% is normal in G. Discreteness of Dp/D9. then implies that its centralizer in G
contains the identity component G°, so that G° N Dp /D% C centre(Dp/D%).
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From the exact homotopy sequence associated with (2.4) we infer (unless stated oth-
erwise, we use the multiplicative notation for abelian groups, so that the neutral element
is then denoted by 1):

1 - m@) B Z B mDr) B mi@) — 1 (2.5)

which, by injectivity of p,, gives us two possibilities:

1. m(G) = 0 and mo(Dp) is a Z extension of mo(G). In this case (2.4) is non-trivial
and G is given by {mo(Dp) x SU(2)}/Z;. Here the Z; is generated by (—1, —1) where the
—1 in the left factor generates the image of 9, in mo(Dp) and the —1 in the right factor
generates the centre of SU(2). Note that the image of 8, is mapped to the identity in
m0(G) via i.. If we identify D /DY with its image in G (via 1), this says that the image of
9, is in G° and therefore in the centre of Dp/D%,.

2. m(G) = Z3 and mo(Dp) = m(G), in which case (2.3) is trivial and G(X) a direct
product mo(Dp) x SO(3).

In the first case, G(X) contains SU(2) but not SO(3) as a subgroup. Let a manifold,
3}, for which this is the case, be for obvious reasons called spinorial. Whether a manifold
is spinorial is a purely topological question and has been decided for all known prime
manifolds (see Theorem 2 below). In view of Corollary 1 (below) this provides sufficient
information for the general case. From (2.3) and the discussion above one obtains the
following exact sequence and criteria for spinoriality:

1 - m(Dr) — m(Ds) Bz % wo(Dp) — mp(Deo) — 1 (2.6)
0, into, or B
Y is spinorial & { 11 (Dp(2)) =2 (D (X)), or (2.7a)

mo(Dp)is a central extension of mo(Ds) by Zo,

P« onto, or

3} is not spinorial & {Wo(DF(i)) 2 1o(Doo(5)).

(2.7b)

For later application let us cite the following known results in form of two lemmas, a
theorem and a corollary.

Lemma 1. If ¥ is an irreducible prime manifold listed in our table (i.e. different from
S! x S2), then the bundle projection p of (2.2) has the property that p, maps m (D) onto
the centre C of 71 (X).

Proof. That p.(m(D(X))) C C follows from Corollary 5.22 of ref. [McCa)] for arbitrary
% (his/her remark 5.24). A proof for surjectivity onto C' is contained in Section V of ref.
[Wi] under the hypothesis that homotopy implies isotopy of diffeomorphisms. According
to Theorem Al in Appendix 2 this is now known to hold for all primes in our table e



Giulini 95

Lemma 2. If ¥ is not spinorial then the bundle projection p of (2.1) has the property
that p,(my (D)) contains (1,—1) € 71 (F (X)) 2 m (8) x Z,.

Proof. This is proven in Lemma 2.1 of ref. [FW]. The simple and instructive proof is worth
a look at this point. Let s — R, € D% (the identity component of D) be the rotation of
a 3-disc [ against a slightly larger, concentric 2-sphere Sy (compare Appendix 1). Non-
spinoriality implies the existence of a path s — ¢, € D% so that ¢g = R; and ¢; = id.
The product path, -, defined by

y e { Ry, for s € [0, 3]
) ¢(25—-1) for s € [%, 1]

defines a loop at id in DY satisfying p,([y]) = —1. Moreover, from the end of the exact
sequence for (2.2) (shown in (3.3)), we have p,([7]) = p« 0 iu([7]) = 1, so that p.([7]) =
@+ ([7]): B (7)) = (1, 1) € my(2) x Z3 o

Theorem 2. Amongst the known prime manifolds the only non spinorial ones are the the
lens spaces, L(p,q), and the handle S' x S2.

Proof. Non-spinoriality for L(p,q) and S' x S? can actually be visualized. The demon-
stration of this fact is deferred to the Appendix 1. In ref. [He|, chapter 4.3, Theorem
1 implies spinoriality for the following prime manifolds: those with infinite fundamental
group different from S! x S? (given by the so-called K (m,1)’s), and those with finite fun-
damental group which have a non-cyclic 2-Sylow subgroup. An alternative and somewhat
simplified proof of this theorem is given in [P]. The remaining cases consist of some S3/G
with non cyclic G for which HC is known to hold. Using this fact, they were shown to be
spinorial in ref. [FW], Theorem 2.2, and the remark following Corollary 2.2. For the latter
one needs to add that in the meantime the validity of HC for the spaces S*/Dj}, ,m > 2,
has been shown in ref. [MR].

Due to our strategy to be explicit in the case of homogeneous S3/G’s, and anticipating some re-
sults from the next subsection, we want to give a simple proof of spinoriality for non-cyclic G under
the hypothesis of validity of HC. (More precisely, it only relies on one of its implications, namely that
71(D) and w1 (Isom) have the same number of generators. We are, however, not aware of a single case
where this but not the full HC is known to hold.) By discreteness of S(G) we learn from (2.12) that
P» maps Zz = w1 (Isom(S3/G)) injectively into G = m1(S3/G). Since p is just the restriction of p in
(2.2), which also appears as the first component of p in (2.1), we learn that p.(71(D)) contains the el-
ement (—1,1) or (—1,—1) [by Lemma 1, p. maps m1(D) into Z2 x Za = centreG x 71(S0(3))]. By
HC, m1 (D) = 71 (Isom) = Z3 so that p«(m1 (D)) cannot in addition contain (1, —1) by mapping only one
generator. Lemma 2 then implies spinoriality e

Corollary 1. A closed, oriented, connected 3-manifold ¥ is non-spinorial, if and only if
its prime decomposition consists entirely of lens spaces and handles.

Proof. In view of Theorem 2 we need to prove that such a manifold is non-spinorial, if and
only if none of its prime factors is spinorial. For this we assume that ¥ is the connected
sum of n prime factors which build up ¥ as follows (we partially follow ref. [McCu]): Take
a 3-sphere and on it n+1 closed, disjoint 3-discs D;, 0 < ¢ < n, with 2-sphere boundaries
0D; = S;. We take Dy as a neighbourhood of oo, remove the interiors of D; for ¢ > 1, and
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construct 3 by identifying the n 2-sphere boundaries S; (1 < i < n) with the corresponding
boundaries that one obtains by removing an open 3-disk on each prime factor respectively.
In ¥ we now connect S; with Sit1 for each 1 < i < n — 1 by a thin cylindrical tube
(topology I x S') and obtain a single new 2-sphere, S (the connected sum of all S; for
i > 1), which is isotopic to So. A 2m-rotation parallel to Sy (i.e. a rotation parallel to
So and an arbitrarily close concentric one, as explained in Appendix 1) is also isotopic to
such a rotation parallel to S. The latter one may be chosen to have the connecting tubes
as axis (i.e. the rotation acts only on the S! part of I x S'). Shrinking the tubes to zero
diameter defines an isotopy to rotations parallel to each S; for 1 < ¢ < n (compare the
remark after Theorem 1, chapter 4.3, of reference [He|). From (1.8b) and Theorem 2 we

infer that this diffeomorphism corresponds to the identity element of mo(Dg (X)), if and
only if the connected sum does not contain a single spinorial prime o

Corollary 1 suggests that non-spinorial manifolds are somewhat more special than
spinorial ones. Note, however, that the non-spinorial primes still suffice to build up (in
a non-unique fashion) manifolds of any given homology by taking connected sums. Non-
spinorial manifolds are, therefore, not homologically special. Note also that the lens spaces
L(p,q) are homogeneous, if and only if ¢ = £1modp. These are therefore the only non-
spinorial primes in the class of homogeneous space forms to which we specialize in the
following subsection. Finally, we note that the existence of spinorial manifolds has been
already used in the literature to speculate on the existence of certain spinorial states in
quantum gravity [FS]. We will come back to this point in Observation 1 of Section 4.

Homogeneous Spherical Primes

In this subsection we consider a special class of elliptic spaces, that is, spaces of the form
5% /G, where G is a finite subgroup of SO(4) with free action on S3. We identify S°
with the group manifold of SU(2) with its standard bi-invariant (round) metric and use
the isomorphism SO(4) = (SU(2) x SU(2))/Z,, where the Z, is generated by (—1,—1).
Elements of SO(4) are then written as Z,-equivalence classes (g, h] with g, h € SU(2), and
clements of S/G as G-equivalence classes [z] with z € §%. We can now write down the
(left) SO(4)-action on S3

SO(4) x 5% — 53, ([g,h],z)—~ g -z-h7T. (2.8)

S0O(4) has a left- and right- SU(2) subgroup, given by the sets SU(2), := [SU(2),1] and
SU(2)g :=[1,SU(2)] respectively. It also has an obvious diagonal- SO(3) subgroup given
by all elements of the form [g, g]. We call it SO(3)p. If Ngo4)(G) denotes the normalizer
of G in SO(4), it is easy to see that the residual orientation preserving isometry group
acting on S°/G is given by Isom(5°/G) = Nso(4)(G)/G:

Nso)(G) x 8°/G — $*/G,  (lg;h],[z]) = [g-z-h77]. (2.9)

It acts transitively on §3/G, if and only if G is a finite, freely acting subgroup of either
SU(2)L or SU(2)g. As subgroups of SU(2) these are given by Z,, D}, for n > 2, T*, O*
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and I* which denote the cyclic group of order p and the SU(2)-double covers (denoted
by *) of the symmetry groups of the n-prism, tetrahedron, octahedron and icosahedron
of orders 4n, 24, 48 and 120 respectively. We shall now restrict to theses cases and may
choose G = G, that is, we may choose G to sit inside SU(2)g, for the manifold obtained
by using SU(2);, would certainly be homeomorphic.

For our topological purposes we may indeed restrict ourselves to the right action for identifying S°
to S3/G. But as prime manifolds in the oriented category one needs to distinguish those obtained by
right and left identifications. This follows from the fact that a homogeneous S*/G does not allow for any
orientation reversing diffeomorphism if G # Z; for © < 2 [Wi], and uniqueness of the prime decomposition
in the oriented category. For those G this implies that $3/G & S3/G is not homeomorphic to (the minus
sign indicates reversed orientation) §3/G&(—S3/G). On the other hand, the diffeomorphism ¢ that relates
the two manifolds obtained by right and left identifications is just given by [plg — ¢([p]lr) = [p™!]1,
where p € §3 & SU(2) and [-]g, []1 denote the right and left cosets respectively. But this is an orientation
reversing diffeomorphism.

For all but the cyclic groups Z, of odd order, G contains the centre Z, of SU(2).
Standard properties of groups and their quotients imply the following homomorphism
equivalences:

Isom(S®/G) = SO(3) x Ns%z)(c;) >~ SO(3) x

Nso(3)(G/Z5) ' (2.10)
G/Z,

Let S(G) denote the (unique) conjugacy class of stabilizer subgroups for Isom(S®/G)’s
action on S%/G. We shall usually identify it with the stabilizer subgroup at [e] € S3/G,
where e is the identity element of §% = SU(2). One easily shows that S(G) = Ngy(2)(G)/Z2
SO(3)p, where Z, is the centre of SU(2). For G # Z,, where p odd, this can be writ-
ten as S(G) = Ngo(3)(G/Z2). As a closed subgroup of SO(3) it must be either discrete,
or a finite disjoint union of circles, or the whole of SO(3). The last case is realized for
G = Z, and the second case for G = Z, (p > 2), where S(G) is given by two circles in
two perpendicular planes (viewed as subset of unit quaternions) one of which is the unique
1-parameter subgroup containing Z,. In the first case we have explicitly (note: Dy, is the
projection of D§, into SO(3)):

O for G = Dg, T* and O*
S(G) =14 Dy, for G=D}, (2.11)
I for G =TI*

By restricting the total space of the bundle (2.2) to the isometries, and, accordingly,
the fibre D, to S(G), we obtain the principal-bundle

S(G) - Isom(S?/G)

|7 B(lg,h]) =gz b7, (2.12)
S3/G

where [g, h] € Nso(4)(G) and z € S* represents the point oo = [z] (e.g. = =€) on 5°/G.
The projection p is just the restriction of p in (2.2) to Isom(S®/G). Next we prove a
lemma which we shall use for the calculation of 7 (Dp), k > 2, later on.
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Lemma 3. If G # Z, is a non-trivial finite subgroup of SU(2) which acts freely on S3
via the standard orthogonal action, and if HC holds for S /G, then the projection map p
from bundle (2.2) induces isomorphisms

ps : T(D(S3/G)) — mi(S3/G)  Vk>2.

Proof. The validity of HC implies that the inclusion I : Isom(S®/G) — D(5%/QG)
induces isomorphisms I, : mp(Isom(S®/G)) — m(D(S*/G))Vk. Since for G # Z,
we have m,(S(G)) = OVE > 2, the homotopy exact sequence for (2.12) implies that
Ps : Tk (Isom(S3/G)) — mx(S®/G) is an isomorphism Vk > 2. On the other hand, § = pol,
and hence p, = p, o I,, which proves the claim e

Calculation of 7y(Dz(5%/G))

For the spherical primes S /G, the zeroth homotopy group of Dr has already been calcu-
lated in [Wi]. Here we give a separate calculation in the homogeneous subclass.

We start with the lens spaces L(p,1). Lemma 1 applied to the exact homotopy
sequence for (2.2) implies that its very last two group entries are isomorphic: mp(Dyo) =
7o(D). Theorem 2 and (2.7b) then imply 7o(Dp) = mo(D) = mo(Isom) (Theorem A2,
Appendix 2). This is isomorphic to Z, for p > 2, and to the trivial group for p < 2.

For G non-cyclic, we have that Z; := {1, —1} C SU(2) is the centre and the centralizer
of G in SU(2). This implies that the action of S(G) on S3/G, [p] — [gpg~1], is effective
on the coset [e] C S3 and therefore on the fundamental group m;(S3/G,[e]). Thus no
nontrivial element in S(G) lies in the identity component in D, (we take co = [e]), so
that mo(Dw) contains the subgroup S(G). We wish to show that it actually saturates all
of mg(Deo). This can be done if mo(D) = mo(Isom) holds (see Theorem A2), for then we
infer from Lemma 1 that the last part of the sequence for (2.2) just says that mo(Ds) is
a G /Z, - extension of mo(D), and therefore (| - | denotes the order of the group -):

_ |G| INso)(G/2Z2

2 |G/Zy I |Nso)(G/22)| - (2.13)

70(Deo)] = Himo(D)

Next, by spinoriality (Theorem 1), we know from (26) and (2.7a) that mo(DF) is a Z3 -
extension of 79(Dw.). We wish to show that it must be the SU(2)-double cover Ngy(2)(G).
To do this in detail requires some notation.

Let Nsy@2)(G) = {91,--+,9n}, G = {¢1,"-",9x}, K < N, where g1 = e, and
{61,---,0n} C su(2) (the Lie-algebra of SU(2)) such that exp(f;) = g; (we take in-
dices 7,-+- to run from 1 to N, and a,--- from 1 to K). There is a homomorphism
o : Nsy(2)(G) — Pk into the permutation group of K objects, g; — o(g:) =: 03, defined
by ga9; - g; ! Qo fay- Liet 1z 53 — R be the distance function from e (with respect to the
bi-invariant metric) and p a C* step-function, such that p(r) = 0 for r < € and =1 for
r > 2e. We then define A := por. Further, we let B? and B} be the closed 2¢- and ¢ balls
around e = g; respectively. We right-translate them to 2e- respectively e- balls centered
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at ga, i.e.,, B2 = B} - g, and Bl = B} - g, for each a. We further take e small enough
for B2 to lie within a regular neighbourhood with respect to the covering S — $3/G. In
particular, they are all disjoint. Their projections into S3/G are called B? and B*.

To each element of g; of Ngy(2)(G) we now assign a diffeomorphism T; of $3 —U£ , B2,
defined by

Ti:  pw exp(A(p)d;) - p- exp(—A(p)6i) - (2.14)

It is easy to see that: (i) T} leaves B} pointwise fixed, (ii) 7; leaves B? — B} invariant, (iii)
T; leaves S® — UK | B2 invariant and (iv) T; maps B2 onto BBgi( o) In fact, any point in
a small closed outer collar-neighbourhood of B2 can be written as pg,, where p is from
such a neighbourhood of dB}. Under T; it is mapped according to

P9a — 9ip9a9; " = Ti(P)gs.(a) - (2.15)

We now use (2.15) to smoothly extend the maps to all of S3, that is, for any point pg, € B2,
where p € B, we set

T%(pga.) = Ti(p)gtn(a) 3 (216)

where the T;(p) are defined in (2.14). By construction, this defines diffeomorphisms of
S3 /G whose action on the fundamental group of $3/@ is simple conjugation: p — g;pg; *;
for, as before, a path on S° from e to the g, is mapped to a path from e to do(a), SO that
Ti * (9a) = 9i9a9; 1 Only the centre Z, of N, su(z)(G) acts trivially on the fundamental
group. However, the diffeomorphism corresponding to the generator of this central Z, is
easily seen from (2.14) to be just the relative 2m-rotation of the spheres B? and 0B1,
which, by spinoriality, is not isotopic to the identity keeping a frame at [e] fixed. By
regarding each element T; as representing a class in mo(Dp) (denoted by [T;]), the map
gi — [T;] defines an injective homomorphism of Ngy(2)(G) into mo(Dp(S®/@)), as required.

Section 3. Calculation of =.(Dr(s%/G)) for k>1

Within the class of spaces considered here, £ = S (G = Z;) and ¥ = RP® (G = Z,)
receive a special status due to them being group manifolds. This allows us to make a
somewhat more concise statement than in the other cases. We have the following

Lemma 4. a): If £ is a topological group, (2.2) is trivial.
b): For ¥ = RP3 or = §3, (2.3) is trivial.

Proof. a): Define a global section o : ¥ — D, z — L, (=left translations). We have
poo = id{i. A global trivialization is given by

¢ ': Ex Dy —D; (z,h)— Lyoh
¢ : D_’Z_IXDOCH g (p(g),L;(;)og)
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b): Define a global section o : SO(3) = Doy, o — Ad(c), where Ad(a)(p) = apa~'Vp €
¥. We have that Ad(a),|. = o, and hence po o =id|so(s). A corresponding trivialization
is given by
¢~ ': SO(3) X Dp — Doo; (e, h) — Ad(a)oh
¢: Do — SO@3) x Dp; g+ (B(g),Ad" (pog)) e

By HC we know that D(S?) and D(RP3) have the homotopy type of SU(2) x SO(3)
and SO(3) x SO(3) respectively. Hence we have the

Theorem 3. Q(X) has altogether trivial homotopy groups for & = S or & = RP3,

Proof: By the previous lemma, the bundles (2.2) and (2.3) are product bundles. We thus
have for all £ > 0:

1%

Wk(D)
ﬂ-k(Doo)

ﬂk(i) X Wk(Doo) (3.1)
(D) x T(RP?) (3.2)

IR

Setting 3. either equal to S® or RP3, and inserting the space Isom for D proves the claim o

Calculation of m,(Dr (%))

Since for £ = S$3/G we have m5(X) = 0, the exact sequences for (2.2) and (2.1) end as
follows:

i

1 - m(Deo) & m(D) B G — m(De) — m(D) — 1 (3.3)

1 = m(Dp) % mD) B 6x2 — m(DF) — m(D) — 1 (3-4)

We shall first deal with G non-cyclic. For non-cyclic G we have centreG = Z;, and by
HC 71 (D) = m1(Isom) = Z,, so that Lemma 1 tells us that p, in (3.3) is an isomorphism,
and, therefore, m1 (Do) = 0. Spinoriality together with (2.7a) then imply 7 (Dg) = 0.

For G = Z,, £ = L(p,1) is non-spinorial so that the Lemmas 1 and 2 imply (G =
centreG) that p, in (3.4) is onto. HC then implies that (3.4) reduces to

1 — m(Dp) — ZxZy — ZyxZy — 1, (3.5)

hence 71 (Dp) =& ker p,. For even p it is immediate that ker p, cannot contain the Z; C
Z %X Zj, for, otherwise, p, cannot be onto. Hence, in this case, m(Dp) = Z. This result
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is generally true, as one can see using a slightly more explicit argument which we briefly
sketch. Ngy(2)(Zp) contains the (unique) circle group in which Z, lies. If we parameterize
this circle subgroup in by s € [0,4n] then the Z factor in (D) is generated by the loop
s € [0, 4?”]. Visualizing the corresponding transformation on the lens representing L(p, 1),
one infers that this generator is mapped via p, onto the generator of Z,. Since p, is onto,
Zy C Z X Zy cannot lie in its kernel. Hence 71 (D) = Z.

Calculation of =,(Dr) for k> 2

A typical piece of the exact sequence for (2.2) looks like:

(k+1) _ (k) _
¢ — 7Tk+1(D) p,._) 7rk+1(2) — ﬂ'k(Doo) — ﬂk(D) Pl> 7"1‘:(2) caty mE E (36)

By Lemma 3, pfkk) is an isomorphism for k > 2, so that n;(Dx) =0 Vk > 2. The exact
sequence for (2.3) then implies m(Dp) & 7 1(SO(3)) VEk > 2.
Summary

According to (1.5) we can summarize the homotopy groups of the (connected) configuration
space Q(S53/QG) for $3/G homogeneous:

1 (Q(RP?) 20 Vk>1 (3.7)
Z for k=1
m(Q(L(p,1))) 2 < Z for k=2 (3.8)

7, (S3) for k>3
m(Q(S%/G)) 2 m (S*/Nsyz)(G)) Vk>1, and G non-cyclic (3.9)

In particular the last equation is very suggestive. We stress, however, that we did not
establish a homotopy equivalence Q(5/G) ~ 53 /Nsy(2)(G).
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Section 4. Results and Some Observations

Prime & HC 7 (Q(X)) w2 (Q(T)) T (Q(%))
S3/D} * o* 1 e (S3)
85 DE. * D, 1 m(S?)
L ? o* : i (S%)
S3/0* w o* 1 m,(S3)
S/ ? " i me(S3)
82 ID% % Zy, * Zy x O* zZ e (S3 x §%)
BRUEE * Z3 x D, z 7, (53 x §%)
83 /T x Zy ? Zs x O* Z e (93 x 8%)
SO % 2y w Zy x O* z 7 (S% x 53%)
B9 o T ? Zo x I* Z 7 (5% x S§%)
3 * 3 3
S /Dy g sn) X Ze * By R Do Z (55 % 5Y)
S3T, i X Zp ? £* z 7, (5% x 5%)
L(p,q1) w Zs Z 7 (S?)
L{p,q2) w, * Zoy X Zy Z x4 (93 x S§3)
L(p,q3) w Z ZxZ 7 (53 x 5%)
RP3 * 1 1 1
58 * 1 1 i
52 x B Zo % Zs z 7 (S3 x §2)
K(m, 1)g Aut?? () 1 76 (S3)

The table summarizes the results for the homotopy groups of the configuration spaces
Q(%). The last column comprises all homotopy groups higher than the second, i.e., & > 3.
The body of the table is divided into five horizontal blocks of which the first three represent
the spherical space forms, the fourth the single handle-manifold (wormhole), and the fifth
the sufficiently large K(m, 1) primes. We recall that a space is called K(m,1) if its only
non-trivial homotopy group, being isomorphic to =, is the first. Also, a 3-manifold is
called sufficiently large if it contains a surface of genus > 1 whose fundamental group is
mapped injectively into the fundamental group of the ambient 3-manifold by the inclusion
map. In other words, non-contractible loops on the surface (with fixed base point) are still
non-contractible even when allowed to move off the surface.
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The calculation for the last two blocks is almost trivial in view of the strong results
obtained in [Ha 3] and [Ha 1] respectively. Aut?? in the last block denotes a central
Z, extension (according to (2.6) imposed by spinoriality) of the “orientation preserving”
automorphisms of m;. For the 3-torus it is just given by the Steinberg group St(3, 7Z)
which is a central Z;-extension of SL(3,Z). (See paragraph 10 of [Mil] for an instructive
presentation of St(3, Z).)

The calculations for the spherical space forms depend on the validity of the Hatcher
conjecture (HC), which is not known to hold in.all cases. The calculations of m1(Q),
however, depend only on a weak implication thereof, namely mo(Dp) = mo(Isom). Since
there are cases where this weak form of HC but not HC itself is known to hold, we indicated
their status of validity separately in the second column (compare Appendix 2, Theorems
Al and A2). Here, an asterisk, *, denotes the validity of HC, a w the validity of the
weak form only, and the question mark, (7), that no such result is known to us. Assuming
(w), the groups m;(Q(S%/G)) were first calculated in [Wi]. Subsequently the table was
completed to the present form in [Gi 2].

The first block contains the homogeneous spherical primes with non-cyclic fundamen-
tal group, the second the non-homogeneous ones. Here, the order of the additional cyclic
group, p, has to be coprime to the order of the group the Z, is multiplied with, and > 2
in the first five, and > 1 in the remaining two cases. The third block contains all the
spherical primes with cyclic fundamental group Z,, otherwise known as the lens spaces
L(p,q), where ¢ has to be coprime to p > 2. Here, ¢; stands for ¢ = 1 mod p, ¢y for
g # *1 mod p and ¢*> = 1 mod p, and g3 for the remaining cases. Amongst all L(p, ¢2)
are those of the form L(4n,2n — 1),n > 2. For those the = is valid in the second column
and (w) for all others. Finally, RP3 and S® are listed separately. Together with L(p,q;)
they comprise the homogeneous spaces in the third block, and, taken together with the
first block, all the homogeneous spherical primes in the list.

Amongst others, the last block contains all closed orientable 3-manifolds that can
support a flat metric. These are of the form R*/I', where I is a discrete infinite group
that acts properly discontinuously on R®. There are six such groups, Z x Z x Z yielding
the 3-torus, and five extensions by this group of Z5, Zs, Z4, Zs and Z; X Z; respectively.
Another infinite class of manifolds contained in the last block is given by manifolds of the
form S x R,, where R, denotes a closed Riemannian surface of genus ¢ > 1. A more
detailed table is given in [Gi 1].

Some Observations

In standard canonical quantization one regards the wave function as a section of a pos-
sibly non-trivial complex line bundle over configuration space. For not simply connected
configuration spaces, this induces an action of the fundamental group on sections via some
1-dimensional representations and thus also on the space of quantum states. In the con-
ventional Schrodinger-representation based canonical quantization approach to quantum
gravity one tries to repeat this construction, using the classical configuration space as
domain space for the state functional.
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Since this space is infinite dimensional, the attempts to construct a Hilbert space of states are
overshadowed by the lack of appropriate measures. This might be taken to point towards the necessity to
use an appropriate distributional-dual as domain space on which a wider class of measures are available, as
was repeatedly emphasized in [Is]. No general construction has, however, been found yet. This difficulty
is not particular to theories of gravity and renders the availability and construction of the Schrédinger
representation a non-trivial technical problem in any field theory. In our case it is easy to see that the
obvious action of Dgr on the distributional dual of the space of Riemannian metrics is not free, thus
rendering an analogous structure to (1.3) and hence the given derivation of (1.5) impossible. As long as
these technical and related interpretational issues are not settled the presently given standard arguments
concerning the significance of the classical configuration space topology for quantum theory are therefore
necessarily heuristic in nature, as already stated in the Introduction. Present day investigations into
possible implications of quantum gravity (in the canonical formulation) seem almost exclusively to pretend
the classical configuration space as domain for the state functional. Notable exceptions are [IK] and the
loop representation discussed in [Ash] (and references therein).

So far topoclogical investigations have focused on D/ D% =~ 79 (Q). Its significance is made plausible
with the assumption of an action of D on some linear space of auxiliary states whose subspace annihilated
by DOF carries a residual action of Dp/ D%.. A (pretended) Schrodinger representation is then employed in
trying to visualize this action in terms of physical operations (e.g. exchanges, rotations etc.) on preferred
(e.g. localized) states (see e.g. [ABBJRS]).

Applied to the case at hand, the possible fundamental groups are structured according
to (1.8b), with those in the table above occurring in the bracket of (1.8b), i.e., as subgroups.
In this context one would say that a spinorial manifold ¥ admits abelian spinorial states,
if 71(Q(X)) allows for one dimensional representations which represent the Z, generated
by a 2m-rotation parallel to an asymptotic sphere non-trivially. States transforming non-
trivially under such a rotation were first considered in [F'S]. Their assertion was that if a
single state existed that was not left invariant by this Z,, its antisymmetric combination
with the Z5 transformed one would be a state that changed sign under that Z,. But in order
to correspond to a pure state it must also be a member of an irreducible representation
subspace. The simplest possibility would be to carry a one-dimensional representation.
Here we make the following

Observation 1. No 3-manifold, ¥, whose prime decomposition consists entirely of primes
taken from the upper four horizontal blocks in our table allows for abelian spinorial states.

Proof. Clearly we assume the presence of at least one spinorial prime, since the statement
is trivial otherwise. As shown in the proof for Corollary 1, the rotation parallel to the
sphere at oo is isotopic to rotations parallel to each connecting sphere for the primes. This
generates an extending Z; subgroup (see 2.6) in each factor of the first term in (1.8b) that
corresponds to a spinorial prime. ¥ thus allows for abelian spinorial states, if and only
if at least one of the spinorial ¥; does. However, none of the groups O*, D}, n > 1,I*
(see table) has a 1-dimensional representation that represent the extending Z5 (the centre)
non-trivially.

The latter fact can be proven from the presentations

D}y 7= {mp| 2% = foy P =™}
o* = {m,y{:cZ = (my)s :y4; = 1}
T i ] 0% o= [l s i =0,

from which the corresponding abelianized groups are readily determined. In the first case one has to
distinguish between m odd and m even. For m even one obtains the group Z2 X Z2 (generated by = and
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Yy, taken as abelianized generators), and for m odd the group Zs (generated by z, where 22 = y). In the
second and third case one obtains the groups Z; (generated by ) and the trivial group respectively. Since
in each case it is ©? that generates the extending Zz (the centre), only Dy}, for m odd has the desired
representation. But as a m1(Q) only even m occur. e

We do not know whether the result can easily be extended to include general K (m,1)-
primes as well. We explicitly checked, however, that e.g. the three-torus as well does
not allow for abelian spinorial states. In that case Auty(Z x Z x Z) is SL(3,Z) and
Autf_z(Z X Z x Z) is isomorphic to the Steinberg group St(3, Z) (see e.g. paragraph 10 in
[Mil] for more information about St(n,Z)). But St(3,Z) is a perfect group, i.e. its own
commutator subgroup, and has hence no non-trivial abelian representations.

It is instructive to compare this to the case of two spatial dimensions with two-torus topology, which
has been investigated in [ABBJRS]. In two dimensions all closed genus g > 1 surfaces, Ry, are spinorial.
This is in fact very easy to prove by looking at the action of the diffeomorphism on the fundamental group
of Ry — c0. wg(Dp) is then a central extension of 79(Doo) by Z. In [ABBJRS] it has been shown that
for the two-torus wo(Dp) is isomorphic to St(2, Z) (a central Z-extension of SL(2, Z). It is not perfect.).
St(2, Z) can be presented with two generators, a and b, and single relation ab~'a = b~1ab~!. From this
a presentation for SL(2,Z) is obtained by imposing the additional relation R := (ab™1a)* = E (E =
identity), where in SL(2, Z) a and b are realized as upper and lower triangular 2 x 2 matrices with unit
entries. R is generated by a 2m-rotation. The abelianization of St(2,Z) is Z, generated by a’, the image
of a in the abelianized group under the canonical quotient map. R’, the image of R, is generated by

a’12, Hence there exist 12 inequivalent one-dimensional unitary representations for any given assignment
R+ exp(if), 8 € [0, 27).

In order to obtain (pure) spinorial states one has to go to higher dimensional repre-
sentations. For example, the group O has five irreducible representations of dimensions
1, 1, 2, 3 and 3, whereas O* has in addition three more of dimensions 2, 2 and 4, all
of which represent the extending Zs non-trivially. Pure states now correspond to sec-
tions in higher dimensional (complex) vector bundles, and the inequivalent sectors, labeled
by the inequivalent (unitary) representations p, still carry an action of the centre of p,
but not of the full group. (We define the centre of a representation p of a group G by
Co(G) = {a € G/ p(ab) = p(ba)Vb € G}.) In particular, 2r-rotations are always repre-
sented. Let us also note at this point that higher dimensional representations automatically
appear in carrying through the standard quantum-mechanical formalism in presence of a
discrete gauge group. Excluding them means to a priori exclude potentially interesting
sectors [Gi 3].

Pushing the original setting a bit further, we remark that the possible, inequivalent
line bundles with connection over Q are classified by H1(Q, Z)® FHy(Q, Z) (see e.g.[Wo)),
where I’ denotes the free part. It is also convenient to split H; into a free-, and a torsion
part (denoted by T). The free part of H; alone then accounts for the different flat con-
nections with unchanged bundle topology, whereas TH1(Q, Z) & FH(Q, Z) = H*(Q, Z)
labels the topologically inequivalent bundles. Only the latter define different sectors for the
quantum theory, and may e.g. show up as a non-trivial spectral flow for the Dirac operator
[AN]. Whereas for non-trivial F'H, one cannot make any statements without explicitly
analyzing the dynamics as to whether it actually makes use of a non-trivial class, a trivial
FHj clearly excludes such possibilities from the beginning. It is therefore interesting to
see whether there are 3’s whose associated Q(Z)’s have trivial FH»(Q, Z). From the table
and (1.8) we see that this is generally not the case. However, we have the
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Observation 2. Let Y. be a homogeneous spherical prime of non-cyclic fundamental group
and Q = Q(X) its associated configuration space; then FH5(Q, Z) = 0.

Proof. From the table we infer that for the ¥ in question the associated Q(X) have finite
universal cover of which the first two homotopy groups are trivial. A standard spectral
sequence argument, which we suppress at this point, then shows that H3(Q, Q) (rational
coefficients) is trivial, which is equivalent to the statement made e

Taken together with Observation 1 this excludes a possibly conjectured connection between
spinoriality and the possibility of non-trivial spectral flows.

A very special case is that of = RP3. Here we have immediately

Observation 3. RP? is the unique, non-trivial prime 3-manifold on our table whose
configuration space has altogether trivial homotopy (and hence homology) groups.

From (1.8) one thus infers that a multi-RP? manifold, 3, therefore receives all the
non-trivial topology of Q(¥) from the factor QC. A more detailed study of C shows [HM]
that in this case m,(Q(X)) contains as subgroups those for the configuration space of n
identical objects in 3 (if £ is the connected sum of n RP3’s). Its fundamental group is P,,,
the permutation group of n objects, and the higher ones are given in [FN]. In [ABBJRS)]
the particular case of two RP3’s has been used to discuss, and rule out, within the present
framework a spin-statistics relation of a general kind, as e.g. demonstrated in [So| for field
theories admitting kinks (and, crucially, anti-kinks). However, that within the present
framework a general correlation cannot exist is a consequence of the fact that rotations
of spinorial primes generate a normal subgroup. In particular, any representation of the
factor group obtained by dividing out the rotations gives rise to a representation of the full
group with rotations represented trivially. In this sense the representations for rotations
and exchanges are decoupled, irrespectively of the ambiguities in the definition of the latter

[ABBJRS].

Appendix 1

In this appendix we show how to prove non-spinoriality for £ = L(p,q) and ¥ = S x §2.
To this end we pick a curve a : [0,1] — SO(3) that generates Z; = 71(SO(3),:d), find
a covering curve in D, starting at the identity, and show that it ends in the identity
component D% of Dp (we refer to (2.3)). We may choose a(s) = exp(2ms2) and denote
the corresponding linear map in R?® by R.[2ns], or R,[¢] for general angles (.

Let now o : R* D By — ¥ be an embedding of By = {z € R* /| z| < 2} into £. We
let r denote the distance from the origin of Bs and set:

Dy = Imagea|r52 , D= ImagealTSl ., d= Imclgecr|19512 (A1)
Sy = Imagecr|r=2 5 9 = Ifm,agecr’qn=1 , 0o = Image Uir:O
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On B; we can define a path of homeomorphisms, ps, by

| R[2ns(2—7)] for2>r>1
A= {Rz[21rs] forr<1, (42)
which then defines a path of homeomorphisms, R, of ¥, by setting
Rs:{‘“”’“"’_l onDy (A3)
id on X — Dy .

This map is not differentiable on S; and Sy, but it may easily be smoothed by modifying
it in arbitrarily small collar-neighbourhoods of these two spheres. We imagine this being
done but without giving the details here, since in order to calculate the projection map p
in (2.3) we only need differentiability in a neigbourhood of co. R, “rigidly" rotates D, by
an angle 27s about the z-axis by progressing “rigid" rotations of the spheres r = const.
within 7T". For s = 1 we have Rsl D, = 1d so that we call Ry a rotation parallel to S; and
Sy (see e.g. [He][L]). Each R, fixes oo and projects to a(s) via p. Ry is in Dp since it fixes
a disc (D;) containing co. In order to show that R; is in DY., we now explicitly construct
a path, K, from id to R; within Dp. As above, it is sufficient to construct a path of
homeomorphisms rather than diffeomorphisms that fix D; and which we then imagine
to be smoothed appropriately. The details are irrelevant for us. For the construction it
is convenient to represent the spaces L(p,q) and S* x S? by the following fundamental
domains:

L(p,q): Take a solid ball ||z|| < 3 in R?, and identify the 2-dimensional sectors sy, : %”(k -
1) <¢ < %’rk on the upper hemisphere with the sectors szi, on the lower hemisphere,

by first reflecting them on the equatorial plane (2 = 0), followed by a rotation about the
z-axis. We take T'= {z € R3 /1 < ||z|| < 2}, so that oo corresponds to z = 0.

S x §2%: Take a solid spherical shell 1 < ||z|| < 6 in R, and identify the inner and outer
2-sphere boundaries radially (i.e. points of equal polar angles are identified). We take
T={zeR/1<|z-(0,0,3)| <2} so that oo corresponds to (0,0, 3).

The crucial observation is that the SO(3)- rotation, R,[¢], applied to these domains
is compatible with the boundary identifications, and, therefore, defines a homeomorphism
of the manifolds in question. But then it is obvious how to reach R; by a path of homeo-
morphisms that fix D;: instead of rotating D; against S, we rotate ¥ — Dy and with it
S against S7 by just the negative amount. That is (7 still denotes the distance from oo
and o is the identity since we work within R3)

id on D;: (r<1)
K, =1 R,[-2ns(r —1)] on D, — 10)1 s (159 2) (A4)
R,[-2ms] on ¥ — 52 spr =2
so that
id on Dy
Ky ={ R;[2r(1 —7r)] on Dy — f)l (A5)

R.[—2n] on £ — Dy
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which, by R,[¢ + n27] = R,[¢], is equal to R;.

Although we work with oriented manifolds only, let us note for completeness that from the fundamen-
tal domain we used to construct S! x 52, we can also construct 52X 52, the unique non-orientable 2-sphere
bundle over S!. For this we just identify the inner and outer 2-sphere boundaries via the antipodal map
(in standard polar angles: (6, ¢) — (7 — 6, ¢+ 7)), rather than using the identity. The rotations R,[¢] are
then still compatible with the boundary identifications, hence proving non-spinoriality for S xS2.

By an obvious generalization of these geometric constructions we can visualize the
“if” part of Corollary 1, i.e., that any connected sum of lens spaces and handles (also non
orientable ones) are non spinorial. For example, a connected sum of n lens spaces can be
represented by a solid ball with n— 1 open balls removed from its interior with all n centers
aligned along the, say, z axis. The typical lens space identifications are now performed on
the one outer and the n — 1 inner 2-sphere boundaries such that the rotation about the 2z
axis is still compatible with these identifications (i.e. all lens edges lie in parallel planes
perpendicular to the z axis. One can include [ handles by removing 2! more open balls
(also aligned along the z axis) whose inner 2-sphere boundaries are pairwise identified.

Appendix 2

In this appendix we collect some of the results on the diffeomorphism group of 3-manifolds
which were of relevance in our investigations.

Theorem Al. For spherical primes (S3/G), the handle (S' x S%), sufficiently large
K(m,1)’s (K(m,1)g) and most of the non-sufficiently large K (n,1)’s which are Seifert, two
diffeomorphisms are isotopic if and only if they are homotopic.

Proof. For the spherical primes these statements are proven in [HR] (Lens spaces L(p, q)),
[BR] (octahedral spaces S®/O* x Z,), [Asa] or [R] (prism and generalized prism spaces

0D ¥, B /D’z,c_(2n +1) X Zp and [BO] (icosahedral, tetrahedral and generalized

tetrahedral S°/I* x Zp, §°/T* x Zp, §° [T 5. X Zp). For the handle this is proven in [Gl],
for the K (m,1)s’s in [Wa] and for the Seifert non-sufficiently large K (m,1)’s in [Sc].

Theorem A2. For all spherical primes but the icosahedral, tetrahedral and generalized
tetrahedral spaces one has the isomorphism mo(D) = mo(Isom), where Isom denotes the
space of orientation preserving isometries.

Proof. mo(D) has been calculated in the references just given, except [BO]. The calcula-
tions for mo(/som) may be found in [Wi]. e

For the 3-sphere it is proven in [Ha 4] that there is a homotopy equivalence D(S83) ~
Isom(S®). As generalization it has been conjectured in [Ha 2] that there is a homotopy
equivalence for all spherical primes (Hatcher conjecture (HC)): D(5%/G) ~ Isom(S3/G).
The efforts to prove this are so far summarized in the following

Theorem A3. HC holds for the real projective space RP?, the lens spaces L(4k,2k — 1),
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where k > 1, and the prism and generalized prism spaces S°/D} x Z,, and S*/ Dlzk.(zn +1) %
Zp respectively.

Proof. The assertion for RP? is made in [Ha 2]. For S®/D},,xZ,, p > 1, and S3/D,2k‘-(2n+1)

Zp, p > 1, this was proven in [I 1][I 2] and for S3/D}, and L(4k,2k — 1) k > 1 in [MR] e

Similar results are known for the handle and the K (7, 1)4’s:

X

Theorem A4. The group of diffeomorphisms of S? x S has the homotopy type of O(2) x
O(3) x QO(3), where §(-) denotes the loop space of (-).

Proof. This is proven in [Ha 3]. If one considers orientation preserving diffeomorphisms
only, one may write: D(S? x S§1) 2 Z; x ST x SO(3) x QS0(3) o

Theorem A5. Let 3 be an orientable, sufficiently large K (m,1) prime with fundamental
group m = G Its diffeomorphism group, Diff, has homotopy groups
mo(Diff) = Out(G), m(Diff) = centre G and m(Diff) =0 Vk > 2.

Proof. The proof is given in [Ha 1] for the larger class of P2-irreducible (irreducible which
contain no two-sided RP?), sufficiently large K(m,1)’s. If one restricts to orientation
preserving diffeomorphisms, one has mo(D) = Out(G), the outer automorphisms which
respect the orientation homomorphism (an index 2 subgroup of Out(G) if ¥ allows for
orientation reversing diffeomorphisms, otherwise identical to Out(G))
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