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Superdiffeomorphisms of the Three-dimensional BF
System and Finiteness

By M.W. de Oliveira!, M. Schweda and H. Zerrouki?

Institut fiir Theoretische Physik,
Technische Universitat Wien
Wiedner Hauptstrafe 8-10,
A-1040, Vienna, AUSTRIA

(16.XI.1994, revised 5.I1.1995)

Abstract. We discuss the ultraviolet behaviour of the three-dimensional BF system in curved
space-time by making use of a local supersymmetry Ward identity. The model is shown to be finite
at all orders of perturbation theory.

1 Introduction

In the recent years, much attention has been devoted to the study of topological field theories
of the Schwarz type [1] because of their connection to mathematics. A prominent example of
such a class of models is the Chern-Simons theory in three space-time dimensions [2, 3] which,
when regarded as a pure gauge field model, can provide an interpretation of topological
invariants of three-manifolds in terms of vaccum expectation values of Wilson lines [4].

It turns out however that the correct evaluation of these topological quantities in a quan-
tum field theoretical approach necessarily entails the discussion of the ultraviolet behaviour
of the Chern-Simons theory in a well-defined perturbative lagrangian framework. Indeed,
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from the standpoint of the renormalization theory, the topological models are expected to
be an example of finite field theories.

Actually, in a series of papers [5, 6], the BRS-algebraic renormalization technique [7] was
employed in the specific case of the Chern-Simons model in both flat and curved space-times.
As a result, the model was proven to be finite to all orders of perturbation theory without
any reference to a particular regularization scheme. It should be emphasized moreover
that the mentioned finiteness proof makes use of a supersymmetric structure [8, 9] which
is manifest when a Landau type gauge is chosen. The topological vector supersymmetry
builds up, together with the BRS-symmetry and translations, a supersymmetry algebra of
the Wess-Zumino type and is a common feature of a large class of topological theories.

Furthermore, the same finiteness properties were also shown to persist in the more general
situation of the topological BF system [10, 11] in three [12] or more space-time dimensions
[13]. This last fact motivates us here to extend the study carried out in [12] to a curved
background and to exploit the local counterpart of the aforementioned vector supersymmetry.
This is the aim of the present paper: to follow the strategy of ref.[6] and to show that the
three-dimensional BF system defined on a curved space-time is finite to all orders.

The curved space-time is assumed here to be a three-manifold M in which the locality
properties of the renormalized perturbation theory are valid. Thus, a consistent ultra-violet
subtraction scheme is supposed to exist in momentum space as a necessary element of our
renormalization study. This would not be possible in the case of an arbitrary manifold in
which momentum conservation does not hold in general: only flat space is translational
invariant. Nevertheless, one can consider a manifold M resulting from the continuous defor-
mation of a flat manifold, the metric being regarded as an external field. Hence, M has to
be topologically equivalent to a flat space (i.e. R?) and it clearly possesses a flat limit since
any external field vanishes at the infinity.

The work is organized as follows: in Section 2 we describe the theory in the classical
approximation pointing out some details of its construction on the three-manifold, in Section
3 we proceed to the stability analysis of the model and prove its perturbative finiteness.
Section 4 contains some concluding remarks.

2 The Classical Approximation

We begin our investigation by defining the BF system on the Riemannian three-manifold
M. The complete action is understood here to be invariant under diffeomorphisms and is
composed of three parts [12]:

Y =Xgr+ X + X, (2.1)

To describe the pure BF part ¥pp one introduces a pair of vector fields A5 (the gauge
connection) and By which transform covariantly under diffeomorphisms and take values in
the adjoint representation of a gauge group G with structure constants f®¢. The action
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Y pr writes according to:

pr=p

Spp = 1 fM e {F2, B2 + Jaf BB B}, (2.2)
where a cosmological constant « is also included and
F, =0,A% — 8,A% + f™ AL A (2.3)

We remark that the outstanding topological properties of Xgr are a direct consequence of
its metric independence, a fact that can be noticed by a simple inspection of (2.2).

To proceed to quantization we incorporate to the model a couple of scalar ghost fields
(¢*, %), two scalar Lagrange multiplier fields (b%,d®), as well as the antighosts (2%, ¢%),
also scalars under diffeomorphism transformations. An off-shell nilpotent s-operation is also
present and is a symmetry of X gp:

sAL = —(Dye)* — af™* Bie*,

sBj = —(D,p)* — f“chzcc,

sc® = %fabc (Cbcc L O{(,Ob(pc) ,

S(Pa _— fa.bc('obcc’

5 =47, sb* =0,
sp® = d*, sd® = 0.

(2.4)

In the present work, one adopts a Landau type gauge-fixing which has the following
structure:

Zor = =5 [ @z {/59" [(8,2) 4% + (9,6 BL]) (2.5)

where ¢g* stands for the inverse of the metric g,, and g for its determinant. We realize here
that (2.5) depends explicitly on the background graviational configuration, representing an
unavoidable nontopological contribution to ¥. Let us observe however that the metric has
a purely nonphysical character here: appearing only in the BRS-trivial gauge-fixing part,
gy has to be interpreted as a gauge parameter. In practice, it is useful to enlarge the BRS
operation [6], allowing g,, to transform under s as below (see also [14]):

SQuy = g,u.u: Sg;w =0. (26)

The dimensions and Faddeev-Popov (®II) ghost charges of the fields introduced thus far are
given in Table 1.

The third term of the complete action (2.1) is related to the renormalization of the non-
linear parts of the transformation laws in (2.4). These latters are coupled to external sources
[15]: a pair of contravariant vector densities of weight one (2#?, 7#%) and two scalar densities
(L%, D*), also of weight one. Their dimensions and ghost charges are given in Table 2. The
action of external sources reads as follows:

Ys = fd3a: {—Q‘“‘ [(D,uc)ﬂL + af“chZQOC] + %If"f“bﬁ(cbcc + b)Y+
T [(Du(p)a s fachch} L Dafabcgobcc} ) (27)
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Table 1: Dimensions and Faddeev-Popov charges of the fields.

Q| 7# | L | D
dim 2 213 [ 3
OII | -1 |-1]-2]-2

Table 2: Dimensions and ®II charges of the sources.

At this stage, one can translate the BRS invariance into a Slavnov-Taylor identity:

52 65 6% ST 6% 6%
S(5) = f &z
(%) v (mrw 6Az ' §ronoBe | SLebc |

0¥ 6% o% oY 0%
. s Rl 2.8
5D 5 +B = +d 55 + Guw T ) 0 (2.8)

jny

where the non-topological effects in (2.1) are seen to be duly controlled by the last term,
which corresponds to a doublet containing the BRS-transforming metric.

After establishing the invariance of the BF system under the diffeomorphisms and the
s-operation, one may eventually ask whether it is possible to observe a local vector super-
symmetry in the specific case of the three-dimensional BF system in a Landau type gauge.
Indeed, in much the same way as it occurs for the Chern-Simons model defined on a manifold
[6], the superdiffeomorphisms — as they have been named — can be shown to exist here and to
form, beside the BRS symmetry and the diffeomorphisms, a supersymmetry algebra (8, 9].
We propose the following set of superdiffeomorphic transformations on the fields:

6&)143 = —€upt” (Tap + /99" a‘ﬁa') ; 5'(5'5)51 = —¢rAj,

55,b° = €, 55,2 =0,

6§)BE = _Euupg) (Qa.p + \/Egpgaaaa) ’ (SEE)QDG = _g'u‘BZa

ég)da = {“aucpa, (sg)ipa = 0, (29)
6%)9;“/ = 07 6.(35)9';“/ = Lﬁg,u.u:

5§)wa — —grLe, §3,L° =0,

55 o = —g1De, 65,0 =0,

here £ is the local parameter of superdiffeomorphisms, a contravariant vector field of di-
mension minus one; L is the Lie derivative in the direction £#. We define a Ward operator
for superdiffeomorphisms:

5
W = [z g b 5 (2.10)
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K, | M,
dim | -1 | -1
®II | 2 1

Table 3: Dimensions and ®II charges of the external fields.

the summation being performed over all the fields transforming in (2.9).

One notices however that the complete action (2.1) is not invariant under the action of
W(“Sé), the associated Ward identity being broken by two different pieces:

WHT = A% + [ d'o s (9,,6°2), (2.11)
where
Ay = f dx [~ (LAL) + LO(Lec®) — T(LeBE) + D*(Lew®)]
+ / &z {f € (1 5(1/997 8, 3%) + T 5(1/99” 96C")]} (2.12)
and with
SH = P, 0,5". (2.13)

The first piece in the r.h.s. of (2.11) is a classical breaking term (linear in the quantum
fields) and is already present in the algebraic renormalization study of the BF system in
three-dimensional flat space [12]. The second piece, being non-linear in the quantum fields,
is a hard breaking term and its presence in (2.11) requires a more careful attention. In the
present situation, one is able to control the hard breaking piece by means of a standard
procedure [16], which consists of absorbing its effects into the complete action (2.1). To do

this, we couple the field polynomial =* and its s-variation to two external covariant vector
fields (K, M,,) as shown below:

By o = f P [K,E* — M, (s2)] (2.14)
moreover, we impose the transformation laws:

sM, = K,, 5&)Mu = 9up€’,
(2.15)
sK, =0, 6&)Ku = LeMy — Bt

Dimensions and ®II ghost charges of the external fields are displayed in Table 3. We
redefine then (2.1), adding a fourth term to it, namely X s, and we observe that with this
redefinition the Ward identity of superdiffeomorphisms is now rendered unbroken (apart of
the harmless linear breaking piece):

WinE = A, (2.16)
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with
EZEBF-I-ZQJ:—I—ES—FEK,M. (2.17)

The Slavnov-Taylor identity eq.(2.8) is modified in accordance with the above redefinition:

[ (2 82 OD D pUOB 4D 6D
\8Qer§A2  Sron§Ba  §La bt 6D Sp°
0% 0% 0% ox ) ~0

A~

hYed 6(pa Né‘Mu + gﬂ“’(sguu

(2.18)

From the new Slavnov-Taylor identity one reads off the linearized BRS operator:

fd3w 68 6 8% 6 62 & 65 6 6B 886
QoM 6As " §Az Qe §7ou 6B | §Be&Tor | 8L° Gt | 6ca 6L

0x 6 oY 6 6 6 ) )
¢ — 4 d° i 2.19
5D 500 T spsDe T 5 T4 g T Kugag T 6gu,,) (2.19)
and we remark that it is a nilpotent operator.
The two Landau gauge-fixing conditions are:
o% .
e Ou (V99" A;) — 0, ("P M, 0,5") (2.20)
and 55
2 9, (V59" BE) — 0, (P MLB,E). (2.21)

The commutation of the gauge conditions (2.20) and (2.21) with (2.18) yields two ghost
equations [17]:

52 62 v =a a

5+ O (f 9’"’mau) = —0,[s(VGg"™ ) AZ] + €78, (K,0,6" — M,8,d*) (222
and

23 752 6% LUy Da uvp —a a

552 \/_g ) = -0, [s(+/99") By + €0, (K,0,c" — M,0,b%). (2.23)

The algebraic structure of the Landau gauge-fixing allows us to obtain two antighost
equations [18]. The first one controls the coupling of the ghost c:

G*Y = Ag, (2.24)
where

/d3 (_+fabc—b ] fabc =b Zc) (225)

and

= [ @afee (P as - Lo + 7 B; - D'yf). (2.26)



de Oliveira, Schweda and Zerrouki 79

en | em
dim |-11]-1
®II | 2 | 1

Table 4: Dimensions and ®II charges of the gauge parameters.

The other antighost equation controls the coupling of the ghost ¢:

FoL = AL, (2.27)
where
Fo = f d3x ( e f“”cé”—(s- + f“b°¢bi5-) (2.28)
b §de 5be
and
Ag = [dufe Az - D' + oM B; - oL’ . (2.29)

One can also write down a Ward identity for diffeomorphisms:
wé’)z =0, (2.30)
where W) denotes their respective Ward operator,

5
WE = [ &3z (Lo f) — (2.31)
8=/ ﬁe% Cl) 5

the summation running on f =A,, B,, ¢, ¢, b, d, &, &, 9y, G, O, ™, L, D, K, and M,,.
At this point, we anticipate the ghosty interpretation of the vector parameters of superdif-
feomorphisms and diffeomorphisms by attributing a definite statistics to them. Dimensions
and ®II charges read as in Table 4.

To summarize our results, we collect all the constraints obeyed by the complete action:
(i) the Slavnov-Taylor identity
S(X) =0, (2.32)

(ii) the two gauge-fixing conditions, egs.(2.20) and (2.21),
(iii) the two ghost equations, egs.(2.22) and (2.23),
(iv) the é-antighost equation
G°Y = Ag, (2.33)

(v) the @-antighost equation
FoE = A%, (2.34)

(vi) the local supersymmetry Ward identity

] cl
W = Afy (2:35)
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and
(vii) the diffeomorphisms Ward identity

WRE =0. (2.36)

The graded linear algebra obeyed by the functional operators Sy, W(“’;) and W(Iz) is:

{8, 8=} = 0,
{s2, W8} = o,
WewWet = Wha, (2.37)
Wé,ssp = Wi, .
We Wi = Wicar
WEWg = o,

where we introduced the notation for the graded Lie bracket of the vector fields &, € and €,
[6,€]" = L™ = P05e™ + Bz (2.38)

and
[€, €] = Lee# = 20re* — 2908, (2.39)

3 Stability Analysis

In this section one is concerned with the evaluation of the most general local counterterm to
the complete action X in (2.17). To do this we make use of the Slavnov-Taylor identity and
the whole set of Ward identities derived previously. We stress however that these identities
can only be promoted to the quantum level if they can be shown to be anomaly free, an
issue that is also considered here.

A possible general counterterm ¥ — if it exists — is an integrated local polynomial in the
fields and sources with dimension three and neutral ®II charge. The perturbed action is
then given by:

Y=Y+% (3.1)

the local deformation ¥ being constrained by the following set of stability requirements:

G =0, F°E=0, (3.2)
3 S © D
SzE=0, WiE=0, WL =0, (3.3)
55 59 5% 55 58 5%
— —_—= — 124 —_ e g _ 0 34
07 0? 66“ + a}i (\/gg 69‘“’) 01 6@0' + aﬂ- (ﬁg 61-0”) ( )

obe bd>

The first two conditions in (3.4) rule out in ¥ any possible dependence on the two Lagrange
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multiplier fields b* and d”. On the other hand, the two last local constraints in (3.4) imply
that the general counterterm ¥ depends on &%, %, 2% and 7% only through the combina-
tions:

Qau = Qo \/§g‘“’8,,5“ (35)
and
PO = 7o 4\ [39" D, 5" (3.6)

The antighost equations in (3.2), can then be rewritten in a simpler form:

ool fertE - o

Both the gauge-fixing and the ghost equations (3.4) are known to be anomaly free and
therefore to hold at all orders of the perturbative expansion [17]. The same is also true in
the context of the antighost equations given in (3.2) (see ref.[18]).

At this stage, the deformation is seen to depend on the fields and sources as:

~

2 = 5 (Aus Bus €9, G G ¥, 7, L, D, K iy My, ) (3.8)

Further information on ¥ can be obtained by considering the remaining constraints in
(3.3). We combine the three conditions (3.3) into one single cohomology problem [19]:

6 =0, (3.9)
where
§= Sg + W(’Sé) ot W(}z) + U(E) + V(e)1 (3'10)
with 5
= B3z Ho— 3.11
Z/{(f) /d .'I'[E,f] 65” ( )
and
Vig = f &z {1, - gﬂ} o (3.12)

One easily verifies that the extended operator § is nilpotent:
66 = 0. (3.13)

To determine the general counterterm we study the BRS-cohomology H*(6) of & in the
neutral ghost charge sector. Likewise, to characterize the eventual anomalies in the theory
one investigates the sector with one unit of ®II charge.
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In order to simplify the notation we rewrite the basic fields and sources in terms of
differential p-forms (scalar fields are 0-forms):

A= A}T*dz*, B = B;T%dz*, K = K, de*, M = M,dz*,

0 = Loy (U + /G9#8,8%) Toda* A da?, 7= bew, (1 + /59" 0,¢") T*da* A da,

L = geu,,L*Tdz* A dz¥ A dz?, D = 3€,,,D*Tdz* A dz” A dz”, -
3.14

where the T%’s are the generators of G. One also introduces the exterior derivative operator,
d = dz*8,. To characterize the cohomology H*(§) we define a filtration operator N:

) “6
N= f f6f+/d3 (e—+§ 55#) (3.15)

The functional operator A induces a separation on 4,

fields f

6 = bo + 61, (3.16)
with
[NV, 8] = 0, N, 6,] = 6,. (3.17)
It is useful to display the explicit expression of dg:
] 6 6 ) ) o0
b = Tr/ {(dc)a + (dB)éﬁ CE (dcp)@ + (dA)(5 (dﬂ)ﬁ + (dT)(SD
4] )
A — e — 3.18
T 6M +[da (9“”59,,,, ¢ 59&) (318)

which, as a consequence of (3.13), is also a coboundary operator. We notice then that the
three pairs of variables (M, K), (94, ) and (e, —€*) appear in (3.18) in BRS-doublets,
implying that the y-cohomology H*(8,) is independent of those fields [20]. Hence, the 6-
cohomology is also independent of the fields K, M, gu, gu, € and {*. Now, since the
metric tensor is not present in the 6-cohomology our counterterm analysis reduces essentially
to that of ref.[13]: it is reasonable to expect here the same finiteness properties of the flat
space case.

Let us first focus our attention on the characterization of H*(éo). If this is the case, our
task reduces to the determination of an integrated polynomial A(A, B, ¢, y,Q2, 7, L, D) which
solves:

SoA = 50f W =0 (3.19)
M

where w? is a local polynomial in the fields and sources of form degree p and ®II charge g.
The general form of w! is determined by considering the following set of descent equations:

fow§ + dwi =0, Sowi +dw? =0, Sew? +dwd =0, Sewi =0. (3.20)
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The simplest way for evaluating w) consists of solving a local cohomology problem: the last
equation in (3.20). The solution wj is:

wy = zTr(c®) + yTr(c®e) + wTr(cy?) + 2Tr(p%) (3.21)

where z, y, w and z are constants. The expression of the associated non-trivial §p-cocycle
with zero ghost number is obtained by means of well-known techniques (see for instance

[21]):
Wi= — aTr(3A°+7{A, 0} +Dc*) +
— yTr (AzB+Q{A,c} +7{A, o} +7{B,c} + D{p,c} +Lc2) +
— wlr (AB?+ Q{B,c} + 0 {A, 0} + 7 {B,¢} + L{c,0} + Dyp?) +
— 2Tr (3B° + Q{B, 0} + Ly®) + 803" + dof (3.22)

where the two last pieces stand for trivial 8- and d-cocycles. The integrated polynomial A
reads as:

A:A+50A=f wg+50f a7l. (3.23)
M

As in ref.[6], we observe that A is invariant under the complete operator ¢ and since it does
not depend on the vector parameter &, it has to belong to H*(6). This means that the
general solution of the cohomology problem in (3.9) — i.e. the general counterterm 57—
given by:

S =A+6A, (3.24)

with A and A as in (3.23).

To obtain A one has to select all possible diffeomorphism invariant integrated monomials
of dimension zero and ®II charge minus one. We list here the eight independent contribu-
tions:

Al-—TrfMLc, Ag—TrfMch, A3_TrfMDc A4—T'rfMD<p,

3.25
As=Tr [ QA, Rg=Tr [ QB, Aj=Tr [, ?A, Ag=Tr[y7B. (3:25)

We observe however that £*, being an infinitesimal vector parameter, is not present in the
original expression of the complete action (2.17) and thus, we are allowed to discard from
our analysis any deformation depending on it [6]. This is indeed the case of the counterterms
§As: they cannot be linearly combined in such a way that the resulting polynomial is
&#-independent.

Finally, one has to consider the following expression for the general counterterm T
5 =A. (3.26)

Here, the conclusion is that the r.h.s. of (3.26) is also unacceptable as a deformation of
¥ since it clearly represents a violation of the two antighost equations in (3.7). This fact
expresses that no deformations are allowed.
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Still, in order to extend this last result to all orders of perturbation theory one has to
discuss the absence of §-anomalies. At the non-integrated level, the possible anomaly in the
condition (3.9) is related to a cocycle wy standing in the following set of descent equations:

Sows + dw2 =0, Sow2 + dw? =0, Sow? +dwj =0, Sows =0. (3.27)

The 0-form with ®II charge four which solves the last equation in (3.27) is given by the
linear combination of two objects: Tr(c%p?) and T'r(cpcyp). Starting from the first candidate
one would arrive at the following non-trivial cocycle:

wy = Tr (czgpL + AL + 2Bt + OB + cApSi+
cAQup + cAB? + c7pB + ¢t By + cDp*+
+  AcpQ + Ak + AcB? + A%oB + A*Bp+
+ Arg? + fepB + fcBp + 7 Ap® + Deg?) . (3.28)

However, one observes that (3.28) is forbidden by the antighost equations (3.7). The same
reasoning is also true for the anomaly candidate steming from T'r(cpcy). Hence, the condi-
tion (3.9) is free of anomalies: our arguments are seen to hold beyond the classical approxi-
mation.

We arrive at the main conclusion of the present work: the three-dimensional BF system
defined on a manifold M is finite to all orders.

4 Concluding Remarks

The problem of the renormalization of the three-dimensional BF system on a curved space-
time was discussed by using the BRS-algebraic technique.

It was shown that the model is finite to all orders due to the superdiffeomorphisms
Ward identity and the others stability constraints. However, we stress once more that the
finiteness proof presented here should only be taken as a rigorous result in the restricted case
of a topologically flat space-time manifold which possesses an asymptotically flat metric.
Under these assumptions, we are allowed to make use in this paper of the Quantum Action
Principles and to arrive to the aforesaid proof to all orders.
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