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Abstract. We show that the localization index or the inverse participation ratio (IPR) can be
derived using the square modulus of the one—electron Green’s function in site representation.
Hence it is shown that the site and energy representations are unitary equivalent for the description
of the localization properties of one—electron eigenstates. A natural generalization of the IPR is
also given in connection to the spatial separation of the eigenstates. Furthermore, based on the
relation between the IPR and the information entropy, we propose new limits for the cutoff value
of the IPR separating localized states from extended ones in finite systems. These limits depend
on the dimension of the embedding system and the decay form of the states.

1. The definition of the localization index
and its cutoff value

The localization characteristics of the one-electron eigenstates of a system seems to be
of fundamental theoretical importance in many aspects. In condensed matter physics
the identification of localization induced by disorder (Anderson-transition), by electron—
electron interaction (Mott-transition) or by other kinds of phenomena has been extensively
studied by several analytical and numerical means [1,2]. In quantum chemistry, on the
other hand, the main problem is the maximum localization of the one—electron orbitals,
thus minimizing the number of Coulomb integrals to be calculated. In both cases practical
computations need an exact definition for the localization properties of the eigenstates.
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In a majority of numerical calculations the localization index or inverse participation
ratio (IPR) of a one-electron eigenstate |u) is defined on the basis of reference [3] as

L.u :Z|C'i.u’47 (1)

where |u1) is expanded over the set of site states {|i)} as |u) = >, ¢;,|7). We have assumed
an orthonormal site representation.

In quantum chemistry a generalized version of equation (1) has been recently intro-
duced by Pipek [4] based on the Mulliken—charge, which reduces to equation (1) in the
case of a non-overlapping atomic basis set. Pipek and Mezey [5] have successfully adopted
this definition in the localization procedure of the canonical Hartree—Fock orbitals.

The sum in definition (1) practically enhances the coefficients close to unity and
suppresses the ones close to zero. Thus L, ~ n~! for a state distributed nearly uniformly
over n sites, or in other words, the inverse of L, gives the number of sites the state extends
to. In most cases the authors do not give any further explanation for their application
of the IPR except the above arguments. In the next section we will present a simple
justification for the usage of the IPRs.

The range of L, is 0 < L, < 1, where L, = 0 for an extended state on an infinite
lattice and L, = 1 for a state localized on one single site. Furthermore, since localized
and extended states cannot coexist at the same energy [2], the distribution of L, over the
energy spectrum defines the mobility edge: the upper and lower ends of the energy interval
where L,, is zero are called the mobility edges. These properties are rigorously valid only
for an infinite system. For a finite system, however, L, is always larger then zero, in fact
L, > N~' if N is the system size, and it is difficult to sharply separate localized and
extended states from each other and thus to locate the mobility edges. This is the reason
why various attempts have been performed [6-9] in order to give a reasonable estimate for
the cutoff value of the localization index L. = a/N above which the states are supposed to
be localized, and the same way, to define also the mobility edges in numerical simulations.

This task has been performed up to now by means of computer simulations on finite
size systems, which suffered from the limiting value of the system size, depending on the
model and on the numerical method applied. In our approach, on the other hand, in
Section 3 we will present results resting on mainly analytical grounds that, by definition,
do not depend on the choice of NV and the model.

Therefore the problem is to find an adequate value of parameter a so that wave
functions extending to less than the N/a portion of the total system, can be considered
as localized. There is no assumption that o would be independent of N. In fact an
L. = N~1/2 relation would also be reasonable stating that fluctuations of the order of the
system size could be a limit separating localized states from extended ones. In this paper
we remain with the interpretation of « as described above and in the following. In Table
1 we have listed the values of parameter o obtained by several authors with the respective
system sizes under consideration.
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reference o N A

Ching and Huber® 6 1006 2.0 x 1071
Elyutin” 64 = 7.4 x 1074
Blumen et al.® 20 100 24w IO
Gibbon et al.® 80 500 3.1x107%
present work 237.15 - 1.0 x 1076

Table 1. Comparision of parameter a related to the cutoff localization index
L. = /N for exponential localization in dimension d = 3. The respective value
of the system size N is also given where it is relevant, as well as the relative
deviation of the structural entropy from the one of the extremely localized
(o — o0) case (5%, = 3(1 — In2) = 0.9205588).

Generalized IPRs have also been extensively used [10-12] where other moments Lff’ ) =
> lciul*P of the charge distribution of the eigenstates were used, forming the basis of

multifractal analysis [12]. The energy averaged Lflp ) quantities have already been related

to the p—particle Green’s functions in energy representation [10], forming the basis of a

field theoretical treatment. In this work we show that the individual IPRs (L, = LLZ))

themselves are associated to the one—electron Green’s function in site representation via a
unitary transformation.

2. Description of localization
in site and energy representations

For the description of localization in site representation, one of the most important quanti-
ties is F;;, the longtime average probability that an electron created on site i at ¢ = 0 is on
site j at ¢ = oo, which is defined using the time-dependent one—electron Green’s function

Gij(t) = (jlexp(—iHt/R)[5), (2)

where H is the Hamiltonian of the system under consideration. Hence P;; is the following
(13, 14]

. 1 F - 5
Py = Jim 7 [ G0 (3)

Inserting the complete set of eigenstates into equation (2) with the help of their expansion
over the basis set {|7)} this probability reads as

Pij = leilejul®. (4)
m

where for sake of simplicity we have already assumed nondegeneracy [13,14]. The diagonal
elements P;; are the so—called return probabilities of the electrons which have been studied
extensively both analytically [1,2,15] and numerically [9].
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The integrand in equation (3) is in fact the Fourier transform of a special matrix
element of the 2-particle Green'’s function G;; ;;(E), which is fundamentally responsible for
the description of quantum transport processes (see e.g. ref [16]). As we have mentioned
earlier the energy averaged IPR is connected to G;; ;;(F), as well, we expect a close relation
between the IPRs and matrix P;;.

Let us now introduce a non—negative real matrix A with matrix elements defined as
Ay = |Cm|2, that may be called the charge distribution matrix giving the charge density
of eigenstate |u) on site ¢. Using matrix A we can rewrite equation (7) in a more compact
form

P = AA, (5)
where AT denotes the transposed form of A.

It is possible to associate matrix P describing the propagation of electrons in site
representation to a new matrix Q giving the charge overlap of the eigenstates of the system
with the definition

Q=ATA, (6)
The matrix elements of Q according to equation (6) read as
Quv = Z ‘Ciu|2|CiV|2- (7)

As a consquence of ref [17] finite matrices of the form of P and Q (see equations 5
and 6) are unitary equivalent, i.e. there exists a unitary matrix U that

Q = UPU". (8)

Due to normalization both P and Q are so-called stochastic matrices with eigenvalues
ranging in the [0, 1] interval. Such property may ensure the existence of a unitary equiv-
alence even in the infinite case, but we have not been able to show that. However, in
practical calculations one always uses finite matrices for which equation (8) holds. Fur-
thermore, using matrix A, we may establish some other relations: P* = AQ™ 1A' and
Q" =AP"1Aifn= 2,3,.... Therefore P™ commutes with AU and Q" with UA, and
P"A =AQ"if n > 2. '

We can see that the diagonal elements of matrix Q are nothing else but the IPRs
given in equation (1) Q,, = L,. Thus, starting from the time-dependent one—electron
Green'’s function G;;(t) in site representation, we have arrived at the localization index or
inverse participation ratio (IPR). Moreover, equation (8) shows that apart from the unitary
equivalence of the site and energy representations of the wave functions, there exists a
further unitary equivalence for the description of localization in these representations.

Matrix Q is an important quantity for the description of localized states in energy
representation. Since the overlap matrix in the energy representation is a unit matrix
it is Q that plays the role describing the spatial separation of localized eigenstates in
phenomena like the hopping conduction. Using Q we do not have to assume any specific
decay form for the wave functions. A variant form of Q has already been introduced earlier
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by Pipek [18] for the treatment of two—electron integrals and the long-range behavior of
the Fock matrix elements of molecular orbitals in connection to their spatial separation.
Recently Milovanovié et al. [19] have used a quantity called the cross IPR in order to detect
independent (i.e. well separated) local-moment states in the investigation of the metallic
state of a disordered interacting Fermi-liquid. The cross IPR can be derived from our Q.
the same way as Root et al. [13] have calculated the so—called quantum connectivity from
the matrix P;;. In both of the above applications [18, 19] the off-diagonal elements Q.
are used in terms of the spatial separation of localized states. The diagonal elements, on
the other hand, are naturally related to the localization length of the states.

Until this point we have shown the existence of a connection between the IPR and the
Green’s function G;;(t). This general relation, however, does not provide a clear definition
for the cutoff value of the IPR L.. In the next section with the use of the information
entropy we propose such a definition.

3. The role of the Shannon—entropy:
the definition of the cutoff localization index

It is well-known that the complexity of a general distribution can be characterized by the
so—called Shannon—entropy S. This quantity can be calculated for the eigenstates as

S = =3 lesul?In Jesal?. (9)

The entropy S has already been used exploiting its property that for increasing system
size N one obtains that S o In NV for extended states and it saturates to a constant for
localized states [20].

Recently we have shown [21] that assuming a definite decay form of the eigenstates
embedded in a d—dimensional atomic network, the entropy S and the IPR L are related to
each other (referring to one eigenstate we may drop index u). First we have split S into
a sum of two contributions: the extension entropy S..: and the structural entropy Ssi».
The first part is simply Sez; = —In L, therefore only the remaining Sy, is important for
us. Next we have calculated ¢ = L~! /N, the quantity describing the spatial extension of
the state compared to the system size N.

It has been shown that for a given decay form |¢;|*> ~ Af(|r; — ro|/§) the filling factor
and the structural entropy arise as ¢ = q(£/N), Sstr = Sstr(§/N), where the functions
q(z) and S,4-(2) themselves are independent of A, ry, £, and N. They are completely
determined by the decay form f(p) of the wave functions and the dimensionality of the
system. In Figure 1 we have plotted some important reference curves Sg, vs g for ideal
exponential f(p) = exp(—p) and Gaussian f(p) = exp(—p?) charge distributions.



Varga 69

1.0
€
Sst'r 1
0.8 A
ad
0.6 A
: c
0.4
b
0.2 A a
0.0 T TTT] T | (R T T 1 4
10 7 10 7 10 ' 1

Figure 1. Structural entropy S, vs spatial filling factor ¢ = L~ /N for ideal
decay forms. Curves labelled a, b, c are for Gaussian localization and the ones
labelled b, d, e are for exponential localization in d = 1, 2, 3, respectively

The case of extreme localization corresponds to ¢ — 0 (§/N — 0) which for exponen-
tial localization yields S, = d(1 —In2) and for Gaussian localization S2,, = d(1 —1n2)/2.
The curves in Figure 1 are clearly separated and show that Ss. is constant over a wide
range of ¢ in the regime 0 < ¢ <« 1, i.e. with increasing system size IV, localized wave
functions do not change their characteristics when they occupy less then a certain amount

of the system.

0
str

Therefore the value of ¢ at which S,;, approaches S%,,. with a desired tolerance A can

be considered as a cutoff value ¢. so that
SO

str

- Sstr(Q) S A, 1f 0 < q S e, (10)

where equality holds for g = g, from which by setting o = ¢_! we obtain L. = a/N. Such
a definition will provide different L. values depending on the decay form and dimension
d as long as the curves are different. Thus any state with IPR L > L. can be considered
localized since then g < q, with Sy,.(q) = S°

str-
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decay form de=1 d=2 d=3
exponential 9 51 237
Gaussian 3 9 22

Table 2. Parameter a = ¢! related to the cutoff localization index L. = a/N
for different kinds of localization in dimensions d = 1, 2, and 3 (A = 107°).
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Figure 2. Minimum system size N,,;, = « versus the tolerance in the structural
entropy A = 1 — Sg-/S%,., with S%,_ = d(1 — In2)/2 for Gaussian localization

str

and S%,. = d(1 — In2) for exponential localization in dimensions d = 1, 2, and

3. Curves are labelled the same way as for Figure 1.

The results for A = 1079 are listed in Table 2, and the comparison with former results
is given in Table 1 for the case of three dimensional exponential localization. In addition,
we have listed in Table 1 the relative deviation of the structural entropy compared to the
g < 1 case S%,. = 3(1 —In2). Note, that the desired tolerance A may be a priori set,
which makes it possible to check the accuracy of numerical methods, for example. Previous
results were obtained mainly based on numerical simulations, whereas our result is free of

the choice of the model and numerical methods.

We have to mention, however, that the L < L, relation for a given eigenstate may
hold for different kinds of localization, i.e. it does not guarantee the detection of, for
example, exponential or Gaussian localization. The values given in Table 2 may serve as
guides for the minimum size of the system one has to consider in order to be able to detect
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states localized with a very short localization length. Our calculations show that the cutoff
values listed in Table 2 correspond to localization lengths £ = N/4 and N/20 for Gaussian
and exponential localization, respectively.

Using our cutoff limits, a state extending over D sites can be safely identified as
localized (with tolerance A) by considering a system of the minimum size N = aD. It
is true that the flatness of the Sy, (g) curves for ¢ < 1 (Figure 1) indicates that a high
accuracy in Sg, requires a very large system to be considered. In Figure 2 we have plotted
the minimum system size N,,;, = a one has to consider in order to detect wave functions
extending over D = 1 sites with exponential and Gaussian localization with tolerance A.

4. Conclusions

As a summary we may conclude that the localization properties of the one—electron eigen-
states may be described by matrix P;; in site representation and by matrix @, in energy
representation. These descriptions are unitary equivalent and may be used in various
contexts emphasizing different features of the localized electronic systems. F;;, in close
relation to the Green’s function |G;;(#)|?, is the essential tool for the phenomenological
renormalization group study of these systems, while @, is very useful in connection to
the localization index, the localization length and the spatial separation of the eigenstates.
Due to this unitary equivalence real-space studies (return probabilities, renormalization,
etc. (Refs. [1, 9, and 15])) and energy—dependent studies (localization index, IPR, neigh-
borhood quantity, etc. (Refs. [3-8, 18, 19])) are expected to be mapped onto each other,
therefore results obtained in site representation maybe compared with the ones obtained
in energy representation and visa versa.

On the other hand, we have made use of the relation between the IPR and another
fundamental quantity, the Shannon—entropy [21]. On the basis of this relation we have
given different cutoff IPR values L, for exponential and Gaussian localization in 1, 2, and 3
dimensional systems. These limits imply that in numerical calculations one has to consider
very large systems (much larger than expected) in order to detect localization accurately
(see Figure 2).

The author is especially indebted for enlightening discussions with A. Magyar and J.
Pipek, as well, as for the help of the unknown referee. This work was supported by the
Orszagos Tudoméanyos Kutatdsi Alap (OTKA), Grant Nos. 517/1991, T7238/1993 and
T014413/1994.
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