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A Relativistic Quantum Equation for N > 2 Bosons
in Two Space-Time Dimensions

By Etienne Frochaux

Département de Mathématiques, Ecole Polytechnique Fédérale,
CH-1015 Lausanne, Switzerland

(5.IX.1994)

Abstract.  We give a quantum and relativistic eigenvalue equation for N > 2 bosons in two
space-time dimensions, which generalizes the corresponding Schrédinger equation. More precisely
we find three self-adjoint operators P (momentum), H (Hamiltonian) and L (generator of the
Lorentz transformations), acting on the Hilbert space of N free bosons in the Schrédinger picture,
which satisfy the commutation rules of the Poincaré algebra. The eigenvalue equation for the mass
operator M2 = H? — P? leads to the above mentioned N-body equation. The possible existence of
an eigenvalue assures that this model is non trivial.

1 Introduction

Quantum Field Theory (QFT) is until now the best framework to study theoretically the
quantum and relativistic particle phenomena. This theory has been established initially
to reproduce the experimental scattering results, in a relativistic and quantum framework.
The bound states problem has been considered later and has been naturally thought in
terms of scattering amplitudes. This has led to the famous Bethe-Salpeter method for
finding the bound states, which treats the quantum and relativistic two-body problem in
a satisfactory way, both from the physical and mathematical point of view, but which still
carries important drawbacks (the bound state masses appear in a complicated way ; moreover
the calculation is overloaded by the so-called ‘relative time variables’, which are variables
without physical interpretation). Because of these difficulties, this method has not led to a
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clear and practicable theory of the relativistic corrections to the Schrodinger equation.

The difficulty in studying other particle phenomena than scattering, in QFT, comes
from the difficulty of defining the notion of ‘particles’. It is generally admitted that this
notion can be given a clear meaning only in an asymptotic way. This statement, however,
ignores that the particles can also be seen in the spectrum of the mass operator M. In
fact the mass of each particle is an eigenvalue of M. In particular, once a bound state is
known to exist in a given QFT model (by the Bethe-Salpeter method), its eigenspace can be
approached by using a variational and perturbative method. Such a programme has been
carried out for a class of QFT models, the P(¢)2 models [1], which describe a world of
massive, identical bosons in a two-dimensional space-time. This study has the advantage of
stating the quantum relativistic bound state problem in a completely new way. In particular,
because the calculation can be restricted, without loss, to the so-called ‘zero-time subspace’,
the appearance of the ‘relative time variables’ can be avoided. However, the main interest of
this method is that it finally leads to an eigenvalue equation for a two-variable function. This
equation, which has to play in QFT the same role as the Schrédinger equation in Quantum
Mechanics (that is to give the discrete structure of the set of the bound states) can naturally
be considered as the relativistic generalization of the two-body Schrédinger equation.

More precisely this method constructs step by step, by minimisation and perturbation
arguments, a subspace which is parametrized by a two-variable function, and which contains
the bound state eigenspace. The investigation of this subspace shows that, at first pertur-
bation orders, it carries a representation of the Poincaré group. This perturbative result
suggests that our QFT models contain some ‘two-particle-like’ representations, the bound
states (if there are any) appearing as irreducible sub-representations. All these representa-
tions have the particularity that the time variable is not used (due to the restriction to the
‘zero-time subspace’), even if a Lorentz transformation is performed. This mathematically
advantageous property, which characterizes the representation of the physical observables
called the ‘Schrodinger picture’, may however present difficulties of interpretation in the
relativistic context.

It is natural to ask if such two-particle representations really exist, without using a
perturbation approach, even leaving QFT. What we are looking for is a set of operators, in
the Schrodinger picture, satisfying the commutation rules of the Lie algebra of the Poincaré
group. Surprisingly this problem can be solved easily, and we have even found a general
class of solutions [2]. Moreover, some of these representations appear to be unitary, strongly
continuous and non-trivial [3]. In fact we have obtained the simplest quantum relativistic
theory for two interacting particles.

In this paper we generalize this last results to the case of N > 2 (arbitrary large)
number of massive, spinless, not necessary identical particles, moving in a two-dimensional
space-time. Here QFT is no more involved. Three self-adjoint operators are constructed, P
(momentum), H (Hamiltonian) and L (generator of the Lorentz transformations), which act
on the same Hilbert space than the representation describing N free bosons in the Schrodinger
picture. Moreover these operators satisfy the commutation rules of the Poincaré algebra on
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a dense subspace (which is a common core for the three operators). The eigenvalue equation
for the square of the mass operator M? = H? — P? can be written down and leads to a
simple N-body eigenvalue equation. The possible existence of eigenvalues assures that these
models are non trivial.

We do not establish here the stronger mathematical statement that P, H, L are the
generators of a unitary and strongly continuous representation of the Poincaré group. Such
a result could be obtained by adaptating the methods of [3] (and by restricting the class of
admissible P, H and L).

This paper is organized as follows. The operators P, H, L are given in Section 2 and are
shown to be self-adjoint (Proposition 1). They satisfy the commutation rules of the Poincaré
algebra (Proposition 2) on a dense subspace (which is a common core) provided the so-called
‘interaction kernel’ satisfies a ‘fundamental equation’. In Section 3 we find a large class
of solutions of this equation (Proposition 3). Then in Section 4 the associated eigenvalue
equation for the bound states is given and is compared with the Schrodinger equation. It is
shown in Proposition 4 that eigenvalues may occur, which proves that these models are non
trivial.

2 The Operators P, H, L and the Fundamental Equa-
tion

The relativistic or Poincaré group of two space-time dimensions P} is generated by the
following action of R > (£,7,7) on (z,t) € IR? :

z\ coshfy.sinh’)’ * ¢
(f,T,’Y)'(t) - (sinh'y cosh’y)(t) * (T) .

In other words P! is (IR?,-) with the group law
(&77) - (€,7,7") = (§ coshy 4 7'sinhy + £, € sinhy + 7' coshy +7, ¥ +17)

for all (¢,7,7),(¢',7,7) € IR®. Note that P is connected (reflexions are not considered
here).

The first representation which interest us is given by the following action on the one-
variable functions f

€77) - f(p) = P eiT9(P) f(pcoshy + w(p) sinh )

where w(p) = +/p2+m? and m > 0 is a parameter. It consists in a unitary, strongly
continuous and irreducible representation of P, in the function space L?(IR, do ), the so-called
‘invariant-measure’ ¢ being given by do(p) = dp/2w(p) (for a proof, see for instance [3]).
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Let us denote this representation by IT;. We introduce the generators of the one-parameter
groups

P (momentum) defined by Pf = —i8:(£,0,0) - f|e=o
H (Hamiltonian) defined by H f = —i8,(0,7,0) - f|,=o
L (Lorentz generator) defined by Lf = —i8,(0,0,7) * f|y=o

and an elementar calculation gives their action

Pf(p) = » f(p)
Hf(p) = w(p)f(p) IT,
Lf(p) = —iw(p)f'(p)

for suitable f (these operators are unbounded). They satisfy the commutation rules of the
Poincaré algebra

[P, H] =0
[P, L) =iH
[H,L] = iP

From these rules follows that the square of the mass operator M? = H? — P? commutes
with all generators. The representation II; is characterized by the fact that M? is just the
identity times m2. So II; is called the ‘one-particle representation of mass m’.

Let ITy be the tensor product of N copies of II;. It describes a world of N particles of
mass m without interaction. If the particles are identical, the symmetrical tensor product
must be taken. To treat all cases (symmetrical or not) we neglect henceforth to mention
this question (we could also consider the case of particles of different masses, which would
lengthen all formulas without real interest). The action of the generators in the function
space L2(IRN,doy), where the invariant-measure is oy = 0 ® -+ ® ¢ (N times), are now
given by

Pf(pl’ ) = (p1+ +pN) f(pla""pN)
HOf(ply---»pN) = (w(p1) + -+ +wlpn))f(p1,-- -, PN) My
LOf(pI:---1pN) = ( ( )apz e +w(pN)aPN) f(plv"'pr)

for suitable f (the operators being unbounded). We have put an index 0 at Hy and at Ly
to distinguish these operators from those defined below. It follows from the properties of
the tensor product that IIy is a unitary and strongly continuous representation of ’PL. In
consequence, according to the Stone theorem, the operators P, Hy and L, are self-adjoint
and they satisfy the commutation rules of the Poincaré algebra.

Let us perform the change of variables (ps,...,pn) — (P,q1,...,qn—1) given by
P=mp +:+pn

¢ = 3o —p) - @) - v

sign of g; = sign of p; — pjn
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forall 1 < j < N —1 (Appendix A gives all the technical formulas we need about it). In
these variables the invariant-measure is written dy :

N—2 dP dgN—l(q:h---;(IN—l)
Q(Pa diy. .. 1QN—1)

don(pi,...,pn) = du(P,q1,...,qn-1) = 2

where we have put

N-1 4 N-1
QP,q,...,qv-1) = \]szQ +P 44 g+ — ) (awle) - giw(a:))”
=1 i<j=1

(for N = 2 the last sum must be removed). Note that Q(P, q1,...,qnv-1) = w(p1)+- - -+w(pn)
(see Appendix A). In these variables the action of the generators becomes

Pf(P,qi,...,qv-1) = P f(P,q1,---,qn-1)
HOf(qull"'J(IN—l) = Q(P7Q'1,---,Q‘N—1) f(PJqlr-'-an—l) HN
LOf(Prqu' ":QN—I) = —iQ(P)QD' o 1QN—1) a1:’ f(Pa qi,--- 7QN-1)

for suitable f (the operators being unbounded).

The aim now is to modify the representation I by changing slightly the operators H
and Lo, but not P, without leaving L2(RY,du) and without breaking the commutation
rules. As in [2] we introduce the interaction operator O given by

don_1(¢ 5 h(P,q q
0fp) = [LAD yp gy MATT)
Q(P,¢') QP,q) + Q(P, )
for all P and ¢ = (q1,...,qn—1), where h is a kernel satisfying the symmetry condition

wMP,§,¢) = h(P,d,d"

and which will be precised later (here * means complex conjugaison). The interaction re-
presentation, denoted by I1%, on the same Hilbert space L2(IRY,dy), is defined by

P as in Ily
H=H, + {Hy, 0} IT%,
L=1Ly + {Ly, O}

where we have used the notation {A, B} = AB+ BA. We have to show that these operators

make sense, by imposing appropriate conditions on h. We need some definitions. We denote
by Dh the function

P, ) UP,q) -

Dh(P,§,q) = = 0p h(P,q,
(P,q,q) APD) + 9P (P,4,d)

and let B be the Banach space made of the bounded and continuous functions k(P,q,¢’) on
IR?N-1 for which Dh(P, §,q') exist and are also bounded and continuous on JR*Y !, equipped
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with the norm |h| = ||A||e + ||Dh|le. The mathematical sense of our operators is assured
by the following result.

Proposition 1. There exists K; € (0,00), depending only on m > 0 and N > 2, such
that, for all h € B with |h||e < K1, the operators P, H, L are self-adjoint.

Proof. It is clear for P. From the symmetry of h follows that O is a symmetric operator.
Now if A, B are symmetric operators, so is {A, B}. Thus H and L are symmetric. To see
that H is self-adjoint we note that

-
!

(Ho, OVPD) = [ 222 1(p.3) (PG,

QP,q')
defines a bounded operator because
do ’
i, 041 = [autea) | [ 2D 14, 3) wipg )
do ) f(Pq
< 2 [auP.a if ”qu (Pq))

< Mk [ 2D 4 ) 1iep D

< (Il & 11£1)?

where we have used successively the boundedness of the function |A(-)|, the Cauchy-Schwarz
inequality and the Fubini theorem, and put

Eo— sup dO’N_l(Cn . danl(q")

PeR Q(qu—) a Q(O:i)

N-1
<f]ﬁ1 g, = < 2 f-———-———dq
T \E @) 2flgr+me 2\ (14 )T
which gives a well defined constant. We have used the inequality Q(P,q) > €(0,q) >

24/]141|*> + m? which is easily established. (A similar calculation shows that O is a bounded
operator). So H = Hy + {H,, O} is self-adjoint on the domain of self-adjointness of Hy. To
study the domain of L we write the new term (after some simple algebra) as follows

—_

don-1(q') h(P,q,q)

LO’O P’ = __““_-*_ 0 AT TR
EulMER = [Sotmg PO 4
[ donald) p o [DAPGT) P A(PT)
/ arg 'O Tar P, q)?

The second term defines a bounded operator (by using the same technics as for {Hg, O},
because the factor in brackets is bounded). For the first one we observe that the square of
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his norm can be written as

Jauie.a) |[ 22D pip, iy LLLD]

< (cfa] 1) < (s e haort)

by taking the result for ||{Hp, O}f||?> (and by using @ > Nm). From the Kato-Rellich
Theorem ([4] Section X.2) follows that L = Lg + {Lg, O} is self-adjoint on the domain of L,
provided ||h|l < K3 = Nm/k. AA

It remains to check the commutation rules. We will see that the first two rules are
automatically satisfied (for all ). But the last one imposes the following equation for A,
that we call our fundamental equation

—_

don-1(¢") {__ il
QP,¢? | QP ")
+ Dh(P,§,¢"A(P,¢" &) + h(P,q':q?')Dh(P,qW,q")}

— 1 — - —
0=DWP,3,d) + 3 f hP,q,q")h(P,q",q')

for all (P,,¢') € R*N~!. This is this equation which guarantees the relativistic structure of
the theory, as announced by the following result.

Proposition 2. Let h € B with ||kl < K; satisfying the fundamental equation. Let us
suppose moreover that

(20,9 +9(0,4)) (Ih(P,Gd)| +|Dh(P,§,d))

is bounded for all (P,q,q') € IR*N-1. Then there exists a dense domain in L*(IRY,du) which
15 a common core for P, H, L and on which these operators satisfy the commutation rules
of the Poincaré algebra. '

Proof. We have already mentioned that P, Hy, Lo are the generators of a unitary and
strongly continuous representation of the Poincaré group in L2(IR™,dy). Then it follows
from Theorem 3 of [5] that there exists a dense invariant domain for the three generators
which is also a common core for them. Because the largest invariant domain is

{f | PP, " 8% f(P.q) € L*(R",dy) forall £,m,n € N}

it must be a common core for P, Hy, Ly and then, by the Kato-Rellich Theorem ([4] Section
X.2), a common core for P, H, L.
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Let us show that the products of operators PH, HP, PL, LP, HL, LH are well defined
on D. Because D is invariant under P, Hy, Lo and because {Hp, O} is bounded we have
only to verify this statement for P{Hy, O}, P{Lo, O}, {Lo, O}P, Ho{Lo, O}, Lo{Ho, O},
{Lo, O}Hy, {Lo, O}{ Hp, O}. From the calculation of the proof of Proposition 1 follows that

dO’N 1( )

Lvld) (xv ) (P.d) (In(P.G @)1+ IDR(P.G D)
f Q(P, ) ( )

where X and Y are any choice of P, Hy, Ly, defines a vector of LZ(IRY,dy) provided f € D.

This argument suffices for P{H,, O}, P{Ly, O}, {Lo, O} P and {Lo, O}Hy. Now Hy{Lo, O}

introduces a factor (P, §) which needs, to be treated as before, that Q(P, q)|h(P,q,q")| and

Q(P,q)|Dh(P,q,q')| are bounded, which indeed holds, imposed by our hypothesis. Now

do’ Qh do’ QPh
Lo{H,,O}f = o (Lof) i ﬁf [Qaph G j’
(in symbolic obvious notation) is well defined because A is bounded (note that Qoph
is bounded because QDh is bounded). For the last term we have only to consider the
unbounded part of {Lg, O} (see the proof of Proposition 1), that we denote by {Lo, O}ys.,
which gives the contribution

do’ do” he? hY'Y
{L(), O}u.b,{HO, O}f = ( Of) / " or
Q Q
. a dO’” " "ot Phq” ¢
= z,/?)_ff [ B Jxx (3Phq q i )}
(in symbolic notation again) which is well defined because the factors in brackets [...] are
bounded.

Now the commutation rules can be checked on D without care of validity domain. By
using [0, P] = 0 (by construction) we get [P, H] = [P, Ho] + {[P, Ho], O}, which is 0 because
[P, Hp) = 0. By the same reason [P, L] = [P, Lo] + {[P, Lo}, O}, which, by using [P, Lo] = iH,
becomes [P, L] = iHy + i{Hy, O} = iH. Thus the two first commutation rules are satisfied,
whatever h is. The third one [H, L] = ¢P holds if and only if

[{H07 O}, LO] + [H07 {Lﬂu O}] + [{H07 O}: {LOr O}] = 0.
The linear part A = [{Hy, O}, Lo] + [Ho, {Lo, O}], applied to a function f € D, gives simply

doy_1(¢ 4 ﬂ
A1Pa) = 2 [ TL) (P ) DHPE )

(see the calculation in Appendix B). Note that A is a bounded operator. The bilinear part
B = [{Hp, O}, {Ly, O}] leads to

. dow_1(q') don-1(g ) P
Bf(P,q) = %f““_“—Q(P,qv) f(PQ)/Q(Pq) { QP, ")

+ D(P,g,@)h(P.d',d) + h(P,d,#)DA(P, 1)

h(P,q,q¢"\h(P,¢",q)
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(see Appendix B). Note that B is also bounded. The condition A + B = 0, which must hold
on all L?(IRN, du), leads to the fundamental equation. AA

Remark. Proposition 2 does not establish that P, H, L are the generators of a unitary and
strongly continuous representation of the Poincaré group, which would require the existence
of a common invariant domain for these operators (see the counter-examples of Section VIIL.5
of [4] and of [5]). Such a result has been obtained in [3] for the case N = 2, but with stronger
assumptions on h. However the methods used in [3] could easily be applied to more general
cases.

3 Existence of Solutions of the Fundamental Equa-
tion

We come now to the cruxial point of the paper, the solution of the fundamental equation in
the Banach space B (introduced just before Proposition 1).

Proposition 3. There exists Ky € (0,00) such that, for all ¢ € C°(IR*N~2) with |||l <
K, there exists one and only one solution h € B of the fundamental equation which satisfies
h(0,q,q") = c(q,¢q') for all (§,q') € R* 2 and |h| < 2Ko.

Moreover, there exists K3 € (0,00) such that, if ¢ satisfies also (0, §)2(0, c_?)|c(cj’, 7)| <
K; for all (§,q') € R*™=2, then the solution h satisfies all the hypothesis of Proposition 2.

Proof. Let us introduce the bilinear operator F' given by

-

F( h)(P q'aq’) =
1 don_ 1(‘1—;'){ _ = IVR(E

R . 3 L = 5 3 }
_ . /" Dh , H, = . q, " h : .'I’ ! .
9(&,q,¢")Dh(€,q",q) + Q(‘f,q,,)g(tf ¢,¢")h(&. 9", ¢)

By integration the fundamental equation becomes

—ry

MP,G,q) = @d) + F(hh)(PGT)

where ¢(7, ¢') is an arbitrary function (the integration ‘constant’). Note that we have auto-
matically ~(0,§, ¢') = c(q,q ) We will obtain the solution A of this equation, for all suitable
¢, by applying the Banach fixed-point Theorem [6, Sec 1.1]. The crucial remark is that F
satisfies the two properties

—
!

1) (P,q,q') — F(g,h)(P,q,¢) is bounded and continuous on R*~! provided g, Dg, h,
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Dh are also bounded and continuous on JR*~!, and we obtain the estimation

1F(g: P)llo < K1 (llglleo + [1Dglles) (IAlloe + 1DA]loo)

where k; is the well defined constant given by

1 dO’N (q )
k, = su d =
(P@q?)el;%wfl 2] : ( Q& 7 Q(&, q)>f Q¢ q")?

2) DF(g, h) is easily calculated and leads to

do P .
DF(g,h)(P, = / A},lq,, {— Y )( ,3,4")(P,q", q)
w

+ Dy(P,q. PP, ) + 9o(P.3,¢)D(P.E,d)}.

It is also continuous and bounded on IR*¥~! provided g, Dg, h, Dh are so too, and we get
now the estimation

IDF(g, Mlloe < k2 (Iglloo + [1Dglloo) (1Alloo + [ DP]lc0)

where ko = supper [ don_1(@)UP,§) % < co.

We resume these inequalities by saying that F' is a bilinear operator on B satisfying

|F(g,h)] < ks l|g| |l

where k3 = ki + ky is a well defined constant.

The fixed-points of the non-linear operator A(h) = ¢+ F(h,h) are the solutions of the
fundamental equation. Let us check the hypothesis of the Banach Theorem. For that we
need a closed ball By C B of radius A > 0, which will be delimited later.

First hypothesis: A : By — B,. This imposes ¢ € B) and leads to the following
condition

[A(R)| = le+ F(h,h)| < |c| +[F(h,h)| lel + kalh|*

<
< lelloo + ksA2 < A

We can choice for instance ||¢||oo < A/2 and k3A? < A/2, which leads to A < (2k;) ' and
lelloo < (4ks)~

Second hypothesis: |A(g) — A(h)| < k |g — h| for some 0 < k < 1, for all g,h € By. In
our situation we find

|A(g) — A(R)| = |F(g,9) — F(h,h)|

|F(g7g_h')_F(h_grh)‘
< ks (lgl+1h]) g —h| < 2ks X |g—hl.
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Let us put k = 2k;A. The condition k¥ < 1 leads to the same bound for ) as before.

In conclusion, for all 0 < A < (2k;3)™! and ¢ € C°(IR?N~?) satislying ||c|lcc < A/2, the
Banach fixed-point Theorem assures the existence of a unique solution A in B), given by

n—00

whatever the initial function hy € By is. Thus we can choice Ay = 0 and we get

h = lim A (0).
(See the first terms of this sequence in the Remark just after the proof.) Note that this limit
is not 0 in general, because it is continuous and satisfies (0, ¢, ¢') = ¢(q, ¢').

By taking different values of A (such as X = 2||c|| + & or A = (2k3)~* + ¢, for arbitrary
small €) the conclusion of the Banach fixed-point Theorem can be reformulated as follows.
Let K, = (4k3)™!. For all ¢ € C°(IR?N~2) satisfying ||c/lc0 < K32, the limit A = lim,,_,o, A™(0)
converges in B and satisfies |h| < 2||¢||o ; moreover h satisfies h = A(h) and this equation
admits no other solution in {g € B | |g| < 2K>,}.

It remains to check the hypothesis of Proposition 2 for suitable c. Let
{ K 1 N 2m2

K3 = min , Kgszz}.

Let ¢ € C°(IR*M~?) satisfying (0, )20, ¢)|c(T, ¢)| < Ks for all (§,¢') € R*~2. Then
llelloo < K3(Nm) ™2 < K, as required by the fixed-point Theorem. Moreover we get ||A]|c <
|h] < 2|lefleo < 2K3(Nm)~2 < Kj, in agreement with Proposition 2.

On the other hand let g € B such that |g(P, q,¢)| + |Dg(P,q,d')| < KQ(0,3) (0, )"
for some K € (0,00) for all (P,q,q') € IR?N~!. By using this inequality in the integrals
defining F' and DF we get the estimation

IF(9,9)(P,d,@)| + IDF(g,0)(P.Gd) < ko ( K) T mlﬂ(o =

Let us take a function ¢ as above. Let us suppose that for some n € IN* we know
that |A(0)"(P,d,¢)| + |DA0)(P,7,¢")| < C.Q(0,7)~'64(0,¢)" for some constant C,, <
N%m?/(2k;) (this is true for n = 1). Then
A™HO)(P,4,d)| + |DA™H0)(P.q,q)]

= (@) + F(A™(0), A"(0))(P,&.d) + |IDF(A™(0), A*(0))(P,q,d)|

= C,
< (K3+k3 Gy ) k s

N2m2) Q(0,7) Q(0,¢)  (0,9) 2(0,¢)

with Cyp1 = K3 + k3C2/(Nm)* < N?m?/(2ks). Thus for such c all terms of the sequence
{A™(0)(P,q,¢)}>, is bounded by N?m?(2k;)™" [Q(O, 7)2(0, (f)] _1, and so are their limit h.
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Finally we get

N2m?2 Q(0,q) + Q(0,¢) __m
2ks Q0,9 Q0,¢) ~ ks

(200, +2(0,4)) |n(P,G,d)| <
which is bounded for all (P,§,¢') € IR2N-!, as required by Proposition 2. AA

Remark. The proof gives more than what is stated in Proposition 3. It gives how to
compute h from the arbitrary function c. h is given by a sequence which converges in B and
which begins as follows :

A(0) = ¢
A%(0) = Alc) = ¢ + Fleo)
A0) = Alc+Flc0)

= ¢ + F(¢¢) + F(F(ce),¢c) + Fle, Fle,c)) + F(F(ec), Flcc))

4 The Bound States Equation

The operator M? = H? — P? commutes with all generators. Thus any eigenspace of M? is

a sub-representation of Pi. If a sub-representation is irreducible, it decribes a one-particle

world, that is a bound state, the mass of which is given by the square-root of the eigenvalue.
The operator M2 = HZ — P? is just the multiplication operator by the function

N-1 4 N-1
Mo(9)? = N*m® + 4> ¢ + — 3 (gw(g) — gw(@))?

i=1 i<j,=1

for all § € RN~ (for N = 2 the last sum must be removed). Its spectrum is absolutely
continuous and covers the complete intervalle [N?m?, 00).

With our operators H and P, the operator M? takes the form

MRE = M@ S + [ don- “q f(P.d) K(P,4,)

for suitable f, where the kernel K is given by

— —
/! /

. . . dow_ 7 . .
K(P.dd) =i (AP +P.d) aPad) + [ 2D yip g 7) np,d,d).

Thus the bound states are obtained by solving the eigenvalue equation

don_ 1{?)

) f(P,d) K(P,q,q)

mbf(P.a) = M@ FBD) + [t
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where mp > 0 is the bound state mass. Here mp is expected to be smaller than Nm and f to
belong to D(M§) C L*(IRN,du) where D(M2) is the domain of the multiplication operator
M. This equation appears to be the relativistic counterpart of the Schrodinger equation
because it plays the same role : it gives the discrete structure of the set of the bound states.
Note that it has the same general form (made of a ‘kinetic term’ plus a ‘potential term’) but
with three important differences:

1) the ‘kinetic term’ is the multiplication operator by the function My(q)? which is not
a degree-two polynomial in the momenta as soon as N > 3. However it remains ‘elliptic’ in
the sense that My(q)? > My(0)?, the equality holding only if §= 0.

2) the interaction part is non-local which means that k(P,q,¢') is not a function of P
and ¢ — ¢’ only. A look at the begining of the sequence for h suffices to convince ourselves
that it is not the case, even if we choose as initial function ¢(q' — ¢).

3) the interaction part depends on P, the total momentum. In fact the only solution A of
the fundamental equation which is independent on P, i.e. which satisfies Dh =0, is h =0
(which requires ¢ = 0). Thus this dependence is necessary to get a non-free theory. Note
that it is not arbitrary, but imposed by the fundamental equation.

In a relativistic description of a bound state, it is not possible to eliminate the variable P
like in the non-relativistic case. A simple argument pleads for it, which is the following: by
a change of inertial frame, the bound state must be subject to the Lorentz contraction. The
simplification due to the centre of mass separation in Classical Mechanics has to be obtained
in the relativistic case by taking the centre of mass frame. By putting P = 0 the eigenvalue
equation becomes simply

q) =

20,0 1@ + [ IE, F@) e@d) = muf(@

(because M?%|p_o = H? we have written the eigenvalue equation for H) where f must be-
long to D(2(0,-)) C L? (IRN_l,dcrN_l/Q(O, )) We recall that ¢ is an arbitrary continuous
function on IR*V~2 satisfying €2(0, §)$2(0, ¢')|c(q, ¢)| < K.

The existence of a solution of this equation, for some ¢, can be considered as a proof that
these models are non-trivial (which means that they describe two particles which effectively
interact). So we conclude by showing that an eigenvalue may effectively occur.

Proposition 4. Let N = 2 or 3. Let ¢(q,¢') = —K350(0,7)~'Q(0, ¢)* for all (g, 7) €
IR?N=2 where K3 is the constant introduced in Proposition 3. Then the above eigenvalue
equation has a solution.



60 Frochaux

Proof. The operator

Vi@ =[G @) cad) = gt [ et 1)

on L? (RN ~L don_1/92(0, )) is compact, its range being one-dimensional. Thus the operator
Q(0,-) + V is self-adjoint (on the domain of ©(0,-)). In particular its essential spectrum
is that one of Q(0,-), that is the complete intervalle [Nm, o). The discrete spectrum is
obtained by solving the eigenvalue equation. Because of the simple range of V' it is easily
solved and gives the only solution
7@ = d Nm—€
= all m = m —
Y= 00,9 (Q0,9) - Nm + £) 5

where K is a normalisation constant (note that f belongs to the domain of €}(0,)) and
where £ > 0 is the only solution of the equation

dO'N_l(q_) 1
2(0,9)° 920,9) —Nm+ €&~
(For small ||g]| we have Q(0,7) — Nm = 2||g]|>+ O(]|g]|®) ; the existence of an unique solution

for N = 2 or 3 follows because the function A — [ doy_1(q) [0, §)3(©(0,7) — Nm + \)] "
decreases monotonously from oo to 0 when A varies from 0 to c0.) AA

1 = K;

Remark. We have not proved here that the operator M? itself (acting on L2(IRY,du)) has
an eigenvalue. This question is discussed in (3] (for N = 2), where it is shown that the
existence of eigenvalues of M?|p_p, for fixed P, leads to a gap in the spectrum of M2.

Appendix A. The N Free Particles Model

Let us consider N > 2 particles of the same mass m > 0, of momentum p,,...,py and
energy w(pi), . ..,w(pn) respectively, where w(p;) = |/p? + m?.

The change of variables (p1,...,pn) — (P,q1...,qn—-1) introduced in Section 2 is made
in two steps. First we perform (p4,...,pn) — (&, X1, ., XN-1), given by

p1 = m sinh(a+x1 +x2 +- -+ xn-1)

p2 = m sinh(a—x1+x2+ -+ xnv-1)

py = m sinh(a+ x1 + -+ Xn-2 — XN-1)-
We get immediately

W(Pl) =m COSh(a+X1‘|‘X2+"'+XN_1)
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w(ps) = m cosh(a — x1 + x2+ -+ + Xn-1)

wpw) = m cosh(a+xa+ -+ Xz — 1)
Note that O,p; = w(p;) and Oy;p; = w(p;) forall 1 <4 < Nand 1 < j < N — 1 except for

i =j+ 1 in which case 8y;p;11 = —w(p;4+1). Thus the Jacobian of the transformation is
w(p)) w(p) -+ wip)
w(pz) —w(p2) -+ w(p2) .
J = |det ; : ; = w(py) -+ -wlpw) Jnv
w(py) wlpn) -+ —w(pn)
where
1 1 1
1 -1 --- 1
gy = |det| . ] =2
1 1 - -1
Thus J = 2V¥"'w(p;) - -w(pn). The invariant measure becomes
N
dpi 1
d == = —dady,---dxn_1.
on(p1,---,Pn) (;:1_[1 2w(pi)> 5 Q@ axi XN-1
The variable «a is related to the Lorentz transformation because O,f(p1,...,Pn) =

Y w(p:i)Op, f(p1,--.,pN), thus Ly = —i8,. The variables x;, for 1 < j < N — 1, are related
to the Lorentz-invariants

1
g = i [(Pl - pi+1)’ — (W(p1) — w(pi))?
as follows
2
_q% = (sinha — sinhb)® — (cosha — cosh b)? = —2 + 2(sinh asinh b — cosh a cosh b)
m
= —2+2cosh(a —b) = —2+2cosh(2x;) = 4sinh®y;

where we have puta =a+x1+...+ xyrandb=a+x1+... = x; +... + xny-1. Now
we perform the second change of variables (o, x1,...,x~v-1) — (P, ¢1,...,9n—1), given by

P = p+...+pn
g; = m sinh x;

for 1 <7 < N — 1. The Jacobian of the transformation is

w+ ... twy wi—we+...+wy - W t... —WN

0 m cosh 0

J 1 = |det _ _ 4 ]
0 0 <+« mcosh xy_1

= (w(p1)+... +w(pwn)) m~ "L cosh x; - - - cosh xn_1
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where w; = w(p;) for all 1 < 5 < N, and the invariant measure becomes

2-1 dP (N_l dql ) _ 2N —9 dP dO'N I(QM ";QN—I)

UJ1++LUN g ‘/q3+m2 Q(P CIlr"')QN—l)

where we have pUt Q(PJ qi,. .. JqN—l) = w(pl) +... +(—U(pN) Because aaf(P; q1,- .- 7Q'N—-1) =
(0aP)Opf(P,q1,...,9N-1), the operators of the free theory are now given by

don(p1,-..,DN) =

P = multiplication by P
Hy, = multiplication by Q(P,q1,.-.,qn-1)

Ly = “ZQ(P7 qi, - - - 1QN—1)8P
It remains to calculate the function (P, q,...,qn_1) or , which is equivalent, the function
My(q1,- - ,qnv-1)*=Q(P,q1,...,qv-1)* — P?. We consider the Lorentz-invariants

2= 7 (0~ )~ (wlp0) — w(py)Y]
for1<i<j<N (note that g;; = 0 for all 7 and ¢f;,; = ¢7). A elementar calculation
gives MZ = N?m? + 4ZZ<J =1 qiz’j. Let §;, for 1 < i < N, be the hyperbolic angles such that
p; = msinh §;. By a calculation already made (for ¢;) follows 4q1-2’j /m? = =242 cosh(B; — ;).
In the case N > 2, for all 2 < i < j < N we have ; — 5; = 2(x;-1 — Xi-1), so that
q7; = m?sinh(x;-1 — xi—1)* = m*(¢j—1w(gi-1) — gi—1w(gj—1))?. Finally we get

Mo(q,...,qn-1)? = N*m? + 42% + 4 Z a;
1<j,=2
N—-1 N-1 \
= N*'m? + 429’? T~ Z (qu(%)‘qw(‘b‘)) .
i=1 1<j,=1

Appendix B. The Fundamental Equation

We establish the fundamental equation. It is the condition on A for which the relation
[{Ho, O}, Lo)+[Ho, { Lo, O} +[{ Ho, O}, { Lo, O}] = 0 holds. The linear part in O is simplified
as follows

[{Ho, O}, Lo) + [Ho, {Lo, O] = 2(HoOLy — LyOH, + iPO)

where we have used [Hy, Ly] = 1P and the fact that P and O commute. Applying it to a
suitable function f gives, in symbolic obvious notation

A = 2H,OLy - LOOHO +iPO) f(P,q)
~ (V8f)h do’ Q’fh
= —ZQ/ Y 298/ +2iP ,/Q’ Q—i—ﬂ’

h
= szd"f( Q-+ Q'+§Q+Qf)

= Qide'N—l(q_';) f(P.q) Q((E?)ihgzlz’lg’g))
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'To compute the bilinear part, we take the expressions for { Hy, O} f(P, q) and {Lo, O} f(P, q)
given in the proof of Proposition 1, for f € D, and we get, in symbolic notation

B = [{HO’O}:{LOaO}] f(P,q)
= [Znen [2 [(af e 4 g (D};;,q P?;,;)}

fd(fﬂ hqq 8/ ——~f hq” q de'” [Dhq’q _ Ph4 ] %f’hq”’q’

Q” QH QH Qn2
dO'” " Dhq”’ql Phq” ¢ hq”’q’
= f Qr |:h’q'q ( Q & Q2 +Q”8T)
Dh¢"  Ppot"\ .,
+ ( Q" - Q2 ) h? ’q]

don_1(
- z/m_T__

do iy P . -
) | f;lq(f { R P AR D

+ Dh(P,¢,)W(P.¢,0) + h(P.3,#)Dh(P, "7

The condition A + B = 0, which must hold for all functions f, leads to the fundamental
equation given at the end of Section 2.
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