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The Connection Between the Algebraic and the
Original Bethe Ansatz for the Six-Vertex Model

By Tony C. Dorlas

University College Swansea, Department of Mathematics,
Singleton Park, Swansea SA2 8PP, U.K.

(24.1X.1994)

Abstract. Tt is proved that the algebraic Bethe Ansatz method developed by Faddeev et.al. yields
the same eigenfunctions for the transfer matrix of the 6-vertex model as the original coordinate
Bethe Ansatz method invented by Bethe and used by Lieb in his original solution of this model.

1. The Problem.

The six-vertex model is a model of statistical mechanics defined on a two-dimensional
square lattice in which the configurations are given by arrows on the bonds or links between
neighbouring lattice points. The following configurations are allowed:

A e

Figure 1. Allowed vertex configurations in the 6-vertex model and their energies

Assigning energies €,, €, and €, to these configurations as indicated in the figure, the
total energy of a given configuration I' becomes:

Er = ny(Deq + np(Tep + ne(I)ee, (1.1)
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where n,(I") denotes the number of vertices of type a in the configuration T, etc. Let M
be the number of rows and N the number of columns of the lattice. The partition function
of the six-vertex model is then given by

ZM,N(CL, b, C) = 21_‘:’ exp [_r@EF]? (12)

where the sum runs over all allowed configurations, and § is the inverse temperature.
Notice that Zys n only depends on the Boltzmann factors

a = exp[—fe,], b=exp|—Pe)], c= exp[—Pe.]. (1.3)

The model was solved in several special cases by Lieb [1] in 1967 and subsequently in all
generality by Sutherland [2]. By ‘solving’ the model we mean here: obtaining an exact
and explicit expression for the free energy density in the thermodynamic limit:

1 . 1
fela,b,c) = —BMII{fH—lwomanM'N(a’b,C)- (1.4)

Assuming periodic boundary conditions, the partition function can be written in terms of
the transfer matrix V, defined as the contribution of one row of vertices. Let Lﬁ'(v, V')
denote the Boltzmann factor of a vertex with horizontal arrows v and v/ and vertical
arrows p and g'. Then the contribution of one row of vertices with lower row of vertical
arrows given by p = (u1,...,n) and upper row of vertical arrows by g’ = (py,-..,y)
is:

N
Vﬂ,ﬂ_" == Z H Lﬁ:(vna Vn+1)~ (15)

v n=1

(For periodic boundary conditions, vy41 = v1.) The partition function becomes:

M
ZM,N = Z ‘e Z VEm1Em+1 = TI‘&CGVIGJ. (16)
) 1

uM m=

It follows that the free energy density (1.4) is given by

fﬁ - _%Nli—l»noo%lnAmax(N)’ (1'7)

where Apax(N) is the maximum eigenvalue of the operator Viy with matrix elements (1.5)

w.r.t. the canonical basis of the N-spin Hilbert space Hy = G, (In fact (1.7) needs a
proof because the limit in (1.4) is intended in the sense of Van Hove (see [3]), i.e. M and N
must tend to infinity simultaneously. It was proved by Lieb and Wu [4] that this is in fact
equivalent to taking the limits separately. Another problem is the equivalence of periodic
and free boundary conditions. This is more difficult than the analogous problem for spin
models (see [3]) because the set of allowed configurations imposes a nonlocal constraint.
It was solved by Brascamp et.al. [5]. (A simple proof in the symmetric case was given by
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the author [6].) Lieb showed that Vi can be diagonalised by means of the Bethe Ansatz,
originally proposed by Bethe [7] for diagonalising the Hamiltonian of the Heisenberg chain.
The Bethe Ansatz eigenfunctions are given by:

U (ky, . k) = Z Wiks,kn} (P10 s T0)|T15 - 25 T0)s (1.8)
1<r <. <Py <N
where
N
Yiky, b} (T1,000, ) = Z Ao Hexp [iko(;)T5]- (1.9)
ogES, Jj=1
Here, |r1,...,7,) denotes the state of H with n down spins at the positions 7,...,
Tn, and ki, ..., k, are wave numbers. In order that (1.8) is an eigenstate, the latter must

satisfy the Bethe Ansatz equations:

exp [iNk;] = (-1)"1 H exp [—i0(k;, ki), (1.10)
=1

and the coefficients A, must satisfy

A

A—a, = —exp [~10(ko (1), ko(141))] (1.11)

if o and ¢’ differ by a transposition: o¢/(j) = o(j) if j # LI+ 1, ¢’(l) = (Il + 1) and
o'(l +1) = o(l). Here the function 8(k,%’) is given by

1 — 2Aet* 4 gilk+ED)
1 — 2Aetk + eilk+k)’

exp [—i0(k, k)] = (1.12)
with
a2

A
2ab

(1.13)

The inverse scattering method or algebraic Bethe Ansatz method is based on an
observation by Baxter that there is a 1-parameter family of models with Boltzmann
weights (a(A),b(A),c(A)) such that the corresponding transfer matrices Vi (A) commute:
[V (A), Var(u)] = 0. He deduced a sufficient condition for this to be the case and used it
to solve the more general 8-vertex model [8]. His formalism was subsequently simplified
by Faddeev and Takhtadzhan [9]. Their formulation of Baxter’s star-triangle relation says
that there exists a scalar 4 x 4 matrix R(A, \') such that

RO N) (Ln(A) ® Ly(X) = (1 ® Lu(N))(Ln(A) @ 1)R(A, N), (1.14)

where L,(A) is a 2 x 2-matrix with operator entries given by

La(\) = (a,;i)\) 5,16&)) (1.15)
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with
_{a(d) O ({0 ©
= ("0 wn) == (e o) 1o
(0 (N (b)) 0 '
= (0 0 ) ‘S"(’\)*( 0 a())
operating on the n—th spin in Hy. Notice that the entries of L,()\) are exactly the
Boltzmann factors L, .+ (Vn,vn41). The transfer matrix is given by (1.5):
(1.17)

VN (A) = Tracea(L1(N) ... Ly (X)),

where the trace is taken of a 2 x 2—matrix, the result being an operator on Hy. We define
(1.18)

Tn(A) = Li(A) ... Ly(X).

As this is a 2 X 2—matrix with operator entries it can be written as

An(A)  Bn(A
TN(A)z(CxEA; D’;EA;). (1.19)

The 1-parameter family (a(A),b(A),c())) is given by the transformation of variables

a(A) = sin(A + ),
b(A) = sin(A — 1), (1.20)
¢ = sin 21).

(We have divided by an unimportant normalisation factor.) The R-matrix is given by

fop) 0 0 0
_ 0 1 ghp) O
0 0 U (ON7)
where the functions f and g are defined by
sin(A — pu + 2n
F ) = SA— i+ 20) <
. (1.22)
sin 2n

Ap)= ————.
One easily checks that the relation (1.14) is satisfied. If e} = (O) denotes the up-spin
at position n and e, = (?) the down spin at n, let @ = el ® el ®... @ e}, be the state

with all spins up (ground state). Then
(1.23)
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and hence Ay (A)Q2 = a(A)VQ and Dy (2)Q = b(A)VQ. Moreover,

- 0 0
B, = oo, —C(l 0)

0 1
.
'yn—can—c(e 0)

and hence Cn(A)2 = 0. Using the relations (1.12) one can now derive (see [9]) that the
state

(1.24)

B(Mp,... h) = f[ Bn(),)Q (1.25)

is an eigenstate of the transfer operators Vjy(A) for all values of A provided the parameters
A1,... A, are all different and satisfy the transcendental equations

(‘;8: )) H (X J’ (1.26)
175

In fact, one easily checks that these equations are equivalent to the Bethe Ansatz equations
(1.10) if one performs the change of variables to wave numbers k; given by

siny +1) _ a(y)
sin(A; — 77)_ b(X;)

exp [ik;] = (1.27)

2 Identity of Wavefunctions.

We now prove that the wavefunctions (1.25) are identical with the Bethe Ansatz wavefunc-
tions (1.8) up to a multiplicative factor. The proof is similar but more complicated than
the proof of the same fact in the case of the nonlinear Schroedinger model in [10]. In that
case it has proved useful for proving the completeness of the Bethe Ansatz eigenstates. We
hope that a similar thing can be done in the present case. First, we remark that, in (1.9)
we can take A, = Cy(Aq,...,A,) defined by

ColMr--xn) = [ FOewy doti))- (2.1)

1<i<j<n

Indeed, if the wavenumbers k; are given by (1.27) the relations (1.11) follow from

f()\Ja )\l)

FOu ) = —exp [—i0(k;, ki)]. (2.2)

We now prove:
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Theorem. Let ®(A1,...,A\,) be given by (1.25) where (1.26) is satisfied, and let
U (ky,...,k,) be the Bethe Ansatz wavefunction given by (1.8) and (1.9), where
Ay is replaced by Cy(A1,...,An). Then

B(A1y. -5 ) = (@A) ... aMn)) (B L. BN E™ (ky, .. K. (2.3)

The case n = 1 is simple:

By(NQ = (Li(A)... Ly(\)1.a® = (L3N ... L% (A)1.29, (2.4)
where we have written

L) = L) + Em, (25)

with
Lo = ("‘"‘0()‘) 557(3)) and L, = ( {; 8) . (2.6)

Now,
LIN)... LY(N) = (0‘1”(‘)’ 2 ?;2’((;))) (2.7)

with:

8p.q(A) = IIm=pOm(}) (2.8)

m=p M

ﬂp,q()\) = g=p ap,r—l(A)ﬁ'r‘éT-l-l,Q()\)'
But 8, =co, Q2 =c|r) so

{ap,q()\) = [[n=pom(})

Bn (M) = 61 n(A)0

N
=D a(d)" (M) elr)

r=1

(2.9)
N

= ca(A) (AN D eimr).

r=1

Now consider the case n = 2. We compute By (A2)¥) (k). As ¥()) contains only
one down-spin, at most one L,, can operate on it and we can write

By (A2) UM (k1) = (LY(X2) ... LY (A2))1,2% M (k1)

L - n (2.10)
+ 2 (Bms o) LnLls w(22) | WO k),
with the notation §
L3N =[] o). (2.11)
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The first term in (2.10) is straightforward to compute:

(L3 N (2128 (k1) = ca(ha) T 6(A2)Y D {a(A2) TIb(Ag)eiFrrrtEara)
1<r <ra<N (2:12)

+ a(A2)b(Ag) teikemithir)ip, po),

In the second term we use
A B 0 0 A B _ BocA’ BoB’ (2.13)
0 D o 0 0 D) \DegA DoB' ] ’
It follows that

(ZL ? m1(A2) V& Lm+1N(A2)) o (k) =

1.3

=c Z B m—1(A2)Bmt1,n(A2)eF ™0

m=1
N m-1

— c3 Z Z a(Az)rl—lb(Az)m—l—‘rl

m=1r;=1

N
> a(x) ()N T2 ™y, 7o)
ro=m+1
ro—1
=a(h) 7)Y Y a(de)TIb(Ag)TletkelnAra) N iRy )
1<ri <re <N m=ry+1
=cGa(A) ()Y Y a(h)TMh(A)7!

1<r; <ra <N

gilkiritkars)  gilkaritkars)
{ei(kz—kl) -1 + eilk1—ka) _ 1} 71, 72)-

(2.14)
Next we use the formula
o
m s g()\l, /\2) (l()\])b()g) (215)
to write the sum of (2.12) and (2.14) as follows:
By(A2)TM (ki) = ca(ha)T0(A)Y Y
1S‘T‘1<7‘2$N
{G(Az)—l [atr, (A2)Bry + g( A1, A2)Br, atr, (M1 )] gilkrrithars) (2.16)

+b(A2) " [6r, (A2)Bry + 9(A2, A1) Bry sy (y)] i(Fars Hhima) } 72).
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We can now use the relations (1.14) which yield, in particular,

{ f()\a A’)ﬂnan()\’) = a’n()\l)ﬁn =4 g()\a )\I)ﬁnan()\)a (2 17)
F, 0Brbn(N) = 6n(X)Bn + g(X, A)Brbn(X)- '

Inserting this into (2.16) we obtain

BN()\z)\I’(l)(kl) = Ca()\g)_lb()\z)N Z

1<r; <raSN (2.18)
{FOu,haeitarsthars) 4 g 2g)eiharsthara) oy

This proves (2.3) in the case of two particles.

In the proof of the general case we proceed by induction as in [10]. Analogous to
(2.10) we have

BN(,\)cb(")(Al, a5 sihle) = 18 (RJEOR

* Z (L 1m;-1(A) Lm, L, mi+1, N(/\)) oM ...

m1—1
0 (2.19)
+ Z (Ll miy— 1( )Lm1 Lm1+1 mo— 1()) i

1<mi<...<mn <N

Lanmn+1 N(A)> (D(ﬂ-)
1,2

Using (2.13) repeatedly we can write

(L8 i) s Loy 1 ma 1N+ L Lo w(V) = Bp(3)  (2:20)
where Bp is defined by

Bp()\) = zBl,ml—1(A)7m1ﬁm1+1,m2—1()‘) s 'Ympﬁmp+1,N()\)- (2-21)

Inserting the induction hypothesis for ¥(®)(k,, ..., k,) we have

() = B, (N)@™ (A, ..., An)

m1—1 m2—1 N

- r ¥Y 0y

1<m <...<mp <N =1 ra=m;+1 Tp+1=mp+1

2.22
al,r‘l—l(’\)ﬁﬁ 6T‘1+1,m1-1()\)’ym1 am1+1,7‘2—1()‘)ﬁ7‘2 g o ( )

s me,,amp»‘}-l Tp+1— 1()\)ﬁrp+16rp+1 +1,N()\)

Z ¢§7;)1, An }(81,-..,sn)|51...3n),

1<s5;<...<s5, XN
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where ¢'({T;)11---;An}(31, coesSn) = [ a(X) 76NN "/’gzz,...,kn}(slv ...y8n). For each a =
1,...,p there must exist j, such that m, = s;,. Moreover, s; # r; because ﬁf.i = 0.
We can therefore write {ry,..., 7541} U{s1,..., 82} \ {ma,...,mp} = {r,..., n+1} and
Te =1 With1 <4y < ... <ippy <n+landr, <My <Toy1 <=1, <my<r for

1 a+1
a=1,...,p. Inserting these arguments into Tp%zz,...,kn}(sl’ .-+, 8n) We obtain
(n) ! ! ! ! ! '
77b{lc1,...,lcn}("'"1a cey T = Tig 10 oo s T ML T 41y 0o o5 Tipm15 - - -y My
! ’ ’ ’ _
ij+17'"7Tip+1—15rip+1+1"'"Tﬂ.'f‘l) _—
. . (2.23)
p+1 'La—l Ja P
. ! . I3 .
§ Cor(Ay- -y An) H H eika ()T H etkeo(i-1)7s H etk (ia)ma
€S, a=1 | i=ja_1+1 i=i,+1 a=1

where jo = 0 and jp41 = n+1. The factor a,,, 41, —1(A) in (2.22) operates on ig41 —1—
ta+1
jo down spins and (r;_, —1-m,)—(ia41—1—Ja) up spins and therefore contributes a factor

a()\)r"ﬂﬂ_m“_i““+j"b(/\)i“+1_1_j“ (a =0,...,p). Here mg = 0. Similarly, the operator
Or: +1,m,—1(A) contributes a factor a(A)i=—iep(A)e 1" Ta~date (g =1,... p+1). Here
mp4+1 = N + 1. In total, we obtain a factor

) (7‘tl oot (ma+...4+mp)—2(i1+...Fipg1)+2(G1+. .. +jp ) +n+1

RS

)=2(j1+...+ip) = 2(p+1)+2(i1+...+ips1) +N—n

(A
b( )(m1+ +mP) (7'1.1+ +T1 p+1

(2.24)
= a(A) "1 7?Pp(A)N exp [ik(ry, + ...+ 7 e —(m1+...+my))]
x exp [tk(—2(i1 + ... + v:,,+1) +2(j1+...+Jp) +2p+ 2+ n)].
Next we can perform the summation over m, fora=1,...,p:
r.;a.‘i‘lu_l "'(ka ja —k)'f"- 1 — i(ka' ja —k)(T;’ +1)
Z e—ikma-}—ik,(ja)ma oe € tax] 3'.“+ € —y ¢ ) (225)
etka(ia)—k) _ 1

ma=r;a+1
Thus we find, with A = A4,
Tt = = 1ag(A)b(N) "N B(W)TM™ (A, ..., M)

L) >

1<r] <..<rl L SN 1<6 <o <ip g1 Sntl

ia—1 "’P+1_ . ’ ¢

R S G Ay B

j1=t1 Jp=tp 0ES, 296
exp k(=201 4 ... +ipp1) + 0+ 201 4 ... + jp +p + 1))] (2.26)
p+1 ia—1 Ja—1

H H e‘lka(,)?‘; H eika(i)r;+1

a=1 | i=ja-1+1 i=i,

L (FoGia) =F)M5041 — gilkaa)=k)r5,+1) | )
H eilkotiay—k) _ 1 715+ s Tl

a=1
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Next we distinguish various terms in this expression depending on the choice of j,
(a=1,...,p) and the +-term in the corresponding factor in the last product.

\Il(n+1) will contain the terms with (j,,£) = (i4,—) for a = 1,...,s and (j,,%) =
(g41 —1 ,+)fora=s+1,...,p, for some s € {0,1,...,p}.

‘I'( "*1) consists of the terms for which there is s € {1,...,p—1} and r € {0,...,s—1}
such that (Jas £) = (fa,—) fora=1,...,rand (jo, %) = (za+1 1,+)fora=r+1,...,5—1,
(Jsy£) = (te41 — 1,4), (Jog1, L) = (is+1, —) and (j,, £) arbitrary for a > s + 2.

\If(n+ ) contains the terms for which there are s € {1,...,p} and r € {0,...,5s — 1}
such tha,t (Ja,x) = (g, =) fora=1,...,7, (Ja, %) = (lag1 — 1,+) fora=r+1,...,s -1,
(4s, £) € {(2s, =), (is41 — 1, +)} and (ja,:t) arbitrary fora=s+1,...,p

We will denote \Il(n+1)(r, s) the sum of terms with given r and s. Presently, we show

that

‘I’,(,?jl)(r,s) + \If,([,n_tli(r, s)=0forp=1,...,n (2.27)

and all values of r and s, and also, \IJ("H) ‘If(n+1)

The terms \I’;T’IO'H) add up to the desired result:

n+1
Z ‘I,(n_;_l) Z C (Ala n+1) Z H etk"'(j)rj T1y¢0. 'f‘n+1>. (2.28)
p=0 TESn+1 1€ <. <1 <N j=1

To see this we write out \Ilg(;" 1),

SR DS >

1€m <. Krp 1 SN 1< < <ipyp1 SNt

P
3 Colday s ) Y exp[ik(ri, ,, — 2isq1 + 1+ 25+ 2)]a(X)

Uesn s=0
- 2.29
- 11 1 (2:29)
a=1 ei(k_kﬂ(ia')) -1 et ei(k'a(ia-l—l—l)_k} -1

is+1-1 n+1

T1yean ,T’n+1>

H etha(i)ri H etko(i-1)Ti
=1

i=ig41+1
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Next we insert (2.15):

\IJS:L;'U - C—n—l Z Z

1<m <. <rpp1 <N 1< <. <ip+1<n+1

z_g+] -1
Z Ca()\la-- a Z H a‘()‘ a'f‘z )I@’-"i
oesﬂ t;ét
s n+1
[T a7 90y VBriy e, Qoi)) T 8N 60 ( N8, (2.30)
a=1 i=igyq+1
iFtig
H b )\ )\U(ta+1 1))ﬁ‘f'z +1 7'1. at1 (AU('LG—FI 1))
a=s+1
Fipr—1 n41
H eika(iyTi gthTi, H etFa(i-1)Ti()
i=1 i=igy1+1

We now write Cr(A1, ..., Ant1) in terms of Cr/ (A1, ..., An) where 7’ is defined by

{'r'(i) = 7(4) ifi<7(n+1) (1<i<n) (2.31)

PE) =7G+1) ifi>7F(n+1)

(We have written 7 for the inverse permutation.) We have:

Cr(Ay+ s A1) = Co(Maye s dn) [ FOv@pdast) I FOnins Ar). (2.32)
i<T(n+1) i>7(n+1)

Inserting this into the right-hand side of (2.28) and using the identities (2.17) we find that

it equals the left-hand side of (2.28) with \II;TF' Y given by (2.30), where the products in
(2.32) are expanded with s factors g(Ao(i,), A)Br;, @r,, (Ao(i,)) from the first product and
p — s factors g(A, )\,,(z-uﬂ_l))ﬁn”l bri. ) (Ao (iay1—1)) from the second product.

It remains to prove the identity (2.27). Now, in computing ‘Ilg,zjl)(r, s) we must take
Ja = 1 and choose the second term in the last product of (2.26) for a = 1,...,r and also
fora=s+1;fora=r+1,...,s we must take j, = i,+1 — 1 and choose the first term in
(2.26). Then inserting (2.15) for all values a = 1,...,s, we obtain
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\Ilgjl)(r, 5) = 2p=s-1) Z Z

15T1<...<T‘n+1 SN 1S’l,1 <...<ip+15n+1

is43—1 'ip+1—1
Y Y Y Gl o)
js+2=i’s+2 jpz'ip G’GSn

a(A)—Qp exp [Ii’k(""ir+1 + Tigta o bi bl & ’rip-i—l - Tis+1)]
exp [th( — 2(6rq1 + dora + + ipp1) + 1
+ 2041+ Joj2+ o+ ipFp+1—s+7)]

ir41—1 Lst1

H 6”“%(1')%; H eiko(i-nTi eika(is+1)ris+1

i=1 i=iyp1+1

i1 - i (2.33)
H H ko ()T H eike(i—1)Ts

a=s+2 | i=ja_1+1 1=i,+1

[T 9oy Nalropa) )b(N)
a=1

H g()‘v )‘a(ia,+1—1) )a‘()‘)b()\o'(ia.ﬂ —1))

a=r+1

g()\ﬁ(is-u) ’ A)a’(Aa(is-H))b(A)
r {ei(ka.(ja)—k)’l“ja+1 _— ei(ka.(ja)—k)(’f'ja‘{"l) }
r1,

n dome w1 1).
(ko (ay—Fk) _ i
a=s+2 & \iag 1

In ‘Ili,nji’li(r, s) the variable 7, ranges from ¢, to 7547 — 1, but when the minus sign
is chosen then j, # ¢, and when the +-sign is chosen, j, # 541 — 1. To make this range
uniform for both signs we redefine j, in case of the +-sign: j., = js+1 in case of the +-sign.
Thus, j. ranges from is + 1 to 4,41 — 1 for both choices of the sign. Inserting (2.15) again
in all terms @ = 1,...,s we obtain
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(2.34)
Comparing the two expressions, we see that, if we change the indices in (2.34) according
to ji — @541, tg — ta41 (@ =s+1,...,p) and j, — jJe41 fora =s+1,...,p — 1, they
cance] provided the following identity holds:

[9(X; A1)b(A)b(A1) + g(A2, A)a(A)a(A2)]Co
+[9(A1, Aa(N)a(hr) + g(X, A2)b(A)b(A2)]Cs (2.35)
= g(A]_, )\)Q(Az, )\) [a()\z)b()\l)C'a =+ G(Al)b(Az)C&].

Here we have written A; instead of A,(;,,,—1) and Az instead of A;(;,,,) and we have
defined & as the permutation that differs from o only by a transposition of 4,47 — 1 and
is+1- It is easily seen that the only difference between these two permutations in (2.33)
and (2.34) is given by the left- and right-hand sides of (2.35).

To prove (2.35), notice first that, by the definition of Cj,

Cs = ¥, (2.36)

F(A1,A2)
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Using (2.17) with A = A; and A = ), this implies

a(A2) b(Az) b(A1)
b(Az2) B = a()\z)c (b()\z)

a(A1)
a(Az)

Cs +

C;,) g(A1, Az). (2.37)

Combining the two identities (2.17) with A’ = A, we have also
900, Na(A2)b(Aa) = a(Na(As) — bAB(A2) + g(ha, Na(Nb(X).  (2.38)
Inserting this into the right-hand side of (2.35) we have

9(A1, A)g(Az, A)[a(A2)b(A1)Co + a(A1)b(A2)C5] =

(
_g()‘la )b A) (AI)C +g()‘13 ) ()\)a()\l)c6
+ 90, Na(Nb(A) (6(A2) /() C -
= 9(A1, M)a(M)b(A) (b(Az2)/a(A2)) Cs
+ a(BON O, Vg0 ) |33 + 25 s .
The relation (2.15) can be written in terms of a(A)’s and b(\)’s:
[a(M)b(X) = a(A)B(N)] g(A, ) = —c2. (2.40)
This implies easily
b(A)g(A1; A)g(Az, A) = —b(A1)g(A1, N)g(A1, Az) + b(A2)g(A2, A)g( A1, Az)- (2.41)

With this and (2.37), equation (2.39) becomes

9(A1; A)g(Az, A) [a(A2)b(A1)Co + a(A1)b(A2)Cs]
= —g(h, NBB(M)Cy + g(Ar, Na(Na(M)Cs
1 900, 2)a(A)b(A) (@(ha)/6(A2)) Cor — 9001, Na(A)b(N) (b(A2) /(M) Cs
+a00) (6090, ) + D)o V] [5321Cs — 2 Ce
= —g(h, NBA)B(M)Cs + g2, Na(Na(A2)Cr + g, Na(Na(h)Cs
~ 90,3 Bath) — a0 222 65 — g0, Apa(A)b(hg) 222
= [ g(An, BB + 9(0a, Na(Na(Az)] C

aig) a(Az)
+g(A1, Na(N)a(M)Cs — [a(A)b(A2)g(A2, A) — ]

b(A2)
Q(Az) Fs
(2.42)

where we have used (2.40). Using (2.40) again, this equals the left-hand side of (2.35).
QED
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