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Abstract.  The effect of the fluctuations of the intrinsic magnetic field on the criticality of the
highly anisotropic high temperature superconductors is studied. The theory of Halperin et. al. [4]
is generalized to take the anisotropy into account. The effective Hamiltonian of Ginzburg-Landau
type is studied using a renormalization group approach in lowest order in € = 4—d. It is shown that
the anisotropy preserves the first-order nature of the phase transition. Nevertheless, the appearance
of strong crossover effects reduces considerably its size and should make it disappear experimentally.

1 Introduction

Since the discovery of Bednorz & Miiller [1), High Temperature Superconductivity has been
a very active field of research. While this extensive study has led to a good knowledge
of the experimental properties of the materials exhibiting this behaviour, there have been
relatively few theoretical progresses, and the mechanism which suppresses their electrical
resistivity remains an unsolved puzzle. It is in particular not clear whether the BCS-theory
[2], the theory which describes accurately the “ante-1986" superconductors could be somehow
extended or if a completely new microscopical approach should be considered [3].
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Beside these efforts toward a microscopical theory, some theoretical progresses have been
done on the phenomenology of the cuprates. Most of the phenomenological theories are based
on the Ginzburg-Landau theory which states that the superconducting state can be described
by a macroscopic wave function - sometimes called the order parameter - the magnitude
of which becomes finite below the critical temperature. This theory describes qualitatively
second order phase transitions such as the paramagnetic to ferromagnetic transition in metals
and the normal fluid to superfluid transition in liquid Helium where the order parameter is
respectively the magnetization and the superfluid density.

Superconductors are however charged. As a consequence, their order parameter is coupled
to a gauge field whose fluctuations have to be taken into account. It has been pointed out
among others that this coupling could turn the transition first order [4].

Another crucial feature of the cuprates is their great anisotropy. The effective mass measured
alongside the z-axis of the unit cell exceeds the effective mass in the x- or y-direction by up
to three orders of magnitude. This anisotropy is so great that it even raises the question of
the effective dimensionality - a central point in the modern theory of phase transitions - of
the high-T, superconductors.

In this paper, we study a Ginzburg-Landau-like model which incorporates both the coupling

to a gauge field and the anisotropy of the materials. We study the following free energy
functional :

F(,A,T) = fddfl' [l (V) = iqo Ay (M)A + 7LV 1 — igoAL (7)) B (7)*+

+alUOP + WO + (9 x A7)? (1.1)

where A(7) is the gauge field which represents the intrinsic magnetic field, ¥(7) the n-
component superconducting order parameter, a = a(T) = %, where o’ > 0, changes
sign at the mean-field critical temperature T, thus enabling the phase transition, gy = %-‘5 =
2m(®g) !, where @ is the superconducting flux quantum, couples the order parameter to
the gauge field and pg is the magnetic permeability of the materials. The subscripts L and
| indicate the direction perpendicular and parallel to the CuO-planes respectively. |¥(7)[®

and higher powers have been neglected since they are irrelevant for our study [5].

The uncharged anisotropic case g = 0 and v, = ) has been studied a long time ago.
A mean-field approximation correctly predicts a second-order phase transition with critical
exponents ¥ = 1 and 7 = 0 [15]. Near the critical temperature, however, the fluctuations of
¥ become so important that the mean-field approximation breaks down. Ginzburg showed
that the interval of temperature around the critical temperature where this approximation
loses its validity - the critical region - is given by [6] :

2
lT — Tcol — _1_ kacO
Tc(] <= 2 (HCZ(O)él(O)éﬁ(U)) (12)

where the temperatures are expressed in Kelvin, £, and § are the coherence length perpen-
dicular and parallel to the CuO-planes respectively expressed in cm and Hg(0), the field
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obtained by extrapolating the linear part of H(T'), the upper critical field, near T = T,
expressed in Gauss. Inside this interval, the fluctuations of ¥ produce the breakdown of
the mean-field approximation. For usual low-temperature superconductors, this criterion
predicts at best temperature intervals |T' — T,g| < 1076 [7], i.e. the critical regime should be
experimentally unaccessible. However for high-T, superconductors the situation is reversed.
Their coherence length is typically two order of magnitude smaller than in usual BCS su-
perconductors. Together with higher critical temperatures, this increases dramatically the
size of the critical region up to a few degrees around T, . Thus this criterion emphasizes

the importance of fluctuations of the order parameter on the phase transition of the high-T,
superconductors.

The isotropic model (v, = <) has already been studied by Halperin et. al. [4]. They
derived renormalization group (RG) recursion equations for the couplings using the method
of Wilson and Fisher [8]. They noticed that the coupling to the gauge field introduces a new
complex fixed point, and interpreted the non-reality of this fixed point as the occurrence
of a first order phase transition. In a subsequent paper [9], the size of this transition was
evaluated and shown to be too small to be experimentally observed in the superconductors
available at that time. However in view of the above remarks, this question need to be
revisited for the new high-T, materials.

The paper is organised as follows :

In section 2, we define the RG transformation for our model and analyse its properties. We
will see that the anisotropy introduces two new fixed points and that the RG trajectories in
the parameter space are drastically modified. The complex fixed point responsible for the
occurence of the first order phase transition is however still present.

The shape of the RG trajectories in the parameter space will determine the critical behaviour
of our model. Due to both the structure of the recursion equations and the dimension of the
parameter space, the flow is not analytically integrable, and we are led to a numerical study.
We present the results of this numerical study in section 3. We see that the anisotropy
sensibly reduces the size of the first order phase transition, i.e. the interval of temperature
around T, where the flow is dominantly driven by the complex fixed point.

Conclusions and final remarks are given in section 4.

2 Renormalization Group Approach

2.1 General Method

Starting from the free energy functional (1.1) we define the free energy as a function of the
temperature alone by taking the trace over the configurations of the vector potential and
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the order parameter:
exp(—F(T)) = ]D{\Il(a"'),f_l'(f")}exp(—F(\Il,/-l.,T)) (2.1)

The problem is that F (\I’,ff, T) is quartic in both ¥ and A and we don’t know how to
perform this integral exactly. Nevertheless the effect of these quartic terms can be evaluated
perturbatively in the limit d — 4, using the Wilson-Fisher ¢ = 4—d expansion [8]. Let us
remind the reader of the main steps of this method.

Because of the divergence of the correlation length, fluctuations with long wave vectors
become less and less important as we approach the transition temperature. We therefore
define a RG transformation which integrates out large k-modes and rescales ¥ and A by
appropriate factors. Performing a Fourier transform on the free energy functional we get :

F(U,A,T) = [ d [(k} + 7.3 0l i + 0 Ty + k247

8o
—2q0(2:) 7 [ AU (Ry Al + ELAE) + 5 AR [ AR YT Vg W oo
+ G [ K AR O T (AL AN+ A AL )] (2.2)

where we used the Coulomb gauge V.A=0. Now we set :

- -, =, 1 =
Fo(¥,A,T) = / d'k [('y”kﬁ +y1Lk2 + )PPy + Srh k%‘z] (2.3)
0

1 — [} | —¢ L gdps e Al L AL
F(U,A.T) = | dik [ 20— [ PNV oo (Ry A + FuAR)
+?£rﬁ) fddk, f (l‘tk”lIl,‘.\IJ;‘.: \I,k”q}—k—k’—k”
+ (Iéﬁ{ f dk! J‘ ddk’l\l}k‘ljkt (Aq}l""{”—k——k’—k" # A‘AL’IIA.J__k_kI_kH)] (24)

If we now take only Fy into account, the RG transformation can be performed exactly. The
behaviour of the various couplings in parameter space near the fixed-point of this transfor-

mation leads us to the mean-field results v = 3 and n = 0. The crucial point is that for

d > 4, these results are exact. There is therefore hope that not too far below the critical
dimension d = 4, we can approximate the integral in equation (2.1) by a perturbation ex-
pansion around the gaussian model (F=Fy) [10], that is we expand exp(—F}) in a power
serie, where the small parameter of this expansion is e=4-d. In analogy with field-theory,
the gaussian model defines the Feynman rules, while the expansion determines the graphs to
be computed. Our perturbation theory is therefore constructed with the following gaussian
propagators (see figure 1, from left to right) :

G = (a+7yLk] +yk) (2.5)
.43 = 87r,u.0k“_2 (2.6)
Ay = 8muphy? (2.7)
K = E((}’ + ’}"_Lki + "fnkﬁ)_l (2.8)
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Figure 1 : Gaussian Propagators

The interaction vertices are shown in figure 2.
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Figure 2 : Interaction Vertices
The transformation is the following [11] :
exp(—F' = C) = [/D{\Pk’g"}%SIEISA exp (—Fp — Fl)]T
- o Fm
= [/D{\PL, Ak}A<IEl<A exp (“Fo) Z T’LT:I (29)
T m=0 AT

The value m, at which we will cut this expansion is then determined by the self-consistency
of the transformation [12]. C is a constant without influence on the critical behaviour of the
model that arises from the integration of the large k modes of Hy, while s is the rescaling
factor satisfying s > 1. The subscript T indicates that after integration we must perform
the following rescaling :

n -

k— -5‘]:‘,' ¥, — Sl—g\:[fsk ;"Ek — Sl__iiAsk (2.‘10)

n and n4 are the critical exponents characterizing the behaviour at criticality of the two-point
correlation function of the order parameter and the vector potential respectively

< U U_; >x k72 for T = T, (2.11)
< ARA_p >x K724 for T — T, (2.12)
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2.2 Recursion Equations

Equation (2.9) defines the recursion equations for the various couplings of the free energy
functional (1.1) and (2.2). These recursion equations determine the flow of the vector in
the parameter space {(v),vL., 0, fto,qo)} representing the free energy functional, i.e. the
evolution of the parameters under repeated iterations of the RG transformation. The critical
behaviour of the model is then determined by the linearization of these equations around
the various fixed points, i.e. points of the parameter space that go onto themselves under
the effect of the RG transformation. For a coupling X' these equations have the general
structure . )

Xf, = s¥ [X,"‘ + graphs] (2.13)

where y,+ is a critical exponent associated with the coupling X* while ”graphs” stand for the
corrections due to the power expansion of exp(—F}). For y,; = O(€) we have :

s¥at = 1 4 y,i Ins + O(€?) (2.14)

and the fixed-point equation reads :

X = g¥ [‘X'i* + graDhS] =[1 + y.i Ins] [Xi* + gra,phs] i:15)

M %M

where the subscript means the fixed-point value. Equation (2.15) implies
X*™y,iIns = —graphs (2.16)
The consistency of this method requires then that

graphs = W({X‘})Ins (2.17)

for a function W of the couplings, since the fixed-point value of the couplings must be inde-
pendent of the rescaling factor.

Figure 3 : Radiative corrections for the renormalization of g

Figure 3, 4, 5 and 6 show the graphs giving corrections to the various couplings up to first
order in €. Two points deserve discussion :

-The three graphs in figure 3 give contributions to the renormalization of the magnetic
permeability. The fact that, unlike the isotropic case, these three graphs give nonequal



Jacquod 7

il
Ak¥k.‘

Ay e

Figure 4 : Radiative corrections for the renormalization of v and 7,

i it

Figure 5 : Radiative corrections for the renormalization of 3
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Figure 6 : Radiative corrections for the renormalization of «

contributions forces us to introduce three magnetic permeabilities increasing thereby the

dimension of our parameter space [13]. We must thus perform the following transformation
on the free energy functional :

RR o RAe RBAP RAPRAR
. + +
8w 8ty 8y, 87,

(2.18)

-None of these graphs result in a renormalization of the charge ¢o. This is consistant with
the fact that go can be scaled out of the free energy functional by the transformation :
— A‘ _
Ay —4 =% B ey o (2.19)
do 9%
As a consequence, the permeability will appear in the recursion equations only in the product

¢ . Computing the contributions from each of these graphs is equivalent to solving equation
(2.9) with m.=2.
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We thus get a new free energy functional of the same form as (1.1) but with renormalized
couplings :

e = 52N, | (2.20)
_ BINE il
I“l']|,ll+1 = s WA,L.'“.,(]. —|—q[ T e 1om i ') (221)
nlns 1 '
Poirr = M1+ i —— or i) (2.22)
- _ nlns, 3 -1
PtL,lt+1 = $ nAHu(l +‘11 P 197 (pf —4p, * (o — 1)%)) (2.23)
L 1
- 3 P 1 — Perd L) Pf
Yt = §TMyL |1- —=¢Pyualns | R ’ (2.24)
2m Flarg Y0 — ML YL
31 1
_, 3 . 14 1y — Fard b0 PF .
Yt = s |1 = =Pyl | == (2.25)
2m By — Merg YLy
o n + 8 37
Biygr = s Zn[ﬁl s T L \/ "ns
167
—4q}( ’y“ M/,u,,,p,u“l + 'yJ_ ”/;IU;L,, ) In s] (2.26)
F(n + 2 1—s" Ins
672y, (1+ A1) /7L
LAZ(1 — 572) [ | 1 1
(@ = Vi + Yot | | (2:27)
§ [ELL D fHerd
27? 1 + Hirl 1 + [

where in the last equation, d* = d is the dimension of the gauge field. We have set p; = %ﬁ

Some details on the derivation of these recursion equations are given in Appendix A. Since

1

2 /| —_—
el T € (2.28)

Hirl

we must set d* = 4. The fact that 7y and v, have different recursion equations leads us to
introduce two different effective critical exponents 1 and ;. Their evolution is given by :

31 L
q 02 Lz " 2
27 I-er,lpl —HLy
3L
3 o [ ki #mﬂn zm
me = —5=q; | (2.30)
2m My — NrrlPJ
We next turn our attention to the coupling 3. In the isotropic case (p = 1, 3 = 7L = 7

and g = g1 = per = p) after inserting the fixed-point value gl = % obtained from the
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recursion equations (2.21) to (2.23), we get a fixed-point value :

2 n+38

it ¥ (2.31)

2
p_ 8n [(§E+1)eﬂ:\/(¥+l)262-—432

n n?
In particular 7‘& € C for n<n.=365.9, well above any physically interesting value. As already
mentioned, this can be interpreted as the signature of a first order phase transition. It is
the main purpose of the present paper to determine whether the situation is modified by the
anisotropy. We therefore study the anisotropic equations in more details.

2.3 Fixed Points

The critical behaviour is determined by the nature of the RG flow in the neighborhood of the
fixed points of the recursion equations. Beside increasing the dimension of the phase space,
the couplings introduced hy the anisotropy, as well as the anisotropy itself, will possibly
modify the stability of the fixed points and the flow in their neighborhood. As a consequence
the flow will be possibly driven away from the unperturbed fixed point to a new one, thereby
modifying the critical behaviour of the model, an occurence which is called a crossover. As
a consequence, two points are of particular interest : the determination of new fixed points
and their topological properties. Let us precise the second point : One says that g is a linear
scaling field if around a fixed point, the evolution of g under the RG transformation is given
by the linearized recursion equation

Giv1 = 8™y (2.32)
By definition, the crossover exponent associated with g is y, = 19X, where

1 en+2) -

vy = 3 + (n +8) + O(¢€%) (2.33)
is the critical exponent associated with the divergence of the correlation length in the un-
charged anisotropic model. If y, > 0, g increases under iteration of the RG transformation
and is called relevant. It modifies dramatically the flow around the considered fixed point.
On the other hand it goes exponentially fast to zero if y, < 0 and is therefore called irrel-
evant. For y, = 0, the field is called marginal and the situation must be studied in more
details [14]. In our case there are two new scaling fields of interest : the anisotropy and the

charge. Before determining the fixed points, we give the linearized recursion equations for
our scaling fields :

n * =

= (R ) !

(2.34)

e _ —_n* *2 o+ _n_ -sl' -
(qlz+1ﬂ-tr,l+1) o= gt e '(G',?Mtr,l) ! (2.35)
(2.36)
(2.37)

2 -1 —nhytetu
(gipapyuer)™ = s 700

=2 = n .%’

2 ~1 I ¥ g (pr—1)2) 2 il
((II+1P"L!+1) = g Mt rlnsle P Ip H(q:#u)

pry = s+ gy
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" %N

As before, the subscript indicates the fixed-point values. We see that A, = 5, — 7 so
the anisotropy is in particular marginal close to the isotropic fixed point. The recursion
equations have the following fixed points [15]:
i) the Gaussian fixed point where ¢ =0, g = 00, p=1and 3 =0,n=mn;=nL =0 and
v=1

2 -
ii) the Heisenberg fixed point : ¢ =0, . = o0, p =1 and 3 = 8(¢), n = n; = nL = 6(¢*) and
V= % . dndd) Z'ﬁ + O(€).
iii) the isotropic superconducting fixed point : p =1 and 5 = n = n = =18 + O(¢?),
and v € € for n<n.=365.9, while ¢*u; = %,Vi. The non-reality of § and v indicates a
runaway to a first order phase transition [9].

iv) two new totally anisotropic superconducting fixed points where p = 0 and p~! — 0
respectively. Considering the great anisotropy of the high-T. superconductors ( p ~ 1072
to 1073 and even more) it is expected that the RG trajectories we are interested in are
influenced by the first of these fixed points. Setting p = 0 in the recursion equations, we
get either ¢>u; = 0 or (¢*1;)”! = 0. From equations (2.21) to (2.30) we have then for the
crossover exponents :

* * ® n x—1
Yoz = vo(mi— 4 2Mq%f) ?) (2.38)
* * n «L
Yq2p,, (nA —q 2.u’tr 197 2) (2 39)
* * n x 2 x—1
You, = Wl — (0" — 4072 (" — 1)) (2.40)
Y = vyl — 77”) (2.41)

Close to the fixed point p = 0, y, = —von = 3.—‘291721/0, /Tt (the last equality follows from
equation (2.30)) and is therefore positive. The anisotropy is thus relevant. The regions of

the phase space of the couplings which are attracted by this fixed point are given by the
conditions :

127
Ty > T"M\/ﬁ (2.42)
; 127 :
Cur < — Ay p (2.43)
Cuy — 0 ' (2.44)

where according to equation (2.20), it is natural to set 74 = €. Perpendicular to the CuO-
plane, the magnetic permeability is thus very small. The material tends to expell the mag-
netic field in this direction. We will come back to this point later.

Close to this fixed point the transition is second order with

B8=0(e) (2.45)
= 17” =nLl = O(e?) (2.46)
V=3 + —“—‘lfl((:ii) + Ofe ) (2.47)
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1.e. the same values as for the Heisenberg fixed point. Beside the decrease of the magnetic
permeability in the z-direction, the only observable effect of this fixed point would therefore
be to reduce the size of the first order phase transition. This point deserves some comments.
The Ginzburg criterion (equation (1.2)) determines the size of the critical region, i.e. the
interval of temperature around the mean-field critical temperature where the fluctuations of
the order parameter become so important as to produce the breakdown of the mean-field
theory. Inside this interval of temperature, the behaviour of the model is determined by the
nature of the flow around the fixed points of the RG recursion equations. As we perform RG
iterations, the flow approaches successively different fixed points thus determining different
critical behaviours. We can therefore observe different critical exponents in the interval of
temperature defined by equation (1.2). Since the new anisotropic fixed points have the same
critical exponents as the Heisenberg fixed point, we cannot distinguish their respective region
of influence. However, it is possible that the new fixed points reduce the size of the interval
of temperature around 7, influenced by the complex fixed point. That is what we mean by
"reducing the size of the first order phase transition”.

Before we turn our attention to the effect of this fixed point on the criticality of our model,
let us mention that the other fixed point is characterized by the same critical exponents,
B = O(¢), whereas the “attractivity condition” (see eq. (2.38) to (2.40) reads :

127

< —n_?M\/ﬁ (2.48)
j 12

Cpr > 77I77/4\/p"1 (2.49)
Py - oo (2.50)

3 Numerical Study Of The Flow

The recursion equations we have derived exhibit two new fixed points. One of them attracts
our attention for the two following reasons in connexion with the properties of the high-T,
superconductors : First, it is highly anisotropic, the RG trajectories that pass close to it
describe almost decoupled planes, and secondly, it exhibits a large magnetic permeability
parallel to the CuO-planes, while perpendicular to these planes, the permeability is very
small. In order to determine the influence of this fixed point on the flow, we numerically
study the evolution of the “effective critical exponents” defined in (2.29) and (2.30) and of
the magnetic permeabilities given by (2.21) to (2.23).

As as already been said, every RG iteration integrates out fluctuations with wave vectors
% < k < A. At this point we must recall that the physical justification for this choice of RG
transformation is that, in approaching the critical temperature, the correlation length grows
more and more. As a consequence, fluctuations with long wave vectors lose their importance
and can be integrated out. Therefore, the more integration , i.e. the more RG iteration,
we perform, the closer we are to the critical temperature. In other words the successive
free energy functionals that are generated by the RG transformation define a flow in the
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coupling space that reflects the critical behaviour of the model as we approach the critical
temperature in the sense that it defines a sequence of correlation lengths

T, — T,
g~ o I2T (3.

Thus there is a relation between the temperature 7T; and the number [ of iterations performed
[16]:
T - T,| -L
—_—~ 5 Y 3.2
" (32)

in term of the critical exponent 14 of the uncharged model. This allows us to compute the
size of the critical region governed by the complex superconducting fixed point, i.e. the size
of the first order phase transition, by determining at which iteration the couplings and the
critical exponents start to move away from one value to a new one. Let us remark that the
intermediate regime between the two fixed-point describes in no way any physical behaviour.
Only the fixed-point values of the critical exponents are susceptible of being observed.

25

)
oo
5;9§
x O+

20 |
15L ;; ;: o
qz,u_L e .:'.

10 +

s — ' 1 1
0o 50 100 150 200 250 300 350 400

Number of iterations

Figure 9 : Evolution of the perpendicular magnetic permeability under the RG
iteration for initial anisotropies p = 0.001,0.01,0.1 and 0.4.

In figures 9 to 12 we give the results of our numerical investigations. All the figures have been
obtained with the values n=2, e=1, supposedly adequate for high-7, superconductors,and
s = 1.1. Simulations performed with different rescaling factors corroborate our conclusions.
In figure 9 we plot the evolution of the crossover scaling field ¢*u, (I) for various initial
anisotropies. As a consequence of the anisotropy, the model shows a certain opposition
to the apparition of charge, which we interpret as a direct consequence of the new totally
anisotropic fixed-point p = 0. The extreme anisotropy of this fixed point almost confines
the charge carriers to the XY-plane. As a consequence they can only react to a field in
z-direction, i.e. p is much more affected by this fixed point than py. This interpretation
is corroborated by figure 10 where we plot q‘z,u“ against ¢2u, for various initial anisotropies.
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The effect of the new fixed point is obvious. There is thus no doubt that the flow is drasti-
cally influenced by the anisotropy.

25
20 4
a
15 . g
2 o
s ‘o
q [ ®
40
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10” "l o
+ 0
o
+ o
5h ° o
& +
o
*A +
DBP 1 1
0 5 10 15 20 25

9‘2#”

Figure 10 : Plot of the perpendicular vs. the parallel magnetic permeability
for initial anisotropy p = 0.9 (triangles), 0.05 (crosses), 0.001 (squares). As a
consequence of the anisotropy, ¢?y; is switched on later than ¢%y.

In figure 11 we plot the “effective critical exponent” (equations (2.29)) for various initial
anisotropies. This plot shows definite evidence of the delay of the runaway to the first order
transition due to the anisotropy. Everytime we lower the anisotropy by a factor ten, the
crossover of 77, from i, =0 to ny = —18% (—18% = —9 for superconductors since they have
n=2 and d=3, i.e. e=1) is retarded by 15 to 20 iterations. This corresponds to a reduction
of the first order phase transition :

8(p) = Tt = g = 5™ (33)

where AT(p) is the size of the first order phase transition, and Al(p) = I(p) — I(1) is the
delay of the crossover. We furthermore notice that there is no intermediate value of 7 since
the Heisenberg fixed point and the anisotropic one have the same critical exponents. In
figure 12, we plot Al(p) versus the logarithm of the initial anisotropy. The straight line is
given by Al(p) = 18.421n(p). The accuracy of the fit naturally leads us to conclude that, at
least in the range of anisotropy we have studied, the reduction is in a good approximation
given by :

8(p) ~ piEA2in(Llin o 1,053 (3.4)
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Figure 11 : Evolution of the effective perpendicular critical exponent 7, (/). The

delay of the crossover is clearly noticeable and reaches 15 to 20 iterations for a
lowering of a factor 10 of the anisotropy.

This result can be expressed in term of a crossover function (e=1)[17):

ot t ¢
o) = €5(=3) = F (—3) = fl—rges) (3.5)

where t:lT,;—cT‘[ is the reduced temperature. The size of the first order transition in an
isotropic material is approximated by [4]: |T — T.| £ €. T.K3 in term of the Ginzburg-
Landau parameter K = %,where A is the penetration depth, £ the coherence length, and
€. is defined in equation (1.2). This is typically of the order of 1072 if we insert values
corresponding to high-7, superconductors. So the size of the first order phase transition,

reduced by a factor 100 to 1000 by the high anisotropy of the HT, is at best of the order

IT — T.| < 1077 hardly experimentally observable, though theoretically not completely de-
stroyed.
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4 Conclusions

In this paper, we have presented a phenomenological theory of the superconducting phase
transition. We started from the Ginzburg-Landau theory, put emphasis on the anisotropy of
the Copper Oxides Superconductor, and introduced a minimal coupling between the order
parameter which describes the superconducting condensate and the intrinsic magnetic field
produced by the charge carrier. Furthermore, we used a treatment which takes care of the
fluctuations of both the order parameter and the gauge field. We saw that such a treatment
was imposed by the small coherence length and the large critical temperature of the HT,.
Our results were obtained using the Wilson-Fisher e-expansion up to first order in e=4-d.

Our main purpose was to determine the order of the phase transition. Our results are the
following :

The anisotropy modifies the RG recursion equations in that it introduces two new totally
anisotropic fixed points which modify drastically the shape of the RG flow. As a consequence,
the runaway to the first order phase transition is delayed sensibly, and the size of the first
order phase transition is reduced by a factor

AT(p)
) - ~ 1.053 4.1
This reduction lowers the size of the first order transition at least down to |T — T,| < 1077
and thus destroys any hope of its experimental observation in the HT,. Furthermore and fol-
lowing the already mentioned papers of Halperin et. al.[4] and of Chen et. al.[9], Kolnberger
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and Folk [18] performed a few years ago an expansion up to second order in €=4 - d. This ex-
pansion lowered 1., the critical dimension of the order parameter under which the transition
is first order, from n, = 365.9 down to 2.4, i.e. in a physically attainable range, thus sug-
gesting a suppression of the first order transition. It is thus rather unlikely that introducing
the anisotropy in a second order expansion will favour a first order transition. It is however
possible that our results are not applicable to high-7. superconductors, since setting e=1 in
our formula could put us outside of the convergence radius of our expansion. (Even inside
the radius of convergence, the precision of this expansion is hard to estimate !) Moreover, it

is possible that the anisotropy should be introduced in a different way, leading to different
results.

The appearance of the new totally anisotropic fixed point, especially the associated increase
in the perpendicular magnetic permeability, seems to have a strong relation with some ex-
perimental properties of the high-T, superconductors. It would be in particular interesting
to study the modifications due to the presence of an external field, since they could enlighten
some aspects of the vortex formation, though a more careful consideration of the anisotropy
could be necessary [19]. In another direction, a L - expansion could give further hints on
the critical behaviour of this model. Finally, as has been pointed out by Lawrie [20], a more
careful study of the actual form of the thermodynamic functions could be necessary in order
to determine the exact order of the transition.

Appendix A

We explain in this section the lines of derivation of equations (2.20) to (2.27). The general
method has already been described in section 2.2. In order to get the recursion equations
for the various couplings, we have to compute the contributions arising from the figures 3
to 6. Comparison of these contributions with the original free energy functional leads us to
the recursion equations.

As an example, we derive explicitly equation (2.23). The graph to be computed is the
rightest on figure 3. Its contribution is :
J dk (kL Ap)?

_2q277‘“ﬂ. (27)d 52 ) = 2 >
(viks +wky +a)(yolke + K2+ (k) + K2+ )

where d is the dimension, d=4-¢, and n is the number of component of the order parameter.
Since we restrict ourselves to an expansion in first order in €, we perform the calculation
setting d=4 and a=0. This comes from the fact that the term we are interested in has a
coupling (8mug)~!. As a consequence our correction will be proportional to ¢?uy = O(e).
We must thus compute :

—902 A I x i 30 ALN2 o ‘2 2
Z.q n;yL[\ dk/ d¢1/ d@?j debs k (Ak,? :111(¢2)Sm £¢3)C?5 (¢3) _
(2m) - 0 0 0 (71 cos®(¢3) + v sin®(¢3)) (yo (ki + K )2 + v (ky + &))?)
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; o i ; ~2 =2 ;
The term we are interested in is proportional to k', Af . In order to get this we expand

the second term in the denominator of the integrand in a Taylor series in k'. The relevant
contribution is then :

—2¢2 'm/l A )2 sin( o) sin?(¢3) cos?(¢3)
g s e e e e

4 2 1 . . f
g [(’Y.L cos?(¢3) + sin®(¢3)) [ﬁ' cos”(¢a)k)" + Tﬁ sin’(gs) (sin(¢2) COS2(¢'1)km2+

+ sin® () sin®(¢ ) k; 2 + k)2 COS?(%)] — (oK 2+ ’Yﬁkﬁ?)]

q‘ﬂ - 1,53 1
L5k is) [ K7t - Skt
where since d=4, &' = (K, ky, ki, k' ). The other graphs on figure 3 are treated in the same

way. The choice of the coulomb gauge V - A = 0 allows us to transform terms like ki k, in
relevant terms. We end up with the contribution :

¢*nln(s

-2 B -2
9672 [[p — 4 (p = D7 K2 AY + K AL o+ (A + k4L )

Comparison with the right part of (2.18) leads us directly to equations (2.21) to (2.22). The
other couplings are treated in the same way.

Let us finally add that these recursion equations are linearized equations. They are built

with the first two terms of a power expansion in ¢. In that sense we can rewrite equation
(2.24) :

3 1 1

2 2 2
Fert1 1 — Hird L 1P]

Herd Y4 — HLIYLL

3 .
Yei+1 =YLl —nlns) |1 - 2—Tq2’yi,l Ins
[l

3L
3 o Mgy PPy
=yL(—=1— ¢ Vgl
27 Herd Y|4 — HLiYL

o=

)Ins + O(€?)

The fixed-point condition v, ;41 = 7, leads us then to equation (2.29). Equation (2.30) is
obtained in the same way from equation (2.25).
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