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Abstract. We analyse with the algebraic, regularization independent, cohomological B.R.S. methods,

the renormalizability of torsionless N=2 and N= 4 supersymmetric non-linear a models built
on Kahler spaces. Surprisingly enough with respect to the common wisdom, in the case of N=2
supersymmetry, we obtain an anomaly candidate, at least in the compact Kahler Ricci-flat case. If
its coefficient does differ from zero, such anomaly would imply the breaking of global N=2 super-
symmetry and the disruption of some schemes of superstring compactification as such non-linear a
models offer candidates for the superstring vacuum state.

In the compact homogeneous Kahler case, as expected, the anomaly candidate disappears.

The same phenomenon occurs when one enforces N=4 supersymmetry : in that case, we obtain
the first rigorous proof of the expected all-order renormalizability -" in the space of metrics"- of
the corresponding non-linear o models.

1 Introduction

Supersymmetric non-linear o models in two space time dimensions have been considered for

many years to describe the vacuum state of superstrings [1],[2]. In particular Calabi-Yau

spaces, i.e. 6 dimensional compact Kahler Ricci-flat Riemanian manifolds [3], appear as
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good candidates in the compactification of the 10 dimensional superstring to 4 dimensional
flat Minkowski space; indeed, the conformai invariance of the 2.d, N 2 supersymmetric
non-linear o model (the fields of which are coordinates on this compact manifold) is expected
to hold to all orders of perturbation theory [4].

However explicit calculations to 4 or 5 loops [5] and, afterwards, general arguments [6]

show that the ß functions might be different from zero. But, as argued in my recent review
[7], at least two problems obscure these analyses : firstly, the fact that the quantum theory
is not sufficiently defined by the Kahler Ricci-flatness requirement ; secondly, the use of
"dimensional reduction" [8] or of harmonic superspace [9] 1 in actual explicit calculations
and general arguments. Then, we prefer to analyse these models using the B.R.S., algebraic,
regularization free cohomological methods.

Moreover, the quantization of extended supersymmetry raises the difficulty of an "on-
shell" formalism. Indeed, if one leaves aside harmonic superspace where firm rules for

quantization 2 are not at hand, contrary to ordinary superspace [11], one has to deal with
(super)symmetry transformations that are non-linear and close only on-shell. This problem

was addressed in ref. [12] by O. Piguet and K. Sibold for the Wess-Zumino model as

a "toy-model" and, in a still uncomplete way, by P. Breitenlohner and D. Maison [13] for

supersymmetric Yang-Mills in the Wess-Zumino gauge ; in the first paper of this series [14],

hereafter referred to as (I), we analysed the d=2, N=l supersymmetric non-linear a model
without auxiliary fields.

In the second paper of this series, we address the question of the all-orders renormalizability

of extended supersymmetric (N 2, 4) non-linear a models in two space time
dimensions. Of course, we are only interested here in the renormalization of the supersymmetry

transformations : as discussed by Friedan [15], the action of a non-linear ej model may
be identified with a distance on a Riemannian manifold M, the metric depending a priori
on an infinite number of parameters. One then speaks of "renormalizability in the space
of metrics" or "à la Friedan". When there exist extra isometries, for example in the case

of the non-linear a models on coset spaces (homogeneous manifolds), the number of such

physical parameters becomes finite and we have proved the U.V. renormalizability of these

isometries in the purely bosonic case in [16], as well as in the N=l supersymmetric extension
in (I). The present work gives the necessary extended-supersymmetric generalisations. On
the other hand, in the generalised non-linear o models à Ja Friedan, our aim is the proof
that no extra difficulty occurs in their supersymmetric extension.

As in (I), we are here interested only in the ultraviolet renormalizability of the d=2
extended supersymmetric non-linear a models : of course, one has also to deal with infrared
divergences. This would require the addition of an infrared regulator which of course breaks
the symmetries, but only softly, and then does not affect our results on "hard" divergences

1 The regularization through dimensional reduction suffers from algebraic unconsistencies and the
quantization in harmonic superspace does not rely on firm basis, due to the presence of non-local singularities (in
the harmonic superspace) [10].

2 i.e. a subtraction algorithm insuring the locality of the counterterms [10].
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and possible anomalies for the supersymmetry in 2 dimensions.

We shall use N=l superfields, which is allowed by the general superspace quantization
methods established by Piguet and Rouet who in particular demonstrated the Quantum
Action Principle in that context [11], and the very results of (I), proving that N=l super-
symmetry is all-orders renormalizable. The classical theory was defined in (I), so here we
only recall in subsection 2.1 the results needed for the following. Due to the non-linearity
of the supersymmetry transformations in a general field parametrisation i.e. coordinate
system on the manifold), we shall use a grading (according to the spectral sequences method
[17]) in the number of fields, ghosts and their derivatives. As a matter of fact, we find it
convenient to use two successive gradings, one in the number of extra supersymmetries, the
second one with respect to the number of fields. The "filtrations" as well as the lowest
order nilpotent Slavnov operators: S£ - corresponding in fact to N=2 supersymmetry -, and
S£° - corresponding to the zero field approximation of S£ -, are defined in subsection 2.2.
As in [16] and (I), the cohomology of S£° will give the main information. In Section 3, we
analyse the cohomology of S£° and in Section 4 the one of S£, i.e. at that point we are
concerned with the special case of N=2 supersymmetric non-linear a models, and we find a

non trivial cohomology in the anomaly sector. Subsection 4.4 is then devoted to a discussion
of this N=2 case and our main result is that, surprisingly enough with respect to the common

wisdom [18]3, there exists a possible anomaly for global supersymmetry in 2 space-time
dimensions [21], at least for torsionless compact Kahler Ricci-flat manifolds (i.e. special
N=2 supersymmetric models). We also prove that this anomaly disappears when the manifold

A4 is an homogeneous one, i.e. when one deals with N=2 supersymmetric non-linear o
models on coset spaces. Section 5 then constructs the cohomology space of the complete Sl
operator, with the essential result of the all orders renormalizability of N=4 supersymmetric
non-linear a models. A discussion of our results is presented in the concluding Section.

2 The classical theory and the Slavnov operator

In (I) we obtained the classical action and the linearised Slavnov operator that describes
N=4 supersymmetry and hereafter we summarize the essential results.

2.1 The classical theory and the Slavnov identity

We consider d=2, N=4 supersymmetric non-linear a models in N=l superfields $*(aj, 0) (i,
j,.. l,2,..4n). In light-cone coordinates and in the absence of torsion, the non-linear N=4
supersymmetry transformations write :

6& JiAj(<l>)[e+D+& + eÄD-.&} A =1,2,3. (2.1)

3 Notice also that recent works of Brandt [19] and Dixon [20] show the existence of new non-trivial
cohomologies in supersymmetric theories.
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where the covariant derivatives are

D± ^ + iO±d±

and satisfy
{D±, D±) 2id± {D+,D.} 0 (2.2)

As is well known (see for example ref.[22]), N=4 supersymmetry needs the J*Aj($) to De

a set 4 of anticommuting integrable complex structures according to :

•£i(*)4*(*) -6ab81 + eABcJhki*) (2-3)

and the invariance of the action Alnv- J d2xd26gij[$]£>+$*£>_#^ needs the target space to
be hyperkahler :

* the metric g^ is hermitian with respect to each complex structure

•Ia — JAk9 — ~«m ; JAì) — JAi9kj —Jajì

* the JAj are covariantly constant

DkJ\j dkJ\j + TlHJAj - YkjJAl 0

where TJ., is the (symmetric) connexion with respect to the metric gij. In the B.R.S. approach
[23], the supersymmetry parameters eA are promoted to constant, commuting Faddeev-

Popov parameters dj 5 and an anticommuting classical source r]i(x) for the non-linear field
transformation (2.1) is introduced in the classical action 6. Then, the total effective action
7 is:

Tclas, Ainv. + j ^sd^foJk($)[d+£>+*> + dAD-.&] - ^ABCl*!^*)^} (2"4)

The terms quadratic in the sources are needed as a consequence of the only on-shell closedness

of the N=4 supersymmetry algebra [24](I).

The Slavnov identity writes :

/Sir-tat. xptot."W)ÏM /d2^[(dî)2(%ia+^)+(dI)2(^_^)]. (2.5)

4 As a matter of fact, it is sufficient to have 2 anticommuting integrable complex structures : then, the
product J^k J\ ¦ Jy k offers a third complex structure.

J As one is only concerned by integrated local functionals - i.e. trivially translation invariant ones -, we
forget about the linear translation operators P± id±, to which anticommuting Faddeev-Popov parameters
p± should be associated, and do not add in rcioss of equ.(2.4) the effect of translations on the fields <è%

6 In the absence of torsion, there is a parity invariance

+ -+ -, cPx -> d2x, d29 -> -cPe, ** — $\ ru -> -ru

Moreover, the canonical dimensions of [cPxcfö], [$'], [<t^\, [D±], [%] are -1, 0, -1/2, +1/2, +1,respectively
and the Faddeev-Popov assignments + 1 for dA, -1 for r/i, 0 for the other quantities.

7 For simplicity, no mass term has been added here as we are here only interested in U.V. properties
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This is a non trivial result as in that N 4 case, no finite set of auxiliary fields does exist.

As is by now well known (for example see [7] or [16]), in the absence of a consistent
regularization that respects all the symmetries of the theory, the quantum analysis directly
depends on the cohomology of the nilpotent linearised Slavnov operator :

/ d2xd26
C'Y'class. Q CT^class.

+ ¦

6rii(x, 6) 6&(x, 6) 6&(x, 6) 6r,i(x, 6)

Sl 0 (2.6)

in the Faddeev-Popov charge +1 sector [absence of anomalies for the supersymmetry] and 0

sector [number of physical parameters and stability of the classical action through radiative
corrections]. Notice that the Slavnov operator (2.6) is unchanged under the following field
and source reparametrisations :

$<_>$* + xW'm r,, ^ r,, - AiftWj[#]

where VV*[$] is an arbitrary function of the fields $(x, 6) and a comma indicates a derivative
with respect to the field $*. Under this change, the classical action (2.4) is modified :

Tclass. _> Tclass. + ^ J (fxd^ViW^] (2.7)

but the Slavnov identity is left unchanged as

giclas*. + A5lA] _ celasi. + XSL[SLA] STdaSS- (2.8)

The quantization of this theory will be studied in the next Sections, using the same algebraic
cohomological methods as in the first paper of this series (I). It will be convenient to separate
the 3 extra supersymmetries into the one 8 corresponding to J3 and the 2 others to Ja, a=l,
2, i.e. to separate the N=2 supersymmetric case from the N=4 one. In the same way, one

splits the linearised Slavnov operator into 3 parts according to their number of ghosts d* :

sL s0L + sl + sl

(sl)2 slsl + slsl sLsl + slsl + slsl s\s2l + s2Lsl (S2)2 0

S£ j d2xd26{J}(d+D+1>] + d-D_<¥)
_8_

'8&
,8Ainv-

+[^T + 1h{J$t - Jtj)(d+D+& + d-D_V) + JÌ(d+D+rij + d-D^)]—} (2.9)

which does not change the number of ghosts d*, will play a special role. Moreover, notice
that the cohomology of S£ corresponds to the special N=2 supersymmetric case.

8 In the following, we omit the index 3 of the complex struture J3 as well as the one of the ghost df
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2.2 The filtration and the operator S°

In the presence of highly non-linear Slavnov operators such as in (2.9), as recalled in (I), it is

technically useful to "approximate" the complete S£ operator by a simpler one S£° through
a suitably chosen "filtration" ghost number preserving counting operation)[17]. As it does

not change this number, S£°, the nilpotent lowest order part of S£, will play a special role.

Here, we take as counting operator the total number of fields $*(x, 6) and their derivatives.
Then :

S£ S£° + S£1 + S£2 + S°° + S£, (S£°)2 0

S°° Jj(0) Jd2xd2e I (d+D+c¥+d-D^j)-^i+(d+D+rii + d-D_rii)-^\ (2.10)

As explained in refs.([17],[16]), when S£° has no cohomology in the Faddeev-Popov charged
sectors, the cohomology of the complete S£ operator in the Faddeev-Popov sectors of charge
0 and +1 is isomorphic to the one of S£° in the same sectors. The extension to the case
where S£° has some non-trivial cohomology was discussed in the appendix of (I)9 (see also

the original papers [17],[16] and [25]).

Then, in the next Section, we shall determine the cohomology spaces of S£° in the Fadeev-

Popov sectors of charge -1,0 and +1.

3 The cohomology of Stf

The most general functional (in the fields, sources, ghosts and their derivatives) of a given
Faddeev-Popov charge is built using Lorentz and parity invariance and power counting (see

footnote 6).

3.1 The Faddeev-Popov negatively charged sectors

Due to dimensions and Faddeev-Popov charge assignments, dimension zero integrated local
polynomials in the Faddeev-Popov parameters, fields, sources and their derivatives have at
least a Faddeev-Popov charge -1 :

Ahl] f êxêOniV^] (3.1)

Then there is no Faddeev-Popov charge -1 coboundaries, so the cohomology of S£° in that
sector is given by the cocycle condition :

S£°A[_1] 0 * Jj(0)V? J? (0)VJ (3.2)

9 In particular, the cohomology of S^0 in the Faddeev-Popov -1 sector restricts the dimension of the
cohomology of S£ in the 0 charge sector when compared to the one of 5£°.
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This condition, when expressed in a coordinate system adapted to the complex structure
Jj[$] (i (a, ä), ¥ (ft, ft) : J6a i6l, J'l -i8%, 3% Jj> 0), means that V*[*] is a

contravariant analytic vector : Va Va[(/>d], Va Vs[c}3].

Let us now turn to the Faddeev-Popov neutral charge sector.

3.2 The Faddeev-Popov 0 charge sector

Here, one decomposes the set of integrated local polynomials in the Faddeev-Popov parameters,

fields, sources and their derivatives with respect to their number of ghosts dj, N^„ ¦

Ag,] j d2xd2e {tij[$]D+&D.& + niU,j[$](d+D+& + d~£>_$')}

Af0] Jd2xd2e {riiUlaj[$](dtD+& + d-aD„&) + Wi((C<T - d;d+)S£[<I>]}

Afo] dUß J'tPxtPOrhVjSfcal*] (3.3)

where, due to parity invariance (footnote 6), t^ (resp. S'J, SV^) are symmetric (resp. skew-

symmetric) in (i,j). Coboundaries being given by S£°A[_!][arbitrary V*($)], the analysis of
the cocycle condition S^Ap] 0 successively gives :

3.2.1 Nda 0

Ag,] Afjf[ty(4)] + S?^^«)] ; Af^[ty] j rf»«d»flly[*]£>+*lZ?_^ (3.4)

where the tensor ty which occurs in the anomalous part is constrained by :

a) Jj(0)tifc + %4(0) =0,
&) ^(0)[tH,,--ta,fc]-(i^A) =0. (3.5)

The absence of source dependent non-trivial cohomology means that, up to a field redefinition
(see (2.7,2.8)), the complex structure J] is left unchanged through radiative corrections.
Moreover, condition (3.5a) means that the metric <?y + ftiy remains hermitian with respect
to the complex structure Jj, whereas (3.5b) expresses the covariant constancy of J^ with
respect to the covariant derivative with a connexion corresponding to the metric <7y + ftty.
These are precisely the expected conditions for the stability of N=2 supersymmetry.
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3.2.2 A^=l
S2PAL 0 gives (no coboundaries exist in that sector) :

U*aJ 0 Af0] Aj8[-[S«(*)] Jd2xd2ew3tâd- - d-d+)S%m (3.6)

where the tensor S'J which occurs in the anomalous part is constrained by :

a) Jl(0)S$ + Ski4(0) =0,
b) Jk(0)Sln - J*(0)S& =0, (3.7)

i.e., using the same adapted coordinate system as above, is a pure contravariant analytic
skew-symmetric tensor (i.e. S^ S^(ft) S|fsi S^(ft) the other components
vanish).

3.2.3 Nda 2

Sj°A20] 0 gives (no coboundaries exist in that sector) :

Afo] Af0][S^)($)] dtd~ß J (Px^ev^Sf^] (3.8)

where the tensor SP* which occurs in the anomalous part is constrained by :

«) «s^ + s^jfcCo) =0,
*>) Jmslißln-A(0)S$ßhk =0, (3.9)

i.e., using the same adapted coordinate system as above, is a pure contravariant analytic
skew-symmetric tensor.

Finally, let us consider the Faddeev-Popov charge +1 sector.

3.3 The Faddeev-Popov +1 charge sector

Here also, one decomposes the set of integrated local polynomials in the Faddeev-Popov
parameters, fields, sources and their derivatives with respect to their number of ghosts
<£> Nda

3.3.1 Nda 0

A?+1] depends on 8 tensors :

Af+1] Jd2xd2Ö{(d+)2(d-)27fe»?i7?ttt«fcl



962 Bonneau

+ a*d-[nirìjt1~3l(d+D+$n - d~D^n) + ^^(d+D+r,, - d~D-Vj)]
+ d+d-r,ktkmD+VD_&
+ (d+)2Vk(tk4 mD+VD+& + tk5j(D+)2&)

+ (d-)2r,k(tì wD.VD-V + tk5j(D-)2V)

+ d+(t[ii]nD+VD+&D-<i>n + s2 ^D-D+VD+V)
- d-(t[ij]nD^D_cpD+^n + s2{ij)D+D^D^)} (3.10)

where, due to the anticommuting properties of rji and D±$l and to the integration by parts
freedom, the tensors ftik\ q„, t2uj-\, *4Kfl> *[y]n are skew-symmetric in i, j, k, and Sj «2(ij)
symmetric in i, j. Here and in the following, the symmetry (resp. antisymmetry) properties
of the involved tensors in the exchange i to j are indicated by parenthesis (ij) (resp. brackets

[ij])-

Coboundaries being given by S£°A?0i [arbitrary (ty[$],f/| [$])], the analysis of the cocycle
condition S£°Af+1] 0 leads to:

A^0) j d2xd2öt[^($)(d+)2(d-)2OTi% (3.11)

where the skew-symmetric tensor tly"*'($) which occurs in the anomalous part is constrained
by:

a) J^O)^™-^ is i, j, k skew — symmetric,

b) 4(0)^ J£(0)t[«»l (3.12)

Using the same adapted coordinate system as above, condition (3.12a) means that the tensor
f.'y'fcI is a pure contravariant skew-symmetric tensor (i. e. t^abc^, t'ai,cl / 0 the other components
vanish) whereas (3.12b) means that it is analytic (i.e. t^ t^bc\cpd), t^ r>fel(c^~)).

In particular, due to the vanishing of tta6c', such tensor cannot be a candidate for a torsion
tensor on a Kahler manifold [26].

As a first result, this proves that if the manifold M has a complex dimension smaller
than 3, there is no Nda 0 anomaly candidate.

3.3.2 Nda 1

With an expansion similar to the one of A?+1i, Aj+1, now depends on 11 tensors :

Af+1] dt J' d2xd2e{d+(d-)2rìirì]rìktl^

+ d+d- [rnj$$nD+*n + ViD+vdi'] + d-d- [wjt'ïïlD-^ + ViD-Vj&
+ d-Vk[tka2 {lj]D+VD_V + tka3]D+D_&]

+ d+nk[tkai mD+*'D+& + tka5j(D+)2&]
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+ [tafifrD+VD+VD-** + sa2 mD-D+VD+V]}
+ parity exchanged (according to footnote 6) (3.13)

Coboundaries being given by S£°AL[arbitrary (Cjj[$],5^[$])], the analysis of the cocycle
condition SfAf+1] 0 leads to :

/S$f> J d2xd2etl^(<t>)[dtd+(d~)2 + d-d-(d+)2]riir1jr1k +

+ jd2xd20ta[ij]k($)[d+D+$iD+<l>iD-§k - d-D-&D-&D+$k] (3.14)

where the constraints on the skew-symmetric tensors tgk>(<&) and tauj\k($) which occur in
the anomalous part are easily solved in the same adapted coordinate system as above :

• the tensor tgk> is a pure contravariant analytic skew-symmetric tensor,

• the tensor ta[ab]c 9s[datab(<j>, ft) — dbtaa(cj>,cj>)] (and the complex conjugate relation),
the other components vanish.

3.3.3 Nda 2

Here, we separate in A?+1i the terms symmetric in the exchange of the indices a and ß of
the 2 ghosts d„ and dì from the skew-symmetric ones :

Af+1]|M) du; J êxcee^d-fn^r,^ + <r fo^a,.**«^ k + viD+wf^]
+ 77fc[D+$i£)+^t*:a/3)4[ij, + (D+f^t\aß)5]\] + parity exchanged +

+ d+ad~ß jdW^d+d"Wfctg] +

+ [rm[d\D+& - d-D^k)t'Mß)1 k + rn(d+D+llj - (fD^sf^ +

+ VkD+¥D-&t'kQß)m} ;

Af+1)U dUp Jd2xd2e{[mj(d+D+$n + d-D_$n)tM]ln

+ ^(d+D+Tij + d-D-n^s^]
+ %[D+$i/J_^tfa/3]4 (y) + D+D.m\aß]5j]} (3.15)

Then, coboundaries being given by S£0A?0, [arbitrary SrLi($)], the analysis of the cocycle
condition S£0A?+1] 0 leads to :

A^j2' d+d; j d2xd2erii [(<T)V»0*) + (D+)2Vt\aß)j(<!>)] + parity exchanged +

+ dUßd+d- jd2xd26VlVjVkt'l^(*) +

+ d+dß j d2xd2eVi [D+&D„$kt\aß] ot)(*) + D+D_&t\aß]j($)} (3.16)
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where the constraints on the tensors $$($), t\aß)j($), $$($), t\aß]{Jk)($) and t\aß]j(^)
which occur in the anomalous part are easily solved in the same adapted coordinate system
as above :

• the tensors r./*fgl($) and tPJfè) are pure contravariant analytic skew-symmetric
tensors,

• the tensor t\aß)i($) is a mixed analytic tensor, (i.e. ta{aß)b ta{aß)b(ft), tfaß)b

*Us(^)).

• the tensor tfaß] (oò) dadbtfaßX (ft ft) and the tensor t*aßX b dbt^aß] (ft ft) (and the complex
conjugate relations), the other components vanish.

3.3.4 Nda 3

In that sector, there are no coboundaries, and the analysis of the cocycle condition S£° A?+1i

0 with :

Af+i, d+ad+ßd~ jd2xd2ö{d-77l7?J77fct[^1)7 + mmtfXi kD+$k + mD+njsfXò +

+ parity exchanged (3-17)

leads to :

A";;j3) d+d+d'd- j d2xd2erìirìinkt\Ìk^) + parity exchanged (3.18)

where the constraints on the skew-symmetric tensor t(„m7(4) which occurs in the anomalous

part are easily solved in the same adapted coordinate system as above and again means that
it is a pure contravariant analytic skew-symmetric tensor.

3.3.5 Ndr_ 4

In that sector too, there are no coboundaries, and the analysis of the cocycle condition
S£°Af+1] 0 with :

Af+1] d+ad+d-di J d2xd2emktW)b6)) (3.19)

leads to :

A^4) dU+ßd~dJ Jd2xd26ViViVkt$]ß){yg))(*) (3.20)

where the constraints on the skew-symmetric tensor t(?aL, «%($) which occurs in the anomalous

part are easily solved in the same adapted coordinate system as above and again means
that it is a pure contravariant analytic skew-symmetric tensor.

This ends the analysis of the cohomology of S£° and we are now in a position to discuss
the cohomology of the complete S£ S£° + S£ operator.
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4 The cohomology of S[\

It will be convenient to analyse the cohomology of S£ in a coordinate system where the
complex structure J3 is constant. S£° of equ.(2.10) is unchanged (with dj(0) —? Jj, field
independent) and we note that

/KAinv.
c

d2xd2ec:, tt- : -, (4.1)
8&(x,e)8r)i(x,e)

v '

decreases the number of rji of one unity, whereas S£° does not change this number. Using
this fact, we are able to construct the S£ cohomology starting from the S£^ one : indeed,

S£A[H (Sl0 + SD(Af£] + Â[H) 0 <* S°°Â1H -S£(Af;;, + Â[H) (4.2)

Then, when ordered by decreasing order with respect to the total number of 7?j, the equation
S£A[^j 0 is identical to the S£°A[^] 0 one with a right hand side given by previous
order contributions.

4.1 The Faddeev-Popov negatively charged sectors

Thanks to the simplicity of A[_n (3.1), the cohomology of the complete S£ operator in the

Faddeev-Popov charge -1 sector is easily obtained : the vector V* [$] should satisfy :

/<
c Ainv.

axd2e-——-Vi[^(x,e)] 0 O V*[$] is a Killing vector for the metric gy[$]

•J][$\ViVk VjV'J*[$] 44> V'[$] is a contravariant vector analytic with respect to J)[$]

Let us now turn to the Faddeev-Popov neutral charge sector.

4.2 The Faddeev-Popov 0 charge sector

As explained in the appendix of (I) (see also [16],[17]), despite the non-vanishing S£°

cohomology in a Faddeev-Popov positively charged sector (subsection 3.3), the cohomology
of S£ is a subspace of the one of S£°, i.e. one can always construct the cocycles for S£

starting from those of S£°. It may also happen that some of the thus constructed cocycles
for S£ become coboundaries: this occurs when there is some cohomology for S£° in the
Faddeev-Popov charge -1 sector ((I) and [25]). We have seen previously that this relies on
the existence of Killing vectors for the metric <7y [$] ; this is natural as such vectors signal
extra isometries that constrain the invariant action or, equivalently, signal the non physically
relevant character of some of the parameters of the classical action that may be reabsorbed

through a conveniently chosen field and source reparametrisation [16].

As in the previous section, the analysis separates with respect to the number Nda :
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4.2.1 Nda 0

The image of AL (3.3) through S£ does not intercept A?"j] the cohomology of S£° in
the anomaly sector. As a consequence ([17] and the appendix of (I)), there will be no
obstruction in the construction of the cocycles of S£ starting from those of S£° and there is

an isomorphism between the two cohomology spaces. Consequently, the cohomology in the
Ndc 0 Faddeev-Popov neutral sector is characterized by a symmetric tensor f,y [$] such that

9ij 9ij+htij is a metric, hermitian with respect to the very complex structure J' we started
from, and such that Jj is covariantly constant with respect to the covariant derivative with
connexion rfjgrón]- This is the necessary stability of the N=2 supersymmetric theory which
ensures that, at a given perturbative order where the Slavnov identity holds (absence of
anomaly up to this order), the U.V. divergences in the Green functions may be compensated
for through the usual renormalization algorithm and normalisation conditions [7].

4.2.2 Nda 1

Here the image of AL (3.3) through S£ intercepts A?"jj the cohomology of S£° in the

anomaly sector. As a consequence ([17] and the appendix of (I)), this will restrict the

cohomology (3.6,3.7) in the considered sector. In fact, S£A[0j 0 gives (no coboundaries
exist in that sector) :

Af0] A^(1)[î/^($), Sy($)][e?u.(3.3)i

with C/V($) -2[JjkSkim <* S^ -\jikU{k (4.3)

where the supplementary constraint on S% is such that Jlaj + h.Ulaj - which anticommutes
with P - is now also covariantly constant with respect to the covariant derivative with
connexion ry[gmn].

4.2.3 Nda 2

Here too, the image of AL (3.3) through S£ intercepts A?™j] the cohomology of S£° in
the anomaly sector, which will restrict the cohomology (3.8,3.9) in the considered sector.
Thanks to the simplicity of AL (3.3), the analysis of the cocycle condition S£AL 0 in
the one 77» subsector readily shows that the cohomology space of the complete S£ operator
is empty in this Nda 2, Faddeev-Popov neutral sector.

Finally, let us consider the Faddeev-Popov charge +1 sector.

4.3 The Faddeev-Popov +1 charge sector

Here too, the analysis separates with respect to the number Nda
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4.3.1 Nda 0

The S£° cohomology was obtained in equ.(3.11) :

a$0) J d2xd2et^m(d+)2(d-)\V3Vk

and, using the algorithm described by equ. (4.2), we find the S£ cohomology in the same
sector to be :

Ap™ J d2xd2et^k\m(d+)2(d-)\rÌ3rìk - ^d+d-rnTijJUd+D+^ - d" £>_$")

- 3d+d-r)iJjnJkmD+<inD^m

+ -^JinJjmJki(d+D+cì>nD+<l>mD^1 - d~£>_$"£>_$mD+$')}

+ /' d2xd2et\nm]l[^](d+D+^nD+^mD_^1 - d-Z?_$"D_$mD+$') (4.4)

where tL]fc[$] is related to the pure contravariant analytic tensor i'tJ7*][$] through (in complex
coordinates) :

fHc> ^aijc^0' the other vanish ;

*[ai]c l9c[gaagbbK,d^äi^] where K is the Kahler potential

4.3.2 Nda 1

The S£° cohomology was obtained in equ. (3.14) :

+A$1J J d2xd2etl^)[d+ad+(d-)2 + dZd-(d+)2]riiVjnk.

+ Jd2xd2eta[ij]k(^)[dtD+^D+^D^k - d-D^D_&D+Q>k]

Notice first that S£ does not act on the second piece of A?™j| which then is a true S£

anomaly. Due to its similarity with A?£jj the first part of Af^j is easily promoted to a

complete S£ cohomology :

A™f jd2xd2etl^){d+ad+(d-)\rìjrìk - ^dtd-ViVjJkn(d+D+$n - d"D_$")

- 3d+d-riiJjnJkmD+^nD^m + ^JlnJjmJkld+D+<ènD+^mD^1 + parity exchange}

+ Jd2xd2e(2tlm(3>) + *aWlfc(*)) {d+aD+VD+VD_<*k - d-aD-.VD-VD+&)(l.h)

where £Lyij.[$] is related to the pure contravariant analytic tensor t^jfc'[$] as in the Nda 0

case, and £a[y]A;[$] is related to a covariant vector tai (see subsection 3.3.2).
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4.3.3 Nda 2

The S£° cohomology was obtained in equ. (3.16):

Aan.(2) _ A<xn.(2)i Aan(2)| _1_ Aan(2)| _l_ Aan(2)|
A[+1] -A[+1] \(aß)++ + A[+1] \(aß)— + A[+1] |(a/8)+_ + A[+1]'|M

where :

A|7ij2)|(OÄ++ did+ß J d'xcfevi [(OVfctggx*) + (D+po'W*)]

Apij2)|(a«+_ d+d^d+d- /d2xd2%7?j%t|^1)($)

Af;f|M dld-ß j d2xd2e^ [D+&D-$kt\aß](Jk)($) + D+D.^t\aß]jm]

• As S£°A2+1i contains at least one source r?,, and S£ decreases the number of 77» of one

unity, the [a, /3] skew-symmetric part of the looked-for cocycles of S£, A2+1i|[Q|g] should satisfy

(S£A[+1]J |no rj 0

which readily gives :

(A[+i]lM)lfI 51 (c£dß J d2xd2eVirijTlm¦ß]j ¦

The cocycle condition (S£° + S£)Af"1j '|[ajgj 0 constrains XMi to be a pure contravariant
analytic skew-symmetric tensor ; then, as a consequence of (3.8,3.9), the last parenthesis is

anihilated by S£° and A?+1]|[a/3] is in fact a S£ coboundary.

• In the same way, the cocycle condition S£A2+1i |(aj8)+- — 0, when analysed by increasing
an. (2"

[+1]
number of sources n, leads to A?"ji | („£)+_ 0

Finally, the cocycle condition S£A2+1,|(0,/3)++ 0 is analysed along the same lines as

S£A?+1] 0, and leads to

Aan.(2)

dtd+ Jd2xd2et%kß\{^] {(d-)2Wj% + |[iOTiJltarf-D+*" + THJjnJhnD+9nD+$m]}

+ d+dj / d2xd2en%t\aß)i [$] (/j+)2<^

+ parity exchange (4.6)

where :
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- as usual, t^i[$] is a pure contravariant analytic skew-symmetric tensor, further
constrained so as the corresponding t\aß\uj\k tensor actually vanishes, i.e. in complex coordinates,

,[abc] jM>c]/jlg£\ def. .Joèci / 7d\ j. / id\
Haß) — t(aß)VP Haß)[abc] 9<a9bl9ost{aß)(<P Haß)[<x6c](4>

and the complex conjugate relations ;

- i(Q/3)j[$] is a mixed analytic tensor, further constrained so as the tensor <?(«/?) y
gikt\aß)j ls a symmetric, covariantly constant tensor (hermitian with respect to the complex
structure J] due to previous relations (subsection 3.3.3)). This will be important in the
following (subsection 5.1.6).

4.3.4 Nda 3

There are no coboundaries in that sector, and the S£° cohomology was obtained in equ.(3.18).
Notice that S£°A?+1, contains at least two sources % and that S£ decreases the number of r\i
of one unity ; then, when analysed by increasing number of sources n, the cocycle condition
S°LAf+1] 0, leads to Af+1] 0

4.3.5 Nda 4

There are no coboundaries in that sector, and the S£° cohomology was obtained in equ. (3.20).
Notice that S£°A?+1i contains at least three sources r\i and S£ decreases the number of r\i
of one unity ; here again, when analysed by increasing number of sources 77, the cocycle
condition S£A^+1] 0, leads to AL, 0

To sum up, the cohomology space of S£ in the Faddeev-Popov charge +1 sector depends

on skew-symmetric contravariant analytic 3-tensors £^fcl[$], t^fcl[$] and tH[$] the last

one endowing a further constraint, on a vector tai and on a symmetric, covariantly constant
tensor G(a/3)y, hermitian with respect to the complex structure J1,

We are now in a position to compute the cohomology of the complete Sl S£ + S^ + S£

operator. But, as an intermediate result, we comment on N 2 supersymmetric non-linear
o models [21].

4.4 N=2 supersymmetric non-linear a models

In the special case of N=2 supersymmetric non-linear a models, there is no need for ghosts
d* and all the necessary results may be found in subsections 4.1, 4.2.1 and 4.3.1. In particular,

equation (4.4) offers a candidate for an anomaly and, as a consequence, if at a given
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pertubative order this anomaly appears with a non zero coefficient

SLr\pthorder= a(h)PA^i]} d^O

the N 2 supersymmetry is broken as A?"j| cannot be reabsorbed (being a cohomology

element, it is not a S£A[0]) and, a priori, we are no longer able to analyse the structure of
the U.V. divergences at the next perturbative order, which is the death of the theory.

We now discuss some properties of the candidate anomaly, trying to characterize the special

geometries (and manifolds M) where such pure contravariant analytic skew-symmetric
3-tensor cannot appear.

Consider the covariant tensor

t[abc] gaagb„gcct[abc][fti

It satisfies Vd t[abc} 0 The (3-0) form

W1 ^t[abc]dft A dft A dft (4.7)

which satisfies d'w' 0 10, will now be shown to be harmonic if M is a compact manifold
(or if it is a Ricci-flat one - for example an HyperKähler manifold).

One obtains firstly from the identity :

Atyit 5TnnVmVnt[yjt] - [Rft[ijk] + perms. ] - [Ryt[lmk] + perms. ]

rewritten in complex coordinates and due to Vd t\abc] 0 :

Ar.[oòc] gddVdVdt[abc] - [Rdat[dbc] + perms. ]

On the other hand, the Ricci identity gives, still using V'd t[abc] 0 :

gMVdVdt[abc] 5dd[ß^at[e6c] + perms. ] -[Rdat[dbc] + perms. ].

Then At[0;,c] 2gddVdydt[abc] 2[i2f t[doc] + perms. ] In the Ricci-flat case, this gives the
claimed harmonicity of w'. Now, when the manifold is a compact one, one may compute :

(dJ,dJ) + (6J,8J) (J,(d6 + 6d)J)=.(J,NJ) f do2t^c]g^VdVdt[abc]

[ do2gdd{VdVd(t^klabc])-Vjab^dt{ah^ 0-2(duj',dw')

=> (<W, 6J) + 3(eko', dw') =0 =* 8u' dw' Alo' 0 (4.8)

and, as a consequence :

[RÌt[dbc] + perms. ] 0 => 3t^ab^RaJ ta,bc 0 (4.9)

10 As usual in complex geometry, see for example ([27],[28]), the differential dsd' + d", the codifferential
S 6' + S" and the Laplacian A dS + Sd
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Moreover, in this compact case, it results from the previous discussion that c^tLug

— \dct[abd} vanishes. As a consequence, t}ab,s dbtai — (a «-> b), which corresponds to a trivial
cohomology and is then thrown away from equation (4.4).

Notice that, as a priori duj' / 0, this harmonicity is only a necessary condition which, to my
knowledge, is not given in the mathematic literature. For example, in [27], page 70, only a

more restrictive necessary and sufficient condition is given :

On a compact Kählerian manifold, given a (p,0) form r\, the 3 following conditions are
equivalent : n is closed, n is holomorphic and r\ is harmonic,
or in [28], theorem 9.3 :

On a compact Kählerian manifold, given a pure skew-symmetric covariant tensor, a

necessary and sufficient condition for it to be analytic is that it be harmonic.
Other necessary and sufficient conditions depend on the sign of the Ricci tensor : for example
[28], theorem 9.6 :

If the Ricci tensor is positive definite, there exists no contravariant analytic tensor. This
results immediatly from (4.9).

It is known that the number of such harmonic (3,0) forms is given by the Hodge number
^(3,o). faen j-jjis number determines an upper bound for the dimension of the cohomology

space of S£ in the anomaly sector.

As a first result, this proves that if the manifold M has a complex dimension smaller
than 3, there is no anomaly candidate.

Another special case is the compact Kahler homogeneous one (N=2 supersymmetric extension

of our previous works (I) for N=l susy and [16] for the purely bosonic case) : in such

a case the Ricci tensor is positive definite [29] which, due to the aforementioned theorem,
forbids the existence of such analytic tensor t^ai"^(cf>d). As a consequence, the cohomology
of S£° - and then of S£ - vanishes in the anomaly sector, i.e. the Slavnov identity is not
anomalous, which means that, as expected, N=2 supersymmetry is renormalizable (at least

in the absence of torsion).

Moreover, due to the "stability" n of the complex structure and of the classical action
in the space of Kahler metrics (subsection 4.2.1), in this case of d=2, N=2 non-linear a
models, the renormalization algorithm a priori does not change the number of parameters
with respect to the one of the classical action. Of course, as mentioned in subsections 4.1

and 4.2, in the presence of Killing vectors, i.e. of extra isometries, the generic symmetric,
Kählerian metric tensor ty[$] gets some more constraints. For example, when the manifold
is an homogeneous Kahler one (usual non linear a models on coset spaces), up to infra-red
analysis, our work extends to the N=2 supersymmetric case the renormalizability proof given

The trivial cohomology S^A^y corresponds to field and source reparametrisations according to
(2.7,2.8).
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for the bosonic case in [16] (and for the N=l case in Section 5 of (I)).

Of course, when h^3,0) ^ 0 - which for example occurs for Calabi-Yau manifolds, i.e.
compact Ricci-flat Kahler manifolds of complex dimension 3, where /i'3,0) l(ref.[3])12 -, we
have a true anomaly candidate [21]. Of course, as no explicit metric is at hand, one cannot
compute the anomaly coefficient.

Some comments on its possible vanishing in perturbation theory will be offered in the
Concluding Section.

This anomaly in global extended supersymmetry is a surprise with respect to common
wisdom [18] (but see other unexpected non-trivial cohomologies in supersymmetric theories
in the recent works of Brandt [19] and Dixon [20]) and the fact that if we have chosen, from
the very beginning, a coordinate system adapted to the complex structure, the second super-
symmetry will be linear and there will be no need for sources T]i However, as known from
chiral symmetry, even a linearly realised transformation can lead to anomalies ; moreover,
here the linear supersymmetry transformations do not correspond to an ordinary group but
rather to a supergroup where, contrary to ordinary compact groups

13 no general theorems
exists : then there is no obvious contradiction. This emphasizes the special structure of the
supersymmetry algebra.

5 The cohomology of Sl and N=4 supersymmetry

In subsection 2.1, we have split the complete linearised B.R.S. operator Sl into 3 pieces,

according to their number of ghosts d* :

sL sl + sl + sl
where :

6
Si j d2xd2e{PAd+D+V +d-D-<V)-—

J J o$'
8Amv' 8

+ [-for + %(Ji,< - Jïj)(d+D+& + dTD-V) + Jï(d+D+Vj + d-D.ru)]—}

Sì jd2xd2e{[Paj(dtD+& + d-D_V) + Vjeaß3J}'(did- - d-ad+)} ^-
+ [JUdÌD+Vj + d-D-rii) + ifc(J* 4 - Jk)(dtD+^ + dTD.V) +

+ ^VkVieaß3Jßti(d+d- - dZd+)]—}

and Si -eaß3d^dß j d2xd26 Hi & 1 rkl à
(5.1)

12 As det llffll 1, a representative of t'"1"1' is the constant skew-symmetric tensor £labcl( with e123 +1).
In the appendix A of ref. [16], it is proven that any linearly realised symmetry corresponding to a

compact group can be implemented to all orders of perturbation theory.
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and the cohomology of S£ was obtained in the previous Section. We start the analysis by
the anomaly sector, as the existence of a true Slavnov anomaly would be the death of the
theory.

5.1 The Faddeev-Popov +1 charge sector

Filtering the cocycle condition SlA[+i] 0 with respect to the number Nd±, we know that
the cohomology of Sl will be a subspace of the one of S£. We now analyse this restriction of
the cohomology space (due to a possible Faddeev-Popov +2 charge anomaly) in successive

filtration orders.

5.1.1 Nda 0

The cocycle condition S£AP+1] 0 has been solved in subsection 4.3.1 (equ.(4.4)) :

Af+1, A|,;f[t[^]($)] + S£Ag„

5.1.2 Nda=l

At this order, and using previous result, the cocycle condition writes :

S£(Af+1] - SlAg,,) -SiA$V«*J(*)] (5.2)

From S£(SiA^j0') -Si(S£A""1|0)) 0, one sees that (5.2) a priori enforces some

constraints on the tensor <W*]($) From the condition :

SiA^)[tmm=slA\+1] (5.3)

where the general expression for Ai+lX was given in (3.13), one obtains at decreasing orders

in the number of ghosts, firstly a constraint 14 on tl*-'*' :

NdA=6 ¦ Vi[Jajt[klm%,k,i,m]a,. 0,

then i^*]($) in function of fiy'fcl($). Using complex coordinates - in particular the fact that
Jtd (& 4>) ddJÎ (4>, ft) - this writes :

ddt^ -XdVät^Kft) 3d \l-JdQ(ftftVdt^(ft
4 4

14 In the compact Kahler case, we have shown in section 4.4 that Vjt'*^' 0 (as a consequence of du' 0)

Then this is not a new constraint.
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tïbc] -AJL(ftft)t[ahc\ft),

which exhibits some arbitrariness in Ai+1,, defined up to a S£ cocycle A?"ji |e9U.(4.5)-l-S£AL

At the next order (NdA 4) we obtain the vanishing of tfofcl($) i.e. of A™f]

As a consequence, equ.(5.2) writes : Sl(A}+1,—SlA?0]) 0 which, according to subsection
4.3.2 (equ. (4.5)) solves to :

A[+1] A^r'W, tamk(n + S°LAf0] + SiAg,, (5.4)

5.1.3 Nd„ 2

At this order, and using previous results, the cocycle condition writes :

S°(A2+1] - S2Af0, - SlA\0]) -SlA™f[t%k\ tam] (5.5)

Here too, from S°L(S\Af"ji ') —S]/(S£A?"1j ') 0, one sees that (5.5) a priori enforces

some constraints on the tensors $£¦**' and ta[y]fc. From the condition :

Slò%f[%*, tam] =S£Âf+1] (5.6)

where the general expression for A?+1, was given in (3.15) and is defined up to the cocycles

A?"n |egu.(4.6) + ^xAL the same analysis as in the previous subsection for Ndji 6, 5 and

4 again gives the vanishing of t^fc'($) and the "triviality" of the corresponding terms of
A2+1, as they reduce themselves to S£ cocycles. Then A?™^ depends only on the tensor

ta[ij)k($)- So S^Af^ji ' involves at most 3 ghosts and in A?+1], only the terms in £Lm4rjw,

%xß)A\jk]' *M4Üfc) and *(a0)5i> t%{aß]sj survlve-

When analysed at ghost level 3 and 2, the condition (5.6) does not lead to the vanishing
of these tensors, but expresses them as functions of the complex structure Paj and the

"anomaly tensor" ia^k. For example, one finds (in complex coordinates) :

ta(aß)i[bc] *°a,8)4[òc] ° *(oj8)4[fcc]
4 Y a *0[fe]d + («<-> ß))

*(a/3)5 6 ° *(a/3)56,c j {ffißWic + (a <-» ß))

and constraints such as :

\Jabh{cd\a + JaJß[db]ä + JaJß[bc]ä + (<*«-? /3)J 0

Finally, from (5.5,5.6) and subsection 4.3.3, one gets :

A[+i] A[+1] [t(aßy t\aß)5j] - A|+1] + SLA|0] + SLA[0] + SLA[0] (5.7)

where the tensor G(Qjg)y gikt\aß\$j is a symmetric, covariantly constant tensor, hermitian
with respect to the complex structure P (subsection 4.3.3).
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5.1.4 Nda 3

At this order, and using previous results, the cocycle condition writes :

S£ (Af+1, - SfAJi,, - SiAf0]) -Sl (A^[tam]) -
Ql (Â \j.an.[ijk] ,an.i A ,li A A A l\ (tLQ\- ÖL ^[+l]l'(a/3) ^(aß)^ ' t(aß)i\jk},t(aß)i\jk},t{aß]4(jk),t(aß)5j,t[aß]5j\) l0-8)

where Â[+1] A$2) - Àf+1] Here too, from S£(S2A^1) + SlA[+1]) -SiSl^f -
S|/S£A[+1] 0, one sees that (5.8) a priori enforces some new constraints on the tensor

ta[ij]k ¦ From the condition :

*- 2

SLA"+1] -)- SLA[+1] SLA[+1j (5.9)

where the general expression for A3+1, was given in (3.17), and thanks to the special structure
of S£ (5.1), one obtains through analysis of the terms in d+dßd+, at the 6 and 5 order in

the total number of ghosts, the vanishing of the part in tT^ßJ ' ($) of the anomaly Af"jj
~2

involved in Ar+1i

Then, the analysis of the terms in d+dßd+d~ gives :

• the symmetry, in the exchange i <-> j, of : e3aSJ^ [Ç7j5k + ^WJ l(°M s"m- '

• the vanishing of t^j^y], and then : rLjyjj, 0 i.e. A""^1' 0

As a consequence, equ.(5.6) gives : S£A2+1i 0, and, thanks to previous remarks, A?+1,

may be supressed, i.e. t\^)^j 0. Then, the constraint (5.9) reduces itself to :

5iAf;if)[t^5j($)]=S£Âf+1] (5.10)

In the analysis of the terms in d~dtd+, equ.(5.10) may be shown to enforce a stronger
constraint on t^^sj(ci) :

^âfcfG97)5j Jaj*G»r)5fc ** JakG(ßl)ij ~G(.ßy)ikJaj V a, ß, 7 (5-H)

i.e. the tensor G(Q/3)y is hermitian with respect to the complex structures Pak Moreover,
A3+1] 0. Finally, from (5.8,5.9) and subsection 4.3.4, one gets :

SiA^f> 0 ; Af+1] SÌA2,, + S2Af0] (5.12)

5.1.5 Nda 4

At this order, and using previous results, the cocycle condition writes :

S£(Af+1] - S2Af0]) -SlA™W[t%ß)}] (5.13)
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Here too, from :

S£(-S2A-1f) Si(SlA^1fV5i2)0,
one sees that (5.13) a priori enforces some constraint on the tensor i?£«)5,-. From the condition

SiA^if S£Äf+1, (5.14)

where A?+1, was given in (3.19), and the structures of S£ (5.1) and Af^i one sees that the

right hand side is proportional to d^dâdïdj when no such terms may occur in the left hand

side, which means that both sides should vanish. As a consequence, Af+l, is a S£ cocycle,
which means that it vanishes (subsection 4.3.5).

Finally, from (5.13,5.14) and subsection 4.3.5, one gets :

-,2Aan-(2)_n a 4 _o2aî'lA[+1] - U ' A[+1J — ÜL^[0]S£Af;f =0 ; A?+11=S2AL. (5.15)

5.1.6 Absence of N=4 supersymmetry anomaly

Putting the results of the previous subsections 5.1.1-5 together shows that the cohomology

space of Sl in the Faddeev-Popov charge +1 sector depends on a single symmetric tensor

G(a/3)y[^], hermitian with respect to the 3 complex structures JAj and covariantly constant

A[+1, A$2> + SLA[0] where S£A$2) S^f S2 A$2> 0,

A$2) Jd2xd2eVigVGfaß)jk(dtd+(D+)2V +d-dß(D„)2&) (5.16)

This is reminiscent of the right hand side of the classical Slavnov identity (2.5). As a matter
of fact, it appears that A?™^ is a Sx, cocycle :

A$2) SL(A[0][GM)y($)])

A[0] Jd2xd26{aG(aa)l]D+VD_& - ^VlPakG{aß)kj(d+D+^ + dßD_&) +

+ \viV}eABcd+AdB[(a + ^Gc^ug» - \j*Gbc)kigli]} (5.17)

where a is an arbitrary constant. Then there is no Faddeev-Popov +1 charge cohomology,
and we get the absence of supersymmetry anomaly in N=4 non-linear a models in 2 space-
time dimensions.

5.2 The Faddeev-Popov neutral charge sector

As explained before and in the appendix of (I), the existence of a non trivial cohomology

for S£ in the Faddeev-Popov +1 charge sector, will restrict the cocycles of Sl in the
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Faddeev-Popov 0 charge sector ; this is easily understood as N=4 supersymmetry enforces

new constraints on the arbitrary Kählerian metric gy corresponding to N=2 supersymmetry.

We now filter the cocycle condition Si,A[0] 0 with respect to the number N^t

5.2.1 Nda 0

The cocycle condition S£AL 0 has been solved in subsection 4.2.1 :

an.(O)
Ag,, ASfw[i(y)(*)] + S£Af_1][yi($)]

5.2.2 7VV 1

At this order, and using previous result, the cocycle condition writes :

S£(Af0, - SlAf^Vl) -51A|5|-W[«(W(*)] (5.18)

From S£(SiA^(0)) -Si(S£A^(0)) 0, and the existence of an S£ anomaly A^,(1), one
sees that (5.18) enforces some constraints on the tensor t(y)($) :

SIA™(%,)] S£Af0][Ì7«J,SM] (5.19)

where the general expression for AL was given in (3.3). As a consequence, equ.(5.18) writes

: S£(A|-0] - SLA°_i] + Am) 0 which, according to subsection 4.2.2 (see in particular
equ.(4.3)), solves to :

an.(l)rAf0] A^pZr, ST-M] - Â\0][Uaj,§jp\ + SlAli^]
z 1 zi x[»i]
\o][Uaj>Sa J "I" ^L"[-l]ee A[0][i/a,)Sa] + SiA|,_1,[Vi]. (5.20)

A[0] being defined by equation (5.19) up to a S£ cocycle, i.e. up to A^ the constraint
(5.19) especially implies the hermiticity of the perturbed metric g'^ gtj + ftt(ij) with respect

zi
to the perturbed complex structures Ja' • Jaj + hUaj and the covariant constancy of the
later with respect to the covariant derivative with connexion corresponding to g\j Moreover,

-fo]
_the tensor Sa is a pure contravariant analytic skew-symmetric tensor, with components

given in complex coordinates by :

z[ab) i
à« - 49

zb
Uac + tcdJa — (a «-* 6) Sa (ft) and the complex conjugate relation,

(compare to equ.(4.3)), and one obtains the relations :

i
Ta[ab] -- 9acUab + tacJab - (a <-> 6) Ta[ab](cj)
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and
zb f z[ab]\ zb I z\ab\
Uaä (resp. Sa I -ieaß3Ußa I resp. Sß

(compare to equ.(2.3) which implies : Jai —ieaß3Jßi and the complex conjugate relations.

5.2.3 Nda 2

At this order, and using previous results, the cocycle condition writes :

S£(Af0] - S2LAJLu) -S2LA^ - Sl~A[0] (5.21)

Here too, from

Sl (SIA^ + Sl~Al0]) -Si(SiA^<0> - S£Âf0]) (5i9) 0,

and the existence of an S£ anomaly A?™'^ one sees that (5.21) enforces some constraints
^i z[ij]

on the tensors t(y), Uaj,Sa :

~ 1 — I ~ fill „Sl^i0){tm] + SlÄ[0][Öaj,Sa ] SlAf0][S^ß]] (5.22)

where the general expression for ÄL was given in (3.3). As a consequence of (5.22), equ. (5.21)

writes : S£(AL — S£A?_i] + ÄL) 0 which, according to subsection 4.2.3 solves to :

Af01 -Âf0][S|^]] + S2Af_11[n. (5.23)

The constraint (5.22) especially implies the anticommutation of the perturbed complex struc-
ion :

S[aß] _öea/53-^mt(mn)£nJ •

tures j'àj and fßi and the relation :

'laß] - 2

5.2.4 Nda 3

At this order, and using previous results, the cocycle condition writes :

SfAfoj + SiAg,, 0

«• SlAfojfS^] S2LA[0][Uaj,sl3]]. (5.24)

As a matter of fact, this may be shown to result from previous constraints.
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5.2.5 Nda 4

At this order, and using previous results, the cocycle condition writes :

S2Af0]=0 o S2Äf0][Sg]] 0, (5.25)

which may be shown to result from the Ricci-flatness of g[j (det H^'H constant), which
itself results from the HyperKahler nature of the perturbed metric g'^ i.e. to results of the
previous subsections.

5.2.6 Stability of N=4 supersymmetric non-linear a models

Putting the results of the previous subsections 5.2.1-5 together gives :

A[0, A?"'(0)[t(y)($)] + A[0][Üa^), Sa (*)] - ÂUsgL(*)] + SiA(_11[V^($)] (5.26)

Up to a trivial field and source reparametrisations (2.7,2.8), the most general Slavnov
invariant integrated functional of the fields, sources and their derivatives, of Faddeev-Popov 0

charge is :

r'ciasS. _ pew. + RA[o] _ J d2xd2e{g'ijD+<!>iD-<l>j +

+ rHfljtäD+9* + dAD_V] - \tABCTKnjfc*A*B) (5-27)

and where the results of the previous subsections consistently give :

ffy[$] gqW + htw f3l3 Jl3] /„',(*) ¦£/(*)+ *#!*(*).
S?(*) Jzk9ki JÏ - nJignmt(mr)9ri subsec=^ 5'2-3 .#(*) + 2heaß3Sfa%($) (5.28)

•#(*) J':k9k3 JH + h[Uakgk3 - Jamt(mn)gn3] SUbSeC= 5'2-2 ¦#(*) - 2heaß3's[ß\<e)

and the different constraints (5.19 and 5.22) may be shown to enforce N 4 supersymmetry
: i.e. <7y[$] is a symmetric metric tensor, the three J'A 's offer a set of anticommuting,
integrable and covariantly constant (with respect to the covariant derivative with connexion Tfk
corresponding to the metric g'^ complex structures satisfying a quaternionic multiplication
law, and the metric is hermitian with respect to each of these complex structure J^(<I>).

This proves the stability of the theory, and, thanks to the absence of anomaly, the full
renormalizability of N 4 supersymmetric non-linear o models in two space-time dimensions.

Of course, due to a possible Faddeev-Popov -1 charge non-trivial 15 cohomology for Sl,
some of the parameters of the action (5.27) may be unphysical ones A[_i](V'[$]) being

The trivial cohomology Sl&.\-\\ corresponds to field and source reparametrisations according to
(2.7,2.8).
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independent of d*, the cocycle condition SiA[_ij(y[$]) 0 splits into the three ones

S)/A[_i](yt[$]) 0, i 0,1,2. One easily checks that V'[$] should be a contravariant
Killing vector for the metric gy, holomorphic with respect to the three complex structures :

0yViV* + «fciVjVk 0 ; JiAjViVk JAkV^ ,A= 1,2,3. (5.29)

6 Concluding remarks

In the second paper of this series, we have analysed the cohomology of the B.R.S. operator
associated to N 2 and N 4 supersymmetry in a N 1 superfield formalism. We found

an anomaly candidate for torsionless models built on compact Kahler Ricci-flat target spaces
with a non vanishing Hodge number h^3'°K Calabi-Yau manifolds (3 complex dimensional
case) where ft,'3,0' 1 (ref. [3]) are interesting examples due to their possible relevance for

superstring theories. Of course, as no explicit metric is at hand, one cannot compute the
anomaly coefficient.

This anomaly in global supersymmetry is a surprise with respect to common wisdom
[18]. But some recent works of Brandt [19] and Dixon [20] also show the existence of new
non-trivial cohomologies in supersymmetric theories and we have argued in Section 4 that
the special structure of the supersymmetry algebra which does not correspond to an ordinary
group but rather to a supergroup may be responsible for this peculiarity.

Our analysis then casts some doubts on the validity of the previous claims on U.V.
properties of N=2 supersymmetric non linear a models (see for example [4] or [6]) : there, the
possible occurence, at 4-loops order, of (infinite) counterterms non-vanishing on-shell, even
for Kahler Ricci-flat manifolds, did not " disturb" the complex structure. On the other
hand, we have found a possible " instability" of the second supersymmetry, which confirms
that there are some difficulties in the regularization of supersymmetry by dimensional
reduction assumed in explicit perturbative calculations [5] as well as in finiteness "proofs"
[4] or in higher order counterterms analysis [6]. We would like to emphasize the difference
between Faddeev-Popov 0 charge cohomology which describes the stability of the classical

action against radiative corrections the usual "infinite" counterterms) and which offers no
surprise, and the anomaly sector which describes the "stability" of the symmetry the finite
renormalizations which are needed, in presence of a regularization that does not respect the
symmetries of the theory, to restore the Ward identities) : of course, when at a given
perturbative order the Slavnov (or Ward) identities are spoiled, at the next order, the analysis
of the structure of the divergences is no longer under control. In particular, the Calabi-Yau
uniqueness theorem for the metric [30] supposes that one stays in the same cohomology class

for the Kahler form, a fact which is not certain in the absence of a regularization that
respects the N=2 supersymmetry (the possible anomaly we found expresses the impossibility
of finding a regularization that respects all the symmetries of these theories).

We emphasize that the present work relies heavily on a perturbative analysis of the
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possible breakings of the Slavnov identity, especially through the use of the Quantum Action
Principle. It may well happen that the coefficient of the anomaly candidate vanishes at any
finite perturbative order 16. However, the possibility of a non-perturbative breaking of the
N=2 supersymmetry would remain open.

Of course, if one added from the very beginning extra geometrical (or physical
constraints that would fix the classical action, we bet that our anomaly candidate would disappear

: as previously mentioned, this is the case when the manifold is a compact homogeneous
Kahler space.

Moreover we have been able to give the first algebraic, regularization free proof that,
if one enforces N=4 supersymmetry (HyperKähler manifolds), there is no supersymmetry
anomaly 17 and that the corresponding non-linear o models are all-orders renormalizable, "à
la Friedan".

The last step of our program will be the rigorous proof of the all-orders finiteness of these
models. We hope to be able to report on that subject in a near future.
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