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B.R.S. Renormalization of Some On-Shell Closed
Algebras of Symmetry Transformations:

2) N=2 and 4 Supersymmetric Non-Linear ¢ Models

By Guy Bonneau

Laboratoire de Physique Théorique et des Hautes Energies,
Unité associée au CNRS URA 280, Université Paris 7,
2 Place Jussieu, 75251 Paris Cedex 05.

(9.XII.1994, revised 19.XII.1994)

Abstract. We analyse with the algebraic, regularization independent, cohomological B.R.S. meth-
ods, the renormalizability of torsionless N=2 and N= 4 supersymmetric non-linear ¢ models built
on Kahler spaces. Surprisingly enough with respect to the common wisdom, in the case of N=2
supersymmetry, we obtain an anomaly candidate, at least in the compact Kéhler Ricci-flat case. If
its coefficient does differ from zero, such anomaly would imply the breaking of global N=2 super-
symmetry and the disruption of some schemes of superstring compactification as such non-linear o
models offer candidates for the superstring vacuum state.

In the compact homogeneous Kéahler case, as expected, the anomaly candidate disappears.

The same phenomenon occurs when one enforces N=4 supersymmetry : in that case, we obtain
the first rigorous proof of the expected all-order renormalizability -“ in the space of metrics"- of
the corresponding non-linear o models.

1 Introduction

Supersymmetric non-linear ¢ models in two space time dimensions have been considered for
many years to describe the vacuum state of superstrings [1],[2]. In particular Calabi-Yau
spaces, i.e. 6 dimensional compact K&hler Ricci-flat Riemanian manifolds [3], appear as
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good candidates in the compactification of the 10 dimensional superstring to 4 dimensional
flat Minkowski space; indeed, the conformal invariance of the 2.d, N = 2 supersymmetric
non-linear ¢ model (the fields of which are coordinates on this compact manifold) is expected
to hold to all orders of perturbation theory [4].

However explicit calculations to 4 or 5 loops [5] and, afterwards, general arguments [6)
show that the 8 functions might be different from zero. But, as argued in my recent review
[7], at least two problems obscure these analyses : firstly, the fact that the quantum theory
is not sufficiently defined by the Kahler Ricci-flatness requirement ; secondly, the use of
“dimensional reduction" [8] or of harmonic superspace [9] ! in actual explicit calculations
and general arguments. Then, we prefer to analyse these models using the B.R.S., algebraic,
regularization free cohomological methods.

Moreover, the quantization of extended supersymmetry raises the difficulty of an “on-
shell" formalism. Indeed, if one leaves aside harmonic superspace where firm rules for
quantization 2 are not at hand, contrary to ordinary superspace [11], one has to deal with
(super)symmetry transformations that are non-linear and close only on-shell. This prob-
lem was addressed in ref. [12] by O. Piguet and K. Sibold for the Wess-Zumino model as
a “toy-model" and, in a still uncomplete way, by P. Breitenlohner and D. Maison [13] for
supersymmetric Yang-Mills in the Wess-Zumino gauge ; in the first paper of this series [14],
hereafter referred to as (I), we analysed the d=2, N=1 supersymmetric non-linear ¢ model
without auxiliary fields.

In the second paper of this series, we address the question of the all-orders renormal-
izability of extended supersymmetric (N = 2, 4) non-linear o models in two space time
dimensions. Of course, we are only interested here in the renormalization of the supersym-
metry transformations : as discussed by Friedan [15], the action of a non-linear ¢ model may
be identified with a distance on a Riemannian manifold M, the metric depending a priori
on an infinite number of parameters. One then speaks of “renormalizability in the space
of metrics" or “4 la Friedan". When there exist extra isometries, for example in the case
of the non-linear o models on coset spaces (homogeneous manifolds), the number of such
physical parameters becomes finite and we have proved the U.V. renormalizability of these
isometries in the purely bosonic case in [16], as well as in the N=1 supersymmetric extension
in (I). The present work gives the necessary extended-supersymmetric generalisations. On
the other hand, in the generalised non-linear ¢ models & la Friedan, our aim is the proof
that no extra difficulty occurs in their supersymmetric extension.

As in (I), we are here interested only in the _ultraviolet renormalizability of the d=2
extended supersymmetric non-linear ¢ models : of course, one has also to deal with infrared
divergences. This would require the addition of an infrared regulator which of course breaks
the symmetries, but only softly, and then does not affect our results on “hard" divergences

1 The regularization through dimensional reduction suffers from algebraic unconsistencies and the quan-
tization in harmonic superspace does not rely on firm basis, due to the presence of non-local singularities (in
the harmonic superspace)[10].

% j.e. a subtraction algorithm insuring the locality of the counterterms [10).
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and possible anomalies for the supersymmetry in 2 dimensions.

We shall use N=1 superfields, which is allowed by the general superspace quantization
methods established by Piguet and Rouet who in particular demonstrated the Quantum
Action Principle in that context [11], and the very results of (I), proving that N=1 super-
symmetry is all-orders renormalizable. The classical theory was defined in (I), so here we
only recall in subsection 2.1 the results needed for the following. Due to the non-linearity
of the supersymmetry transformations in a general field parametrisation ( z.e. coordinate
system on the manifold), we shall use a grading (according to the spectral sequences method
[17]) in the number of fields, ghosts and their derivatives. As a matter of fact, we find it
convenient to use two successive gradings, one in the number of extra supersymmetries, the
second one with respect to the number of fields. The “filtrations" , as well as the lowest
order nilpotent Slavnov operators: S} - corresponding in fact to N=2 supersymmetry -, and
S - corresponding to the zero field approximation of SY -, are defined in subsection 2.2.
As in [16] and (I), the cohomology of SY will give the main information. In Section 3, we
analyse the cohomology of S and in Section 4 the one of S?, i.e. at that point we are
concerned with the special case of N=2 supersymmetric non-linear 0 models, and we find a
non trivial cohomology in the anomaly sector. Subsection 4.4 is then devoted to a discussion
of this N=2 case and our main result is that, surprisingly enough with respect to the com-
mon wisdom [18]3, there exists a possible anomaly for global supersymmetry in 2 space-time
dimensions [21], at least for torsionless compact Kahler Ricci-flat manifolds (i.e. special
N=2 supersymmetric models). We also prove that this anomaly disappears when the mani-
fold M is an homogeneous one, i.e. when one deals with N=2 supersymmetric non-linear o
models on coset spaces. Section 5 then constructs the cohomology space of the complete Sy,
operator, with the essential result of the all orders renormalizability of N=4 supersymmetric
non-linear ¢ models. A discussion of our results is presented in the concluding Section.

2 The classical theory and the Slavnov operator

In (I) we obtained the classical action and the linearised Slavnov operator that describes
N=4 supersymmetry and hereafter we summarize the essential results.

2.1 The classical theory and the Slavnov identity

We consider d=2, N=4 supersymmetric non-linear o models in N=1 superfields ®(z, 8) (i,
j,- = 1,2,..4n). In light-cone coordinates and in the absence of torsion, the non-linear N=4
supersymmetry transformations write :

6@ = T ;(®)[ehD1® +e4,D_®7] , A=1,2,3. (2.1)

3 Notice also that recent works of Brandt [19] and Dixon [20] show the existence of new non-trivial
cohomologies in supersymmetric theories.
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where the covariant derivatives are

Dy = + 0%,

0=
and satisfy
{Di, D:t} = 226:1: {D+, .D_} =0 (2.2)

As is well known (see for example ref.[22]), N=4 supersymmetry needs the J} ;(®) to be
a set 4 of anticommuting integrable complex structures according to :

‘]jlj(@)"%k(q)) = —8456; + eapcIo1(®) : (2.3)

and the invariance of the action A™" = [ d?zd?0g;;[®)D,®'D_®’ needs the target space to
be hyperkahler :

* the metric g;; is hermitian with respect to each complex structure

Jij = Jikgkj = —Jj‘i i Ty = qugkj = —Jaji

* the J} ; are covariantly constant
DiJy; = 0uJy,; + Tdy; — ThjJa; =0

where I'; is the (symmetric) connexion with respect to the metric g;;. In the B.R.S. approach
[23], the supersymmetry parameters €§ are promoted to constant, commuting Faddeev-
Popov parameters d= ° and an anticommuting classical source 7;(z) for the non-linear field
transformation (2.1) is introduced in the classical action ®. Then, the total effective action

Tis :

1
poass. — ginv. 4 / d*2d*0{1:.T} ;(®)[d5 D+ +dz D_®] - eapcmin; I3 (®)didz} (2. 1)

The terms quadratic in the sources are needed as a consequence of the only on-shell closedness
of the N=4 supersymmetry algebra [24](I).
The Slavnov identity writes :

61‘\tot. 6Ftot.
6771' ($1 9) 6P ("Ea 6)

Sr\class. = fd2$d26 =fd2a:d29[(dﬁ)2(77k’ba+¢k)+(d2)2(nk"a—q)k)] ] (25)

* As a matter of fact, it is sufficient to have 2 anticommuting integrable complex structures : then, the
product Ji, = Ji jJZk offers a third complex structure.

5 As one is only concerned by integrated local functionals - i.e. trivially translation invariant ones -, we
forget about the linear translation operators Py = 104, to which anticommuting Faddeev-Popov parameters
p* should be associated, and do not add in [4e*- of equ.(2.4) the effect of translations on the fields ®* .

6 In the absence of torsion, there is a parity invariance

+ - —,d*z — &z, d%0 — —d%0,8* — &', n; — —; .

Moreover, the canonical dimensions of [dza:dza] [®7], [d5], [D+], [m] are -1, 0, -1/2, +1/2, +1,respectively
and the Faddeev-Popov assignments + 1 for dt > -1 for ;, 0 for the other quantities.
7 For simplicity, no mass term has been added here as we are here only interested in U.V. properties .
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This is a non trivial result as in that N = 4 case, no finite set of auxiliary fields does exist.

As is by now well known (for example see [7] or [16]), in the absence of a consistent
regularization that respects all the symmetries of the theory, the quantum analysis directly
depends on the cohomology of the nilpotent linearised Slavnov operator :

class. class.
0

oni(z,0) 6@ (z,0) 6Pz, 0) 6ni(x,0)

S, = (2.6)

in the Faddeev-Popov charge +1 sector [absence of anomalies for the supersymmetry] and 0
sector [number of physical parameters and stability of the classical action through radiative
corrections]. Notice that the Slavnov operator (2.6) is unchanged under the following field
and source reparametrisations :

o — P+ /\Wi[q)] y i — M — )\mW,’f[‘I’] )

where W*[®] is an arbitrary function of the fields ®(z,6) and a comma indicates a derivative
with respect to the field . Under this change, the classical action (2.4) is modified :

[class. _, qclass. + ASL/d2$d2977{Wi[(I)] (27)

but the Slavnov identity is left unchanged as

S[Fclass. i ASLA] = Sr\dass‘ 4 )\SL[SLA] = SPdﬂSS. ) (28)

The quantization of this theory will be studied in the next Sections, using the same algebraic
cohomological methods as in the first paper of this series (I). It will be convenient to separate
the 3 extra supersymmetries into the one ® corresponding to J3 and the 2 others to J,, a=1,
2, 1.e. to separate the N=2 supersymmetric case from the N=4 one. In the same way, one
splits the linearised Slavnov operator into 3 parts according to their number of ghosts d= :

S.=S}+S,+5;
(592 =3825] + 8190 = 5052 + 519t + 82580 = 5152 + S5l = (S22 =0.

)
6P

. : , )
+ 77](;(-];,1- — J{C’j)(d_‘_D_,_(I’J + duD_(I)J) + Jf (d+D+T]j -+ d_D._’I]J)]B:n—} (29)

Sy = [dd*6{Ji(d*D, & +d"D_&)
5Aim:.
5%

+[

which does not change the number of ghosts d=, will play a special role. Moreover, notice
that the cohomology of S} corresponds to the special N=2 supersymmetric case.

8 In the following, we omit the index 3 of the complex struture J3 as well as the one of the ghost dgt .
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2.2 The filtration and the operator S?

In the presence of highly non-linear Slavnov operators such as in (2.9), as recalled in (I), it is
technically useful to “approximate" the complete S? operator by a simpler one S through
a suitably chosen “filtration"( ghost number preserving counting operation)[17]. As it does
not change this number, S°, the nilpotent lowest order part of S?, will play a special role.

Here, we take as counting operator the total number of fields ®*(x, #) and their derivatives.
Then :

SO = SO 4 SN 452y =848 (SP)2=0
Sy = J;(0) j dzd* {(d+D+<I>3‘ +d~D_&) 5(‘; +(d* Dymi +d'D~m)%} (2.10)
7

As explained in refs.([17],[16]), when S?° has no cohomology in the Faddeev-Popov charged
sectors, the cohomology of the complete S? operator in the Faddeev-Popov sectors of charge
0 and +1 is isomorphic to the one of SY° in the same sectors. The extension to the case
where S° has some non-trivial cohomology was discussed in the appendix of (I)? (see also
the original papers [17],[16] and [25]).

Then, in the next Section, we shall determine the cohomology spaces of S in the Fadeev-
Popov sectors of charge -1, 0 and +1.

3 The cohomology of SY

The most general functional (in the fields, sources, ghosts and their derivatives) of a given
Faddeev-Popov charge is built using Lorentz and parity invariance and power counting (see
footnote 6).

3.1 The Faddeev-Popov negatively charged sectors

Due to dimensions and Faddeev-Popov charge assignments, dimension zero integrated local
polynomials in the Faddeev-Popov parameters, fields, sources and their derivatives have at
least a Faddeev-Popov charge -1 :

Apg = f &2z d20n,V'[®] . (3.1)

Then there is no Faddeev-Popov charge -1 coboundaries, so the cohomology of S in that
sector is given by the cocycle condition :

SPALy=0 & J(0O)VF=JF0)V] (3.2)

® In particular, the cohomology of S% in the Faddeev-Popov -1 sector restricts the dimension of the
cohomology of S in the 0 charge sector when compared to the one of S9°.



960 Bonneau

This condition, when express_ed in a coordinate system adapted to the complex structure
Ji®] (i = (a, @), ®* = (¢°, ¢%) : Jp =165, JF = —i6§,iff = J§ = 0), means that V*[®] is a
contravariant analytic vector : V¢ = V¢[¢9], V& = V3[¢9].

Let us now turn to the Faddeev-Popov neutral charge sector.

3.2 The Faddeev-Popov 0 charge sector

Here, one decomposes the set of integrated local polynomials in the Faddeev-Popov param-
eters, fields, sources and their derivatives with respect to their number of ghosts d£, N, .

Ay = f d*zd?0 {t;;®) D, $'D_&’ + qUi[®)(d* D&’ +d~D_%%)}

%ﬂ=/ﬁm%h@ﬂw@m@+@D@nmmwyﬂwyﬂﬁwn

Ay = didg [ dadonmSisle) (3.3)
where, due to parity invariance (footnote 6), t;; (resp. S, Sfiﬂ]) are symmetric (resp. skew-

symmetric) in (i,j). Coboundaries being given by S?°A(_yj[arbitrary V*(®)], the analysis of
the cocycle condition SgOA[O} = 0 successively gives :

3.21 Ng =0

A([’o] = A‘[‘U’]"[tij(@)] + SI‘JJOA[_H[V"(@)] : A‘[‘O"']" [tij] = / d2acd29t,;j[<l>]D+<I>"‘D_<I>j (3.4)
where the tensor ¢;; which occurs in the anomalous part is constrained by :

a) JH0)tix + t;iJ5(0) =0,
b)  J(0)[tr — tux] — (j = k) =0. (3.5)

The absence of source dependent non-trivial cohomology means that, up to a field redefinition
(see (2.7,2.8)), the complex structure J} is left unchanged through radiative corrections.
Moreover, condition (3.5a) means that the metric g;; + ht;; remains hermitian with respect
to the complex structure J}, whereas (3.5b) expresses the covariant constancy of JJ‘: with
respect to the covariant derivative with a connexion corresponding to the metric g;; + ht;;.
These are precisely the expected conditions for the stability of N=2 supersymmetry.
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322 N, =1

SPAf; = 0 gives (no coboundaries exist in that sector) :
Ui; =0 , Al =AR[SI(®)] = f d*xd*9nn;(drd™ — d d*)S7 (@] (3.6)
where the tensor S% which occurs in the anomalous part is constrained by :

a)  JH0)SE + Sk JI(0) =0,

b)  JE(0)SE, - JA0)SY, =0, (37)
t.e., using the same adapted coordinate system as above, is a pure contravariant analytic
skew-symmetric tensor (i.e. S = Sll(¢e) |, SE = SE¥(4°) , the other components
vanish).

3.2.3 N =2

SPAfy = 0 gives (no coboundaries exist in that sector) :
Al = A (SE(®)] = didy [ dPadomn;Sig @) (38)
where the tensor S[‘zﬁ] which occurs in the anomalous part is constrained by :

a)  Ji(0)Sg + Sy Ji(0) =0,

[

b)  JE(0)Sig . — Ji0)Sy s =0, (3.9)

1.€., using the same adapted coordinate system as above, is a pure contravariant analytic
skew-symmetric tensor.

Finally, let us consider the Faddeev-Popov charge +1 sector.

3.3 The Faddeev-Popov 41 charge sector

Here also, one decomposes the set of integrated local polynomials in the Faddeev-Popov

parameters, fields, sources and their derivatives with respect to their number of ghosts
d:: N da *

331 N; =0

Af;y) depends on 8 tensors :

Ay = [ dPado{(@*)(d) mnmt™
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d*d” [t (d* DL @™ — d~D_@") + 5is\? (d* Doy — d~D_ny;)]

dtd mth D+ ®*D_®

(d*)?mi(th [ij]D+¢iD+q>j +t5 ,(D4)*®7)

(d™)?me(ty u; D-®'D_® + & ,(D_)*®)

d* (Fi1nD+8* D4 ' D_&" + 55 ;;yD_D, D, &)

— d (fD-®'D_®' D, " + s (;;yD4 D_®'D_&7)} (3.10)

+ + + + +

where, due to the anticommuting propertles of n; and D, ®* and to the 1ntegrat10n by parts
freedom, the tensors tli7%], t[f’,]” 3 i) U4 [ig): t(ijln are skew-symmetric in i, j, k, and 31 7 sy (i5)
symmetric in i, j. Here and in the following, the symmetry (resp. antisymmetry) properties

of the involved tensors in the exchange i to j are indicated by parenthesis (ij) (resp. brackets
[13])-

Coboundaries being given by SPAY, [arbitrary (¢:;[2)], U;[®])], the analysis of the cocycle
condition SPAP, ;= 0 leads to:

AETl(O) fdzrrdQGt["k (®)(dH)2(d™)2mim;m (3.11)

where the skew-symmetric tensor t/%(®) which occurs in the anomalous part is constrained
by:

a) Ji(0)tlk ig i j, k skew — symmetric,
b) T (0)thH = J7 (0)eiH (3.12)

Using the same adapted coordinate system as above, condition (3.12a) means that the tensor
tli7¥] is a pure contravariant skew-symmetric tensor (i.e. ¢, ¢85 = 0 | the other components
vanish) whereas (3.12b) means that it is analytic (i.e. tl*9 = ¢labd(g?), ¢labd = ¢labdl(4d)),
In particular, due to the vanishing of t/*d, such tensor cannot be a candidate for a torsion
tensor on a Kahler manifold [26].

As a first result, this proves that if the manifold M has a complex dimension smaller
than 3, there is no Ny, = 0 anomaly candidate.

332 N, =1

With an expansion similar to the one of A[ S A[1+1} now depends on 11 tensors :

Aly = dg f d*zd’0{d* (d=)mim;mitiH
+ dtd [minit] D@ + i Dym;s$D) + d=d” [t D-®" + 1 D_njsyy)]
+ domiltc [iJlD+q)1D @ +t55,;D,. D9
+ A k[te ) D @' D1 + 15 (D)7 0]
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+ [tafijinD+®* Dy @ D_®™ + 849 45D D &' D, &7]}
+ parity exchanged (according to footnote 6) (3.13)

Coboundaries being given by S7°Ajy[arbitrary (U ;(®], S¥[®])], the analysis of the cocycle
condition S Ajyq) = 0 leads to :

A = [ dadorH(@)[dtd @) + dzd-(d Iy +
+ f Pz d?0%,0()[dE D, 8D, & D_&* — d7D_&'D_8' D, 3" (3.14)

where the constraints on the skew-symmetric tensors ti7%1(®) and £, ;;)x(®) which occur in
the anomalous part are easily solved in the same adapted cogrdinate system as above :

e the tensor t[¥ is a pure contravariant analytic skew-symmetric tensor,

e the tensor tq(usjc = 0:[0atas(®, #) — Ostaa(d, #)] (and the complex conjugate relation),
the other components vanish.

333 N, =2

Here, we separate in A[Z_H] the terms symmetric in the exchange of the indices o and 3 of
the 2 ghosts d£ and dj from the skew-symmetric ones :

Alyylesy = didf f Pod®0{(d™ ) *mnymtln + d” [ D@ty + miDynjsio ]
Mk[Dy® DL ®tF 504151 + (D) * @t 505 51} + parity exchanged +

dtd; f Pzd*0{d* d it +
[min;(d* D4 @* — &~ D_&*)ehy, , +m(d* Dm; — d™Domy)s(i] +
D+ @ D_Ptipain}

did; ] dzd*0{[nin;(d* D4 ®" +d"D_&")t{), ,

+ 4+ + +

A[2+ 1) | [eB]

+

mi(d*Dym; +d™D_ nj)Sfth]
+ m[Dy @ D_tf g, iy + Dy D_D7tf g 11} (3.15)

Then, coboundaries being given by S% A[o] [arbitrary S[aﬁl(ib)], the analysis of the cocycle
condition SPA? {+1) = 0 leads to :

A;Tigz) = dfd} f d*zd*0m; [(d_)znjnktﬁig])(@) + (D1)* Pt (‘I))] + parity exchanged +
+ d+dgd+d— f d%dzemnjnkt;{;g‘(«b) +
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. % i ijk 1 1
wh.ere the co'nstra,mts on the tensors t%’ ])(CD), (af) j(<I>) EL’,@)] (@), tag (D) e.).nd tag ()
which occur in the anomalous part are easily solved in the same adapted coordinate system
as above :

e the tensors t£22§ (®) and tz[;jﬂ)](@) are pure contravariant analytic skew-symmetric ten-

SOTS,

e the tensor t{,4 ;(®) is a mixed analytic tensor, (i.e. tf5, = t5u(¢); thss =
t5y5(4)),

. the tensor tf,5 .5 = Oa0btf,q (4, $) and the tensor ths s = Obtlrg (4, ¢) (and the complex
conjugate relations), the other components vanish.

334 N, =3

In that sector, there are no coboundaries, and the analysis of the cocycle condition SP°A

by =
0 with :
Alyy = dadidy / diod'6{d” ”’"J”ktEiBI)W t ”f”it@ﬂ)vl «D+@" +nD +nj3§zl)3)'v o+
+ parity exchanged (3.17)
leads to : -
AR = dtdydsd- f Pzd*0nm;mitl s, (&) + parity exchanged (3.18)

where the constraints on the skew-symmetric tensor t&{g}h(@) which occurs in the anomalous
part are easily solved in the same adapted coordinate system as above and again means that

it is a pure contravariant analytic skew-symmetric tensor.

335 N, =4

In that sector too, there are no coboundaries, and the analysis of the cocycle condition
SOOAH_]] = 0 with :

e ijk

leads to :
an. g ik
A = gtard: d; f dadOmmmti o (®) (3.20)

where the constraints on the skew-symmetric tensor t%‘(”;c}j)(w)) (®) which occurs in the anoma-
lous part are easily solved in the same adapted coordinate system as above and again means
that it is a pure contravariant analytic skew-symmetric tensor.

This ends the analysis of the cohomology of S° and we are now in a position to discuss
the cohomology of the complete S} = S?° + S7, operator.
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4 The cohomology of 5?

It will be convenient to analyse the cohomology of S? in a coordinate system where the
complex structure Jj is constant. SP° of equ.(2.10) is unchanged (with J;(0) — J}, field
independent) and we note that

6A'tn’v 6
2 2 1)
/d g 66(1)* (z,8) 6ni(z,0) (4.1)

decreases the number of 7; of one unity, whereas S° does not change this number. Using
this fact, we are able to construct the Sg cohomology starting from the S?° one : indeed,

Then, when ordered by decreasing order with respect to the total number of 7, the equation
S2A[4x = 0 is identical to the SPA4y = 0 one with a right hand side given by previous
order contributions.

4.1 The Faddeev-Popov negatively charged sectors

Thanks to the simplicity of A_yj (3.1), the cohomology of the complete S? operator in the
Faddeev-Popov charge -1 sector is easily obtained : the vector V*[®] should satisfy :

‘5‘ AM’LU

2, 12
fda:dﬂéq)( )

Vi ®(z,0)] =0 < V*[®] is a Killing vector for the metric g;;[®]

o JI[®|V,V* = V,;V'JF[®] < V'[®)]is a contravariant vector analytic with respect to J;(®] .

Let us now turn to the Faddeev-Popov neutral charge sector.

4.2 The Faddeev-Popov 0 charge sector

As explained in the appendix of (I) (see also [16],[17]), despite the non-vanishing SY co-
homology in a Faddeev-Popov positively charged sector (subsection 3.3), the cohomology
of S is a subspace of the one of SY, i.e. one can always construct the cocycles for S?
starting from those of S°. It may also happen that some of the thus constructed cocycles
for S} become coboundaries: this occurs when there is some cohomology for SY in the
Faddeev-Popov charge -1 sector ((I) and [25]). We have seen previously that this relies on
the existence of Killing vectors for the metric g;;[®] ; this is natural as such vectors signal
extra isometries that constrain the invariant action or, equivalently, signal the non physically
relevant character of some of the parameters of the classical action that may be reabsorbed
through a conveniently chosen field and source reparametrisation [16].

As in the previous section, the analysis separates with respect to the number Ny, :
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421 N, =0

The image of Ay, (3.3) through S7 does not intercept A‘[T'ISO), the cohomology of S7° in
the anomaly sector. As a consequence ([17] and the appendix of (I)), there will be no
obstruction in the construction of the cocycles of S} starting from those of S and there is
an isomorphism between the two cohomology spaces. Consequently, the cohomology in the
N, = 0 Faddeev-Popov neutral sector is characterized by a symmetric tensor ¢,;[®] such that
ggj = g,; +ht;; is a metric, hermitian with respect to the very complex structure J;f we started
from, and such that J} is covariantly constant with respect to the covariant derivative with
connexion I'};[g/,,.]. This is the necessary stability of the N=2 supersymmetric theory which
ensures that, at a given perturbative order where the Slavnov identity holds (absence of
anomaly up to this order), the U.V. divergences in the Green functions may be compensated
for through the usual renormalization algorithm and normalisation conditions [7].

422 N, =1

an.(1)

Here the image of Al (3.3) through Sj intercepts A[Y;;”, the cohomology of S in the
anomaly sector. As a consequence ([17] and the appendix of (I)), this will restrict the
cohomology (3.6,3.7) in the considered sector. In fact, SPAjy = 0 gives (no coboundaries
exist in that sector) :

AEO] = AEBT]L'(I)[U;j(®)J Sy((b)][equ.(&?,)]
. . 5 1 ., .
with U.;(®) = —2[JuSH(®)] & Sj,f:—aj"“Uik (4.3)

where the supplementary constraint on S¥ is such that J}; + AU, ; - which anticommutes
with Jj - is now also covariantly constant with respect to the covariant derivative with

connexion Ffj [Gmn)-

4.2.3 Ny =2

Here too, the image of A%y (3.3) through Sj intercepts A‘[Tigz), the cohomology of S¥ in
the anomaly sector, which will restrict the cohomology (3.8,3.9) in the considered sector.
Thanks to the simplicity of Af, (3.3), the analysis of the cocycle condition SiA% = 0in
the one 7; subsector readily shows that the cohomology space of the complete S? operator
is empty in this Ny, = 2, Faddeev-Popov neutral sector.

Finally, let us consider the Faddeev-Popov charge +1 sector.

4.3 The Faddeev-Popov +1 charge sector

Here too, the analysis separates with respect to the number Ny _.
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43.1 Ng =0

The S cohomology was obtained in equ.(3.11) :
Al = / d*zd* 9t M (@] (d*)?(d™)*minymw
and, using the algorithm described by equ.(4.2), we find the S} cohomology in the same
sector to be :
an. ii - 3 - n A
Al = [ dadotM(R{(d*)(d Pringme — Sd*dminy Jun(d* D4 @" — d"D_8")
— 3dtd™n; JinJgm D4 ®"D_0™
g _
- ZJiankaz(d+D+<I>”D+<I>mD_¢>‘ —d~D_®"D_®™D, d")}
+ f o d0t),,[®] (4*D,8"D, 8" D_&' —d"D_2"D_8"D,¥') ,  (44)

where t7;,,[®] is related to the pure contravariant analytic tensor tli7kl[®] through (in complex
coordinates) :
tlla,,]é, tfa,—,] . 70, the other vanish ;

t[lab]a = iaa[gaagbgK ,Jt[&BJ]] where K is the Kahler potential .

432 Ny =1

The S7° cohomology was obtained in equ.(3.14) :

Al = [ dad?otN (@) [atd* () + dgd™ (@ Inmyme +

+ f Pwd®0%30(®)[d} D4 @ D, & D_&* — d7D_&'D_&I D, 3

Notice first that 57 does not act on the second piece of A ") | which then is a true S?

[+1]
anomaly. Due to its similarity with A?fiﬁo), the first part of A‘[l:'lgl) is easily promoted to a
complete S? cohomology :

At = f dxd?0t7% (@) {d d* (d™)*nimme — gd;fd—nmj.]kn(ﬁm@” —d~D_o")
- 3did i Jin i DL ®"D_®™ + gJiankaleD+<I>"D+<I>mD_‘I>l + parity exchange}
+ j A*2d?0 (251551 (P) + Lapis k(D)) (aigg1)+<1:ﬂ‘1)+<1ﬂ'_f)_c1>’c - d;DJI>"DJI>jD+tI>"’)(4.5)

where t}, 1, [®] is related to the pure contravariant analytic tensor tli7k][®] as in the Ny, = 0
case, and Z,(;;x[®] is related to a covariant vector t,; (see subsection 3.3.2).
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433 N, =2

The SY° cohomology was obtained in equ.(3.16):

an.(2) _ san
A = AT st + AT s + Al sy + Al e

where :

APl wprs = did [ dodon, [(d)Prmetl28 (@) + (D120t op (@)
Al e = didzatd [ Eadonmmdfis)(@)

AL ag = dids f dzd0n; [Dy B D_8*tl, 5 4 (®) + DL D_BIth, 5 ()]

e As S% A[z +1 contains at least one source 7;, and ST decreases the number of 7; of one
unity, the [a ] skew-symmetric part of the looked-for cocycles of S, A[ 1] I[ag] should satisfy

(SLAEH]) |no =0

which readily gives :
(A%ialiem),, = 5% (d+dﬁ / dzxdzgmnﬂ"[[v]l) |

The cocycle condition (S + SE)A“:1§2)|[,,3] = 0 constrains T[[ Jﬂ]] to be a pure contravariant
analytic skew-symmetric tensor ; then, as a consequence of (3.8,3.9), the last parenthesis is
anihilated by S° and A?, j|jag) is in fact a S coboundary.

e In the same way, the cocycle condition S Af, 1[(ap)+~ = 0, when analysed by increasing
number of sources 7, leads to Aff'lﬁz)[(aﬂ) 4+o=0.

¢ Finally, the cocycle condition S?A +1]|(a5)++ = 0 is analysed along the same lines as
SLA[+1] = 0, and leads to :

an.(2)
Atsy)

1 — 3 o n n m
= didf [ Padodila) {(d Vrunime + S en; Jind™ Dy @" + 1 JjnSem D4 "Dy ® ]}
+  didg f P2d 0t} o5, [0)(D )20
+ parity exchange , (4.6)

where :
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- as usual, tE;ﬁ]) [®] is a pure contravariant analytic skew-symmetric tensor, further con-

strained so as the corresponding t%aﬁ)[i i tensor actually vanishes, i.e. in complex coordinates,

t[abc] abc} ( ¢d)

(aB) = tap) tap) (ot = GaaGssGcctingy(B°) = tap) [anel(4°)

and the complex conjugate relations ;

- t%a,@)j [®] is a mixed analytic tensor, further constrained so as the tensor G(ag)i; =
g,-kti“aﬁ)j is a symmetric, covariantly constant tensor (hermitian with respect to the complex
structure J; due to previous relations (subsection 3.3.3)). This will be important in the
following (subsection 5.1.6).

434 N =3

There are no coboundaries in that sector, and the S cohomology was obtained in equ.(3.18).
Notice that SP’A}, ;) contains at least two sources 7; and that S7 decreases the number of 7;
of one unity ; then, when analysed by increasing number of sources 7, the cocycle condition
SPAY =0, leads to A}, ;=0

435 Ny =4

There are no coboundaries in that sector, and the S cohomology was obtained in equ.(3.20).
Notice that SUDA[ 1) contains at least three sources 7; and S decreases the number of 7;
of one unity ; here again, when analysed by increasing number of sources 7, the cocycle
condition SPAY;, =0, leads to Af,; =0

To sum up, the cohomology space of S? in the Faddeev-Popov charge +1 sector depends
on skew-symmetric contravariant analytic 3-tensors t/¥%[®], ¢[7¥[®] and t[’J )[@] , the last
one endowing a further constraint, on a vector t,; and on a symmetric, covanantly constant
tensor G ag)ij, hermitian with respect to the complex structure J; .

We are now in a position to compute the cohomology of the complete S;, = S} + S} + S}

operator. But, as an intermediate result, we comment on N = 2 supersymmetric non-linear
o models [21].

4.4 N=2 supersymmetric non-linear ¢ models

In the special case of N=2 supersymmetric non-linear ¢ models, there is no need for ghosts
d and all the necessary results may be found in subsections 4.1, 4.2.1 and 4.3.1. In partic-
ular, equation (4.4) offers a candidate for an anomaly and, as a consequence, if at a given
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pertubative order this anomaly appears with a non zero coefficient
S,(’I),Flp”‘orde'r = a(h)PA‘[TI], a 7‘-‘ 0

the N = 2 supersymmetry is broken as A‘["}:i] cannot be reabsorbed (being a cohomology

element, it is not a S‘I{A[O]) and, a priori, we are no longer able to analyse the structure of
the U.V. divergences at the next perturbative order, which is the death of the theory.

We now discuss some properties of the candidate anomaly, trying to characterize the spe-
cial geometries (and manifolds M) where such pure contravariant analytic skew-symmetric
3-tensor cannot appear.

Consider the covariant tensor
t[abc] = gadgbi_)gcét[agal [Q_b] :
It satisfies Vgtjag = 0 . The (3-0) form
i |
W = 3ytlabadg” A de® A dg° (4.7)

which satisfies d'w’ = 0 '°, will now be shown to be harmonic if M is a compact manifold
(or if it is a Ricci-flat one - for example an HyperKahler manifold).

One obtains firstly from the identity :
Atije = ™"V Vi tije — [Ritye + perms. | — [R7 timi + perms. |
rewritten in complex coordinates and due to Vg tjgpg =0 :
Atfapg = ngVdVJt[abc] — [R? tiabg + perms. | .
On the other hand, the Ricci identity gives, still using V4 tlabg =0 :
ngVdVgt[abc] = gd‘;[Rf}da tlebg + pPerms. | = ——[Rff tabg + perms. |.

Then Atjgy = 2gd‘inV(;t[abc] = 2[R%t{ap) + perms. | . In the Ricci-flat case, this gives the
claimed harmonicity of w’. Now, when the manifold is a compact one, one may compute :

(do', dw’) + (6, 6w') = (', (d§ + 6d)u') = (', Aw') = /M do 2t g9,V 110 =
== fM dOZQd‘i{VdVJ(t[abclt[abc]) - Vd t[abc]vcit[abc]} = 0- 2(dw” dw’)
= (bu',8w') +3(dw,dw’) =0 = &' =d' =40 =0, (4.8)
and, as a consequence :

Rty + perms. | =0 = 3t™IRY t,5, = 0. (4.9)
a U[dbc] a

10 As usual in complex geometry, see for example ([27],[28]), the differential d = d’ + d", the codifferential
8 = &' + 8" and the Laplacian A = dé + 6d . '
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Moreover, in this compact case, it results from the previous discussion that [Bdt[lab] é] P
,b,d a.s.

= ;i-agt[abd] vanishes. As a consequence, t[lab] c = Oploz— (a & b), which corresponds to a trivial
cohomology and is then thrown away from equation (4.4).

Notice that, as a priori dw’ # 0, this harmonicity is only a necessary condition which, to my
knowledge, is not given in the mathematic literature. For example, in [27], page 70, only a
more restrictive necessary and sufficient condition is given :

On a compact Kihlerian manifold, given a (p,0) form 7, the 3 following conditions are
equivalent : 7 is closed, 7 is holomorphic and n is harmonic,
or in [28], theorem 9.3 :

On a compact Kaihlerian manifold, given a pure skew-symmetric covariant tensor, a
necessary and sufficient condition for it to be analytic is that it be harmonic.
Other necessary and sufficient conditions depend on the sign of the Ricci tensor : for example
[28], theorem 9.6 : |

If the Ricci tensor is positive definite, there exists no contravariant analytic tensor. This
results immediatly from (4.9).

It is known that the number of such harmonic (3,0) forms is given by the Hodge number
h30; then this number determines an upper bound for the dimension of the cohomology
space of S? in the anomaly sector.

As a first result, this proves that if the manifold M has a complex dimension smaller
than 3, there is no anomaly candidate.

Another special case is the compact Kéhler homogeneous one (N=2 supersymmetric exten-
sion of our previous works (I) for N=1 susy and [16] for the purely bosonic case) : in such
a case the Ricci tensor is positive definite [29] which, due to the aforementioned theorem,
forbids the existence of such analytic tensor tl%*9(¢%). As a consequence, the cohomology
of SY° - and then of S - vanishes in the anomaly sector, i.e. the Slavnov identity is not
anomalous, which means that, as expected, N=2 supersymmetry is renormalizable (at least
in the absence of torsion).

Moreover, due to the “stability" ! of the complex structure and of the classical action
in the space of Kahler metrics (subsection 4.2.1), in this case of d=2, N=2 non-linear o
models, the renormalization algorithm a priori does not change the number of parameters
with respect to the one of the classical action. Of course, as mentioned in subsections 4.1
and 4.2, in the presence of Killing vectors, i.e. of extra isometries, the generic symmetric,
Kéhlerian metric tensor t;;[®] gets some more constraints. For example, when the manifold
is an homogeneous Kahler one (usual non linear o models on coset spaces), up to infra-red
analysis, our work extends to the N=2 supersymmetric case the renormalizability proof given

11 The trivial cohomology SPA[_y) corresponds to field and source reparametrisations according to

(2.7,2.8).
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for the bosonic case in [16] (and for the N=1 case in Section 5 of (I)).

Of course, when A9 £ 0 - which for example occurs for Calabi-Yau manifolds, i.e.
compact Ricci-flat Kihler manifolds of complex dimension 3, where h(®? = 1(ref.[3])!? -, we
have a true anomaly candidate [21]. Of course, as no explicit metric is at hand, one cannot
compute the anomaly coefficient.

Some comments on its possible vanishing in perturbation theory will be offered in the Con-
cluding Section.

This anomaly in global extended supersymmetry is a surprise with respect to common
wisdom [18] (but see other unexpected non-trivial cohomologies in supersymmetric theories
in the recent works of Brandt [19] and Dixon [20]) and the fact that if we have chosen, from
the very beginning, a coordinate system adapted to the complex structure, the second super-
symmetry will be linear and there will be no need for sources 7; . However, as known from
chiral symmetry, even a linearly realised transformation can lead to anomalies ; moreover,
here the linear supersymmetry transformations do not correspond to an ordinary group but
rather to a supergroup where, contrary to ordinary compact groups * no general theorems
exists : then there is no obvious contradiction. This emphasizes the special structure of the
supersymmetry algebra.

5 The cohomology of S; and N=4 supersymmetry

In subsection 2.1, we have split the complete linearised B.R.S. operator S; into 3 pieces,
according to their number of ghosts d= :

SL=8,+S.+S5;

where :

S9 = f d*zd*0{J;(d* D&’ + d~D_&7) i

5Pt
5Aifw . . ; b
+ [ (5 — I (AT Dy @ + d”D_%) + J{ (d* Dy tdD-mlgc}
)
S}, = fdzcrdzg{ (d+D+(I)] +d,D_ (b]) +"71€aﬁ3‘]”(d+d— —dy d+)] 6Pt

+ [']g\zt(d;D'f‘nJ F d;D—nJ) + nk(Jtl)zcj i J:icz ])(d;‘x_D'{*@J + d—D“‘(DJ)
1
& EnkmeaﬁsJEfi(dZd' - d;d+)]_.} )
2 2 2 U 4 1 kl 6
and S2 = —eupsdid; fd o8 ny 9 s+ pmn | (5.1)

12 As det ||g]| = 1, a representative of t/**<] is the constant skew-symmetric tensor €l®*l( with 123 = +1).
In the appendix A of ref. [16], it is proven that any linearly realised symmetry corresponding to a
compact group can be implemented to all orders of perturbation theory.
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and the cohomology of S was obtained in the previous Section. We start the analysis by
the anomaly sector, as the existence of a true Slavnov anomaly would be the death of the
theory.

5.1 The Faddeev-Popov +1 charge sector

Filtering the cocycle condition S;A(y; = 0 with respect to the number Nz, we know that
the cohomology of S}, will be a subspace of the one of S7. We now analyse this restriction of
the cohomology space (due to a possible Faddeev-Popov +2 charge anomaly) in successive
filtration orders.

511 Ny =0

The cocycle condition SPAP, ;, = 0 has been solved in subsection 4.3.1 (equ.(4.4)) :

an.(0 I
Al = A[+1§ (@) + SLA

5.1.2 N, =1

At this order, and using previous result, the cocycle condition writes :

Sh(Aly - S3AR) = —SLATL B (@)] (5:2)
From Sg(S},A‘[Ti%O)) = -S}J(S?IAE’_’:'ISO)) = 0, one sees that (5.2) a priori enforces some con-

straints on the tensor ¢(*1(®) . From the condition :
Siaf B9H (@) = S2ALy (5.3)

where the general éxpression for A[1+1] was given in (3.13), one obtains at decreasing orders
in the number of ghosts, firstly a constraint * on #¥* :

NdA =6 : Vi[J;jt[klm]]l[j,k,l,m] a.s. — 0 )

then tf7¥(®) in function of t1¥*l(®). Using complex coordinates - in particular the fact that
J¢ (¢, ) = 8372 (¢, ¢) - , this writes :

1 2 = il
O™ = LTV at™(9) = 0z | 1 Ja($, )Vat"(9)|

14 In the compact Kahler case, we have shown in section 4.4 that V;t/** = 0 (as a consequence of dw' = 0)
. Then this is not a new constraint.
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tt[:?bC] - 4 aa((b ¢)t[abC}( )

which exhibits some arbitrariness in A[ 1)) defined up to a Sg cocycle A'[lr'lgl)hqu (4.5) +S%A[10] .

At the next order (N;, = 4) we obtain the vanishing of t/%1(®) i.e. of AL SO) :

As a consequence, equ.(5.2) writes : S? (A} ) LA[(,}) = 0 which, according to subsection
4.3.2 (equ.(4.5)) solves to :

Al = ATV (@), T (®)] + SIAL + SEAD, - (5.4)

5.1.3 N =2

At this order, and using previous results, the cocycle condition writes :

S (AR — S1AR — SEAL) = —SiA ””(1)[1&[“’" o i8] (5.5)

[+1]
Here too, from SIOI(SI{A?'LSI) ) = SL(SOA'[IIISI)) = 0, one sees that (5.5) a priori enforces

some constraints on the tensors t[”’“] and £, i)k From the condition :

SLATP I, To ] = SPAT (5.6)

where the general expression for 5[2“] was given in (3.15) and is defined up to the cocycles
A{[‘:l]z |equ.(a.6) + S%A?O] , the same analysis as in the previous subsection for Ny, = 6, 5 and
4 again gives the vanishing of t{/*(®) and the “triviality" of the corresponding terms of
A[zﬂl , as they reduce themselves to S cocycles Then A[ +1] (1) depends only on the tensor

tafijje(®). So Si A‘[’flgl) involves at most 3 ghosts and in A[ 1> only the terms in t{,g 4,
'(Zﬁ)4[jk]7 t[aﬁ]4(3k) and t(aﬂ) 557 t[aBI . survive.

When analysed at ghost level 3 and 2, the condition (5.6) does not lead to the vanishing
of these tensors, but expresses them as functions of the complex structure J, ; and the
“anomaly tensor" t,;jx. For example, one finds (in complex coordinates) :

taB)apd = tapyapg =0 Hap)apg = (J topga + (o & 5))
tapyss =0 tap)sbe = 5 (Jgdfﬂ [asje + (@ < ﬁ)) ;
and constraints such as :
(V2 Ep e + T2 Epiaa + Jaatppaa + (@ = 8)) =0.
Finally, from (5.5,5.6) and subsection 4.3.3, one gets :
"1(2) [i5k] i
A[2+1} [t(;ﬁ)’ (B)55] — A[+1] + SLA[O] + SLA[O A S2A[o] : (5.7)

where the tensor G(ag)i; = gikt(aﬂ) 5; is a symmetric, covariantly constant tensor, hermitian
with respect to the complex structure J; (subsection 4.3.3).
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514 N, =3

At this order, and using previous results, the cocycle condition writes :

St (Al — SEAY - SiAly) = —SE (AT Hapn]) -
- §1

t~

™~

~ an.[ijk] ,an.i 'z i i i i
(A{Hl[t(aﬁf > Ea) 55 (aa)wk]rt?a.s)mkwt[aﬁlwk)’t(aa)sj:t[amsj]) (5.8)

~2
where A[H} = Afr\ — A%, . Here too, from SY(SIATY + S1A[y) = —SESARLY -

S},S%A[ +1] T 0, one sees that (5.8) a priori enforces some new constraints on the tensor

tafijlk - From the condition :

] W
SEATY + LAy = SIAY (5.9)

where the general expression for A{3+1] was given in (3.17), and thanks to the special structure
of S} (5.1), one obtains through analysis of the terms in dfdfd}, at the 6 and 5 order in

the total number of ghosts, the vanishing of the part in t?gﬁ[;’ k]( ®) of the anomaly A‘[’_figz)
=2
involved in Ay .

Then, the analysis of the terms in dfdfdid™ gives :

an.j

e the symmetry, in the exchange i « j, of : €345JF" [t a5kt t{ﬁ..y)s k] |ty w2

an.(1)

e the vanishing of t(ﬁﬂ4 i) » and then : tafijle =0 i.e. A[+1] =0.

As a consequence, equ.(5.6) gives : S LA[ ‘1) = 0, and, thanks to previous remarks, A[ ]
may be supressed, i.e. t(ﬂq) = 0. Then, the constraint (5.9) reduces itself to :

ST [tenss (@) = S2AY (5.10)

In the analysis of the terms in d;dﬂ d}, equ.(5.10) may be shown to enforce a stronger
constraint on ‘ggﬂ35 ;(®@):

Jikt?é‘:yfsj = Jk ‘(’Eﬁsk = ‘]cikG(ﬁ'y)ij = —G(ﬁq)ékJij Yoy 8 vy (5-11)

i.e. the tensor G(,g);; is hermitian with respect to the complex structures J3, . Moreover,
A[ +1) = 0. Finally, from (5.8,5.9) and subsection 4.3.4, one gets :

SIATY =0 5 Al =SIAY + SIAY . (5.12)

5.1.5 N, =4

At this order, and using previous results, the cocycle condition writes :

SY(Aky — S2AY) = —SEAT e ) (5.13)
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Here too, from :

an. an. (5.12)
SU—SFANY) = BL(StAI®) =0,

one sees that (5.13) a priori enforces some constraint on the tensor {15 ;. From the condition
n.(2 Iy
SEATHD = SIAL (5.14)

(+1]

where /:\‘[‘H] was given in (3.19), and the structures of S} (5.1) and A?fi%z),

right hand side is proportional to d;dad:’r'dg when no such terms may occur in the left hand

one sees that the

side, which means that both sides should vanish. As a consequence, A?+1] is a S? cocycle,
which means that it vanishes (subsection 4.3.5).

Finally, from (5.13,5.14) and subsection 4.3.5, one gets :

SIAID =0 Ay =SiA%, . (5.15)

5.1.6 Absence of N=4 supersymmetry anomaly

Putting the results of the previous subsections 5.1.1-5 together shows that the cohomology
space of S, in the Faddeev-Popov charge +1 sector depends on a single symmetric tensor
G(ag)i;|®], hermitian with respect to the 3 complex structures J ; and covariantly constant

an.(2 an.(2 an.(2 an.(2
Apy = AT + 880 where SIATD = SLAMHD = SZARA) = 0,

Al = f d*zd®0n,9" G (ap) ik (dsz(DHz‘I’j +dgdg (D—)z@j) : \5:18)

This is reminiscent of the right hand side of the classical Slavnov identity (2.5). As a matter

an.(2)

of fact, it appears that A[ + s a St cocycle :

AR = 51 (Ap(Gap(®)
; .1 . : ,
A = fd2$d29{GG(aa)ijD+¢1D_¢J - 'z“ﬂiJ:,,kG(aﬂ) kj(dED_i_(I)J N dED_(:DJ) 4

1 - 1, . 1. ,
+ §ni7?j€ABCdJ£dB[(a + '2')Jo1° Giymymg” — EquG(WC)klglJ 1} (5.17)

where a is an arbitrary constant. Then there is no Faddeev-Popov +1 charge cohomology,
and we get the absence of supersymmetry anomaly in N=4 non-linear ¢ models in 2 space-
time dimensions.

5.2 The Faddeev-Popov neutral charge sector

As explained before and in the appendix of (I), the existence of a non trivial cohomol-
ogy for S? in the Faddeev-Popov +1 charge sector, will restrict the cocycles of Sy in the
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Faddeev-Popov 0 charge sector ; this is easily understood as N=4 supersymmetry enforces
new constraints on the arbitrary Kahlerian metric g,; corresponding to N=2 supersymmetry.

We now filter the cocycle condition S A = 0 with respect to the number Ng .

52.1 N =0

The cocycle condltlon SOA o = = 0 has been solved in subsection 4.2.1 :

Al = A“]” Oty (@)] + SYAD L [VH(®)]

5.2.2 Ny =1

At this order, and using previous result, the cocycle condition writes :
i an.(0
S3(Aly — SEALy V') = —SLAG lten (@) (5.18)

From S2(St A @) = _g1 L(SL A ©) = 0, and the existence of an S anomaly A +1](1) , one
sees that (5. 18) enforces some constralnts on the tensor t;;)(®) :

St AL Oltan] = SYAL (0L, S (5.19)

where the general expression for A[lo] was given in (3.3). As a consequence, equ.(5.18) writes
t SY(Afg — STAY, + A%o]) = 0 which, according to subsection 4.2.2 (see in particular
equ.(4.3)), solves to :

A{l{)] _ A{aori..(l)[Uanz San [zg]]

aj

=i gl 1.
= A[0] [Uagﬁ ] + SiA[O—I}[V ] 8 (5'20)

St + S1AD [V

AjylUs;,

n

5110] being defined by equation (5.19) up to a S cocycle, i.e. up to A‘[:)}'(l), the constraint
(5.19) especially implies the hermiticity of the perturbed metric gi; = gi; + ht(;;) with respect

to the perturbed complex structures J;fj = Ji; + hU ; and the covariant constancy of the

later with respect to the covariant derivative with connexion corresponding to g;; . Moreover,

=[] :
the tensor S, is a pure contravariant analytic skew-symmetric tensor, with components

given in complex coordinates by :

= [ab]

= [ab]
Sa = —-Zga'c [U + tcdjgb

—(a~=b) =S5, (¢*) and the complex conjugate relation,

(compare to equ.(4.3)), and one obtains the relations :

Tojan) = “Z [ ~ab‘|‘taé ey —(ae=b) = Ta[ab](¢d)
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and

~b = [ab] ~b = [ab]

Uus (resp. Sa ) = —t€ag3lUss (resp. Sg )
(compare to equ.(2.3) which implies : J§, = —i€ag3J}, ) and the complex conjugate relations.
523 Ny =2

At this order, and using previous results, the cocycle condition writes :

SYAY - S2AD ) = —-S2Am @ - SLA[O] (5.21)
Here too, from

(5.19)

= 1 an.
52 (SI%A[OI-“’) + S};Aio]) = —SL(SEAIO — s9AL) 2V g,

and the existence of an S? anomaly A'[T'l]@) , one sees that (5.21) enforces some constraints

=i zlif]
on the tensors i(;), U, .
=i z[ij) ii
SEA Oltan] + SLA[O] 0,80 1= SUAR (51 ] (5.22)

where the general expression for 5[0] was given in (3.3). As a consequence of (5.22), equ.(5.21)
writes : S(Afy — STAL; + A[o]) = 0 which, according to subsection 4.2.3 solves to :

Aﬁll = _A[o][ aﬁ]] +STALy V7. (5.23)

The constraint (5.22) especially implies the anticommutation of the perturbed complex struc-
tures J.}; and J4; and the relation :

i 1 . »
Sty = — a3 g™

5.2.4 Ny =3

At this order, and using previous results, the cocycle condition writes :

SLA[0]+SLA[0] = 0
”[J]

& SiALISHE = sLA[o][UaJ, S, 1. (5.24)

As a matter of fact, this may be shown to result from previous constraints.
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5.2.5 N, =4

At this order, and using previous results, the cocycle condition writes :
SIAL =0 & SIALISH]=0, (5.25)

which may be shown to result from the Ricci-flatness of g; (det||g'|| = constant), which
itself results from the HyperKéhler nature of the perturbed metric g;;, i.e. to results of the
previous subsections.

5.2.6 Stability of N=4 supersymmetric non-linear ¢ models

Putting the results of the previous subsections 5.2.1-5 together gives :

A = A5 Oltn(@)] + A [T,(®), Be ()] - A5 (®)] + SLAy[Vi(®)]  (5.26)

Up to a trivial field and source reparametrisations (2.7,2.8), the most general Slavnov in-
variant integrated functional of the fields, sources and their derivatives, of Faddeev-Popov 0
charge is :

I\’class. — Fdass. 3 hA{O] = /dzmd29{g;jD+@iD_<I>j &
§ . 1 Fh g
+ niJa;[d5D4 ¥ +d3D 9] - §€ABCW47?chJdZdB} (5.27)
and where the results of the previous subsections consistently give :

95(®] = 9i[®] + Aty J:;ij 3; , (‘I)) ( )+ hﬁaj((b)

p— ye s » =1 4 " R, T s = [i4]
JI®) = Jo™ =TI+ R0, 6% — Tt (umyg™] éf"z'zJ;J(@)—zneaﬁaS; (@),

and the different constraints (5.19 and 5.22) may be shown to enforce N = 4 supersymmetry
: i.e. g;;|®] is a symmetric metric tensor, the three J), ’s offer a set of anticommuting, inte—
grable and covariantly constant (with respect to the covariant derivative with connexion T'; )
corresponding to the metric g;) complex structures satisfying a quaternionic multiplication
law, and the metric is hermitian with respect to each of these complex structure J ().

This proves the stability of the theory, and, thanks to the absence of anomaly, the full
renormalizability of N = 4 supersymmetric non-linear ¢ models in two space-time dimensions.

Of course, due to a possible Faddeev-Popov -1 charge non-trivial '* cohomology for Sz,
some of the parameters of the action (5.27) may be unphysical ones . Ap_y(V*[®]) being

15 The trivial cohomology SpA|[_y) corresponds to field and source reparametrisations according to
(2.7,2.8).
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independent of dZ, the cocycle condition SpA[y(V#[®]) = O splits into the three ones
SiALy(Vi®]) = 0, i = 0,1,2. One easily checks that V*[®] should be a contravariant
Killing vector for the metric g;;, holomorphic with respect to the three complex structures :

o ViVE+ gV VE =0, JIV,V* = TFV. VI A=1,2,3. (5.29)

6 Concluding remarks

In the second paper of this series, we have analysed the cohomology of the B.R.S. operator
associated to N = 2 and N = 4 supersymmetry in a N = 1 superfield formalism. We found
an anomaly candidate for torsionless models built on compact Kahler Ricci-flat target spaces
with a non vanishing Hodge number A(3?). Calabi-Yau manifolds (3 complex dimensional
case) where h(®% = 1 (ref.[3]) are interesting examples due to their possible relevance for
superstring theories. Of course, as no explicit metric is at hand, one cannot compute the
anomaly coefficient.

This anomaly in global supersymmetry is a surprise with respect to common wisdom
[18]. But some recent works of Brandt [19] and Dixon [20] also show the existence of new
non-trivial cohomologies in supersymmetric theories and we have argued in Section 4 that
the special structure of the supersymmetry algebra which does not correspond to an ordinary
group but rather to a supergroup may be responsible for this peculiarity.

Our analysis then casts some doubts on the validity of the previous claims on U.V. prop-
erties of N=2 supersymmetric non linear o models (see for example [4] or [6]) : there, the
possible occurence, at 4-loops order, of (infinite) counterterms non-vanishing on-shell, even
for Kahler Ricci-flat manifolds, did not “ disturb" the complex structure. On the other
“ instability" of the second supersymmetry, which confirms
that there are some difficulties in the regularization of supersymmetry by dimensional re-
duction assumed in explicit perturbative calculations [5] as well as in finiteness “proofs"
[4] or in higher order counterterms analysis [6]. We would like to emphasize the difference
between Faddeev-Popov 0 charge cohomology which describes the stability of the classical
action against radiative corrections ( the usual “infinite" counterterms) and which offers no
surprise, and the anomaly sector which describes the “stability" of the symmetry ( the finite
renormalizations which are needed, in presence of a regularization that does not respect the
symmetries of the theory, to restore the Ward identities) : of course, when at a given per-
turbative order the Slavnov (or Ward) identities are spoiled, at the next order, the analysis
of the structure of the divergences is no longer under control. In particular, the Calabi-Yau
uniqueness theorem for the metric [30] supposes that one stays in the same cohomology class
for the Kéhler form, a fact which is not certain in the absence of a regularization that re-
spects the N=2 supersymmetry (the possible anomaly we found expresses the impossibility
of finding a regularization that respects all the symmetries of these theories).

hand, we have found a possible

We emphasize that the present work relies heavily on a perturbative analysis of the
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possible breakings of the Slavnov identity, especially through the use of the Quantum Action
Principle. It may well happen that the coefficient of the anomaly candidate vanishes at any
finite perturbative order 6. However, the possibility of a non-perturbative breaking of the
N=2 supersymmetry would remain open.

Of course, if one added from the very beginning extra geometrical (or physical !) con-
straints that would fix the classical action, we bet that our anomaly candidate would disap-
pear : as previously mentioned, this is the case when the manifold is a compact homogeneous
Kahler space.

Moreover we have been able to give the first algebraic, regularization free proof that,
if one enforces N=4 supersymmetry (HyperKahler manifolds), there is no supersymmetry
anomaly '7 and that the corresponding non-linear o models are all-orders renormalizable, “4
la Friedan".

The last step of our program will be the rigorous proof of the all-orders finiteness of these
models. We hope to be able to report on that subject in a near future.
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