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B.R.S. Renormalization of Some On-Shell Closed
Algebras of Symmetry transformations. The Example
of Supersymmetric Non-Linear ¢ Models:

1) the N=1 Case

By Guy Bonneau

Laboratoire de Physique Théorique et des Hautes Energies,
Unité associée au CNRS URA 280, Université Paris 7,
2 Place Jussieu, 75251 Paris Cedex 05.

(9.XII.1994, revised 19.XII.1994)

Abstract. In order to study in a regularization free manner the renormalizability of d=2 su-
persymmetric non-linear o models, one has to use the algebraic BRS methods ; moreover, in the
absence of an off-shell formulation, one often has to deal with open algebras. We then recall in a
pedagogical and non technical manner the standard methods used to handle these questions and
illustrate them on N=1 supersymmetric non-linear ¢ model in component fields, giving the first
rigorous proof of their renormalizability. In the special case of compact homogeneous manifolds
(non-linear ¢ model on a coset space G/H), we obtain the supersymmetric extension of the analysis
done some years ago in the bosonic case.

A further publication will be devoted to extended supersymmetry.

1 Introduction

The quantization of extended supersymmetry raises the difficulty of an “on-shell" formalism.
Indeed, if one leaves aside harmonic superspace [1] where firm rules for quantization ! are not
at hand [2] on the contrary of ordinary superspace [3], one has to deal with (super)symmetry

! j.e. a subtraction algorithm insuring the locality of the counterterms.
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transformations that are non-linear and close only on-shell. This problem was adressed in
[4] by O. Piguet and K. Sibold for the Wess-Zumino model as a “toy-model" and, in a still
uncomplete way, by P. Breitenlohner and D. Maison [5] for supersymmetric Yang-Mills in
the Wess-Zumino gauge.

In this series, as new steps, we analyse the d=2, N=1 supersymmetric non-linear o model
without auxiliary fields and the N=2 and 4 cases in N=1 superfields.

On the other hand, and as should be by now well known [6], there is no consistent
regularization that respects non-linear supersymmetry (dimensional reduction being mathe-
matically inconsistent [7]). Then, if one wants to settle on a firm basis e.g. the finiteness of
N=4 supersymmetric non-linear ¢ models, one needs a regulator free treatment : we shall
then use the B.R.S. cohomological methods ([8],[9]).

The first task is to write a Slavnov identity. In the presence of on-shell closed algebras, this
has first been studied by Kallosh [10], de Wit and van Holten [11] and later on systematised
by Batalin and Vilkovisky [12] ; as in this work we intend to offer a pedagogical and self-
contained point of view, we prefer to give here a concrete method for the construction of
the effective classical action and of the Slavnov identity, for a special class of on-shell closed
algebras (subsection 2.1). We illustrate this method with the examples of the d=2, N=1
supersymmetric non-linear o model without auxiliary fields (subsection 2.2) and the N= 4
case in N=1 superfields (subsection 2.3).

In the same pedagogical and completeness purposes, we then recall in section 3 the essen-
tial cohomological tools of the algebraic approach to the renormalizability proof a la B.R.S.,
and explain with some details the power of the “filtration" method for the cohomological
analyses of highly non-linear nilpotent linearized Slavnov operators Sy, (the so-called spec-
tral sequence method [13]). Some grading being introduced (“filtration" operator), S9, the
lowest order of the Slavnov operator is still nilpotent and its cohomology is simpler to find.
In subsection 3.2, we then sketch the proof of the “filtration" theorem which asserts the
isomorphism between this cohomology space and the one of the full Slavnov operator, in the
special case where the cohomology of S? is empty in the Faddeev-Popov charged sectors [8].
An appendix gives a sketch of the modifications of the “filtration" theorem when the coho-
mology of S} is not empty in the Faddeev-Popov charged sectors ([8],[14]). We emphasize
that in our work, we shall consider integrated cohomology (in the space of local functionals
in the fields, sources, ghosts and their derivatives) and not local cohomology (in the Fock
space of local polynomials in the fields, sources, ghosts and their derivatives).

The method is then exemplified in section 4 on the d=2, N=1 supersymmetric non-
linear o model in component fields (without auxiliary fields) leaving the N= 4 case in N=1
superfields (and as an intermediary step the N= 2 supersymmetry) to next publications [15].
Another interesting case would be super Yang-Mills theories in 4 space-time dimensions.

Of course, we are here mainly interested in the renormalization of the supersymmetry
transformations : as discussed by Friedan [16], the action of a non-linear o model may be
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identified with a distance on a Riemannian manifold M, the metric depending a priori on
an infinite number of parameters. One then speaks of “renormalizability in the space of
metrics" or “a la Friedan". When there exist extra isometries, for example in the case of the
non-linear o models on coset spaces (homogeneous manifolds), the number of such physical
parameters becomes finite and in ref. [8] we have proved the U.V. renormalizability of these
isometries in the purely bosonic case. The present work gives the necessary supersymmetric
extension in section 5. On the other hand, in the absence of isometries, our aim is the proof
that no extra difficulty occurs in the supersymmetric extension of these non-linear o models.
We shall then prove in section 4 that the cohomology of S? is empty in the Faddeev-Popov
charged sectors, which ensures the renormalizability of the theory “ in the space of metrics".

Moreover, we only consider here the ultraviolet renormalizability of the d=2 supersym-
metric non-linear ¢ models : of course, one has also to deal with infrared divergences. This
would require the addition of an infrared regulator which of course breaks the symmetries,
but only softly, and then does not affect our results on “hard" divergences and absence of
an anomaly for the supersymmetry in 2 dimensions. In the special case of the non-linear o
models on coset spaces (homogeneous manifolds) studied in Section 5, the method of ref. [8],
which uses a definite covariance under the isometries of the infrared regulating mass-term,
will ensure the infrared finiteness of observables.

2 Slavnov identity for on-shell algebras

2.1 General method

Let ®*(z) and A[®] respectively be a set of fields (bosonic or fermionic) and the classical
action of a theory. We want to analyse a global, non-linear symmetry transformation

§®%(z) = €W, 0%(x) (2.1)
whose generators satisfy the following (anti)commutation relations :
5A[D]
a k a ab

and where ijb is a priori a field dependent quantity 2. This situation is a special case
among the ones studied by Batalin and Vilkovisky [12], but, as we want to be as pedagogical
as possible, we prefer to exemplify the method on a particular class of on-shell algebras. Of
course, on mass-shell, the “algebra" (2.2) takes a canonical form.

2 To fix the notations, we consider bosonic fields and transformations : then X;‘jb will be antisymmetric

—l—]-:;.a) shows that if ijb was symmetric

in (a,b), the algebra (2.2) could be rewritten as a closed one, with field dependent structure constants, a
case that we exclude from our analysis : therefore, in the following, we restrict ourselves to the cases where
X{‘j” will be antisymmetric with respect to (a,b).

The necessary modifications for e.g. supersymmetry transformations are obvious.

in (i,j). Notice also that the integration over x of (2.2) multiplied by
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As usual [9], in view of quantization one takes as classical effective action
resse = A+ [ du(@)[Wi*(@)]C" (2.3)

where C* and +,(z) are respectively constant anticommuting Faddeev-Popov parameters and
external anticommuting ® sources for the B.R.S. variation of the fields ®°(z).

Then, although the W;’s transformations are generally non-linear, the variation of I'#e**- will
produce the commutator of two transformations and then will be expressible as a functional
derivative with respect to the source «,. More precisely :

_ 6T 6T
ST = [do 7 6@(3;)
dym(y)W; 2 @)|
= f dz[Wid%(x)]C* 5<I>a 5+ f dz[Wid*(z)|C* 5[ y;bg)(z) )] o
—6A + %c"cf [ 5 ;g‘k [ dom(z)xE (5 qilg) 51 dy'yggi)(gk@a(y)] ck)] 24

At this point we suppose the invariance of the classical action A = A*™. Then :

1 ik OO 6T
—ZCCifE— = —=CiC7
ST 2C’C’ T C‘O/dz Syl )5<I>b( )+[3 ghosts terms | .

In order to suppress the 2-ghost terms, we modify the classical action (2.3)

Tt = A 4 [ do (s Wit (@)C — - j dz 4o (2) X2y () CCY. (2.5)
Then 4
é-I‘tot 1 ' ) 5I1t0t.
tot. _ i ok — (Y ab ba
ST CCf,J = —5C'C [da[x: +X,J]7,_,(m)6q)a($)

+3CCIC* [ do [Xhn(a) (a(e) W2 (2)) =5 (— S5 X0 + WeXE) (@) a(a)]
+ Sc*cfckcl f dam(@) X2 (Xhre(ehra(@) o (26)

The 2-ghost terms cancel due to the antisymmetry of X 9 in the interchange a < b . The
3-ghost ones will be analysed through the Jacobi identlty

C*CIC* Wy, Wi, Wj]] = 0

giving on-shell :
cicick fjfum = {j (2:7)

3 See the last line of footnote 2.
+ (G[8(2))), means g5t [ dy(Glo(y))
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and then :

o A A
cfoick ([— BXie + Wi Xl — X (Wid'(2)) e | o + XEW, ( o ))) =0 (2.8)

The invariance of the classical action is then used to transform equation (2.8) into :

o . . . 6Az'1w.
cicic ([_ LXEE + W XE — XS (Wid(2)),c ] 55°T5)
(W2 (y)) SA™
Xl [ ay==E = ) = (2.9)

Notice that when the transformation Wy (®“(y)) involves only the fields and not their deriva-
tives, equation (2.9) may be “divided" by 6£:(‘:) and, as a consequence, the 3-ghosts term of
(2.6) vanishes.

This gives the spirit of the construction of the Slavnov identity for on-shell closed algebras;
in the generic case, the total action (2.5) has to be modified by addition of 3-[and even more]
ghost terms in order to obtain from equation (2.9) [and similarly obtained ones at higher
order in the number of ghosts| the looked-for vanishing of the 3-[and higher order| ghost
terms and the final Slavnov identity :

Ptot I'\tot 1 5I\tot
STtot: = f il —(ieg gk
67va(z) 6P2( ) C i

S (2.10)

In the present work, we shall show that in some interesting examples this is not necessary
and that equation (2.10) will hold true with a I given by (2.5). Moreover, due to the
algebra (2.2), one expects nilpotency for the linearized Slavnov operator Sy, defined through

S(T' + eI™) = SF + €Sy + O(e2) .

2.2 N=1 supersymmetric non-linear o models in component fields

Let us exemplify this method on d=2, N=1 supersymmetric non-linear ¢ models in com-
ponent fields ¢*(z), ¥4 (z) (i,j,.. = 1,2,..n). In light-cone coordinates and in the absence of
torsion, the non-linear N=1 supersymmetry transformations and the invariant action respec-
tively write

6" = eyl +e Pt
Sy = ictBi¢’ + T Yhyl (2.11)

Al — ] 2 {g:;(¢)[046'0_¢ + ()i D_yp. + 9 Dyl )] + %Ri,-m/)w)ixb’iw‘_} (2.12)

where the covariant derivatives are

Dyyl = Oyyt + I 0,79k
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and where Iy, and Ry are respectively the (symmetric) connexion and Rieman tensor
associated to the target space metric g;j[¢]. The properties of the theory will be more
transparent in tangent space where the metric is the Khronecker 6,5, the spin connexion wyj,,

the Riemann tensor R4 and the tangent space fermions ¢} are related to world space ones
¥’ through the vielbeins e?[¢)] :

_ a b a __ 1 .
9ij = bapeie; ; Y =Yie]

a _ _a.J ki IR ; a _ i J k.l a i _ gca
wp, = ejepe L5, — elecdjef ; Raped = Rijuegeje.eq where efey =6y .

With e = e?d.¢*, the covariant derivatives and the invariant action are respectively :

Ditp} = 092 + wheh oyl (2.13)
1 . a a 1 a c
AP f d*o{Sulet e’ +i(¥3 D9 + 92 Do) + 5 Rueat 39929l } (2.14)
Then, the (highly non-linear) supersymmetry transformations are :
6¢' = e (Pl +eY)
St = deTed —wlyl(etyd +eyb) (2.15)
and the algebra of equ.(2.2) specifies to :
(Wi, Wile' = 2i0.¢"
{W+) W—}(pl 0
{Wa, Wetel 21094
) . . 5A'inv.
{Wa, Wilys 2i0:9% — 6" ——
oY
W W_lys = seli” (2.16)

2" Tyt

As we shall be only concerned by integrated local functionals (i.e. trivially translation
invariant ones), we forget about the linear translation operators Py = 904, to which anti-
commuting Faddeev-Popov parameters p* should be associated, and do not add in ['*®#*- of
equ.(2.3) the effect of translations on the fields ¢* and ¥5 . Then the total effective action
of equ.(2.5) writes:

Dot = A [ Pofyl ()0t + ufy(CH Y+ OYL)]
+ 7 (@)EC e +wpy (CHYh + C°)] + mi(a)[CHelys + C eyl
+ 35“6[7;“ @)% (@)(C7) + 5 (x)% (x)(C)? — 29 (z)v (2)(CTCT)]} (2.17)

where C%, v(z) and 7;(z) are respectively commuting Faddeev-Popov parameters, com-
muting fermionic and anticommuting bosonic sources. Due to the simplicity of the algebra
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(2.16)%, the Slavnov identity of equ.(2.10) holds and writes :

Ptot 6Ptot 51‘\tot. 6Pt°t‘ 5Ptot. (ﬂ'\tot.
T e A T T

==ﬁ%wﬁnwm&+ﬂ@ﬁrwﬁﬂm&&+m&wnWM&

st = Poil

Moreover, one can also check that the linearized Slavnov operator :
61’\tot‘ k) 5Pt0t' 5 61‘\tot. ) 51‘\tot, )
Sp=[ d?
S {(57&*)5¢1+(57;)5¢“—+(5¢1)5'ra++(6¢“-)5'r;
5Ptaf.. 5 51‘\tot. 6
— | — 2.19
v (5w () m (219

is nilpotent : (Sp)? = 0, when acting in the space of integrated local functionals. The
quantization of this theory will be studied in section 4.

2.3 N=4 supersymmetric non-linear ¢ models in N=1 super-
fields

Consider now d=2, N=4 supersymmetric non-linear ¢ models in N=1 superfields ®(z, 8) (i,
jy-- = 1,2,..4n). In light-cone coordinates and in the absence of torsion, the non-linear N=4
supersymmetry transformations and the invariant action respectively write :

§6° = J.(®)[efD P +¢,D_®] , a=1,2,3.
A = f 22d%0g;;(®)[ D4+ &' D_3) (2.20)

where the covariant derivatives Dy = + 108, satisfy

66:':
{Dy, Dy} =20, {Dy,D_}=0 . (2.21)

As is well known (see for example ref.[17]), N=4 supersymmetry needs the J; ;(®) to be a
set® of anticommuting integrable complex structures according to :

T2 i (@) 1(D) = — a8 + €aveTe1(®)
and the invariance of the action needs the target space to be hyperkahler :
* the metric is hermitian with respect to each complex structure

Ji= i gk = _ i

% Notice that in this N=1 supersymmetric case, an off-shell formalism actually exists.
6 As a matter of facts, it is sufficient to have 2 anticommuting complex structures : then the product
Ji = Ji;J3, offers a third complex structure .
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* the J* ; are covariantly constant with respect to the metric g;;

DyJi; = 0l + Tigdl; — TiiTay

=0
where I'jy[g;;] is the ( symmetric) connexion.

Then the algebra of equ.(2.2) specifies to :

{Wos, Wos }®' = 26,0, 9
(S Az?m:.
5PJ

{Wa.-f-:Wb—}@i = eabc‘]ij (222)

ie. X = 2ep.J¥ . As in the previous section, we forget about the linear translation
operators Py = 0y, to which anticommuting Faddeev-Popov parameters p* should be
associated, and do not add in I'#*** of equ.(2.3) the effect of translations on the fields & .
Then the total effective action of equ.(2.5) writes 7 :

. . . . 1 .
Dtot — Ainw- 4 f Pod?0{niJ};(9)[d) Ds® + d; D-®) — Seanmin; P (2)dT 7} (2:23)

where d¥ and 7m;(z) are respectively commuting Faddeev-Popov parameters and anticom-
muting bosonic sources. Here also, the Slavnov identity of equ.(2.10) holds and writes :

61'1tot. 61-1tot.
5?’,% §(I)k

ST = / d*zd*0 = f 2zd®0[(d)? (eid %) + (d7)*(mio_®*)) . (2.24)

Moreover, one can also check that the linearized Slavnov operator :

61'\tot. 6 4 51'\tot i}
6me 0Bk ' 5Bk by

Sp = f dzd?0] (2.25)

is nilpotent : (Sz)? = 0, when acting in the space of integrated local functionals. These are
not trivial results as in that N = 4 case, no finite set of auxiliary fields exists.

Notice that in the N=2 case - where there is only one complex structure -, there are no
bilinear terms in the sources 7; in equation (2.23) : as a matter of fact, in that case the
supersymmetry algebra on N=1 superfields closes off-shell.

The quantization of these theories will be studied in a second paper of this series [15].

T As previously mentioned, we consider only torsionless metrics and, as a consequence, there is a “parity”
invariance : in the interchange (+ < —), d%0 and 7; get a minus sign whether ®* is unchanged. Under this
hypothesis, there will be no room for a chiral anomaly.
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3 Agebraic approach to the renormalizability proof

3.1 Generalities

As recalled in refs.([8],[6]), the renormalization program consists in solving two main prob-
lems. These are : |

i) all possible breakings which might affect the Ward identities, order by order in the
radiative corrections, should be reabsorbed by a suitable choice of (“finite") counterterms
[absence of anomalies in the theory],

i) Ward identities being so ensured at a given order, the (“infinite") counterterms needed
for the finiteness of the renormalized Green functions should be uniquely identified (up to a
field redefinition) by the parameters characterizing the classical action [stability condition].

If the Ward, or rather Slavnov, identity writes
ST = 0 (or a classical quantity as in equs.(2.18,2.24) ) (3.1)

the Quantum Action Principle ensures that, up to the first non-trivial order, the breaking of
the Slavnov identity (3.1) corresponds to the insertion of a local functional of Faddeev-Popov
charge +1, A[_H] :

ST = (h)PA[4q) + higher orders

and Sy, being the linearized, nilpotent Slavnov operator, one gets
SLA[+1] - 0 E

Any trivial cohomology Ay = SpA|g corresponds to the looked-for “finite" counterterms
as

S(T" — (R)P?Ajg) = 0 + higher orders .

In other words, this means that point i) supposes the vanishing of the cohomology of Sy, in
the Faddeev-Popov charge one sector.

As regards the stability condition
S(I'\class. s h]-\[()]) =0,

o), a pertubation of the classical action, is a Faddeev-Popov neutral local functional which
must satisfy :
SLF[()] = 0 .

Any trivial cohomology A = SpA[-;) may be shown to correspond to non physical field
and source redefinitions. In other words, this means that point ii) supposes that the dimen-
sionality of the cohomology space of this S, operator in the neutral Faddeev-Popov sector
is equal to the number of “physical" parameters of the classical action.
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In the presence of highly non-linear Slavnov operators such as those of equations (2.19,2.25),
it is technically useful to “aproximate" the complete S; operator by a simpler one .S'g))
through a suitably chosen “filtration" (counting operation)[13] such as the cohomology spaces
of Sz and Sg)) are isomorphic. This relies on a theorem proved in ref.[8] which asserts that :

If the cohomology of .S'g)) is trivial in the Faddeev-Popov charged sectors, then
the same is true for S; and their cohomology spaces in the neutral sector are
isomorphic.

In order to make this work as self-contained as possible, we sketch the proof in the next
subsection, leaving to the appendix its extension to the case where .S',(?) has some non-trivial
cohomology in the Faddeev-Popov charged sectors, a situation that will occur in the N=2
and 4 cases [15].

3.2 The filtration theorem

Let Sp be a nilpotent operator which acts in the linear space V of translation invariant
functionals ® of the fields, sources and their derivatives. We suppose that we have a counting
operator N, with non-negative eigenvalues v = 0, 1, 2, ..., commuting with the Faddeev-Popov

charge operator and that decomposes the linear space V in sectors V) and the operator Sy,
o) |
in 8} :

Sp=Y 5 suchthat [N,SP]=vsY (3.2)

v=0

The nilpotency of Sy, induces on the S(L”) operators the relations :

Y s¥sk M =0 v=0,1,2,. (3.3)

p=0
hence S'g)) is still a nilpotent operator.
Let us first analyze the Faddeev-Popov charged sectors with the hypothesis :
SOr=0=r=5"A. (3.4)

Then, the filtration of equation S.I' = 0 first gives SI(JO)I‘(O) = 0 and from hypothesis (3.4) it
results that I'® = §” A, The next step is :

Sgo)[\(l) + S}(LI)P(O) -0 = SE‘O)F(I) + Sf(}) sff’ A©® — g

8 The analysis is made still easier when one can adapt the formalism to “local" cohomology where the
linear space is a space of functions of the fields, sources and their derivatives, taken as independent variables.

In such a case, a Fock space formulation is at hand, and one can define the adjoint S}: of the operator Sp, as

well as the Laplace-Beltrami operator {Sy,, Sl}, the kernel of which gives the cohomology space of Si, [18].
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and, due to equ. (3.3), this implies SO [I® — SPA@] =0 .
Y — Sg)A(") being in a Faddeev-Popov charged sector, one gets from (3.4) I'®) — SS)A(O) =
SOAM | At this point, one has :

Ty =T® + 1M = [3(0) + S(l)]A(O) + S(O)A(l [StA]ly ... et.c (3.5)

Then we have the first part of the theorem : the cohomology of S, vanishes in the Faddeev-
Popov charged sectors.

Let us now analyze the neutral sector with the hypothesis :
SPr=0=Tr=50A+4 (3.6)

Then, the filtration of equation SyI"' = 0 first gives SE,O)I‘(O) = 0 and from hypothesis (3.6) it
results that I'© = SV A© + A, The next step is :

SOT® 1+ sr® =0 = SPrW 4 sMsPA® 1 SHAO =0

and, due to equ. (3.3), this implies SO [T® — S(I)A(O)] SMAO® | As a consequence of
the nilpotency of Sg)) , this gives Sg)} [SVAO] =
The Faddeev-Popov charge of SS)A(O} being +1, one gets from (3.4) :

SWAO = gOAM, (3.7)

At this point, one has : SO — SWAO® 4 AW = 0, which, according to (3.6) solves to
: TW = SWAO _ AW 4 SOA® 4 A®)

This finaly gives :

Il;, = r®4r®= [S(O)+S(1)]A(0)+S(0)A(1)+Ao)+A(1 AD
= [SLA]II + Al]_ - All ....e.t.c. (3.8)

where A(!), being determined by (3.7) up to S} (O)A which would unessentially modify A,
adds no new parameter to the cohomology A of S} o

What remains to be shown is that the cohomology space of Sy, is not smaller that the one
of 5} ©) jn that neutral sector. Supposes that there exists some I' belonging to the cohomology
space of Sio) :

SOT =0 with I # SOA .

The previous demonstration then built IV, a cocycle of Sy, and let us suppose that it is a
coboundary of Sy, :

SiIY=0 and IV= S A . (3.9)

At the lowest order this would give a contradiction as I'® = I"(®, ThenT® =0 = Sﬁo)&’(o).

At the next order - in fact the first non-vanishing one -, one gets :

r® =0 = sOAW 4 sPA® (3.10)
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But SEO)A’ W 5 where A’ @ belongs to the Faddeev-Popov charge -1 sector ® . From the
~ = (0)
hypothesis of the theorem, this gives A’ 0 S£0)A’ and equation (3.10) leads to :

= (0)
r® = @ 5(0) [Ar Sl(:l)Al ] .

This means that I' would be a coboundary of S\ (at this order I' = I'™)). The contradiction
then gives again I = 0 ....e.t.c. Then we have the announced isomorphism between the
cohomology spaces of S;, and S}JO) in the Faddeev-Popov neutral sector.

This schematic proof illustrates the fact that a non vanishing cohomology for S}IO) in a
given Faddeev-Popov charge v sector a priori obstructs the construction of the cocycles of
Sy in the Faddeev-Popov charge -1 and transforms into coboundaries of Sy, some of the
cohomology elements of SY in the Faddeev-Popov charge v+1 (see the appendix for some
details).

This ends the proof of the filtration theorem (for a complete proof, see [13],[8]).

We shall now apply our methods to N=1 supersymmetric non-linear ¢ models in components
fields.

4 N=1 supersymmetric non-linear ¢ models

Equations (2.17,2.19) respectively define the classical action and the nilpotent linearized
Slavnov operator. Ny;q being the operator counting the number of fields (and of their
derivatives) :

NfieldA = [f d2$¢(m)6¢(§$)] X (4.1)

we will take as ghost number preserving counting (filtration) operator :

N = Nfields,swrces +
& > [spin of the field ,source or ghost] xNtieia, source, ghost

fields, sources, ghosts

] 6 3 6 3 )
— 2 i~ Tk b
6 )
t— B oo
¥ (0 o7 +C 50). (4.2)

9 This gives a hint : if the cohomology of Sg}) is not empty in the Faddeev-Popov charge -1 sector, and
only in that case, the cohomology spaces of Sy in the Faddeev-Popov neutral sector may be smaller than
the one of S’io). This is for example the case when extra isometries exist.
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e?(0) being the vielbein €’ (¢) at ¢ =0, SY is readily obtained as :

) - § )
0 _ 2|+ .0 i . b 1.9 2 45 9
S;, = fd z{ [zC‘ ef(0)04 ¢ SoT + [2i6,0-¢5 — CTe;, (0)1] g 913(0)6_‘__(;576%]
- ; 0 : b =i , 6 . 2 '_6
+ [zC e;(0)0_¢ 5ue + [2i604049° — C™ € (0)n;] = gU(O)BJF_qb’&m]} (4.3)

4.1 The cohomology of S

The most general functional in the fields, sources, ghosts and their derivatives, of a given
Faddeev-Popov charge, is built using Lorentz and parity invariance (see footnote 7) and
power counting °,

4.1.1 The Faddeev-Popov negatively charged sectors

The most general functional in the fields, sources, ghosts and their derivatives, of Faddeev-
Popov charge -1 is 1! :

A= [ da{lyieh +47901S09) + niT (#)) (4.4)

The condition SgA[_l] = 0 easily gives :
Se(@)=0; [ dags(0)8_¢TH(8) =0 & gu(O)T5(#) + g5 O)T5(9) = 0.

This would mean that T%(¢) is a Killing vector with respect to the flat approximation g;;(0)
of the metric g;;{¢]. As a matter of facts, due to the simplicity of Aj_y}, the cohomology of
the complete S; operator in the Faddeev-Popov charge sector -1 is easily obtained, and the
vector T%[¢] should satisfy :

/ d%gﬁ. (T)T‘[qb(:r)] =0 & T[¢] is a Killing vector for the metric g;[¢] .

Then, in the absence of Killing vectors, there are no Faddev-Popov negatively charged co-
cycles - nor coboundaries, see footnote 11.

4.1.2 The Faddeev-Popov 0 charge sector

The most general functional in the fields, sources, ghosts and their derivatives, of Faddeev-
Popov charge 0, depends on 10 functions of ¢ and these 10 monomials can be ordered with

10 The canonical dimensions of C*, ¢*(z), ¥2(z), vZ(z) and n;(z) are respectively —%, 0, +2, +3 and
+2.
11 More negatively Faddeev-Popov charged functionals do not exist.
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respect to the total spin of the fields, sources and ghosts composing them :

AL = f P20, 4'0_PT(9)
Aly = [ Pa{v50-dh + 920yt ITE(S) + [WEuh0 ¢ + Yyl o, #ITS(9) +
+ [FCYOLE +9;CTO_FITE(G) +nlCHYS + CYITE(B)}
Ay = [ do{ v vt The(d) +
+ [FCHYLYL + v CTYRYITRN () + v O 9yt + v, CTYlysI T () +
+ B C + v (C+)2]T9“”(¢)+['Ya 7% CTCTIT(¢)} (4.5)

The condition SgA[o] = 0 can be analysed in each spin sector separately :

i) A?o] is not constrained, but as coboundaries exist :

SUAL = 53 ([ @onTi9))

this means that some freedom on T}}(¢) corresponds to a trivial cohomology, i.e. to the
expected effect on the metric of the field redefinition freedom :

¢ — ¢+ T(¢),

ii) A[Ok is constrained, and the relations that one obtains among the 4 functions T2, T?, T°
and T* give :

My =53 |- [ Polle + el OTF@)}

This trivial cohomology corresponds to a 9% (z) non-linear field redefinition :

¥ — vi + e O (@)
iii) the cocycle condition .S'gA'f‘o] = 0 enforces the vanishing of T%, T°, T7 T? and T*°: there
are no cocycles (nor coboundaries) in that sub-sector.

To summarize, the cohomology of 59 in the Faddeev-Popov 0 charge sector corresponds
to the arbitrariness of a “metric" T;;(#) . This corresponds to the renormalizability in the
space of metrics (i.e. a la Friedan [16]) as mentioned in the Introduction.

4.1.3 The Faddeev-Popov +1 charge sector

In that sector, the most general functional in the fields, sources, ghosts and their derivatives
depends on 23 functions of ¢ and again these 23 monomials can be ordered with respect to
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the total spin of the fields, sources and ghosts composing them :

Al = 0

Al = f d’z {(c+¢1[a+¢*‘a_¢j Usij + 040U + CTC b, ¢ UF) + (+ & —)}

Al = j Po{(CHys [P vs o ¢ VA, + v ue 0,6 Vi, + 90 ys V3, + 9P oo Vi | +
+ (CH) [l Vi + st Vi 0,8 + 7 apph Ve + 7 Byt Vi) +
+ CrOT [UR O VR + 0,9V +
+ mCHYL [CHEVE + OV 4 m(CHPOT VIR + (4 o )

Ay = [ Eo{(CHRUh w5 oY Wy, +

+ CFylys [CF (i W + 7wt W) + C et Wi +
+ ()7 [ CHYs W™ + o CTYs WE™ + 45 Cge W) + (+ = =)} (46)

The cocycle condition on A,y is found to enforce relations among those 23 functions such as
A4 finally depends only on 9 functions and may be identified with the coboundary S? Ag),
where A(g) is equal to the A[lo] + A[20] of equations (4.5). As a consequence SY has no anomaly.

It results from the whole subsection 4.1 that - at least in the absence of Killing vectors for
the metric - the cohomology of S? vanishes in the charged Faddeev-Popov sectors and is
identified in the neutral sector by a generic symmetric metric tensor in the target space (up
to an arbitrary change of coordinates).

4.2 The cohomology of S; (in the absence of Killing vectors for the
classical metric)

The hypothesis of our filtration theorem being satisfied, we get the desired results for the
cohomology of the whole Slavnov operator Sy, :

e the Slavnov identity is not anomalous [absence of Faddeev-Popov charge +1 coho-
mology|, which means that, as expected, N=1 supersymmetry is renormalizable (in the 4
dimensional case this was proved in [19]). Notice that this property is not changed by a
possible Faddeev-Popov charge -1 cohomology for S9.

e moreover, the cohomology of 57, in the Faddeev-Popov neutral sector is identified by a
generic, symmetric, metric tensor in the target space and may be obtained as :

Ajjlequ.(4.5)] = I'*[equ.(2.17)]

with g;; = t;;, e.t.c. In this case of d=2, N=1 non-linear 0 models, the renormalization
algorithm a priori does not change the number of parameters with respect to the one of the
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classical action'?. Then we have the “stability” of the classical action in the space of metrics,
i.e. the full renormalizability of the theory. Of course, as usual the trivial cohomology

SpA_1(T*[¢), SZ[#]) corresponds to the non-linear fields and sources reparametrisations,
here according to :

¢ — ¢ + Ti(ﬁb) S/ e/ WkT,ki - Sg,i(qb) [’Yff¢’i + ’Ya_@bi]
Ph o P — SE@WL , aF -+ S (4.7)

5 Cohomology of supersymmetry in the presence of
Killing vectors for the classical metric :
the example of coset-spaces

As previously mentioned, the existence of Killing vectors is responsible for a non vanishing
cohomology in the Faddeev-Popov charge -1 sector, which will restrict the one in the Faddeev-
Popov 0 charge sector (the Action). As a matter of fact, the occurence of Killing vectors
reveals the presence of extra symmetries whose renormalizability also has to be studied, from
the very beginning, as these isometries are needed for a precise definition of the classical
action and of the true physical parameters. As an example, in this section we extend to
N=1 supersymmetric models the results of our previous analysis on the renormalizability of
bosonic non-linear ¢ models built on compact homogeneous spaces G/H [8].

The non-linear isometries may be writen as :
5¢' = W[4
S = EWi[elvE (5.1)
where the I/VJ' ,Jj=12,.naren Killiﬁg vectors for the metric g;; :
VWi + gaViWi =0,

and where V; is the covariant derivative with (torsionless) symmetric connexion associated
to the metric g;; . '

The homogeneity of the coset space G/H means that :
Wilg] =6 + ..., (5.2)

With regard to the linear isometries, we know from the appendix A of [8] that they cause
no difficulty in the renormalization program, at least when the corresponding Lie group H

12 To be made more precise, this assertion supposes a true definition of the classical action, for example
through extra isometries (see the next section).
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is a compact one. In the following, we then restrict ourselves to H-invariant integrated local
functionals in the fields, sources, ghosts and their derivatives.

Using tangent space fermions as defined in subsection 2.2, transformations (5.1) write :
54 = ejeiWJ‘-”

0y = VI —wp WS . (5.3)

Of course, the supersymmetry transformations (2.15) commute with the previous ones (5.3)

and the commutation relations of the non-linear transformations (5.1) being those of a

standard Lie algebra, equ.(2.2) still specifies to equ.(2.16). One then introduce constant

anticommuting Faddeev-Popov ghosts C? 3(of vanishing canonical dimension), and modify
the total effective action of equ.(2.17):

I\tot_

I

AT 4 f Pr{y} (@) (CIIVW} — Wi W2y +iCel + wiyh (CHl + C b))
7s (@) (COVIWE — wgWEye +iCe® +uwiype (CHyh +Cot))
m(@)(CIe,Wy + Creis + Ceiy?)})

;11 [ a5 {7t @) (2)(C7) + 77 (@) (@)(C) - 2 (@) (@)(CHCT)} (5.4)

The Slavnov identity of equ.(2.10) still holds and the linearized Slavnov operator (2.19) keeps
the same structure :

S _/ d2 { 61"t0t. 6 + 6I"t0t. 6 + 6I‘t0t. 6 + 6Ft0t. 5
EELOTT Wor ) ser T ew ) s T \evs ) 6o T\ bue ) og
6Pt0t. 6 61"t0t. 5 )
— — || 5.5
" (m)w*(éw)m o)
and is nilpotent : (S.)? = 0, when acting in the space of H-invariant integrated local

functionals. For further use, and thanks to the commutation of transformations (5.3) and
(2.15), we split Sy, in :

+ o+ 4+

Sp =85 +5¥,

where S¥ is the nilpotent Slavnov operator associated to the homogenous transformations
(5.3) and is linear in C? and we have :

(S1)* = (Sk)* = SESi + SiS% =

The classical action and the nilpotent linearized Slavnov operator being so defined, we
add to the grading operator (4.2) the operator counting the number of ghosts C7 . S? is

readily obtained as S3° + S¥° where Silo was given in equ.(4.3) and :
; 6
S0 =C [ da—
- 6¢*(x)

13 Here again, as we did before when we did not introduce ghosts for the translations, we do not need to
add ghosts associated to the linear isometries.
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where the fundamental homogeneity property (5.2) has been used.

We are now in a position to analyse the cohomology of S}, using the results of subsection
4.1 for S5 and of [8] for SV° .

5.1 The cohomology of 5?

5.1.1 The Faddeev-Popov negatively charged sectors
The most general functional in the fields, sources, ghosts and their derivatives, of Faddeev-
Popov charge -1 is still given by equ.(4.4). The condition S} Ay} = 0 easily gives :

Sg(¢) =0; T(¢) = constant .

Moreover, this cohomology should be H-invariant. This occurs only when among the non-
linear transformations W;, there exists some, labelled by indices j, W}, corresponding to a
subgroup X of G that commutes with H. As explained in detail in [8], in such a case, some of
the parameters that define the invariant action [ d*zg;;[¢]0+¢*0_¢’ become unphysical ones.
This corresponds to the fact that the non vanishing cohomology T% in the Faddeev-Popov -1
charge sector restricts the cohomology of Sy, in the Faddeev-Popov 0 charge sector (see the
appendix and [14]).

5.1.2 The Faddeev-Popov 0 charge sector

The most general functional in the fields, sources, ghosts and their derivatives, of Faddeev-
Popov charge 0 may be split into two parts : Aﬁ,] and A[lo} according to their number of
ghosts C". A[o] is given by (4.5) and

By = [ Eolbivt + 47918 (6) +0T{ @) = CIALy,

where A[ 1] ; has the same expression as A[_y) of (4.4) with tensors having one more index j.
The condition SPAjg = 0 is then analysed into 3 steps corresponding to the total C7 ghost
number :

oS0A0 =0 THEUD AL — f 220, $'0_p T[] + S5 Ay S5, Ti)
where the symmetric tensor T;; is, for the moment, unconstrained.
oSPOAL =0 & Al = SPALy(S, T
oSNy + S0y =0 & Si°SEALyISE - S5, Ti - Ti) = S [ d*20,4'0_¢'T;(4)

= 8§, — Sg, = constant , Ty[¢] = —(ga(0)(T} — T3); + gu(0)[T1 — T3] ;) + Ay
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where A;; is a constant H-invariant tensor.

Finally this gives :
A =i [ 20, ¢6_¢7 + SLAL (S, T (5.6)

This means that, as in the purely bosonic case [8], the dimension of the cohomology space
of S? in the Faddeev-Popov neutral sector is given by the number of H-invariant symmetric
2-tensors.

5.1.3 The Faddeev-Popov +1 charge sector

The most general functional in the fields, sources, ghosts and their derivatives, of Faddeev-

Popov charge +1 may be split into three parts : A?ﬂ], Al +1] and A[ +1 according to their

number of ghosts C* . A[ 4+1) 18 given by (4.6), A[ ) = =Y Ajgy; Where A[o]; has the same ex-
pression as A given by (4.5) with tensors having one more index j, and Af, ;; = C? P A[ 1)k
where A[ 15 has the same expression as A[_y given by (4.4) with tensors having two more
indices j and k. The condition SA;;; = 0 is then analysed into 4 steps corresponding to
the total C’ ghost number :

subsec.(4.1.3) 0

s|0 4.1, s|0
2Oy = & Ay = SP°AY

oSPOAY =0 & Al =S AL = -C*SEPA! I]k[sl, ]

° },ulOA[+1] =+ SZOA[+1] =0& C'ksslo { fd méqbk )A[O]]

)
§¢*(z)

subsec.(4.1.2
TSI

A = fd mka3+¢15 ¢ - SEIOA LelS2, T2 +fd T—— Ay

= Al =C* [ #aT}0,40_¢ + S1°AylS,, Tol + Sp°A]

oSO ALy+SI Al =0 & CSEP [daT}0, 40 ¢ = CHSiSEPAL u[Si-S2, Tu-Ti)
= [S1 = Salfy, = B[S1 — Sl 5 T = OkTisle) — (9ua(0) [T, — Tl 5 + 952 (0)[Th, — Tl 5)
Finally this gives :
Ay = 52 [A”l + AI8%, T+ [ daTy(80.4'0 ¢'| = S1ag (5.7)

This means that the cohomology of S? in the Faddeev-Popov charge 1 sector vanishes.
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5.2 The cohomology of S;,

It results from the whole subsection 5.1 that the cohomology of S? vanishes in the charged
Faddeev-Popov sectors and is identified in the neutral sector by a generic H-invariant con-
stant symmetric 2-tensor. Then, the hypothesis of our filtration theorem being satisfied, we
get the desired results for the cohomology of the whole Slavnov operator Sy, :

e the Slavnov identity is not anomalous [absence of Faddeev-Popov charge +1 cohomology],

e the cohomology of S; in the Faddeev-Popov neutral sector is, as the classical action,
identified by by a generic * H-invariant constant symmetric 2-tensor [stability of the theory].

This means that, as expected, N=1 supersymmetric non-linear ¢ models built on compact
homogeneous spaces are renormalizable.

6 Concluding remarks

We have analysed in a regularization free manner the all-order renormalizability of N=1 su-
persymmetric non-linear o models in component fields. Using a conveniently chosen grading,
we proved the absence of supersymmetry anomaly and the renormalizability of the theory
“in the space of metrics". For the special class of 0 models built on an homogeneous man-
ifold (usual non linear ¢ models on coset space), our work extends the renormalizability
proof given for the bosonic case in ref.[8] to the N=1 supersymmetric case (up to infra-red
analysis).

The quantization of the N=2 and 4 supersymmetric non-linear ¢ models of subsection
2.3 will be studied in a second paper of this series [15]. In particular, the rigorous proof of
the renormalizability of N=1 supersymmetric non-linear ¢ models in component fields given
here will allow us to analyse the extended supersymmetries in a N=1 superfield formalism
(see also [3]).

Aknowledgements : It is a pleasure to thank F. Delduc for his help in the formulation
of subsections 2.2 and 2.3 and for useful discussions.

4 up to some Faddeev-Popov charge -1 cohomology, which restricts the number of physical parameters of
the classical action (subsection (5.1.1) and appendix 7.2).
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7 Appendix : the filtration theorem in the presence
of a non trivial cohomology for Sl(:o) in the Faddeev-
Popov charged sectors.

This appendix intends to give simple proofs of the results of the original papers ([13],(8]
and [14]) in order to illustrate the fact that a non vanishing cohomology for 5 in a given
Faddeev-Popov charge v sector a priori obstructs the construction of the cocycles of Sy, in the
Faddeev-Popov charge v-1 and transforms into coboundaries of Sy, some of the cohomology
elements of S? in the Faddeev-Popov charge v+1.

7.1 Presence of some cohomology in the Faddeev-Popov charge
+1 sector.

As can be seen from the sketch of the proof given in subsection 3.2, this may prevent one
from constructing Faddeev-Popov 0 charge cocycles of Sy, starting from those of .5'1(30). Indeed,
suppose that there is some cohomology beginning at the filtration level v :

Sio)Aﬁ] =0 = Apy= A?lr]l'(v) + S}JO)A{(H : (L1

The construction described through equations (3.6) to (3.8) builds cocycles in the Faddeev-
Popov 0 charge sector

SiTlp-1y =0 = Tlp-1 = Affle-1 — Bplep-1 + (SL/—\[-u) |w-1)-

At the next order one has :
SOT® 4 sOPe-0 4 | 4 s¥rO = ¢
0 v 1 v—1 an.(v—1 1) x (v—1

= SPIr® — sPALIY + ]+ {sPAg ¢ - sPAL Y + ) =0.

From SO{SP AR — VAL 4} =0, the hypothesis (7.1) gives :
{SPARED — AL 4} = A + SPAR (7.2)

and finally :

0 v 1 v— x (v an.(v
S 0@ — ALY + L+ AR + AT =0,

which is self contradictory, except if the coefficients in the Afgf'("_p ), 5&’,’]—” ) involved in equ.(7.2)

are related in such a way that A®™® does not appear. In that case, one gets
(1]

v v— an.(v A (v 0 v
T = sPAPY + L+ Al ® - AR + 50AY)

and finally .
Iy = A ley — Byl + (SLA[-l]) loy Q-E.D.
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Thus, in the case of a non vanishing intersection between the cohomology in the Faddeev-
Popov charge 1 sector and the successive images through .S’E), S‘(Lz)... of the insertions

A{[LT'(U),AE:;]) of Faddeev-Popov 0 charge, the aforementioned relations reduce the number of

cocycles of Sz, in the Faddeev-Popov 0 charge sector with respect to the ones of Sg)).

This analysis will be useful for the study of N=2 and 4 supersymmetric non-linear o
models [15].

7.2 Presence of some cohomology in the Faddeev-Popov charge
-1 sector.

As indicated in subsection 3.2, this will reduce the dimension of the cohomology space of Sy,
in the Faddeev-Popov 0 charge sector with respect to the one of S( ) A complete analysis
is given in the appendix C of ref.[14] where it is shown that the cohomology of Si in the
Faddeev-Popov 0 charge sector is isomorphic to the repeated quotient of the cohomology
of S(O) in the same Faddeev—Popov sector by the successive images through SL , S(Z)... of
the cohomology of SL in the Faddeev-Popov -1 charge sector. This reduction is now due
to the fact that some cocycles for Sp built according to equations (3.6) to (3.8) may be
coboundaries when there is some Sg)} cohomology in the Faddeev-Popov -1 charge sector.
For self-containedness, we give now some hints on this mechanism.

Suppose for example that there is some cohomology in the Faddeev-Popov -1 charge
sector beginning at the filtration level v :

SO =0 with AT £ SPAM) (7.3)

and consider S}J )A'm 5") It is a Sg)) cocycle in the Faddeev-Popov 0 charge sector and then

may be writen as :

(1) an.(v) _ o(0) X (v+1) an.(v+1)

If this really occurs, i.e. if there is a non empty intersection between the cohomology of

S(O) in the Faddeev-Popov 0 charge sector and the image through S of the one in the
Faddeev-Popov -1 charge, this particular cohomology trivializes itself. Indeed

an.(v ~ (v an.(v v = (v+2)
A = sP A — SOAFED = (50 4 5P (A — AID) +0(Ag ),

and so on on higher orders. This occurred in particular in subsections (5.1.1) and (5.1.2)
where

g =Tt [ oy = AT, A=y [ da0, g0 g = A

Then, using the invariance under (5.1) of the classical action, one may check that :

Opm O _ i [ p 51‘“’* 2a i ki
S Az de = Thg,; (0 /dxa¢a_¢f+:rc 7, fda:n_.,
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- [—TEW;’;&(O) / d%nqu*(x)] + T [ga(0)[W} 4(0) — W} ;(0)] + (G o 5)] f 4220, ¢'0_ ¢
does intercept Aﬁ;]l'm ifTE#0.

This means that among the parameters \;;, the ones that are equal to —T%[g;(0)f}, +
9;1(0) f] - where f}, are structure constants of the Lie algebra of G -, are unphysical
parameters as they may be ruled out through a particular field redefinition (corresponding

to a trivial cohomology). These A;; corresponds to X (and H)-invariant 2-tensors (see [8] for
details).
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