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Abstract. In this review I discuss various aspects of some of the recently constructed black hole
and soliton solutions in string theory. I begin with the axionic instanton and related solutions
of bosonic and heterotic string theory. The latter ten-dimensional solutions can be compactified
to supersymmetric monopole, string and domain wall solutions which break 1/2 of the space-
time supersymmetries of N = 4, D = 4 heterotic string theory, and which can be generalized
to two-parameter charged black hole solutions. The low-energy dynamics of these solutions is
also discussed, as well as their connections with strong/weak coupling duality and target space
duality in string theory. Finally, new solutions are pfesented which break 3/4, 7/8 and 15/16
of the spacetime supersymmetries and which also arise in more realistic N = 1 and N = 2

compactifications.
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1 Introduction

In this review I discuss some basic results in the study of classical solitonic and black
hole solutions of string theory. One motivation in this endeavour is that the existence of
these Plack-scale solitons may shed light on the nature of string theory as a finite theory
of quantum gravity. Furthermore, there is the possibility of adapting to string theory
nonperturbative methods from the physics of solitons and instantons already employed in
field theory. For example, the stringy analogs of Yang-Mills instantons may be used to
explore tunneling between string vacua and thus lead to a better understanding of the
nature of the vacuum in string theory. Finally, these soliton and black hole solutions point
to interesting connections between the various spacetime and worldsheet dualities in string

theory.

I begin in section 2 with a description of the axionic instanton solution in the gravi-
tational sector of the string, first discovered in [1,2] and which represents a stringy analog
of the 't Hooft ansatz [3—6]. In particular, the generalized curvature of the string solu-
tion, with torsion coming from the antisymmetric tensor field strength Hs (and hence the
name “axionic instanton”, since in four dimensions H3 is dual to an axion field) obeys a
(anti) self-duality condition identical to that obeyed by the field strength of the Yang-Mills
instanton [7,8]. In ten-dimensional heterotic string theory the axionic instanton mani-
fests itself as a 5 4+ 1-dimensional soliton solution, the so-called “fivebrane” [9,10,11] and
whose existence was predicted by the string/fivebrane duality conjecture [12,13]. Related

solutions with axionic instanton structure are also briefly discussed [14,15].

In section 3 I discuss toroidal compactifications of the axionic instanton/fivebrane
to four dimensions and obtain supersymmetric monopole [16], string and domain wall
solutions [17] which break half the spacetime supersymmetries of N = 4, D = 4 heterotic
string theory.

The string soliton solution is singled out in section 4, where it is observed to be the
solitonic dual of the fundamental string solution of [18] in four-dimensions. Another way
of saying this is that the string/fivebrane duality conjecture manifests itself as (effective)
string/string duality in D = 4 [17]. One attraction of this reduction is that a dual string
theory is probably far easier to construct than a fundamental fivebrane theory. More im-

mediately, four-dimensional string/string duality is seen to interchange two other dualities
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in string theory [19,20,17]: target space duality, already established in various compactifi-
cations, and strong/weak coupling duality, shown in the low-energy limit but conjectured

to be an exact symmetry of string theory.

The four-dimensional solitons represent extremal limits, saturating a Bogomol’nyi
bound [21] between mass and charge, of two-parameter families of black hole solutions
[22]. These black hole generalizations, as well as their connections with ten-dimensional

and four-dimensional dualities, are discussed in section 5.

In section 6 I study the dynamics of the four-dimensional solitons from two differ-
ent viewpoints [23]. The first involves computing the Manton metric on moduli space
[24], whose geodesics represent the motion of quasi-static solutions in the static solution
manifold, and which represent a low-velocity approximation to the actual dynamics of the
solitons. The second approach calculates the four-point amplitude for the scattering of
winding string states, the nearest approximation in string theory to solitonic string states.
Both computations yield trivial scattering to leading order in the velocities (i.e. zero-
dynamical force to 1 eading order) in direct contrast to analogous computations for BPS

monopoles [25,21].

In section 7 I present new string solutions corresponding to more intricate toroidal
compactifications [26]. Interesting connections are made between the number of preserved
supersymmetries and the nature of the target space duality group. The role of the axionic
instanton is again seen to be crucial in this respect. Analogous solutions are also seen to

arise in more realistic N = 1 and N = 2 compactifications.

Finally, in section 8 I discuss future directions in this subfield of string theory and
suggest some open problems. Earlier reviews which deal more extensively with the con-
formal field theoretic aspects of soliton and black hole solutions of string theory may be
found in [27,28].

2 Axionic Instanton

Consider the four-dimensional Euclidean action

1
S=—""""' - mn m'n’ ] = 1l,4,90,4%. 1
292/dytrF F m,n=1,2,3,4 (1)
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For gauge group SU(2), the fields may be written as A,, = (g/2i)c%Ag, and F,, =
(9/2i)0®F%,, (where 0%, a =1,2,3 are the 2 x 2 Pauli matrices). The equation of motion

derived from this action is solved by the ’t Hooft ansatz [3—6]
Ampn = iimnan In f, (2)

where Z,,,, = 7" (0% /2) for i = 1,2, 3, where

"7. =i =1 =6. ) m1n=1a2a31

S 5im, n =4
and where f~!00 f = 0. The above solution obeys the self-duality condition

an = an = 6m'n.k;l-Fk:I.'- (4)

D=

The ansatz for the anti-self-dual solution F,,,, = —Fopn = —%emn“FkE is similar, with the

8-term in (3) changing sign. To obtain a multi-instanton solution, one solves for f in the

four-dimensional space to obtain

k 2
- Pi
f=1+) TR (5)
i=1

where p; is the instanton scale size, @; the location in four-space of the ith instanton and

1 2
= 6
k= fw trF (6)

is the instanton number. Note that this solution has 5k parameters, while the most general

(anti) self-dual solution has 8k parameters, or 8k — 3 if one excludes the 3 zero modes

associated with global SU(2) rotations.

Now consider the bosonic string sigma model action [29]

1
Y

I

fdzm\/'_Y (’Y“baaXMabXNgMN +ie**0, XM, XN Byn + a’R(2)¢) , (7

where gy is the sigma model metric, ¢ is the dilaton and By is the antisymmetric

tensor, and where ~y,; is the worldsheet metric and R(?) the two-dimensional curvature.
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A classical solution of bosonic string theory corresponds to Weyl invariance of (7) [30]. It

turns out that any dilaton function satisfying e 2¢00 e?? = 0 with

I = €26,  mn=1,23,4,

Juv = Muw v =0,5,...,25, : (8)
Hmnp = £26mnpkd*¢  m,n,p,k =1,2,3,4,
where H = dB, is a tree-level solution of (7). The ansatz (8) in fact possesses a (anti)

self-dual structure in the subspace (1234), which can be seen as follows. We define a

generalized curvature R;j; in terms of the standard curvature R';x; and Hyop [31]:

. . i . . . .
R'jii = R'jm + 5 (ViH i = VeH' ) + = (H™ 5k H o — H™ i H ) - (9)

SN

One can also define R jki as the Riemann tensor generated by the generalized Christoffel
symbols f‘g 5 Where f‘ﬁ 5= Fgﬁ —(1/2)H* 4p. Then we can express the generalized curvature

in covariant form in terms of the dilaton field as [7]
Ryl = 6aViVj¢—64ViV;d+8;5ViVid—61ViVidLeijkmViVimdFeijimViVme. (10)

It easily follows that

i 1 mn Pi
R'jp = F5en B v (11)

So the (anti) self-duality appears in the gravitational sector of the string in terms of its
generalized curvature thus justifying the name “axionic instanton" for the four-dimensional
solution first found in [1,2]. For e2? = e2%0 f, where f is given in (5), we obtain a multi-

instanton solution of string theory analogous to the YM instanton.

In the special case of e?¢ = @Q/r?, the sigma model decomposes into the product
of a one-dimensional CFT and a three-dimensional WZW model with an SU(2) group
manifold. This can be seen by setting u = Inr and rewriting (7) in this case in the form

I =1, + I3, where
1

I, =
! 4o’

/ dz (Q(9u)? + a'R(2)¢) (12)
is the action for a Feigin-Fuchs Coulomb gas, which is a one-dimensional CFT with central
charge given by ¢; = 1+60/(0¢)? [32]. The imaginary charge of the Feigin-Fuchs Coulomb
gas describes the dilaton background growing linearly in imaginary time. I3 is the Wess—

Zumino-Witten [33] action on an SU(2) group manifold with central charge

3k 6 12
b e (13)

&= kr2 kT k2
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where £k = Q/d/, called the “level" of the WZW model, is an integer. This can be seen

from the quantization condition on the Wess-Zumino term [33]

7

Iwz =

o [ idzmeabaammabm"an
as3

o
127

= 271 (Q’,) .
o

Thus @ is not arbitrary, but is quantized in units of o/. We use this splitting to obtain

fi d"’me“"‘-‘aammabm"acmplfmnp (14)
S3

exact expressions for the fields by fixing the metric and antisymmetric tensor field in their
lowest order form and rescaling the dilaton order by order in o’. The resulting expression

for the dilaton is
269 (15)

3227
r Q

The above bosonic solution easily generalizes to an analogous solution of heterotic
string theory. The bosonic ansatz
e~ 2% = 0,
gmn = %6 m,n=1,2,3,4 (16)
Juv = Nuv UaV:0a5565758a9
Hmnp = :I:Zem'n.pk'ak()?5 m,n,p,k=1,2,3,4
is a solution of the bosonic sector of the ten-dimensional low-energy heterotic string effec-

tive action
Sy 3 f dOz R+4(8¢)2——H—2 (17)
107 2k2, 12 )’

whose equations of motion are equivalent to Weyl invariance of the sigma-model. Eq.(16)

with zero fermi fields, zero gauge field and constant chiral spinor € = €4®1 in fact preserves

half the spacetime supersymmetries stemming from the supersymmetry equations
Sa = (On + 1QmapT %) e =0,
oA = (FAaAgb - -i]'EHABcFABC) € = 0, (18)
6x = Fapl'Be =0,

where A,B,C,M = 0,1,2,...,9, ¥, XA and x are the gravitino, dilatino and gaugino
fields and where Q79 = wp P9 — 1/2H) P9 is the generalized connection that generates
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the generalized curvature (9). The (anti) self-duality of the generalized curvature (11)
in the (1234) subspace in fact translates into an analogous condition for the generalized
connection and is intimately connected to the choice of chirality of ¢4 that leads to the
preservation of precisely half of the supersymmetry generators. In the above form (16),
we recover the tree-level multi-fivebrane solution of [11]. The existence of the fivebrane as
a soliton solution of string theory lends support to the string/fivebrane duality conjecture
[12,9,10,13|, which states that the same physics as superstring theory may be described by
a theory of fundamental superfivebranes propagating in ten dimensions. This conjecture
is a stringy analog of the Montonen-Olive conjecture [34], which postulates a duality be-
tween electrically charged particles and magnetically charged solitons in four-dimensional

supersymmetric point field theory.

The simple expedient of equating the gauge connection Ay F? to the generalized
connection (/% then leads to another solution of (18), which possesses an instanton in
both gauge and gravitational sectors. This solution was argued to be an exact solution
of heterotic string theory (i.e. a solution to all orders in «’) which, in contrast to the
purely bosonic solution above, does not require rescaling the dilaton from its tree-level
form [14]. In fact, many of the pure gravity sector solutions I will discuss in this paper
may be generalized to solutions with nontrivial YM fields and which may be argued to
be exact solutions of heterotic string theory by using the above gauge equals generalized
connection embedding (first discovered in a somewhat different context in [35]). For the
sake of simplicity, however, I will concentrate mainly on the former class of solutions and

merely point out where such generalizations may be interesting.

Another related axionic instanton solution of heterotic string theory inspired by con-

formal field theoretic constructions in [36] is given by the string-like solution [15]
e" 201 241 = 20207 242 = (),
¢ = ¢1+ ¢,

Gmn = €2%16,.. m,n = 2,3,4,5,
g9i; = €2%26;; 4,5 =6,7,8,9, (19)
Guv = Muv p,v =0,1,

H g = T2 mnpg 07 m,n,p,q = 2,3,4,5,
Hijr = +2€;0%¢  4,5,k,01=6,7,8,9,
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which for constant chiral spinors €3 = €3 @4 @) solves'the supersymmetry equations (18)
for zero fermi and gauge fields (or alternatively for Ay = Qp7). In this case we have two
independent axionic instantons, each of which breaks half the spacetime supersymmetries.
As a consequence, only 1/4 of the original supersymmetries are preserved. More recently,

axionic instanton solutions have been constructed in [37].

3 D=4 Solitons

Let us single out a direction (say z*) in the transverse four-space (1234) and assume
all fields in (16) are independent of this coordinate. Since all fields are already independent

of 2%, 28 z7 28 2° we may consistently assume the z?,z% 2%, 27 28, z°

are compactified
on a six-dimensional torus, where we shall take the z* circle to have circumference Le~%°
and the rest to have circumference L, so that 2 = x%,e?° /L®. Going back to the 't Hooft

ansatz (2), the solution for f satisfying the f~'0 f = 0 has the form
S
s ] —_ 20
fu=1+ ; - al (20)

where m; is proportional to the charge and @; the location in the three-space (123) of
the ith instanton string. The solution (16) with e?¢ = e?¢° f); can be reduced to an
explicit solution in the four-dimensional space (0123) [17]. The reduction from ten to five
dimensions is trivial, as the metric is flat in the subspace (56789). In going from five to four
dimensions, one follows the usual Kaluza-Klein procedure [38—40] of replacing gs4 with a
scalar field e=2°. The tree-level effective action reduces in four dimensions to

1 Mo MP
Li=5- fd‘la:\/—ge‘z““" (R+ 4(04)* + 400 - 0 — 62“ﬁ—4") , (21)
2 |

where o, 3 = 0,1,2,3 and where M,3 = Haps = 0o Bps — 0gBas. The four-dimensional

monopole solution for this reduced action is then given by

22
ds? = —dt* + ** (dz? + dz} + dz3), (22)

M;; = +€;;x0,e>?, i,5,k=1,2,3.
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For a single monopole, in particular, we have
Mpyy = £msin, (23)

which is the magnetic field strength of a Dirac monopole. Note, however, that this
monopole arose from the compactified three-form H, and arises in all versions of this solu-
tion. In particular, one may obtain a multi-magnetic monopole solution of purely bosonic

string theory [7]. A similar reduction of instantons to monopoles was done in [41].

We now modify the solution of the ’t Hooft ansatz even further and choose two di-
rections in the four-space (1234) (say x> and z*) and assume all fields are independent of
both of these coordinates. We may now consistently assume that 23,z 26,27, 28 2° are
compactified on a six-dimensional torus, where we shall take the 2 and z* circles to have
circumference Le~%° and the remainder to have circumference L, so that k3 = x%,e?%0 /LS.

Then the solution for f satisfying f 0 f = 0 has multi-string structure
N
fs=1- NIn|& -, (24)
i=1

where A; is the charge per unit length and @; the location in the two-space (12) of the
ith string. By setting €2 = €20 fg, we obtain from (16) a multi-string solution which
reduces to a solution in the four-dimensional space (0125). The reduction from ten to six
dimensions is trivial, as the metric is flat in the subspace (6789). In going from six to four
dimensions, we compactify the z3 and z4 directions and again follow the Kaluza-Klein
procedure by replacing gz3 and gs44 with a scalar field e~29. The tree-level effective action

reduces in four dimensions to

p
Su= == [ d'oy/=ge -2 ( R+ 4(09)* + 800 - 04 + 2(00) — L) | (25)
2k2 2

where p = 0,1,2,5, where N, = H,34 = 0,B, and where B = B34. The four-dimensional

string soliton solution for this reduced action is then given by [17]

N
2% — o—20 _ ;240 (1 _ Z Ailn |Z — Ei,-|) )
i=1
d32 = —-dtz + dﬂ?g + 62¢ (dd"."% + dﬂlg) )
Ny = ieijajez‘ﬁ.

(26)
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We complete the family of solitons that can be obtained from the solutions of the ’t
Hooft ansatz by demanding that f depend on only one coordinate, say z!. We may now
consistently assume that 22,23 24, 27, 28, 2% are compactified on a six-dimensional torus,
where we shall take the 22, 23 and z* circles to have circumference Le~%° and the rest
to have circumference L, so that k2 = k%,e3%°/L®. Then the solution of f~'0 f = 0 has

domain wall structure with the “confining potential"
fD=1+A$1, (27)

where A is a constant. By setting e*® = 2% fp in (16), we obtain a multi-domain wall
solution which once more can be explicitly reduced to four dimensions. For the spacetime

(0156), the tree-level effective action in D = 4 has the form

2
Sy = 2_”;2 f d'zy/—ge -3¢ (R +4(8)% + 1200 - 8¢ + 6(90)* — e“"%) , (28)

where P is a cosmological constant. Note that (28) is not obtained by a simple reduction
of the ten-dimensional action owing to the nonvanishing of Hz3z4. The four-dimensional

domain wall solution for this reduced action is then given by [17]

N
¢ — 6—20' — 2¢0 (]_ + ZAilml — ai|) .

i=1

ds® = —dt? + dz? + dz? + *?dz?, (29)

JP = ZA,’ ((-)(ml — a-,;) = @(—-321 + a,,)) :

A trivial change of coordinates reveals that the spacetime is, in fact, flat. Dilatonic domain

walls with a flat spacetime have been discussed in a somewhat different context in [42].

For both strings and domain walls, generalizations to solutions with Ay = Qs are
straightforward [43,17). In all three cases, the multi-soliton solutions break half the space-
time supersymmetries of the N = 4 four-dimensional heterotic string theory to which the
original N = 1 ten-dimensional heterotic string theory is toroidally compactified. The ex-
istence of these solutions owes to the saturation of a Bogomol'nyi bound between mass per
unit volume and topological charge, and which results in a “zero-force” condition analogous

to that found for BPS monopoles [25,21].
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4 String/String Duality

Let us focus on the solitonic string configuration (26) in the case of a single source [17].

In terms of the complex field

T =T +1iT3

=e % —iBsy (30)

= 4/detgs,, — iBas m,n = 3,4,

where 9}?/1 ~ is the string o-model metric, the solution takes the form (with z = 1 + z3)

T= L In =
27 To (31)
ds? = —dt? + da? — — In —dzdz,

whereas both the four-dimensional (shifted) dilaton n = ¢ + ¢ and the four-dimensional
two-form B,,,, are zero. In terms of the canonical metric g,,, T7 and T3, the relevant part

of the action takes the form

1 4 1
...y g | B— *9,T8,T 32
Sy 22 /d zv/—g (R 2T129 0y ) (32)
and is invariant under the SL(2, R) transformation
al +b '
—bec=1. 33
- Trd ad — be (33)

The discrete subgroup SL(2, Z), for which a, b, ¢ and d are integers, is just a subgroup of
the O(6,22; Z) target space duality, which can be shown to be an exact symmetry of the

compactified string theory at each order of the string loop perturbation expansion.

This SL(2, Z) is to be contrasted with the SL(2, Z) symmetry of the elementary four-
dimensional solution of Dabholkar et al. [18]. In the latter solution T, and T3 are zero,

but n and B,, are non-zero. The relevant part of the action is

1
S4 = 22 fd4m\/ (R 2" 9, n0yn — —e 4’7HWPH"“”’) ; (34)
K2 12

The equations of motion of this theory also display an SL(2, R) symmetry, but this becomes

manifest only after dualizing and introducing the axion field a via

vV—99*"d,a = we“”p"Hypae”‘l". (35)
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Then in terms of the complex field

S = Sl + 252

(36)
=e % 44q
the Dabholkar et al. fundamental string solution may be written
1
S = —2—' ln i,
s To y . (37)
ds?® = —dt* + dz? — —In —dzdz.
2r 1o

Thus (31) and (37) are the same with the replacement T' — S. It has been conjectured
that this second SL(2, Z) symmetry may also be a symmetry of string theory [44,45,46,47],
but this is far from obvious order by order in the string loop expansion since it involves
a strong/weak coupling duality » — —n. What interpretation are we to give to these two
SL(2,Z) symmetries: one an obvious symmetry of the fundamental string and the other

an obscure symmetry of the fundamental string?

Related issues are brought up in the recent interesting papers by Sen [48], Schwarz
and Sen [19] and Binétruy [20]. In particular, Sen draws attention to the Dabholkar et al.
string solution (37) and its associated SL(2, Z) symmetry as supporting evidence in favor
of the conjecture that SL(2,Z) invariance may indeed be an exact symmetry of string
theory. He also notes that the spectrum of electric and magnetic charges is consistent with
the proposed SL(2, Z) symmetry [48)].

All of these observations fall into place if one accepts the proposal of Schwarz and
Sen [19]: under string/fivebrane duality the roles of the target-space duality and the
strong/weak coupling duality are interchanged ! This proposal is entirely consistent
with an earlier one that under string/fivebrane duality the roles of the o-model loop ex-
pansion and the string loop expansion are interchanged [49]. In this light, the two SL(2, Z)
symmetries discussed above are just what one expects. From the string point of view, the
T-field SL(2,Z) is an obvious target space symmetry, manifest order by order in string

loops whereas the S-field SL(2, Z) is an obscure strong/weak coupling symmetry. From

T Sen also discusses the concept of a “dual string", but for him this is obtained from the

fundamental string by an SL(2, Z) transform. For us, a dual string is obtained by the replacement

ST,
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the fivebrane point of view, it is the T-field SL(2,Z) which is obscure while the S-field
SL(2,Z) is an “obvious" target space symmetry. (This has not yet been proved except at
the level of the low-energy field theory, however. It would be interesting to have a proof
starting from the worldvolume of the fivebrane.) This interchange in the roles of the S
and T field in going from the string to the fivebrane has also been noted by Binétruy [20].
It is made more explicit when S is expressed in terms of the variables appearing naturally

in the fivebrane version
S =51 +15;

= e~ + iagaarso, (38)

= \/ detg-rf:;,n + iaO347891 m,n = 3) 47 67 77 81 97

where gF v = e=%/3g%,y is the fivebrane o-model metric [13] and apmn pgrs is the 6-form
which couples to the 6-dimensional worldvolume of the fivebrane, in complete analogy with

(30). For a recent concise description of four-dimensional string/string duality see [50].

It may at first sight seem strange that a string can be dual to another string in D = 4.
After all, the usual formula relating the dimension of an extended object, d, to that of the
dual object, d, is d = D — d — 2. So one might expect string/string duality only in D = 6
[49]. However, when we compactify n dimensions and allow the dual object to wrap around
m < d—1 of the compactified directions we find defective = d—m = Deffoctive —d—2+(n—m),
where Degective = I — 1. In particular for Degective = 4, d = 2, n = 6 and m = 4, we find

deffective = 2.

Thus the whole string/fivebrane duality conjecture is put in a different light when
viewed from four dimensions. After all, our understanding of the quantum theory of five-
branes in D = 10 is rather poor, whereas the quantum theory of strings in D = 4 is compar-
atively well-understood (although we still have to worry about the monopoles and domain
walls). In particular, the dual string will presumably exhibit the normal kind of mass
spectrum with linearly rising Regge trajectories, since the classical (h-independent) string
expression T5L* x (angular momentum) has dimensions of (mass)2, whereas the analogous
classical expression for an uncompactified fivebrane is (T5)'/5 x (angular momentum) which
has dimensions (mass)®/® [12]. Indeed, together with the observation that the SL(2,Z)
strong/weak coupling duality appears only after compactifying at least 6 dimensions, it
is tempting to revive the earlier conjecture [12,51] that the internal consistency of the

fivebrane may actually require compactification.
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In more recent work, Sen [52] argued that the SL(2,Z) S-duality group and the
0(6,22, Z) T-duality group may be combined in a larger O(8,24, Z) duality group of three-
dimensional heterotic string theory, in which the string-like solitons of four-dimensional
heterotic string theory appear as point-like objects. Following the notation of [52], it is
straightforward to produce an explicit O(8,24; Z) transformation that takes the S string
to the T string. We first find My, the 32 x 32 matrix that corresponds to the T string.
It turns out that this is simply what one obtains from Mg, the 32 x 32 matrix that
corresponds to the S string, on exchanging (rows and columns) 1 with 10, 2 with 31, 3 with
8 and 9 with 32, and is thus an explicit O(8,24; Z) transformation (for more details see

[26]). An interesting discussion of the connections between duality groups can be found in
[53].

5 D=4 Black Holes

We now extend the three solutions of section 3 to two-parameter solutions of the low-energy
equations of the four-dimensional heterotic string [22], characterized by a mass per unit
p-volume, My, and magnetic charge, gp+1, where p = 0,1 or 2. The solitons discussed
in section 3 are recovered in the extremal limit, \/irch.l.l = gp+1. The two-parameter
solution extending the supersymmetric monopole corresponds to a magnetically charged
black hole, while the solution extending the supersymmetric domain wall corresponds to a
black membrane. By contrast, the two-parameter string solution does not possess a finite

horizon and corresponds to a naked singularity.

All three solutions involve both the dilaton and the modulus fields, and are thus to
be contrasted with pure dilaton solutions. In particular, the effective scalar coupling to
the Maxwell field, e=®®F,,, F*", gives rise to a new string black hole with o = V3, in
contrast to the pure dilaton solution of the heterotic string which has a = 1 [54-62]. It
thus resembles the black hole previously studied in the context of Kaluza-Klein theories
(63,64,38-40,65,54,28] which also has a = \/§, and which reduces to the Pollard-Gross-
Perry-Sorkin [38-40] magnetic monopole in the extremal limit. In this connection, we

recall [66], according to which a > 1 black holes behave like elementary particles!

The fact that the heterotic string admits o = /3 black holes also has implications for
string/fivebrane duality [12-13]. We shall show that electric/magnetic duality in D = 4

may be seen as a consequence of string/fivebrane duality in D = 10.
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We begin with the two-parameter black hole. The solution of the action (21) is given

by
g o %0 = (l - Z:) ,
T
ds? = — ( — r_:;) (1 - TT_)_I dt? + (1 — %—)_l dr? +r? (1 — TT—) dQ%, (39)

Fop, = /ryr_sinf

where here, and throughout this section, we set the dilaton vev ®; equal to zero. This
represents a magnetically charged black hole with event horizon at » = r; and inner

horizon at r = r_. The magnetic charge and mass of the black hole are given by

4 1
91 = G (rer-)3,
e (40)
7
M1 = F(27‘+ = T_)

ds? = —dt® + *® (dy? + y*d3), (41)
Fop, = r_sin.

which is just the supersymmetric monopole solution of section 3 which saturates the Bo-
gomol’nyi bound v2xkM; > g¢;.

Next we derive a two-parameter string solution which, however, does not possess a
finite event horizon and consequently cannot be interpreted as a black string. A two-

parameter family of solutions of the action (25) is now given by

e2® = 7292 = (14 k/2 — Alny),
ds® = —(1 + k)dt® + (1 + k)1 (1 + k/2 — AIny)dy® + y*(1 + k/2 — AIny)d6® + dzj3,
Fy = A\V1+k,

(42)
where for k = 0 we recover the supersymmetric string soliton solution of section 3 which,
as shown in section 4, is dual to the elementary string solution of Dabholkar et al.. The
solution shown in (42) in fact represents a naked singularity, since the event horizon is

pushed out to r; = oo, which agrees with the Horowitz-Strominger “no-4D-black-string”
theorem [67].



Khuri 899

Finally, we consider the two-parameter black membrane solution. The two-parameter

black membrane solution of the action (28) is then

—i i —4
-dsz=—(1—L) (1—i) dt2+(1—i) (1—i) dr? + de2 + dz3,
Ty r_ T4 r_

(43)
This solution represents a black membrane with event horizon at r = r and inner horizon

at » = r_. Changing coordinates via y~! = r~! —r_! and taKing the extremal limit yields

e2¢' s 6“20‘3 — (1 + i) "
;-

ds® = —dt? + dz? + dz2 + *®dy?, (44)
i ,
F=——,
T_

which is just the supersymmetric domain wall solution of section 3.

We note that the black hole solution corresponds to a Maxwell-scalar coupling
e_“‘f’FM,,F“” with @ = /3. This is to be contrasted with the pure dilaton black hole
solutions of the heterotic string that have. attracted much attention recently [54-62] and
have a = 1 *. The case @ = v/3 also occurs when the Maxwell field and the scalar field ¢

arise from a Kaluza-Klein reduction of pure gravity from D =5 to D = 4:

Guv + euﬂquuAv e_\/gchﬂ) (45)

. <
MN =€V3

where gy n (M,N = 0,1,2,3,4) and g, (p,v = 0,1,2,3) are the canonical metrics in 5

and 4 dimensions respectively. The resulting action is given by

N _Liogy - Lo-v3s pv
g = o fd zv/—g [R 2(3¢) 1t F,F* |, (46)

* Contrary to some claims in the literature, the pure Reissner-Nordstrom black hole with a = 0
is also a solution of the low energy heterotic string equations. This may be seen by noting that it
provides a solution to (N = 2, D = 4) supergravity which is a consistent truncation of toroidally

compactified N = 1, D = 10 supergravity [68].
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and it admits as an “elementary” solution the a = /3 black hole metric (39), but with
the scalar field

e~2t = AY3 (47)

and the electric field

€

1
——e_‘/g‘b*ng, = sin 6 (48)

\/iff.
corresponding to an electric monopole with Noether charge e. This system also admits the

topological magnetic solution with
g2 = A=V3 (49)

and the magnetic field
1

V2

corresponding to a magnetic monopole with topological magnetic charge g obeying the

Fpp = ﬁ sin @ (50)

Dirac quantization rule

eg = 2mn, n = integer. (51)

In effect, it was for this reason that the o = v/3 black hole was identified as a solution of
the Type II string in [69], the fields A, and ¢ being just the abelian gauge field and the
dilaton of (N = 2, D = 10) supergravity which arises from Kaluza-Klein compactification

of (N =1, D = 11) supergravity.

Some time ago, it was pointed out in [65] that N = 8 supergravity, compactified from
D =5 to D =4, admits an infinite tower of elementary states with mass m,, and electric
charge e, given by v/2km,, = e,, where e, are quantized in terms of a fundamental charge
e, e, = ne, and that these elementary states fall into NV = 8 supermultiplets. They also
pointed out that this theory admits an infinite tower of solitonic states with the masses m,,
and magnetic charge g, given by v/2k/m,, = g, = n g, where e and g obey eg = 2, which
also fall into the same N = 8 supermultiplets. The authors of [65] conjectured, & la Olive-
Montonen [34], that there should exist a dual formulation of the theory for which the roles
of electric elementary states and magnetic solitonic states are interchanged. It was argued
in [69] that this electric/magnetic duality conjecture in D = 4 could be reinterpreted as a

particle/sixbrane duality conjecture in D = 10.
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To see this, consider the action dual to S, with & = —+/3, for which the roles of

Maxwell field equa.tions and Bianchi identities are interchanged:

5= 2 — [ d*zy/=g {R - -(aqs) - —e‘/_ SF, Fr (52)
where F,, = e"/§¢*Fw,. This is precisely the action obtained by double dimensional
reduction of a dual formulation of (D = 10, N = 2) supergravity in which the two-form
Fyn (M,N = 0,...,9) is swapped for an 8-form F’Ml‘_ Ms, Where F}W ezt ~“,,4557gg. This
dual action also admits both electric and magnetic monopole solutions but because the
roles of field equations and Bianchi identities are interchanged, so are the roles of electric
and magnetic. Since the 1-form and 7-form potentials, which give rise to these 2-form
and 8-form field strengths, are those that couple naturally to the worldline of a point
particle or the worldvolume of a 6-brane, we see that the Gibbons-Perry (N = 8, D =
4) electric/magnetic duality conjecture may be re-expressed as an (Type II, D = 10)
particle/sixbrane duality conjecture. Indeed, the D = 10 black sixbrane of [67] is simply
obtained by adding 6 flat dimensions to the D = 4, a = /3 magnetic black hole.

In general, the N = 8 theory will admit black holes with & = 0,1 and /3 whose
extreme limits preserve 1,2 or 4 spacetime supersymmetries, respectively. Defining M; =
M, g% = 4wQ? and k? = 871G, these extreme black holes satisfy the “no-force” condition,

i.e. they saturate the Bogomol’nyi bounds
G(M?+%?) = (14 a*)GM? = NGM? = @* (53)
where ¥ = aM is the scalar charge and N’ is the number of unbroken supersymmetries.

The solutions presented in this section now allow us to discuss the a = /3 elec-
tric/magnetic duality from a totally different perspective from above. For concreteness,
let us focus on generic toroidal compactification of the heterotic string. Instead of N = 8
supergravity, the four-dimensional theory is now N = 4 supergravity coupled to 22 N = 4
vector multiplets’. The same dual Lagrangians (46) and (52) still emerge but with com-
pletely different origins. The Maxwell field F,,, (or ﬁ'u,,) and the scalar field ¢ do not come

t Gibbons discusses both the o = 1 black hole of pure N = 4 supergravity and the o = V3
Kaluza-Klein black hole in the same paper [54], as does Horowitz [28]. Moreover, black holes in
pure N = 4 supergravity are treated by Kallosh et al. [58-60]. The reader may therefore wonder
why the a = v/3 N = 4 black hole discussed in the present paper was overlooked. The reason is
that pure N = 4 supergravity does not admit the a = /3 solution; it is crucial that we include

the N = 4 vector multiplets in order to introduce the modulus fields.
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from the D = 10 2-form (or 8-form) and dilaton of the Type II particle (or sixbrane), but
rather from the D = 10 3-form (or 7-form) and dilaton plus modulus field of the heterotic
string (or heterotic fivebrane). Thus, the D = 4 electric/magnetic duality can now be

re-interpreted as a D = 10 string/fivebrane duality!

Because of the non-vanishing modulus field g44 = ™% however, the D = 10 black
fivebrane solution is not obtained by adding 6 flat dimensions to the D = 4 black hole.

Rather the two are connected by wrapping the fivebrane around 5 of the 6 extra dimensions
[17].

Of course, we have established only that these two-parameter configurations are solu-
tions of the field theory limit of the heterotic string. Although the extreme one-parameter
solutions are expected to be exact to all orders in o, the same reasoning does not carry

over to the new two-parameter solutions.

It would be also interesting to see whether the generalization of the one-parameter
solutions of section 3 to the two-parameter solutions of this section can be carried out
when we include the Yang-Mills coupling. This would necessarily involve giving up the self-
duality condition on the Yang-Mills field strength, however, since the self-duality condition

is tied to the extreme, ﬁnM,,.,.l = gp+1, Supersymmetric solutions.

6 Dynamics of string solitons

All the soliton solutions we have discussed so far have the property, like BPS magnetic
monopoles, that they exert zero static force on each other and can be superposed to form
multi-soliton solutions with arbitrarily variable collective coordinates. Since these static
properties are also possessed by fundamental strings winding around an infinitely large
compactified dimension, it was conjectured in [18] that the elementary string is actually
the exterior solution for an infinitely long fundamental string. In this section we show that,
in contradistinction to the BPS case, the velocity-dependent forces between these string
solitons also vanish (i.e. we argue that the scattering is trivial). We also argue that this
phenomenon provides further, dynamical evidence for the identification of the elementary

string solution with the underlying fundamental string by comparing the scattering of
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the elementary solutions with expectations from a Veneziano amplitude computation for

macroscopic fundamental strings [23].

As shown in [70], the static ansatz leads to a vanishing leading-order velocity-
dependent force to for a test string propagating in the background of an elementary string.
This result also holds for the other soliton solutions we have discussed in this paper. In
particular, test monopoles propagating in the background of a source monopole also do
not experience a dynamic force to leading order. As this is a rather surprising result, we
would like to compute the metric on moduli space for these solitons. The geodesics of
this metric represent the motion of quasi-static solutions in the static solution manifold
and in the absence of a full time dependent solution provide a good approximation to the
low-energy dynamics of the solitons. In all cases the metric is found to be flat in agreement
with the test-soliton approximation, which again implies vanishing dynamical force in the
low-velocity limit. Here we summarize the computation for the metric on moduli space for

monopoles discussed in [71,43].

Manton’s prescription [24] for the study of soliton scattering may be summarized
as follows. We first invert the constraint equations of the system. The resultant time
dependent field configuration does not in general satisfy the full time dependent field
equations, but provides an initial data point for the fields and their time derivatives.
Another way of saying this is that the initial motion is tangent to the set of exact static
solutions. The kinetic action obtained by replacing the solution to the constraints into
the action defines a metric on the parameter space of static solutions. This metric defines

geodesic motion on the moduli space [24].

A calculation of the metric on moduli space for the scattering of BPS monopoles and a
description of its geodesics was worked out by Atiyah and Hitchin [72]. Several interesting
properties of monopole scattering were found, such as the conversion of monopoles into
dyons and the right angle scattering of two monopoles on a direct collision course [72,73].
The configuration space is found to be a four-dimensional manifold My with a self-dual

Einstein metric.

Here we adapt Manton’s prescription to study the dynamics of the heterotic string
monopoles discussed in section 3. We follow essentially the same steps that Manton out-
lined for monopole scattering, but take into account the peculiar nature of the string
effective action. Since we work in the low-velocity limit, our kinematic analysis is nonrel-

ativistic.
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We first solve the constraint equations for the monopoles. These equations are simply

the (0j) components of the tree-level equations of motion

1
Ry — Zﬂgj +2VoV;6 =0, -
1

—Eka’coj + Ho;*0cp = 0

which follow from the action (17). We wish to find an O(3) solution to the above equations
which represents a quasi-static version of the neutral multi-monopole solution (i.e. a multi-
monopole solution with time dependent @;). Here we use the uncompactified solution (16)
with e?¢ = 2% f), with fys given in (20), as opposed to the explicitly compactified version

(22) (in particular, we do not make the replacement g4y = €729)

although the results in
both cases are identical, in order to more easily keep track of the terms in the former
case. We give each monopole an arbitrary transverse velocity B, in the (123) subspace of
the four-dimensional transverse space and see what corrections to the fields are required
by the constraints. The vector @, representing the position of the nth monopole in the
three-space (123) is given by

&-‘n(t) = fYn + gnta (55)

where A, is the initial position of the nth monopole. Note that at ¢ = 0 we recover
the exact static multi-monopole solution. Our solution to the constraints will adjust our
quasi-static approximation so that the initial motion in the parameter space is tangent to

the initial exact solution at t = 0. The O(3) solution to the constraints is given by [71]

N
26(2,t) _ E :—m"
e - ]' + — — b
ne1 £ — a@n(t)|

oo = —1, ¥ =-1,  g;=€"6;, g9 =e,
mnﬁ T; ; _
9oi = Z 1$ - :n t g% = e gy, (56)
Hij, = Eijkmamezqsa

N -
My O -

Hoi; = €iiemOmbor = €ijbmOk E %—Gﬁ

n=1 T On

3

where 1, j, k,m = 1,2, 3, 4, all other metric components are flat, all other components of H

vanish, the @, (t) are given by (55) and we use a flat space e-tensor. Note that goo, g;; and
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H;j;, are unaffected to order 5. Also note that we can interpret the monopoles as either

strings in the space (01234) or point objects in the three-dimensional subspace (0123).

The kinetic Lagrangian is obtained by replacing the expressions for the fields in (56)
into the string o-model action (17) *. Since (56) is a solution to order 3, the leading order
terms in the action (after the quasi-static part) are of order 3%. The O(3) terms in the
solution give O(3?) terms when replaced in the kinetic action. Collecting all O(3?) terms

in (17) we get the following kinetic Lagrangian density for the volume term:

Liin = —‘%5 (4¢M V¢ — e 20, M;0:M; — e ** M;.0;¢ (0; My — 0 M)

(57)

—

+ 4AM2e~ (V)2 + 20262 — 48,(M - V) — 4V - (¢M )) :

where M = — Ef=1 % Henceforth let X,, = & — @,(t). The last three terms in (57)
are time-surface or space-surface terms which vanish when integrated over the uncompact-
ified four-space (0123). The kinetic Lagrangian Liin = [ d*zLyin for monopole scattering
converges everywhere. This can be seen simply by studying the limiting behaviour of Lin
near each monopole. For a single monopole at » = 0 with magnetic charge m and velocity
B, we collect the logarithmically divergent pieces and find that they cancel:

mg? f r2drdf sin §dgp ("%3 O 9) = 0. (58)

2 r3

We now specialize to the case of two identical monopoles of magnetic charge m; =
my = m and velocities 51 and 52. Let the monopoles be located at @; and @z. Our moduli
space consists of the configuration space of the relative separation vector @ = dz — d;. The

most general kinetic Lagrangian can be written as

Lkin =h(a)(,_§1 By + By - ﬁz) + p(a) ((5 -a)? + (52 '&)2)

(59)
+2f(a)By - Bz +2g(a) (B - 4)(B2 - &).
Now suppose ﬁl = ﬁz = B‘, so that (59) reduces to
Liin = (2h +2f)8% + (2p + 29)(8 - &)*. (60)

* Strictly speaking one must add to (17) a surface term to cancel the double derivative terms
in the action [74-76,77,71] however the addition of this term introduces only flat kinetic terms

and thus presents no nontrivial contribution to the metric on moduli space.
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This configuration, however, represents the boosted solution of the two-monopole static
solution. The kinetic energy should therefore be simply
Mt
Lyin = Tﬁz, (61)
where Mt = My, + My = 2M is the total mass of the two-monopole solution. It then
follows that the anisotropic part of (60) vanishes and we have
g+p=0,

(62)
2(h+f) = 2L

It is therefore sufficient to compute h and p. This can be done by setting ﬁl = 5 and
,@2 = 0. The kinetic Lagrangian then reduces to

Liin = h(a)B* + p(a)(B - &)°. (63)

Suppose for simplicity also that @; = 0 and @, = @ at t = 0. The Lagrangian density of

the volume term in this case is given by

P (3m3e'4¢ G2 [ﬁ z, B @ r"i)] e 2m2p?

2K2 2t |z — al® i

e~ m3p? (1 - (Z-a e *mip2 (1 1 2% - (Z — @)
~—a ¥t gt )
2r & |Z — a|® T r¢ | —adl m3|Z — &

(64)

The integration of the kinetic Lagrangian density in (64) over three-space yields the
kinetic Lagrangian from which the metric on moduli space can be read off. For large a,
the nontrivial leading order behaviour of the components of the metric, and hence for the
functions h(a) and p(a), is generically of order 1/a. In fact, for Manton scattering of BPS
monopoles, the leading order scattering angle is 2/b [24], where b is the impact parameter.
Here we restrict our computation to the leading order metric in moduli space. A tedious
but straightforward collection of 1/a terms in the Lagrangian yields

2—’{12 1 de [ 3mte 641 (.77 + m3e~4 rn mie=6% g 3'mt5e"”8"51

me el o |

r7 rd

where €2?1 = 1 4+ m/r. The first and third terms clearly cancel after integration over
three-space. The second and fourth terms are spherically symmetric. A simple integration

yields

oo iy 2_—8¢1 o0 0o
f r2dr (e —— 3m = ) =/ _dr ___ 3m2] _4 __o (e6)
0 r r o (r+m)? o (r+m)t
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The 1/a terms therefore cancel, and the leading order metric on moduli space is flat. This
implies that to leading order the dynamical force is zero and the scattering is trivial, in
agreement with the test-soliton result. In other words, there is no deviation from the
initial trajectories to leading order in the impact parameter. Analogous computations for
elementary strings in D = 4 [78] and fivebranes in D = 10 [77,79] lead to the same result
of a flat metric. From S « T duality (see section 4) it follows that the metric on moduli

space for solitonic strings in D = 4 is also flat.

We now address the scattering problem from the string theoretic point of view. In
particular, we calculate the string four-point amplitude for the scattering of macroscopic
winding state strings in the infinite winding radius limit. In this scenario, we can best
approximate the soliton scattering problem considered above but in the case of elementary
strings in D = 4. We find that the Veneziano amplitude obtained also indicates trivial
scattering in the large winding radius limit, thus providing evidence for the identifica-
tion of the elementary strings with infinitely long macroscopic fundamental strings. The
fivebrane analog of this computation awaits the construction of a fundamental fivebrane
theory. However, a vertex operator representation of fivebrane solitons (and also of string
monopoles) should in principle be possible. The computation of the fivebrane Veneziano

amplitude would then represent a dynamical test for string/fivebrane duality.

The scattering problem is set up in four dimensions, as the kinematics correspond
essentially to a four dimensional scattering problem, and strings in higher dimensions
generically miss each other anyway [80]. The precise compactification scheme is irrelevant

to our purposes.

The winding state strings then reside in four spacetime dimensions (0123), with one
of the dimensions, say z3, taken to be periodic with period R, called the winding radius.
The winding number n describes the number of times the string wraps around the winding
dimension:

z3 = z3 + 27 Rn, (67)

and the length of the string is given by L = nR. The integer m, called the momentum
number of the winding configuration, labels the allowed momentum eigenvalues. The

momentum in the winding direction is thus given by

(68)
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The number m is restricted to be an integer so that the quantum wave function e is
single valued. The total momentum of each string can be written as the sum of a right

momentum and a left momentum

p* =l +pk, (69)

where p‘;z’ . = (E,E¥, % £ nR), ¥ is the transverse velocity and R is the winding radius.
The mode expansion of the general configuration X(o,7) in the winding direction satis-
fying the two-dimensional wave equation and the closed string boundary conditions can
be written as the sum of right moving pieces and left moving pieces, each with the mode

expansion of an open string [81]
X(o,7) = Xg(r—0)+ Xr(r+0)

4 1 —2in(7—o
XR(T—U)=mR+pR(T—0)+§Z;ane e~

n=0

i=1_ _,
Xp(r+0) =z, +pL(r+0)+5 > ~ane (el

n=0

(70)

The right moving and left moving components are then essentially independent parts with

corresponding vertex operators, number operators and Virasoro conditions.

The winding configuration described by X (o, 7) describes a soliton string state. It is
therefore a natural choice for us to compare the dynamics of these states with the soliton-
like solutions of the previous sections (including the elementary solutions) in order to
determine whether we can identify the elementary string solutions of the supergravity field
equations with infinitely long fundamental strings. Accordingly, we study the scattering

of the winding states in the limit of large winding radius.

Our kinematic setup is as follows. We consider the scattering of two straight macro-
scopic strings in the CM frame with winding number n and momentum number +m [81,80].
The incoming momenta in the CM frame are given by

m

17 . —

PirL = (&, B, >R + nR) -
p L

Par, = (B, —Ev, ~3R +nR).

Let +m’ be the outgoing momentum number. For the case of m = m/, the outgoing

momenta are given by

.m
—phr 1, = (E, EW, Y7 +nR)

—Phr,L = (B, —Ew, -

(72)

m

R +nR),
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where conservation of momentum and winding number have been used and where +¢ and
+ are the incoming and outgoing velocities of the strings in the transverse = — y plane.
The outgoing momenta winding numbers are not a prior: equal to the initial winding
numbers, but must add up to 2n. Conservation of energy for sufficiently large R then
results in the above answer. This is also in keeping with the soliton scattering nature of

the problem (i.e. the solitons do not change “shape" during a collision).

For now we have assumed no longitudinal excitation (m = m'). We will later relax
this condition to allow for such excitation, but show that our answer for the scattering is
unaffected by this possibility. It follows from this condition that v = w?. For simplicity we
take ¥ = vZ and W = v(cos 6% + sin #7), and thus reduce the problem to a two-dimensional

scattering problem.
As usual, the Virasoro conditions Lg = fo = 1 must hold, where
Lo= N + 1(pk)? (73)
Zo =N+ %(Pﬁ)z
are the Virasoro operators [81] and where N and N are the number operators for the right-

and left-moving modes respectively:

™ “
N = E o, Ony
~ ol
N = E &, Ony,

where we sum over all dimensions, including the compactified ones. It follows from the

(74)

Virasoro conditions that

—~

N -N=mn
2 (75)
E*(1-4?) =2N -2+ (—= +nR) .
2R
In the following we set n = 1 and consider for simplicity the scattering of tachyonic
winding states. For our purposes, the nature of the string winding states considered
is irrelevant. A similar calculation for massless bosonic strings or heterotic strings, for
example, will be slightly more complicated, but will nevertheless exhibit the same essential
behaviour. For tachyonic winding states we have N = N = m = 0. Equation (75) reduces

to
E2(1 -v®) = R? -2. (76)
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The Mandelstam variables (s, t,u) are identical for right and left movers and are given by

T e )

1— o2
t=—2 [ﬁﬂf{%ﬁ] (1 + cos @) (77)
w=—2 [W] (1= cosh).

It is easy to see that p;r - pjr = psr, - p;1 holds for this configuration so that the tree level

4-point function reduces to the usual Veneziano amplitude for closed tachyonic strings [80]

2
Aj = %B(—1 —5/2,—1—1t/2,~1 —u/2)

KA T(=1 - s/2)[(—1 — t/2)[(~1 — u/2)
=) ['(2 + s/2)0(2 + t/2)T(2 + u/2)

This can be seen as follows. In the standard computation of the four point function for

(78)

closed string tachyons, we rely on the independence of the right and left moving open
strings. For the tachyonic winding state, we also separate the right and left movers with
vertex operators given by Vg = ePRTR and V; = e'PL'?L respectively to arrive at the

following expression for the amplitude

K2 -
Ay = T fdm(z)H &5 — 2[R PRz — 2

<]

PiLPjiL (79)

From p;r - pjr = pir - PjL, (79) reduces to the expression for the four-point amplitude of a
nonwinding closed tachyonic string, from which the standard Veneziano amplitude in (78)
results.

To compare the implications of A4 with the results of the Manton calculation, we take
R — oo. It is convenient to define z = -(%2”—2 = s/4+ 2, since the Mandelstam variables
can be expressed solely in terms of z and 8. We now have Ay = A4(z,0), which can be
explicitly written as
fi)F(3 —2z2)['(—1+ z(1 + cos0))['(—1 + z(1 — cos b))
4’ I'(-242z)['(2 — z(1 + cos8))['(2 — z(1 — cos b))

The problem reduces to studying A4 in the limit z — oo. We now use the identity

Ag=(

(80)

I'(1 — a)'(a) sinma = 7 to rewrite A4 as

K2 [D(=1 4 2(1 + cos8))I'(~1 + z(1 — cos ) ]”
Ay = (E)[ (-2 + 2z) ]
" (sin(ﬂ'm(l + cos@)) sin(nz(1 — cos 0)))
sin 27z '

(81)
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From the Stirling approximation T'(u) ~ v2mu*~1/2¢~* for large u, we obtain in the limit

T — 0o
Ao (212(1 + cos 6))z(1+cos ) (1:(1 e 9)):1:(1—005 9)] 2
4 (2z)2=
(82)
g (sin(m:(l + cos @) sin(mz(1 — cosO))) -
sin 2wz

Note that the exponential terms cancel automatically. From (82) we notice that the powers

of z in the first factor also cancel. A4 then reduces in the limit £ — oo to

( 1+ COSB) 2z(14cos 0) (1 _ COSB)2:1:(1—COS e)
A~ (5 —

o (sin(mt(l + cos#)) sin(rz(1 — cos 9))) | (83)

sin 27

The poles in the third factor in (83) are just the usual s-channel poles. It follows from (83)
that for 8 # 0,7 Ay — e F0)% a5 £ — 00, where f is some positive definite function of 4.
Hence the 4-point function vanishes exponentially with the winding radius away from the

poles.

In general, for finite R and fixed v the strings may scatter into longitudinally excited
final states, 7.e. states not satisfying the above assumption that m’ = m. The 4-point
amplitude for each transition still vanishes exponentially with R. A simple counting argu-
ment shows that the total number of possible final states for a given R is bounded by a

polynomial function of R. This counting argument proceeds as follows.

Without loss of generality, we may assume that our incoming states have N = N =
m = 0 with fixed R and v. We relax the assumption of no logitudinal excitation to obtain
outgoing states with nonzero m. We still consider n = 1 winding states for simplicity. Our

scattering configuration can now be described by the incoming momenta

pﬁ‘R,L = (E, Ev,+R)

(84)
pg‘R,L = (E.’ —EU, :tR)-
and the outgoing momenta
L, m
~Psp 1, = (E1, Erddiy, oR + R) (85)

= m
~Php,1, = (B2, —Epiz, — o7 + R).
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Note that in general E; and F; are not equal to E. Without loss of generality, we take m

to be positive. From conservation of momentum, however, we have

E,+E;, =2F (86)
E}'u_fl = Ezlb.z.

It follows from the energy momentum relations for the ingoing and outgoing momenta that

E?(1-v?)=R?*-2

m 2
E2(1—w?) =2N, -2+ (ﬁ +R) (87)
2
E§(1—w§)=2N2—2+(—-2%+R) ,

where N; and N, are the number operators for the the right movers of the outgoing states.

Subtracting the third equation in (87) from the second equation and using (86) we

obtain the relation
Ni—Na+m= (El —*Ez)E. (88)

From the first equation in (87) it follows that E is bounded by some multiple of R for
fixed v. It then follows from the first equation in (86) that both F; and E; are bounded
by a multiple of R. So from (88) we see that N; — N 4+ m is bounded by some quadratic

polynomial in R. We now add the last two equations in (87) to obtain

2

E2(1 — w?) + E2(1 — w?) = 2N; + 2N, + 2R? + % — 4. (89)

The left hand side of (89) is clearly bounded by a quadratic polynomial in R. It follows
that N7 + N5 is also bounded by a quadratic polynomial, and that so are N; and N; and
also, then, N; — N5. From the boundedness of N; — N3 + m it therefore follows that m
is bounded by a polynomial in R. Therefore the total number of possible distinct excited
states (numbered by m) is bounded by a polynomial in R. The above argument also goes
through for the case of a nonzero initial momentum number. For each transition, however,
one can show that the Veneziano amplitude is dominated by an exponentially vanishing
function of R, from a calculation entirely analogous to the zero-longitudinal excitation
case worked out above. Hence the total square amplitude of the scattering (obtained by
summing the square amplitudes of all possible transitions) is still dominated by a factor

which vanishes exponentially with the radius, except at the poles at 8 = 0, 7 corresponding
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to forward and backward scattering, which are physically equivalent for identical bosonic
strings. This is in agreement with the trivial scattering found above and provides further

evidence for the identification of the elementary string with the fundamental string.

The above argument can be repeated for any other type of string, including the het-
erotic string [82]. The kinematics differ slightly from the tachyonic case but the 4-point
function is still dominated by an exponentially vanishing factor in the large radius limit.

Hence the scattering is trivial, again in agreement with the result found above.

The Veneziano amplitude result in fact holds for arbitrary incoming winding states. A
considerably more tedious calculation for the general case shows that in the large winding
radius limit the outgoing strings always scatter trivially and with no change in their indi-
vidual winding numbers [83]. In this limit, then, these states scatter as true solitons. It

would be interesting to see if this result holds for the full quantum string loop expansion.

7 String Solitons and Supersymmetry

In this section I summarize some recent results found in [26]. Let (0123) be the four-
dimensional spacetime, z = z3 + iz3 = ret?, (456789) the compactified directions, S =

e 2® 4ia=05, + 1S, where ® and a are the four-dimensional dilaton and axion and

TM = T i) = 7%t — iBys = \/detgmn — iBss,  m,n=4,5,
T(z) = T1(2) + sz(z) = 6-20’2 - ?;B67 = \/detgpq — iBB’?; b,qa= 63 7’ (90)
T(S) = T]Fs) + iTZ(S) = 6“263 == iBsg =/ detgrs - iBSQr rys = 8’ 9.

Throughout this section we assume dependence only on the coordinates z; and xz3. For an
N =4, D = 4 toroidal compactification of the ten-dimensional heterotic string with three
independent moduli, the four-dimensional action for the massless gravitational fields (i.e.
without YM terms) can be written in terms of g, (¢,v =0,1,2,3), § and 7@ a¢=1,2,3
as

gt

Sy = fd"“m/—g( 25’28 S8,8

g’“l’ =__p rWp 7N - L5 7@ 5, T _
or® 2T1( Y 2T1

5 B“T(“) a.,T(s)) .

(91)
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Then a solution for this action for § =1 (® = a = 0) is given by the metric

ds® = —dt? + dz? + TOTEO T (da2 + da?), (92)

where three cases with different T'—duality arise depending on the number n of nontrivial

moduli:
n=2 TW=_LpZ 7@ _7e
2w 1o
n=4: T =7 = Ly 2, T®=1 (93)
2t 1o
1 Z
n=g TW =7® 7@ = _ L 2
2m To

In each of the expressions for T(*) z may be replaced by Z independently (i.e. the axionic
instanton in each 7@ may be either self-dual or anti-self-dual). Note that the n = 2 case
is the string solution of section 3. Since S; has manifest SL(2, R) duality in each of the
moduli, we can generate from the n = 4 case an SL(2, R)? family of solutions and from

the n = 6 case an SL(2, R)® family of solutions.

From the ten-dimensional viewpoint, the n = 6 solution, for example, can be rewritten

o 1
e?® = (——1In 1)3,
2m To
ds? = —dt? + dz? + €2®(dz? + dz?) + 2%/3(dz? + ... + da3), (94)
0
Bys = +Bgr = £Bgg = +—, °
2
where ¢ = —01 — 03 — 03 is the ten-dimensional dilaton.

The above solutions for the massless fields in the gravitational sector solve the tree-
level supersymmetry equations (18) of the heterotic string for zero fermi and Yang-Mills
fields. It further follows that the n = 2,4 and 6 solutions break 1/2,3/4 and 7/8 of the
spacetime supersymmetries respectively. I will show this to be true for the most difficult

case of n = 6.

6\ = 0 follows from scaling, since the dilaton can be written as the sum of three parts
(the moduli) each of which produces a contribution which cancels against the contribution
of the H term coming from the appropriate four-dimensional subspace. In other words,
each of the subspaces (2345), (2367) and (2389) effectively contains a four-dimensional
axionic instanton with the appropriate (anti) self-duality in the generalized connection.

Another way of saying this is that there are three independent parts, each of which vanishes
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as in the simple n = 2 case. §¢p = 0 is a little more subtle. For the n = 2 case, the
generalized connection is an instanton, and for constant chiral spinor € with chirality in the
four-space of the instanton opposite to that of the instanton (e.g. negative for instanton
and positive for anti-instanton), it is easy to show that QuAPT 4ge = 0. In the more
general case of n = 6 we proceed as follows. It is sufficient to show that 815, = 0 for, say,
M =2 and M = 4 (i.e. for a spacetime and for a compactified index, the argument for
the other indices being identical to one or the other). For M = 2 this can be written out

explicitly as

1 1
46¢2 = (gwgngg -+ w§4f‘24 + w§5F25 - §H245P45) €
1 1
+ (5&)%31123 + W§6F26 + w§7I‘27 - §H267P67) € (95)
1 23 28 29 1 89
+ '3'(4)2 F23 +w2 Fzg + Wo Fgg = -2—H2 ng €.

Each line in (95) acts on only a four-dimensional component of € and can be shown (this is
the crucial point) to exactly correspond to the contribution of the supersymmetry equation
of a single n = 2 axionic instanton. So in effect, the configuration carries three such
instantons in the generalized curvature in the spaces (2345), (2367) and (2389). So for the
appropriate chirality of the four-dimensional components of € (depending on the choices
of the signs of Tz(a)), &1 = 0. Since we are making three such choices, only 1/8 of the
spacetime supersymmetries are preserved. Another perhaps simpler way to see this is to
write € = €(01) D €(23) D €(45) ® €(g7) @ €(g9)- Then the chiralities of €(45), €(67) and €(gg) are
all correlated with that of €(,3), so it again follows that only 1/8 of the supersymmetries

are broken, and 7/8 are broken.

We still need to check 614 = 0. In this case, it is easy to show that the whole term

reduces exactly to the contribution of a single n = 2 axionic instanton:

1 1
46’!/)4 = (wiz:[‘z;z + w231’43 e §H425F25 = —2-H435P35) € = 0, (96)

as in this case there is only the contribution of the instanton in the (2345) subspace.

When the above solution is combined with a nonzero Yang-Mills field given by
ApmP? = QP9 (the usual gauge equals generalized connection embedding), we still need
to show that §x = 0. This can be easily seen by noting that as in the §1ys case, the term

F53T'%3 splits into three equal pieces, each of which combines with the rest of a D = 4
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instanton (since the Yang-Mills connection is equated to the generalized connection and
is also effectively an instanton in each of the three four-dimensional subspaces) to give a

zero contribution.

For the n = 4 case, it is even easier to show that 1 /4 of the supersymmetries are

preserved, and thus that 3/4 are broken.

It turns out that these solutions generalize even further to solutions including a non-
trivial S field. The net result of adding a nontrivial S (with SL(2, Z) symmetry) is to break
half of whatever remaining spacetime supersymmetries preserved by the corresponding T'
configuration with trivial S. In particular, a solution of the action (91) with one nontrivial

S and three nontrivial 7”s has the form

ds® = —dt® + dx? + S1T1(1)T1(2)T1(3) (dz3 + da3),

1 &
—In —.
27 To

97
R Y R (97)

This solution preserves only 1/16 of the spacetime supersymmetries (i.e. half of what the
three T solution did) since the nontrivial S field breaks half of the remaining supersym-
metries by imposing a chirality choice on the (01) subspace of the ten-dimensional space.
Note that the real parts of the S and T fields can be arbitrary as long as they satisfy the
box equation (e.g. S~ § = 0) in the two-dimensional subspace (23). In particular, all
of the solutions discussed in this section can be generalized to multi-string configurations
independently in each of the moduli, with arbitrary number of strings each with arbitrary

winding number.

A special case of the generalized S and T solution is the one with only one S and one
T. This is in fact a “dyonic” solution. An interesting feature of this special case is that
in going to higher dimensions, one still has a solution even if the box equation covers the
whole transverse four-space (2345) ( the remaining four directions are flat even in D = 10,
as we have only one T in this case). The D = 10 form in fact reduces to a D = 6 dyonic
solution (7 = 2,3,4,5)

¢ = QE = ¢M7
ds® = *®E (—dt* + dx?) + 2™ dz;dz’,
(98)
B_Z(I:E =1+";Q'TE) 82<I>M :1+Q_241
Y

Hj = 2Q pe3, e 2** H3 = 2Qges,
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for the special case of a single electric and single magnetic charge at y = 0 (again this
generalizes to arbitrary-but quantized— charges at arbitrary locations). For Qs = 0 this is
Just the Dabholkar et al. string. For Qg = 0 this is just the D = 6 dual string (which can
be obtained from the fivebrane by compactifying four flat directions). This solution breaks
3/4 of the spacetime supersymmetries. The self-dual limit of Qg = Qs was already found
[69] in a different context.

It turns out that the above solutions that break more than 1/2 of the spacetime
supersymmetries in N = 4 break only 1/2 the spacetime supersymmetries when their
analogs arise in N = 1 or N = 2 compactifications to D = 4. In fact, analogs of all of these

solutions arise in N = 1 compactifications, and all but the 3 T solutions arise in N = 2.

For the N = 1 compactification, (the N = 2 case is similar), it turns out that the
number of T" and S fields does not affect the number of supersymmetries broken, as in the
supersymmetry equations the contribution of each field is independent. In particular, the
presence of an additional field produces no new condition on the chiralities, so that the
number of supersymmetries broken is the same for any number of fields. So there remains
to check that for, say, one T field, 1/2 of the supersymmetries are broken. Details may be
found in [26]. The relationship between duality and supersymmetry is also discussed in
[84,85].

8 Future Directions

As mentioned in the introduction, an important possible application of the instanton so-
lutions in string theory (in particular the axionic instanton discussed in this paper) is the
exploration of vacuum tunnelling in string theory. The true stringy analogs of instanton
computations in field theory probably arise within the context of string field theory [86,87].
However, it is possible to perform simpler computations in the low-energy supergravity
limit of string theory [88]. Another possibility is to try to obtain vertex-operator rep-
resentations of states corresponding to string instanton solutions and compute transition
amplitudes between vacuum states in the low-energy limit. Comparisons with analogous

results in point field theory may then be quite illuminating.

The construction of vertex operators may also be useful as a dynamical test of the

various dualities discussed in this paper. For example, a vertex operator representation of
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fivebranes would allow us to repeat the Veneziano amplitude calculation of section 6 for
fivebranes and again compare with expectations from the Manton metric on moduli space.
As in the string case, one would still expect a vanishing leading order dynamical force in
the limit of infinitely long fivebranes. A similar result should also hold for the monopoles

considered in this paper.

The fact that these extremal a = /3 black holes/monopoles scatter trivially to lead-
ing order in the impact parameter is in direct contrast to not only field-theoretic analogs,
such as the scattering of BPS monopoles (as pointed out in section 6), but also to analo-
gous computations in general relativity (see, e.g., [89], where the metric on moduli space
is computed for extreme Reisnner-Nordstrom black holes and is found to be non-flat).
Whether the flatness of the metric is an intrinsically stringy property is far from clear,
but it would worthwhile to do such a calculation for & = 1 extreme black holes. What is
especially interesting in this latter case is that this class of solutions, described by exact
WZW coset conformal field theories in the throat limit [62], are suggested to be possible
stable remnants at the endpoint of Hawking radiation [90,91] in the context of a string
theory of quantum gravity. In this regard, a vanishing dynamical force between two oo =1
extreme black holes to leading order in the impact parameter would suggest that such
states would interact very weakly at any scale larger than the Planck length and would
therefore most likely be stable against coalescence. A flat metric result in this case may
therefore support the plausibility of the stable remnant approach to the resolution of the

Hawking radiation information paradox.

Finally, given the encouraging success of the application of stringy techniques in sta-
tistical physics and QCD, the question arises as to whether stringy methods may be useful
in relativity. An open problem in this regard is the representation of the more astrophysi-
cally realistic Schwarzschild black hole as a conformal field theory. Such a representation
- would certainly lead to important insights into the nature of string theory as a theory
of quantum gravity, but may in addition lead to a greater understanding of the nature
of singularities in relativity. A (slightly) less ambitious project is to try to adapt stringy
scattering techniques, in conjunction with the Manton approach and the various dualities

[28,92,93], to analyze the low-velocity interactions of Schwarzschild black holes.
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