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Abstract. We recall the construction of a three-dimensional projective topological field theory starting from
a solution to Moore and Seiberg equations. The conjectural relation between Moore and Seiberg's equations
and the second paragraph of the "Esquisse d'un programme" by A. Grothendieck is discussed. Then, following
Grothendieck's ideas, we suggest how to translate Gal(Q/Q)'s natural action on irx g(Pi(C) \ {0, l,oo},*)
into an explicit action on a wide class of topological field theories deduced from two-dimensional rational
conformai field theories.

The Introduction is in English and the main text in French.

1 English Introduction

This paper aims at pointing out some relationships between recent developments in Topological
Field Theories, the classification program of Rational Conformai Field Theories and deep ideas

expressed by A. Grothendieck in the "Esquisse d'un Programme" [33].

Our exposition does not pretend to be a definitive and complete mathematical theory since

most of this wonderful story is still to be discovered. We would like to point out why, in our
opinion, there is a deep connection between the world of Rational Conformai Field Theory and
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Grothendieck's one. In the end, the best advice we can give to the reader is to read the wonderful
text by Grothendieck [33] and make up his own mind.

Conformai field theory was originally studied for a systematic description of isotropic universality

classes in two dimensions [4]. A few years after their discovery, it became apparent that these
theories were a prototype for the so-called geometrical quantum field theories [60][3]. A special class

of them, called Rational Conformai Field Theories (RCFT), attracted special attention during the
late eighties. It turned out that RCFTs provided very interesting representations of various modular

groups. This was discovered firstly in genus one [10], and then in genus zero [63]. The important
discovery of Verlinde [64] drew attention to this structure. Moore and Seiberg then produced an
important synthesis of this subject [52][54][53]. In this work, they showed the importance of a
few matrices associated with each Rational conformai field theory. These matrices have to satisfy
polynomial equations, called the Moore and Seiberg's equations. It must be mentioned that these
matrices can be computed as monodromy matrices of some holomorphic multivalued functions on
moduli space: see [10] for the genus one case and [21] [22] for the some examples in genus zero.
In passing, one notices that the Moore and Seiberg matrices represent endomorphisms of spaces
associated with the following values of (g,n):

(0,3) (0,4) (1,1)

and that Moore and Seiberg's equations involve endomorphisms of spaces associated with

(0,5) (1,2).

Other authors [31] [56] [28] also discovered independently the same structure but in a completely
different context.

At the same time, Witten discovered from the point of view of Chern-Simons theory, a deep
connection between Moore and Seiberg's data associated with any RCFT and three-dimensional
topological theories [67]. More precisely, Chern-Simons theory associated with a compact, connected,
Lie group G can be "solved"2 using Moore and Seiberg's data associated with the Wess-Zumino-
Witten model based on G. This mapping has been made more precise by many authors, for example
[29][30][18]. It also became clear that Moore and Seiberg's equations could be obtained from the
requirement of topological invariance [67][55]. In fact, this result can be proved partially: one has

to impose a few hypotheses and to consider only non projective topological field theories. In this

case, only solutions to Moore and Seiberg's equations with c 0 (mod 8) can be recovered (see

[16, Chapter 5]). On the other hand, it was expected that one could reconstruct a 3D TFT from

any solution to Moore and Seiberg's equations. For example, topological invariants were defined

by Kontsevitch in the case of undecorated closed manifolds [45] and also by Crane using Heegaard
decompositions. The latter technique was used also by Kohno [43] with explicit use of some
solutions to Moore and Seiberg's equations coming from the WZW model based on 5(7(2). It was
shown in [15] how to reconstruct a projective topological field theory from any solution to Moore
and Seiberg's equations.

In a slightly different context, Reshetikhin and Turaev [57] defined Topological Field Theories

(TFT) using Kirby's calculus and quantum groups. The quantum group is an example of a modular
Hopf algebra, the representation theory of which provides us with a solution to Moore and Seiberg's
equations. Other works were also based on the same point of view: [46][49].

That is to say, any partition function, or any correlation function of any observable can be explicitly computed.
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Besides this already widely spread work, Grothendieck developed between 1981 and 1985 an
extremely ambitious research program summarized in [33]. One of the main proposal of this program
was to develop a new understanding of the absolute Galois group of the field Q (i.e. Gal(Q/Q))
by interpreting it as a group of transformations of an appropriate combinatorial object. The third
paragraph of [33] explains how this group acts on the set of all "children's drawings" which were
widely discussed during the International Conference on the theory of "Dessins d'enfants" (CIRM,
Luminy, April 1993) organized by L. Schneps. This is a first combinatorial approach to this
description of the Galois group. On the other hand, the second paragraph suggests that one should
consider an important notion, called the Teichmiiller tower. It is formed by the system of all moduli
spaces Mt,n of Riemann surfaces of any genus and with any number of punctures, together with
a few fundamental operations such as the "sewing of surfaces", the "forgetting of marked points"
and so on... As explained by Grothendieck, all this structure is reflected on suitable families of
fundamental groupoids (with respects to suitable families of base points).

Two fundamental conjectures appear in [33, Paragraph 2]:

- The reconstruction conjecture: the whole structure of the tower can be reconstructed from
the two first floors (the floors are indexed by Zg — 3 + n, which is the complex dimension of
the corresponding moduli space). The first floor provides a "system of generators" and the
second one, a "system of relations". This gives the following values of (g, n):

(Generators : (0,3) (0,4) (1,1)
[Relations : (0,5) (1,2)

- The Galois action conjecture: The structure of the tower is rigid enough for Gal(Q/Q) to
act on its profinite completion, preserving all relations between the corresponding profinite
groupoids.

Grothendieck then suggested that one should parametrize each element of the Galois group
by one or several elements of the profinite completion of the free group with two generators3,
subjected to certain relations. It is extremely important to find necessary and sufficient conditions

for such elements to arise from the action of the absolute Galois group.

To our knowledge, these results remain conjectural, although some evidence for their validity
exists.

Finally, reading the Esquisse made it clear that there is a deep relationship between Grothen-
dieck's unpublished work and Rational Conformai Field theory. In fact, this relationship is far
from being established with all the rigor and precision suitable for this subject. The central object
considered by Grothendieck - i.e. the Teichmiiller tower - has, up to now, not been constructed4.
Hence, none of its properties have been proved. Our purpose will be to explain or suggest how this
story should go. A great deal of work will be necessary before this "philosophy" turns into a clean
mathematical theory.

- For us, the starting point was noticing that Grothendieck's values for (g, n) in his reconstruction

conjecture for the tower were exactly the values relevant in Moore and Seiberg's work.

This is nothing but the algebraic fundamental group of Pi(C) \ {0, l,oo} with respect to some base point, which
is the moduli space for Riemann surfaces of genus zero with four ordered points on it.

It is likely that various versions of the notion exist, depending on the framework - algebraic geometry, combinatorics

- considered...
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From this emerged the idea that solutions to Moore and Seiberg's equations define projective
representations of the Teichmiiller tower.

My opinion is that Moore and Seiberg's work needs to be settled on a firmer basis. A possible

way of performing this would be to define the Teichmüller tower, then study its projective
representations, and produce Moore and Seiberg's data from such representations. The so
called completeness theorem [53, Appendix B] of Moore and Seiberg should then be the
expression, in representation theory, of the reconstruction conjecture of Grothendieck [33,

Paragraph 2].

Finally, starting from an axiomatic definition of a conformai field theory ò la Segal, and
an intrinsic definition - still to be found - of what a chiral algebra is, one should be able,
first to define RCFTs, then to be able to prove that any RCFT should provide a projective
representation of the Teichmiiller tower. All these steps being completed, Moore and Seiberg's
work could be considered as rigorously based.

In the "Esquisse d'un programme", Grothendieck explained that elements of the absolute Galois

group Gal(Q/Q) act as outer automorphisms of the tower itself. We were led to conjecture
the existence of an action of Gal(Q/<0j) on solutions to Moore and Seiberg's equations, or
equivalente, on three dimensional topological field theories.

Of course, what remains to be done is to explore the consequences of this program for the
study of three-dimensional geometry.

Contents

In the first section, we recall the axiomatic formulation of topological field theory in the spirit
of Atiyah [3], Segal [60][61] and [18]. Our presentation is a refined version of [16, Chapter 1] and
[15] suitable for dealing with other ground fields than C. In a second section, we describe Moore
and Seiberg's equations. We have tried to present this subject in a more intrinsic way than in the
original papers [53]. Nevertheless, our presentation is far from being satisfactory...

Then, we review the construction of a three-dimensional topological projective field theory [15]
from solutions to Moore and Seiberg's equations. We've put the emphasis on representations of the
modular groups that arise from these topological field theory. The proof of topological invariance
using Kirby's calculus is also recalled.

The last section is devoted to the action of Gal(Q/Q) on a certain class of topological field
theories. We inform the reader that it requires some familiarity with Conformai Field Theory. As
explained above, we suggest that the translation on 3D TFTs of the action of Gal(Q/Q) discovered

by Grothendieck [33] is nothing other than the number theory action on the matrix elements of
the operators in the 3D TFT. Our reasoning is based on the computation of Moore and Seiberg's
matrices from conformai blocks in RCFTs. Hence it relies on some hypotheses about these blocks:

- Coefficients of Moore and Seiberg matrices must be, in a suitable gauge, algebraic numbers
(algebraicity hypothesis). This is a consequence of Moore and Seiberg's equations for S, T,
and fi(±) matrices but nothing general is known for the F matrix: the hypothesis can only
be checked during explicit computations.

- Conformai blocks on the four-punctured sphere must have a Puiseux expansion near zero of
a specific form (see page 64, this is the rationality hypothesis). We show that this hypothesis
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is satisfied by minimal models with respect to the Virasoro algebra and by any non twisted
Kac-Moody algebra associated with a finite dimensional simple Lie algebra over C.

Let us mention that since no definition of a chiral algebra is available, we still do not know any
good definition of RCFTs and therefore, we are not able to justify these hypotheses in a general
framework!

Finally, we recall that such a Galois action has been considered in a slightly different context
by Drinfel'd [24]. In his work, Drinfel'd described this Galois action by a pair (A,/) € Z* X F2

satisfying particular conditions5. Equivalent results were also obtained by Y. Ihara in [35]. We
shall make use of Ihara's point of view in section 5 of the present paper. These approaches follow
Grothendieck's insight of describing elements of the absolute Galois group by outer automorphisms
of the Teichmüller tower. Since a precise definition of the Teichmüller tower is still lacking, our
strategy will be to rely on what is conjectured to be its representation theory - that is TFTs in
3D - and to try to translate this Galois action on the tower onto its representations. The surprise
is that our final result is not expressed in terms of a pair (A,/) € Z* x F2. We find instead
the number theory action on matrix elements of operators representing elements of the various
modular groups. An important question is to understand the implications of this phenomenon. In
our opinion, a (good) definition of the Teichmüller tower is necessary in order to firstly formulate
Grothendieck's questions in a precise way, and then secondly to understand the connection between
the various approaches.

2 L'axiomatique des théories topologiques.

Nous allons rappeler ici l'axiomatique utilisée pour décrire les théories topologiques. Cette
présentation suit d'assez près celle qui est donnée dans [16, Chapitre 1] et qui est brièvement
rappelée dans [15]. Toutefois, afin de pouvoir décrire l'action du groupe de Galois Gal(Q/Q) sur
les théories topologiques, nous avons été amenés à modifier certains points. C'est cette version un

peu améliorée que nous présentons ici. Il s'agit principalement de disposer de la notion de théorie
topologique définie sur un corps K quelconque. Nous avons également étudié comment une théorie
définie sur un corps K pouvait en fait être définie sur un sous corps k de K. Je me suis inspiré très
fortement de [8, Chapitre II, §8].

Rappelons qu'une théorie géométrique n'est rien d'autre qu'un foncteùr entre une catégorie de

variétés et une catégorie d'espaces vectoriels. Nous commencerons donc par définir les catégories
géométriques utilisées ici, puis nous donnerons la définition d'une théorie topologique à valeurs
dans une catégorie de A'-espaces vectoriels. Nous discuterons alors divers problèmes de rationalité.
Finalement, nous verrons que si les objets de la catégorie d'espaces vectoriels considérés sont munis
de ^-structures - compatibles aux produits tensoriels et au dual en un sens que nous préciserons

- alors, on dispose d'une action naturelle de Gal(K/k) sur la catégorie des théories topologiques
rationnelles basées sur les catégories considérées.

5See equations (4.3), (4.4) and (4.10) of [24]
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2.1 Catégories géométriques.

Je reprends ici les notations du chapitre 1 de [16]. Enfin, je me limiterai aux théories topologiques
et rationnelles.

Une catégorie est définie par la donnée de ses objets et morphismes [50]. Ici, nous supposerons
que toutes les variétés considérées sont topologiques. En dimension deux et trois, les catégories
topologiques, linéaires par morceaux et différentielles sont équivalentes [41] et c'est pourquoi nous
nous permettrons d'employer des notions différentielles dans la suite de ce texte car nous nous
limiterons à ces dimensions!

2.1.1 Définitions générales.

Les objets de Ma seront des modèles topologiques de variétés de dimension d— 1 orientées, pas
forcément connexes. Le renversement d'orientation est noté JV i—? JV. Nous imposons que la variété
vide (qui n'a qu'une orientation) soit un objet.

Suivant Milnor [51, Chapitre 1], nous considérons les triplets (M, <p, ip1) où M est une variété dont
le bord est une union disjointe de deux variétés dMXn et 9Mout; et ip : dMm —? N et ip' : dMoM —?

N' sont des difféomorphismes appelés paramétrisations de dM,„ et dMont. Nous supposons que
l'orientation induite par M sur dMm est envoyée par tp sur celle de N, et que l'orientation induite
sur dMout est envoyée par ip' sur l'opposée de celle de N'. N est appelée variété entrante et N'
variété sortante. On dit aussi que M interpole entre JV et N'. La donnée d'une paramétrisation du
bord permet de recoller les variétés. Si Mx interpole entre Nx et N2 et M2 entre N2 et N3, alors si

g € Diff+(iV2), on note Mi$gM2 le recollé de Mx avec M2 selon (y'i)-1 ogotp2. Dans le cas g 1n2,
on note j) l'opération ainsi définie. Remarquons que la prescription choisie pour les orientations
permet de munir Mi$gM2 d'une orientation qui est compatible avec celles de Mx et M2. Enfin, nous
introduisons:

Définition 1 Soient M et M' deux variétés interpolantes entre Nx et N2, <pii2 les paramétrisations
des bords iV12 de M (respectivement <p\i2 pour JV'12, bords de M1) et f un homéomorphisme de

M sur M'. On dira que f est un isomorphisme entre les variétés interpolantes si et seulement si
on a la compatibilité aux bords (dM12 ifiï^Nij)):

fia v'1,2 ° f\BM,,2-

On notera M ~ M' si M et M' sont isomorphes.

Ceci permet de définir la catégorie Ma grâce à ses morphismes. Par définition, les morphismes
de Nx vers N2 sont les classes d'isomorphismes de triplets [M, <pi,<p2] interpolants entre Nx et N2.
La composition des morphismes est définie grâce au recollement J des triplets [M,<pi,<p2]. On vérifie

que J est bien compatible à la relation d'isomorphisme et on note encore J l'opération ainsi définie.

Il est judicieux de disposer des propriétés suivantes:

- L'union disjointe de deux morphismes est encore un morphisme qui est représenté par l'union
disjointe de deux cobordismes. Si M Ç hom(JV!, A^2) et M' 6 hom(iV'1, iV'2) alors M U M' e

hom(NxUN'x,N2UN'2).
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- Si M € hom(Ni,N2) est représenté par [M,ip,ip'}, on définit M qui est représenté par
[M, ip', ip] où l'on a renversé l'orientation. C'est encore un morphisme noté M e hom(JV2) Ni).

2.1.2 Exemples

Nous allons construire explicitement des exemples de telles catégories, adaptés à nos besoins
ultérieurs. Tout d'abord, nous commençons par rappeler quelques définitions combinatoires
élémentaires, qui seront également utilisées dans la section 3.

Préliminaires combinatoires Dans la suite, nous noterons I un ensemble fini dont les éléments
sont appelés indices de couleur, vérifiant les propriétés suivantes:

- On se donne une involution i i-> î de I, avec au moins un point fixe noté 0.

- Pour chaque triplet (i,j,k) 6 I3, on dispose d'un ensemble [i,j,k] de cardinal JVjjt. Ses

éléments sont appelés indices de vertex et on impose les conditions suivantes:

- Pour chaque permutation a G ®o,j,fc} de l'ensemble à trois éléments {i,j, fc}, on se donne

<?[»j,i] qui est une bijection de [i,j,fc] sur [cr(i),o(j),a(k)]. De plus,

(2.1) V(<t,<t') e ©|,j,t}, ffW)..ü),,(*)] °*[iJM ^\i,)M
De plus, nous supposons qu'il existe a e [i,j,k] hâé [î,j, fc] telle que â a.

L'existence de telles applications entraîne la symétrie de N{jik en i, j et fc et l'invariance

par conjugaison simultanée des trois indices: JV{j,i Ns -^.

- Nous imposons N{j,o 6ij et

(2-2) J2 N,f Nk,n' Y! N'."" N*j'

Cela permet de définir pour tout graphe trivalent, la notion de coloriage. Rappelons ce que l'on
entend par graphe trivalent orienté:

Définition 2 Un graphe trivalent est la donnée d'un ensemble S - de sommets - et d'un ensemble

A - des arêtes orientées - et:

- De deux applications dtj : A —* P<i(S), à valeurs dans l'ensemble des parties de S de cardinal
inférieur à un6, telles que, 9;(a) soit vide si et seulement si df(a) est vidé7. De plus, pour
tout x € S, on demande que le cardinal de {a € A,di(a) x} soit égal à trois ou un.

Dans le premier cas, on parle de vertex, et dans le second, de sommet externe. Nous noterons
E l'ensemble des sommets externes d'un graphe et V l'ensemble de ses vertex.

Si le cardinal est zéro, on dit que l'on a une ligne fermée.
Cela supprime les arêtes sans bout.
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- D'une involution sans point fixe i : a € A t-» â 6 A telle cpie

Va € A, dij(â) djAa)

Dans la suite, si s est un vertex du graphe G, nous noterons A, {o 6 A, di(a) s}
l'ensemble des arêtes orientées qui partent de s. Une circularisation du graphe est la donnée, pour
chaque vertex s, d'une permutation d'ordre trois uj, de As. Enfin, si G [A, S,c\/,i] est un graphe
orienté, on construit l'ensemble des arêtes non orientées de Ç de la manière suivante:

Définition 3 Une arête non orientée est une paire {a, a'} € V2(A) telle que a1 â. Si A désigne
l'ensemble des arêtes orientées, n : A —> A définie par x(a) {a, â} € A, est une surjection de

degré deux exactement.

Enfin, un coloriage d'un graphe trivalent orienté G [A,S,dij,i] n'est autre que:

Définition 4 Sent G [A, S, d;j,i] un graphe trivalent orienté, un coloriage du graphe G est la
donnée

- D'une application i : A —> I telle que i(à) i(a) (en clair, changer l'orientation d'une ligne
transforma sa couleur en la conjuguée).

- Pour chaque vertex v du graphe, et pour chaque ordre total <^ sur Av, on se donne un
élément a<TC G [i„,jv, fc„] où (iv,jv, fc„) sont les couleurs des trois arêtes orientées qui arrivent
- i.e. dfa' v - en v, prises dans l'ordre <^ ¦ Le groupe &Aii opère sur l'ensemble des ordres

totaux sur Av et soit a Ç. &a„, on demande que

aff.<„ ?[.•„ j„ib„](a<rc)

On appellera coloriage opposé d'un coloriage C de G, le coloriage obtenu en changeant tous les

indices en leurs conjugués. Nous le noterons C.

Considérons maintenant Ç [As,Sg,dij,i}etG' [Agi, S6.,c\/,i'] deux tels graphes. Donnons
nous D une partie non vide de Eg et j une injection de D dans Eg>. Nous définissons un nouveau
graphe, appelé le recollé de G et G' selon (D,)) comme suit:

- S est l'union disjointe de Sg \ D et de Sçi \ )(D). Stir l'union disjointe As U Agi, on définit la
relation d'équivalence ~j par: a ~j a' si et seulement si

(2.3) l ou (dia e D et d,a' j(diO))
[ou (dja e D et dia' — )(d;o))

et alors A (Ag U Agi)/ ~j. Notons que i et i' définissent une involution sans point fixe sur
l'union disjointe de Ag et Agi, compatible à ~j. On en déduit une involution sans points fixe
sur A.



Degiovanni 807

- Nous définissons dij sur A de la manière suivante:

- Si a € A est une classe de ~, de cardinal un, ditj(a) est le dt,j de son représentant.

- Si a € A est une classe de ~j de cardinal deux: a {ax,a2}, et si pour fixer les idées

di(ax) g Dl)j(D), alors on pose ô(a ô,a2. Si par contre ô;a2 G i?Uj(.D), alors on pose
dia dtax. De même, on définit dfa.

Ainsi, nous avons fabriqué un graphe que l'on note GÌ(d,>)G'¦ Munissons G et G' de coloriages
au sens de la définition 4, ces deux coloriages permettent de définir un coloriage de GI(d,x)G' si et
seulement si:

(2.4) V(a, a') <E (Ag U Agi), a ~j a' => ia ia>

Le lecteur vérifiera que Vei g, — Vg U Vg> et que l'on dispose bien d'un coloriage des vertex au
sens de la définition 3. Enfin, si G et G' sont à vertex circularises, G$(d,j)G' l'est trivialement.

Catégories Ma31 Nous allons maintenant décrire les catégories Ma31 qui serviront à définir les

théories topologiques tridimensionnelles.

Pour tout (g,n) € N2, considérons Eä „ un modèle topologique de surface de genre g avec n
points marqués ordonnés, muni des décorations suivantes:

- A chaque point marqué, on associe une demi-droite dans l'espace tangent à la surface au point
considéré.

- On se donne une application de l'ensemble des points marqués dans / (coloriage des points
marqués).

Les objets de Ma31 sont les unions disjointes finies de telles surfaces décorées.

Afin de définir les morphismes, nous allons employer des cobordismes au sens de Milnor que nous
allons "décorer". Pour cela, nous définirons la notion de plongement d'un graphe trivalent orienté, à

vertex circularises, colorié dans une telle variété. Dans le cas tridimensionnel, nous serons conduits
à rajouter une structure supplémentaire appelée le framing. Enfin, nous munirons l'ensemble des

cobordismes au sens de Milnor d'une relation d'équivalence. Les morphismes seront les classes

d'équivalence pour cette relation.

Considérons alors:

Une variété tridimensionnelle M dont le bord est difféomorphe à Nx U N2. Nous distinguons
dans dM deux composantes 0Mm ~ Ni et dMoM — N2 que nous appellerons entrantes et
sortantes.

Deux difféomorphismes ipx (respectivement ip2) de dMm (respectivement 8MoM) vers Ni
(respectivement iV2).
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- Une orientation Om sur M telle que, si On, désignent les orientations de NXi2, tpli2 assure
la compatibilité entre l'orientation induite par Om au bord et 0Nl 2:

(2.5) ipi e mff+([dM-m,0M],WuONi])
(2.6) ip2 e Diff+([ÔMout,0M],[iV2,0^])

- Un plongement d'une graphe trivalent orientés, à vertex circularises, est défini par:

Définition 5 Soit G un graphe trivalent orienté à sommets circularises, un plongement de

ce graphe dans [M, (£*,¥>*)*] est la donnée de

- Une injection iE : E —» dM qui met en bijection E et l'ensemble des points marqués sur
dM.

- Une injection iv -V —> M \ (dM).
- Pour chaque arête orientée a Ç, A qui ne soit pas une ligne fermée, une application

fa : [0, l]2 —* M qui soit un difféomorphisme de [0, l]2 sur /„([0, l]2).

- Pour une arête a qui est une ligne fermée - dij(a) 0 - il existe /„ : [0,1] x (R/Z) t-*

M\dM telle que /„([0,1] x (R/Z)) soit difféomorphe à [0,1] x 5X.

qui vérifient les conditions suivantes:

- Pour toute arête orientée a £ A qui ne soit pas une ligne fermée, fa vérifie:

fV(M)€[0,l]2, fä(s,t) fa(s,l-t)(2'f)
lfa(0,0)=is(d,(a)) /„(0,1) is(d,(a))

Pour toute arête orientée a qui est une ligne fermée, fa vérifie:

(2.8) V(M) € [0,1] x (R/Z), fa(s,-t) fa(s,t).

Pour tout vertex v € V, il existe Uv, voisinage de is(v) isomorphe à la boule ouverte
unité dans R3, tel que via cet isomorphisme, le plongement soit du type suivant:

s=l

s=0 —-

De plus, on dem,ande que la permutation cyclique d'ordre trois induite par l'orientation

de M, et (d,fa)(0,0) sur les trois lignes (/„(0,[0,1]) n dU)aiA* coïncide avec la

circularisation en u>„.

Soit a 6 A telle que di(a) 6 E, on impose que (dip)(is(dia)). ((d,fa)(0,0)) soit dans la

demi-droite associée à tp(is(8ia)).
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- Pour tout couple (a, a') d'arêtes orientées telles que a ^ a' et a ^ a',on demande que

/„([0, l]x]0,1[) n /„'([0, l]x]0,1[) 0. C'est la condition de plongement.

- Soit a telle que dia € (dM),n, alors la couleur de l'arête orientée a est celle du point
marqué ip(is(d{(a))). De même, si d;(a) G (dM)out, la couleur de a n'est autre que celle

de ip'(is(df(a))).

Ainsi, à chaque ligne de K, nous associons un ruban comme sur le schéma suivant:

(s,t)=(l,l)

(s,t)=(l,0) /-^ (st)=(0jl)

(s,t)=(0,0)

Nous dirons que t >-> /a(0, t) définit le plongement de l'arête a et que t >-> /„(1, t) définit une courbe

parallèle à cette arête (cf [27]). Bien entendu, il existe d'autres manières de définir le framing: on

peut par exemple supposer que l'on se donne le plongement 1h+ ca(t) fa(0,t) de l'arête orientée,
et qu'en chaque t € [0,1], on dispose d'un vecteur tangent non nul à M en ca(t), qui n'est pas
colinéaire à l'espace tangent à c„([0,1]) en ca(t).

Pour être complet et aussi pour faire le hen avec d'autres travaux, nous considérons maintenant
le cas du plongement d'un cercle8 dans S3, communément appelé un nœud. Dans à la philosophie
ci-dessus, le framing d'un nœud est défini par une courbe parallèle à celui-ci.

Parmi tous les framings possibles et imaginables d'un nœud donné, il en existe un privilégié.
En effet, considérons une surface (de Seifert) qui s'appuie sur le nœud considéré C [39, Chapitre 5],
elle n'est pas unique car on peut lui rajouter une anse; mais en revanche, elle définit, à une isotopie
près, une unique courbe C'a parallèle à C. En conséquence elle fixe complètement le framing de

C. Ce framing particulier est appelé le framing canonique ou encore framing zéro du nœud et les

autres framings sont comptés relativement à celui-ci. Lorsque nous dirons qu'un nœud possède un
framing n 6 Z, nous sous entendrons toujours que le nombre d'intersection9 de C avec sa courbe

parallèle C est n.

Enfin, choisissons un plan de projection pour notre nœud. Le framing normal relativement à ce

plan de projection est obtenu en utilisant un ruban orthogonal au plan de projection. Cette notion
dépend clairement du plan de projection.

Le recollement de deux cobordismes paramétrés décorés par des graphes trivalents coloriés se

définit naturellement. Considérons [M,(T,k,ipk)k,Gc,(is,ÌA)] et [M',(T.'i,ip,)],G'c,(i's,ì'a)] deux
tels cobordismes, interpolant respectivement entre Ox et ö2, puis ö2 et 03, on définit

[M\M\ (Em, y>m)mi mG')cXc>, (ist?s, ìaÌì'a)]

qui interpole entre ö\ et 03. On doit utiliser le recollement des graphes coloriés, à vertex circularises.
L'injection j et le domaine D sont donnés grâce à l'application de recollement entre M et M'. La

Le graphe correspondant est décrit par S ss 0, A {a, à}. Ce graphe est colorié par la donnée de »a(œ) € I-
Il s'agit du nombre d'intersection de Gauss. Il ne dépend pas de l'orientation de l'arête car l'orientation de la

courbe parallèle C' est définie à partir de celle de C.
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seule complication provient du framing mais grâce aux conditions de compatibilité au bord il n'y a

aucun problème. Finalement, ceci permet de définir le recollement jj des cobordismes.

Enfin, nous considérerons deux tels cobordismes paramétrés comme isomorphes si et seulement
si:

- Les cobordismes à la Milnor sont isomorphes.

- Si F G Diff+(M, M') désigne l'isomorphisme en question, alors nous avons Gc G'c, f's
Fofget f'A FofA.

Cette définition contient la notion d'isotopie ambiante relative des plongements de graphes
trivalents orientés munis de framings. Les morphismes de la catégorie Ma31 sont par définition les

classes d'isomorphismes de tels cobordismes paramétrés décorés. Le recollement entre cobordismes
est compatible avec la relation d'isomorphisme. Ceci définit la composition des morphismes de

Ma31. Les morphismes qui interpolent entre 0 et 0 sont les classes de variétés orientées compactes
munies d'un plongement d'un graphe trivalent orienté, colorié et muni d'un framing.

Nous sommes maintenant prêts à définir les théories topologiques.

2.2 Théories topologiques définies sur un corps K, et fc-structures pour les
théories topologiques.

Dans [8], on trouve la définition d'une fc-structure pour un A'-espace vectoriel (Page 119, déf.

1). Ceci conduit naturellement à définir la notion de théorie topologique sur un corps K ainsi que
la notion de fc-structure pour une théorie des champs définie sur un corps K.

2.2.1 Théorie définie sur un corps K.

Définition 6 Une théorie topologique définie sur une catégorie Ma et à valeurs dans la catégorie
Sp^ des espaces vectoriels sur le corps K est définie par un fondeur contravariant $jf de Ma dans

Sptf tel que, si on note HN $(JV) pour tout N 6 Ob(Ma),

(2.9) Ht K
(2.10) H* H"n

(2.11) TïHY(<j>{M]) 4>[My]

(2-12) Hn,un-2 HN,®HN,
(2.13) <f>[Mx U M2] c/>[Mi] ®K cf>[M2

et Hn ne dépend que de la topologie de N.

Une remarque s'impose: on pourrait définir la notion de théorie des champs géométrique mais

pas topologique sur un corps K. Toutefois, je ne crois pas que l'on puisse obtenir des exemples
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intéressants en gardant des catégories Ma "trop grosses". Je fais allusion au fait que dans les

théories conformes par exemple, ou dans la théorie de Yang-Mills en dimension deux, on peut rendre
certaines fonctions de partition transcendantes en choisissant des variétés sans bords particulières.
On se souvient par exemple de la fonction de partition de la théorie conforme associée au module
du Moonshine: Z(r) \j(r) — 744p. Il existe un tore de paramètre modulaire r (ce tore n'est pas
défini sur Q!) pour lequel j(r) n + 744 et donc pour lesquels la fonction de partition de cette
théorie prend une valeur transcendante. Le même phénomène se produit dans le cas de la théorie
de Yang-Mills bidimensionnelle à cause du facteur exp (—e'2c2 A/2) qui est en facteur des différents
termes de la fonction de partition de la théorie de Higgs topologique [16, Chapitre 1].

Dans [15] et [16], on imposait au foncteur des conditions supplémentaires. Tout d'abord, le corps
de base était C et chaque objet de Sp était un espace de Hilbert. Enfin, on imposait

(2.14) VM € homMa, <f>{M] (^[M])1

Ces relations ne sont pas forcément préservées par l'action de Gal(Q/Q). C'est pour cela que nous
les avons relaxées ici.

Enfin, il existe aussi une version projective de ces axiomes. C'est celle qui nous servira pour les

théories tridimensionnelles. La définition est alors la suivante:

Définition 7 Une théorie topologique projective définie sur une. catégorie Ma et à valeurs dans

Spx est définie par $/<- de Ma dans Sp/< tel que

(2.15) 4>\Mi\M2\ fi(MuM2) x (f>[M2] o 4>[MX]

où fi(Mx,M2) G K vérifie la relation dite de cocycle

(2.16) p{MxlM2,M3] x p[MuM2] p[Mx,M-AM3] x p[M2,M3)

ainsi que la condition de compatibilité

(2.17) u[Mi U M2,M3 U M4] u[Mi,M3] x p[M2, M4]

Enfin, on impose également les relations 2.9 à 2.13 et HN ne dépend que de la topologie de N.

Nous pouvons changer 4>{M\ en \[M] x <f>[M] où X[M] est une fonction qui à chaque morphisme
de Ma associe un élément de K non nul. Si on veut préserver la condition de cohérence 2.17, on doit
imposer que A[Afi U M2] X[Mi] X A[M2]. Pour définir une nouvelle théorie topologique projective
à partir de cj>, il suffit de poser

(2.18) 4>'[M] X[M] x 4>[M]

pour tout morphisme M de Ma. Le cocycle se transforme selon:

Le lecteur est renvoyé à [16, Chap. 1, Section 5] pour plus d'informations.
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Nous allons maintenant définir à partir d'une théorie à valeurs dans Spjc une théorie à valeurs
dans Spi où L est une extension de K. Alors, pour la partie objet, on pose

(2.20) ViV e Ob(Ma), $L(N) HN®K L

et pour la partie morphisme

(2.21) VM € homMa(Ni,N2), *L(Jlf <t>[M] ®K 1L

Si je note H'N $L(N), alors il est bien clair que H'nxUNi H'n, ®l H'n2- En revanche,

H'f, H'N ®K L CK(HN, K) ®K L

mais cet espace n'est que plongé dans Cl(Hn®k L, L). Lorsque la dimension est finie, nous pouvons
les identifier. C'est pour cette raison que l'on se limite ici aux théories rationnelles! Alors H'f,
(H'Ny. Les autres propriétés sont triviales à vérifier.

Proposition 1 Si TK [Ma, Spa-, $a] est une théorie topologique rationnelle définie sur un corps
K, alors

(2.22) ViV € Ob(Ma) H'N HN ®K L

(2.23) VAf € hom(Ma) cj>'[M] <j>[M] ®K 1L

définit une théorie, topologique qui est dite obtenue par extension des scalaires de K à L.

On notera Tk ®k L cette nouvelle théorie topologique. La définition des fc-structures pour les

TTR permet de faire le chemin inverse.

2.2.2 fc-structures pour les théories topologiques.

J'utilise les notations suivantes: (H, H') désigne un /t'-espace vectoriel H muni d'une fc-structure
définie par le sous-fc-espace vectoriel H'. Enfin CK t((Hx,H'i); (H2,H'2)) désigne l'espace des

applications linéaires fc-rationnelles entre les espaces munis de fc-structures (HX,H'X) et (H2,H'2).
Nous posons:

Définition 8 Soit 7/<- [Ma,Sp/f,$A] une théorie topologique rationnelle définie sur K, pour
k C K, une k-structure sur TK est la donnée d'une k-structure sur chaque espace Hpt telle que:

(2.24) Hf, CKk((HN,H'N);(K,k))
(2.25) H\ fc

(2.26) H'N,UN, H'N,®kH'N2

et de plus

(2.27) VM€homMa(JVllJV!1), 4>[M] e CK:k((HNl,H'Nl);(HN„H'N,))
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On notera alors <t>k[M] l'application fc-linéaire de H'N, dans H'n2 qui possède le même graphe
que 4>[M}. Dans ce cas, il est clair qu'avec <èk(N) H'N, nous définissons Tk — [Ma, Sp*,*»] qui
est une théorie topologique rationnelle définie sur le sous-corps fc de K et Tk est obtenue à partir
de Tk par extension des scalaires de fc à K.

On dira aussi que le système des fc-structures vérifiant les identités 2.24 à 2.26 est compatible
au dual, au vide et au produit tensoriel.

Il existe un critère très simple pour savoir si une théorie définie sur un corps K peut être munie
d'une fc-structure.

Proposition 2 Supposons que pour chaque N, objet de Ma, on ait trouvé *8jv une base de HN,
vérifiant les propriétés suivantes:

(2.28) 23, {17<}

(2.29) Sjv (<BN)* base duale de Kronecker

(2.30) <BNiun, <Bn, ® ®jv3

alors, Tic peut être munie d'une k-structure si et seulement si

(2.31) MM 6homMa(iV1,Af2), M9„it<8Ni G Mdtm(Nl)xilm(N3)(k)

Exactement comme précédemment, on dira que le système de bases 23jv est compatible au vide,

au dual et aux produits tensoriels.

Bien entendu, la totalité des résultats énoncés dans Bourbaki se transpose dans ce contexte:

- Il existe une notion de plus petit corps de rationalité: on se donne k C K (voir [8, Chapitre
II, §6, n°6])10et on a:

Proposition 3 Munissons tous les HN de k-structures compatibles au dual, au vide et aux

produits tensoriels, il existe alors un plus petit sous corps L tel que k C L C K et tel que

TK Tl®lK
- Nous pouvons donner un critère de rationalité basé sur l'utilisation du commutant d'un sous-

corps de K [8, Chapitre II, §6, n° 7]. Soit A une partie de End^ii"), le commutant de A, noté

La est l'ensemble des éléments x de K tels que

(2.32) Vy G K, \/<p G A, <p(xy) x. tp(y)

Ceci permet de définir ipH si (H, H') est un A'-espace vectoriel muni d'une fc-structure: on
identifie H avec H' ®k K et on pose

(2.33) V(i, A) G H' x K, ipH(x ®k X) x ®k <p(X)

C'est un endomorphisme du Z-module H, ou encore un endomorphisme du fc-espace vectoriel
H' ®k K. Alors, le critère de rationalité s'exprime ainsi:

Proposition 4 La théorie TK adm.et une LA-structure si et seulement si

(2.34) VM G homMa(iV1, iV2), Vy> G A, <pH„2 ° 4>[M] 4>[M] o VHni

La notion de plus petit sous-corps de rationalité n'a de sens que relativement à cette paire
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Si on choisit un système de bases (23Ar)Jv60b(Ma) compatible au vide, au dual et aux produits
tensoriels, le critère de rationalité devient:

(2.35) VM G homMa(iV1,iV2), V</> G A, <p(M^^(<j>[M))) M^^ftM])
Enfin, le plus intéressant est sans doute l'action des groupes de Galois sur les théories topologiques.

2.3 Action des groupes de Galois sur les théories topologiques rationnelles.

Dans cette section, je vais discuter l'action naturelle de Gal(A/fc) sur les théories topologiques
rationnelles basées sur le corps K et à valeur dans une catégorie de A-espaces vectoriels munis
de fc-structures compatibles au vide, au dual et au produit tensoriel. Considérons Tk une théorie
topologique rationnelle à valeurs dans Spt® A", catégorie d'espaces vectoriels munis de fc-structures

compatibles au vide, au dual et aux produits tensoriels... Alors, soit o G Gal(A/fc), et (H, H') une
fc-structure sur le A'-espace vectoriel H, l'équation 2.33 permet de définir cj^h.h1) € £-k(H) qui est

un endomorphisme du fc-espace vectoriel H. Je pose donc

VA G Ob(Ma), TN cj{Hn,„.n)

qui associe à chaque objet de Ma un isomorphisme de fc-espace vectoriel de Hn. Si je définis
maintenant <r($) de la manière suivante:

- Pour la partie objet: pour tout objet N de Ma, on pose

(2.36) (t($)(A) $(A)

- Pour la partie morphisme: si M G honin^-Ai, A2), on pose

(2.37) <t($)[M] TN, o $[M] o T^

J'obtiens une nouvelle théorie des champs topologique rationnelle sur Ma. En effet, remarquons
que les propriétés imposées aux espaces H^ restent vraies. Notons cf>[M] l'application fc-linéaire
Tjv2 o 4>[M] o T^K Examinons les propriétés que doivent vérifier les opérateurs cj>\M]:

- 4>[M] est A'-linéaire: en effet, c'est un morphisme pour l'addition mais si x G ffjv„ A G A,
alors comme oH(X. x) cr(X). x, et comme </>\M\ est A'-linéaire, le résultat est immédiat.

- 0[A<fiJA/2] 4>[M2] o 4>[MX] tout simplement en intercalant crjj1 o aH.

- <t>[Mx U M2] <f>[Mx] ®k </>{M2\. en effet, utilisons pour cela des bases 23jv de chacun des

espaces Hn qui soient fc-rationnelles et compatibles au produit tensoriel. Notons M*-1' et
Af(2' les matrices de </>[Mi] et <)!>[Af2] dans ces bases. Alors, AfO) ®K M^ est la matrice
de ^[MJ ®k <^>[Af2] dans la base produit tensoriel. Comme a est un morphisme de corps,
a(M{-v> ®K M^) o(Mw) ®k <t(M<2>). Mais la formule 2.37 montre que o(Mw) n'est autre
que la matrice de11 ^[M^ï] dans les bases 23Wl et 23^. En conséquence, cj>[Mx] ®K <j>[M2] et
4>[MX U M2] ont les mêmes matrices dans les mêmes bases. Ils sont donc égaux.

"Pour fixer les idées, M(J) € homM.fTVi, Ni).
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- Soit M G honiMa(Ai U Y, iV2U Y), <j>[My] TrHY(cj>[M]). Considérons une base fc-rationnelle
23y de Hy et 23i2 des bases fc-rationnelles de Hn, 2 respectivement. Par compatibilité des

fc-structures avec les produits tensoriels, 23i2 U 23y sont des bases fc-rationnelles de HNl^uY-
Un calcul élémentaire sur les matrices montre que la relation désirée s'obtient à partir de 2.11

par application de l'élément a G Gal(A'/fc).

A partir de TK, je fabrique donc a(TK) définie par les formules 2.36 et 2.37. Ces deux théories
des champs diffèrent par une transformation naturelle locale (donnée par N >-* Tn) fc-linéaire. Mais
toutefois, les théories TK et ct(Tk) ne sont pas équivalentes au sens de [16, Chap. 1, déf. 12] en tant
que théories des champs à valeurs dans la catégorie des /i'-espaces vectoriels.

Il est facile de définir la notion de transformation naturelle locale entre théories des champs
au sens de la définition 6. On doit bien entendu supprimer l'axiome d'unitarité T^Tn 1hn-
Précisément:

Définition 9 Une transformation naturelle locale entre les TTR T [Ma, Sp, $] et T [Ma, Sp', $']
est une transformation naturelle N >-> TN G GLK(HN) telle que:

(2.38) Te 1a

(2.39) Tnun' TN ®k TNi

(2.40) Tg '(Tn1)

Seule la propriété 2.40 demande quelques commentaires. Dans [16, Section 1.3.1], on montre
cette identité en faisant appel au cylindre N x [0,1] muni de paramétrisations en A X {0} et A X {1}
se déduisant l'une de l'autre par translation mais considéré comme un élément de homMa(N\jN, 0).
Ceci donne sur £N VectK((cj>[M])MehomtJl^tiN)), l'identité ('TpTN)\£N leN- En conséquence, j'ai
choisi d'imposer 2.40. On pourrait très bien laisser tomber cette propriété mais dans les théories
tridimensionnelles déduites des solutions des équations de Moore et Seiberg, HN £at! Dans ce

cas, qui est celui qui nous intéresse, la propriété 2.40 est vérifiée.

A partir de là, si Tx et T2 sont deux théories topologiques rationnelles basées sur Ma qui sont
reliées par une TNL T : N >-* TN au sens de la définition 6 et Sp# Spt ®k K, et si o1 G Gal(A'/fc),
o(Tx) et cr(T2) sont reliées par une TNL <r(T) : N >-+ c(Tn). La seule chose à vérifier est que 2.40
est préservée sous a. Là encore, il suffit de choisir 23w une base de HN fc-rationnelle et 23jç la base

duale aii sens de Kronecker sur H^. Finalement, nous obtenons

Théorème 1 Le groupe de Galois Gal(A'/fc) opère sur la catégorie des théories des champs topo-
logiques rationnelles basées sur Ma et SpA Sp* ®k K.

3 Equations de Moore et Seiberg

Dans cette section, nous allons expliquer ce que sont les équations de Moore et Seiberg. Notre
présentation ne prétend pas être définitive. Les articles originaux sur ce sujet sont [52, 53]. L'article
de revue [55] est également utile.
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3.1 Les graphes MS

Nous supposons disposer des données combinatoires présentées page 7, à savoir l'ensemble I des

indices de couleur et les ensembles d'indices de vertex. Dans cette sous-section et les suivantes, les

graphes considérés seront connexes.

3.1.1 Graphes MS

Définition 10 On appelle graphe MS (colorié) la donnée d'un gmphe trivalent orienté G à vertex
circularises (colorié) au sens des définitions 2 (et 4), et d'un sommet externe e de ce graphe.

Le type topologique d'un graphe trivalent est un couple (g,n) G N2 défini comme suit:

- n est le nombre de sommets externes du graphe.

- Plongeons le graphe dans R3, le bord d'un voisinage tubulaire de l'image par le plongement
du graphe est une surface compacte orientable sans bords. Son genre est indépendant du

plongement choisi. Notons le g. Par abus de langage, on dira que le graphe est "de genre g".

Un graphe de genre zéro est un arbre. Bien sûr, on dispose d'une notion naturelle d'isomorphisme
entre graphes MS: c'est la notion d'isomorphisme entre les graphes trivalents orientés à vertex
circularises qui envoie le sommet externe marqué du premier graphe siir le sommet externe marqué
du second graphe.

Proposition 5 Soit (G, e) un graphe MS de type [g, n) avec n > 0, son groupe d'automorphismes
est trivial.

Preuve: Un tel automorphisme est défini par son action sur les sommets externes fE G &e, les

vertex /y G &v et les arêtes orientées fA G &A. Nous procédons par récurrence sur le nombre de

vertex du graphe. Dans le cas (g,n) (0,3), il suffit de remarquer que si h est une permutation
d'un ensemble à trois éléments qui commute à un cycle d'ordre trois et qui stabilise un élément,
alors h est l'identité.

Supposons maintenant que la proposition soit prouvée pour tous les graphes avec p < n vertex
et considérons 7 (G,é) un graphe MS avec n + 1 vertex. Comme /e(e) e, fA stabilise les

deux arêtes orientées qui ont comme extrémité e. En conséquence, fv stabilise le vertex v (unique)
qui est extrémité de ces deux arêtes. En utilisant le même argument que pour régler le cas du

type topologique (0,3), nous montrons que fA stabilise toutes les arêtes qui ont comme extrémité
initiale ou finale ce vertex v. Considérons alors le graphe obtenu en retirant de G le vertex v et en

mettant aux arêtes libres ainsi crées des sommets externes. L'automorphisme (fE,fv, fA) induit un
automorphisme de ce nouveau graphe, qui laisse fixe les sommets externes que nous avons rajouté.
On peut alors appliquer l'hypothèse de récurrence pour conclure12. D

Le nouveau graphe peut ne pas être connexe mais alors les sommets externes rajoutés sont sur les deux composantes

connexes du nouveau graphe et on applique deux fois l'hypothèse de récurrence.
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Dans le cas d'un type topologique (g, 0), il peut apparaître des groupes d'automorphismes non
triviaux comme le montrent les exemples suivants:

qui ont comme groupes d'automorphismes respectifs Z/2Z et Z/3Z. Sur ce schéma, les circulari-
sations en chacun des vertex correspondent à lire les arêtes arrivant ou partant de vertex selon le

sens des aiguilles d'une montre. Sauf mention expresse du contraire, nous utiliserons toujours cette
convention dans la suite de ce texte.

Avant de définir ce que sont les données de Moore et Seiberg, nous avons besoin de nous
limiter à une sous-classe de graphes ms. Nous ne sommes arrivés à la caractériser de manière
relativement intrinsèque que pour le genre zéro et le genre un. Dans les autres cas, nous nous
limiterons à une classe restreinte arbitrairement, en vue de la construction des théories topologiques
tridimensionnelles (voir page 37).

Soit T un graphe ms, définissons / qui à une arête orientée a du graphe associe i(a) si dj(a) G E
et, dans le cas contraire, w9/(,,)(i(a)) où u>„ est la circularisation du vertex d;(a). L'application / est

une bijection sans point fixe de l'ensemble des arêtes orientées du graphe sur lui même. Considérons
quand n > 1, l'unique arête orientée a0 dont l'extrémité initiale est le sommet externe marqué de

7, et son orbite Of sous l'action de /. Cette orbite est une famille finie o0,.. .o„ d'arêtes orientées
telles que ot+1 f(ak) et a„+i a0.

Nous nous intéressons aux cas pour lesquels la suite des sommets di(at)k, indexée par les

éléments de l'orbite de a0, recouvre la totalité de l'ensemble des sommets externes du graphe.

(3.1) Ec{di(ak)/ l<k<n}
Cette propriété est compatible aux isomorphismes de graphes ms. Elle admet une interprétation
géométrique très simple due à Ladegaillerie. A partir d'un graphe à sommets circularises, on définit
une surface à bords [47, paragraphe 3.2]. La propriété 3.1 signifie que les sommets externes sont
tous sur la même composante connexe du bord de cette surface. Notons que chaque sommet externe
est visité une seule fois. On obtient ainsi un ordre naturel sur l'ensemble des sommets externes.

Dans certains cas, il existe un ordre naturel sur l'ensemble des vertex du graphe. C'est le cas

lorsque la totalité des vertex sont inclus dans l'orbite Do>. Nous ordonnons alors les vertex dans
l'ordre où nous les rencontrons: (vx,... vm). Soit v un vertex du graphe, la première arête orientée
rencontrée dans Dj> dont l'extrémité finale est. v ainsi que la circularisation du vertex définissent
un ordre sur les arêtes orientées d'extrémité initiale13 v.

Bien entendu, il nous faut préciser à quelles conditions la propriété 3.1 est réalisée. Par récurrence

sur le nombre de vertex, on montre que:

Proposition 6 Si 7 est de type topologique (0,n) avec n > 3, alors il vérifie 3.1.

Ou finale, on transporte l'ordre grâce à i.
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Les problèmes commencent à apparaître en genre un: le graphe suivant de type topologique
(1,2) ne vérifie pas la condition 3.1:

L'arête arrivant au sommet externe non marqué n'est pas dans l'orbite de l'arête arrivant ou partant
du sommet externe marqué. Pour chaque n G N*, on définit le graphe multipériphérique de type
(l,n) par:

On peut caractériser les graphes de type topologique (l,n) (n > 1) qui vérifient 3.1:

Proposition 7 Les graphes ms de type topologique (l,n) vérifiant la propriété 3.1 sont obtenus à

partir d'un graphe, multipériphérique de genre un en recollant à certains de ses sommets externes
un graphe en arbre.

Nous laissons au lecteur le soin de démontrer cette proposition par récurrence sur le nombre de

sommets externes n.

3.2 Découpes de graphes

Nous allons maintenant définir la notion de découpe d'un graphe trivalent à vertex circularises.
Elle généralise d'une manière agréable celle de recollement des graphes. Nous définirons ensuite celle
de découpe d'un graphe ms. Puis nous montrerons comment à partir d'une découpe d'un graphe
en composantes, un coloriage du graphe nous fournit un coloriage de chacune des composantes.

Découpes de graphes trivalents à vertex circularises

Définition 11 Soit G et G' deux graphes trivalents à sommets circularises, un plongement de G

dans G' est la donnée de iv : V —> V injective et iA : A —* A telles que

(3.2) Vo G A, iv(a) (Mfl))
(3.3) Va G A, du(a) G V => dt(iA(a)) iv(dtJ(a))
(3.4) dij(a) v G V =>• ujv(iA(a)) iA(ojiv(v)(a))

Ces conditions assurent la compatibilité de (iv, iA) au changement d'orientation des arêtes, aux
relations d'incidences dans le graphe, et aux circularisations des différents vertex. Il convient de

remarquer que iA n'est pas forcément injective.

Définition 12 Une découpe du graphe G est la donnée d'une famille finie (Ga,ia) de graphes
plongés dans G tels que (i^,v')(Va))a soit une partition de V.
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Les différents graphes Ga sont appelés les composantes de la découpe. Par exemple, si G est un
graphe, on pose iv lv et iA 1^, [(G,(iv,iA)),G] est une découpe de G- On dit que c'est la
découpe triviale de G- Maintenant si / désigne un automorphisme du graphe G, on notera Vt la
découpe [(G,(fv ,fï))iG]- Elle n'a qu'une composante. La découpe triviale est T)\ç.

Si G est un graphe obtenu par recollement: G Gi$(d,))G2, le lecteur construira une découpe de

G en deux composantes qui ne sont autres que G\ et Gì- Si un graphe G est connexe, alors pour
toute découpe ayant N > 1 composantes, chaque graphe Ga possède au moins un sommet externe.

Isomorphismes de découpes et découpes emboîtées H est souhaitable de définir la notion
d'isomorphisme entre découpes:

Définition 13 Soit V [(Ga,ia)a,G] et V'[(G'a,i'a)a,G'] deux découpes, on dira qu'elles sont
isomorphes si et seulement si, il existe une bijection h entre les ensembles de composantes de V
et V un isomorphisme f de G sur G' et une famille fa : Ga —* £'&(<*) d'isomorphismes de graphes
trivalents à vertex circularises tels que

G* -G

u i
S'hla) -, *- G'

> M„)

commutent14

Enfin, on utilisera la notion de découpe emboîtée:

Proposition 8 Soit V \(Ga,ia)a,G] une. découpe de G et pour chaque a, Va [(Ga,ß,ia,ß)ß,Ga]
une découpe de Ga, si on pose jaj3 ia o iap, alors [(Ga,ß,ia,ß)a,ß,G] est une découpe de G-

Preuve: En effet, pour chaque (a,ß), ia o »0jg définit bien un plongement de Ga,p dans G et les

ja,ß(Va,ß) forment bien une partition de V. G

On dira que [(Ga,ß, ia,ß)a,ß, G] est la découpe emboîtée de V et des Va- Elle sera notée [(Va, ia)a, P]-

Découpes et coloriages Si C est un coloriage de G, et si V est une découpe de G de composantes
(Qa)a, nous fabriquons canoniquement pour tout a, Ca qui est un coloriage de Ga- Notons ja la
couleur de l'arête orientée a du graphe G-

- Soit a G Aa une arête orientée de Ga, °n lui associe la couleur jaaï jtw(ay Comme

i(i<-aA\a)) i<-aA\i(a)), nous avons /$ j<">

En tant que diagramme de morphismes de graphes. Cela signifie que la partie vertex et la partie arêtes orientées
commutent.
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- Soit v un vertex de Ga, l'ensemble Av des arêtes de Ga issues de v, est en correspondance
biunivoque avec l'ensemble des arêtes orientées du graphe G issues de Vy'(v). En conséquence,
à tout ordre total sur Av est associé un ordre total sur A.<.),,. De ce fait, nous pouvons* v \v I
colorier le vertex v comme dans la définition 4. Les propriétés imposées dans cette définition
sont trivialement vérifiées.

En conséquence, cela montre qu'à tout coloriage C de G, la découpe V permet d'associer des

coloriages de chaque composante Ga-

Découpage maximal

Définition 14 Un découpage maximal est un découpage dont toutes les composantes ont un type
topologique (0,3).

Les composantes d'un tel découpage sont canoniquement indexées par les vertex du graphe G-

Un découpage maximal est, modulo un réarrangement des composantes, de la forme [(öj3, iv)v£V, G]

où Ga3 est la composante de type topologique (0,3) dont le vertex est envoyé sur v G V. Soient

[(^o,3)*f)«ev,(7] et [(Go:3,i'v)vçv,G] deux tels découpages, pour chaque vertex v G V, il existe une
permutation c„ de Av commutant à w, tel que, au niveau des arêtes orientées, i'v c„ o i„.

Cas des graphes MS Nous pouvons également définir la notion de découpe d'un graphe ms en

graphes M S.

Définition 15 Une découpe (maximale) d'un graphe MS est une découpe (maximale) du graphe
trivalent sous-jacent, munie d'un choix d'un sommet externe pour chaque composante de la découpe.

Nous emploierons la notation [(Jj,^),,?] pour une découpe du graphe MS en composantes
7a. Les notions d'isomorphisme de découpes et de découpe emboîtée sont trivialement définies en

prenant dans la définition 13 des isomorphismes de graphes ms. Soit T> un découpage maximal d'un
graphe M s 7 [G,e], et C un coloriage de G- Nous en déduisons un coloriage C„ de chaque composante

Gv du découpage. Comme chaque composante est aussi munie d'une structure de graphe MS,
cela nous définit, pour chaque composante, un ordre total sur l'ensemble des trois arêtes orientées
issues du vertex. En conséquence, nous savons associer à chaque composante une unique couleur
de vertex av.

Dans certains cas, cas, il existe une découpe maximale de 7 "naturelle". Ainsi, pour le type
topologique (0, n) avec n > 3, nous disposons d'un ordre naturel sur l'ensemble des vertex de 7.
Dans la suite de ce texte, lorsque nous ferons figurer des couleurs sur un vertex d'un graphe MS,

nous supposerons qu'elles sont obtenues par l'algorithme que nous venons de décrire. Bien entendu,
cela supposera un choix d'un découpage maximal du graphe MS considéré. Lorsque, comme dans le

cas des types topologiques (0,n) un choix naturel existe, il sera sous entendu.



Degiovanni 821

3.2.1 Mouvements F sur les graphes

Un problème important est de savoir comment classer tous les graphes M S de type topologique
donné à isomorphisme près. La réponse se trouve en partie dans l'article de Kohno [44, Lemme
1.2]. Toutefois, Kohno ne considère pas que les vertex des graphes sont munis de circularisations.
Cela le conduit à identifier des graphes que nous ne considérons pas comme isomorphes. En vertu
de la proposition 6, cette subtilité ne se manifeste pas en genre zéro. Elle apparaît pour le type
topologique (1,2). Toutefois, le Lemme 1.2 de [44] s'adapte à nos besoins.

Pour comprendre comment sont classés les graphes, analysons quels sont les graphes MS

possibles pour (g,n) (0,4). Nous numérotons les sommets externes de 1 à 4 selon l'ordre déduit
des circularisations et du choix d'un sommet externe particulier. Alors, il existe exactement deux
graphes de type (0,4):

i S

D est entendu que les ensembles des sommets externes pour ces deux graphes sont identifiés via
la numérotation de 1 à 4. On dira que ces deux graphes sont reliés par un mouvement de type F.
Nous définissons les mouvements de type F pour des graphes de type topologique quelconque par:

Définition 16 Soient deux graphes MS (G, e) et (G', e'), Nous dirons qu'ils sont reliés par un
mouvement F si et seulement si ils sont isomorphes en tant que graphes MS à deux graphes MS dont les

graphes trivalents sous-jacent sont de la forme:

Gol(D,,)Gati et GoÎi(D,ï)(F.Goa)

où Go,i et F.Go,4 désignent les graphes sous-jacents à deux graphes MS de de topologie (0,4) qui
diffèrent par un mouvement15 F.

Enfin, on montre qu'il est légitime d'étudier l'action des mouvements F sur la classe des graphes
MS vérifiant 3.1: si 7 est un graphe MS vérifiant la condition 3.1, alors F. 7 la vérifie. En effet, un
mouvement F ne change pas la surface associée à un graphe trivalent à sommets circularises.

3.2.2 Le complexe 2)ffi„

Dans [44], l'auteur utilise des graphes trivalents, dont les vertex ne sont pas circularises, et dont
l'ensemble des sommets externes est ordonné. La notion de mouvement de type F pour ces graphes
se définit comme dans la section précédente. Pour chaque valeur du type topologique (g, n), Kohno

En conséquence, ils ont même ensemble de sommets externes, ce qui permet de dire que l'on ne change pas
l'application de recollement j : D C Eç0 —? Eça t
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introduit un complexe Ygn dont les sommets sont les graphes, les arêtes sont les mouvements de

type F sur ces graphes. B définit également des 2-cellules et il montre que Ygi„ est connexe et

simplement connexe.

Dans cette section, nous allons construire des complexes 2)0,n et 2)i„, les classes d'isomorphismes
de graphes MS vérifiant la propriété 3.1 et dont les arêtes sont les mouvements de type F. Ce

complexe jouera pour nous le rôle du complexe Yj„ de Kohno.

Les 2-cellules Bien sûr, étant donné C/, et G/ deux graphes MS, il existe plusieurs suites finies
de mouvements de type F permettant de passer de l'un à l'autre. Examinons le cas (g,n) (0,5):
il existe exactement cinq classes d'isomorphisme de graphes MS de ce type topologique. La figure
suivante montre des représentants de ces cinq classes ainsi que les mouvements F les reliant:

De la même manière que précédemment, nous considérons un graphe MS de type topologique (g,n)
quelconque. Supposons - modulo un isomorphisme de graphes ms - que le graphe trivalent sous-

jacent soit isomorphe à un recollement via une injection j de deux graphes Go et Jfi où ce dernier est

de type topologique (0,5). L'application de recollement permet de munir l'ensemble des sommets
externes de %x d'un ordre total. On peut donc voir %x comme un graphe ms en choisissant un de

ses sommets externes. Il existe cinq graphes MS de graphes trivalents notés (5f0)i<„<5 ayant même
ensemble de sommets externes, et même sommet externe marqué, et reliés par des mouvements F
comme dans la figure ci-dessus. Nous considérons alors les graphes (7o8(£>,j)5£q. qui sont reliés par des

mouvements de type F. Nous dirons qu'ils forment les cinq sommets d'une 2-cellule de 2)S|„. Une
telle 2-cellule sera dite du premier type ou pentagonale. Nous rajoutons comme 2-cellules (dites du
second type) les polygones formés par une suite périodique d'arêtes fu... /„, /n+1 /i telles que
fk et /fc+i portent sur des paires de vertex d'intersection vide.

Simple connexité du complexe, exemples On montre alors:

Théorème 2 Les complexes 2)o,n e* ?)i,n sont connexes et simplement connexes.

Le cas du genre zéro est réglé par Kohno car les complexes 2)ci,n et Y0n coïncident pour n > 3.

C'est aussi une autre manière d'énoncer le théorème de cohérence de Mac-Lane [36, Page 58].



Degiovanni 823

Un exemple instructif est fourni par le complexe (0,6). Le lecteur vérifiera qu'il existe exactement

quatorze16 graphes MS de type topologique (0,6) et que le complexe est le suivant:

/

Nous avons indiqué deux graphes M s particuliers. Ce sont ceux qui ont un graphe trivalent sous-

jacent avec un groupe d'automorphisme cyclique d'ordre trois. Ce graphe trivalent sous-jacent
admet trois "sous-graphes" trivalents distincts de type topologique (0,5). Ceci explique qu'en ces

deux sommets se rencontrent trois faces. Le complexe 2)0,6 possède en tout six faces pentagonales
du premier type, et trois faces carrées17 du second type qui correspondent à deux mouvements de

type F sur des couples de vertex distincts. Sa topologie est celle d'une sphère S2: il est donc bien

simplement connexe.

Un autre exemple instructif est fourni par les complexes 2)i„ pour n 1,2,3. Dans le cas n 1,

il n'y a qu'un seul graphe de type topologique (1,1) et donc pas d'arête ni de 2-cellule. Dans le cas

n 2, nous avons exactement trois graphes M S de type topologique (1,2) et le complexe est:

XD XD
Il n'apparaît aucune 2-cellule sur cet exemple. Ce cas est l'analogue du cas (0,4) en genre zéro.
En revanche, pour n 3, nous avons dix graphes ms de type topologique (1,3), et il apparaît

Il est trivial de calculer une fonctionnelle génératrice du nombre de sommets de (?)o,n)n, c'est z(x) (1 —

vl —4ï)/2x. Nous obtenons ainsi directement le nombre de graphes (0, 6) qui vaut quatorze, (0, 7) qui vaut 42 etc
"Indispensables pour la simple connexité!
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exactement trois 2-cellules pentagonales. C'est l'analogue du cas (0,5) en genre zéro:

1s i
-Vo

-r°
Remarque : Cette valeur du type topologique a été utilisée par R. Dijkgraaf et E. Verlinde dans

[19] pour montrer la "formule de Verlinde", c'est à dire l'identité suivante:

Ç n ç n o n

(3-5) NlJth Z*Ap-
qui relie la matrice S aux entiers (.Nij,k)ij,k- D

Genre supérieur En genre supérieur, nous nous contenterons de fixer un graphe MS particulier
7gn et de considérer %)g,n(7g,n) formé par la composante connexe de ce graphe.

Enfin, il est intéressant de remarquer que le nombre de coloriages d'un graphe de type
topologique (g,n) fixé, sachant que l'on a fixé les couleurs des sommets externes, est indépendant du

graphe. Ceci découle de la connexité de Y9i„, de la condition 2.2 et de la symétrie des (iV,v,*)i,j,*
par permutation des trois indices.

Pour finir, introduisons une famille de graphes MS de type topologique (g,n) qui nous seront
utiles par la suite. On appelle 73i„ la famille, indexée par n > 2 de graphes à n sommets externes
et g boucles suivants:

2 n-1 n

où le point noir désigne le sommet externe marqué. Nous avons numéroté les sommets externes
suivant l'ordre déduit des circularisations et du sommet marqué.

3.3 Les données de Moore et Seiberg

Considérons un graphe MS (G,e), notons 9t(g,e) l'espace vectoriel engendré par les coloriages
du graphe (G,e). Les données de Moore et Seiberg consistent en certains isomorphismes entre les
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espaces 3f(e,e) pour des graphes de types topologiques (0,3), (0,4), (1,0) et (1,1). Elles sont définies
dans les sections 3.3.1, 3.3.2 et 3.3.4.

Nous donnerons en section 3.3.3 un procédé pour construire à partir de ceux-ci des

isomorphismes entre les autres espaces 5f(g,e). Cette construction s'appuie sur des injections entre l'espace
JCy et un produit tensoriel ®"Kfa qui sont définies à partir d'une découpe [(7a,ia)a,7] de 7.

A partir de là, il devient possible d'écrire les équations de Moore et Seiberg (section 3.3.5 et

3.3.6). Elles portent alors sur des isomorphismes entre espaces %(g e) pour des types topologiques
(0,4), (0,5), (1,1) et (1,2).

3.3.1 La matrice F

Comme nous l'avons vu, il existe deux classes d'isomorphismes de graphes MS de type (0,4).
Nous supposons qu'il existe un isomorphisme ?r entre les espaces associés et on notera F la matrice
de cet isomorphisme dans les bases associées aux coloriages. Moore et Seiberg emploient la notation
suivante pour les éléments de matrice de 3":

(3.6) J.
3 k

P

a
¦*— /

,,c,d

c d

a b Q

3.3.2 Autres données de genre zéro

B existe une seule classe d'isomorphisme de graphe ms de type (0,3): celle de 7Q:3. Nous
numérotons les trois sommets externes dans l'ordre défini par la circularisation du vertex et le sommet
marqué. Moore et Seiberg définissent un isomorphisme D(±) de l'espace 5Cj>0iS par la donnée de

(3.7) C

La donnée d'un indice de vertex a G [i,j, fc] spécifie un unique élément de la base considérée de

9Cg>0iS: il suffit de colorier les arêtes orientées issues des sommets numérotés 1, 2, 3 respectivement
par i, j et fc et le vertex par a. Notons <^a) le vecteur de base associé. L'automorphisme T>(±) est

défini par

(3.8) D(±). 4a) uia)* .(»23(a))

On dispose également de trois automorphismes (3Ja)ag.E de Jf0,3 indexés par les trois sommets
externes du graphe considéré. Bs sont de la forme suivante: nous supposons qu'il existe une famille
(w>)i€/ d'éléments de C* telle que u0 1 et w,- u>i. Alors, si ia désigne la couleur de l'arête
orientée aboutissant au sommet externe a,

(3.9) K„.^«) «,>w
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3.3.3 Transport des données 'J, 'D et X„ sur les espaces 3Cp

Dans l'optique de [33, Paragraphe 2], il est crucial de pouvoir transporter les générateurs qui
vivent dans le premier étage de la Tour de Teichmiiller dans les étages supérieurs. Nous allons
montrer ici que l'on peut définir des morphismes entre espaces 3fj> pour des graphes ms 7 de

type topologique arbitraire à partir de morphismes correspondant à des types topologiques (g1, n')
d'étage 3g' — 3 + n' inférieur. L'ingrédient essentiel de ces constructions est fourni par des injections
linéaires de !Kj> à valeurs dans un produit tensoriel de Jf^ que l'on construit à partir de découpes
du graphe ms 'J* [16].

Morphismes entre espaces 3fj> Nous avons vu en section 3.2 comment définir la notion de

découpe d'un graphe trivalent à vertex circularises. Nous avons vu qu'à chaque coloriage C d'un tel
graphe, une découpe de G en composantes Ga permet d'associer un coloriage de chacune des

composantes de la découpe. En conséquence, pour tout graphe ms 'J1 et toute découpe V [(7a, ia)a, 7]
en composantes 7a, nous posons

(3.10) V^.Vc 0VCt,
a

Le produit tensoriel est ordonné suivant l'ordre des composantes de la découpe. Ceci définit V'd qui
est une injection linéaire de %j> dans ®%3>„. Ces applications possèdent la propriété suivante:

Proposition 9 Si V est une découpe du graphe 7 en composantes 7a et si Va est une découpe de

chaque 7a en composantes 7aß alors,

(3.11) *[(V, ,,i„)„,T>] [0V'O„) °Ì>T>

De plus, pour tout graphe ms 7, nous disposons d'une action naturelle du groupe Aut(Ç) des

automorphismes du graphe trivalent à vertex circularises G sous-jacent à 7 sur Jf j>. En effet, si G est
le graphe sous-jacent au graphe ms 7, et si / est un automorphisme de G, on note i/>s l'application
linéaire de 9ij> dans %y associée à la découpe 'Dj définie page 20. Clairement, ipj est bijective et
de plus / i-» ijjf fournit une représentation de Aut({7) dans Jfj>.

Dans le cas d'une découpe maximale (définition 14), nous tombons dans un produit tensoriel
d'espaces %y0,. Une découpe maximale associe à chaque coloriage de 7 une suite ordonnée de

couleurs de vertex: (av)veV- Dans le cas où il existe un découpage maximal naturel de 7, nous
noterons ib? l'injection associée. Par exemple, avec les notations de Moore et Seiberg, nous avons:

(3.12) ^0,4- 4>w ® cj>w

et

(3.13) <t>(c) ® </>w
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Transport des isomorphismes En utilisant les injections ijj-r,, nous allons transporter 1, T>(±.)
et les 3? à divers espaces Jfj>:

A partir de T>(±) nous définissons D^i), isomorphisme de 3fj.oé sur %Fi>oi et D2(±),
automorphisme de "Kyot, par la commutation des diagrammes suivants:

MaP0,4 °-^ ^'i>0,3 ® ^ 3>0,3 JfPo,. ^^^fpo.a ® ^3>„,3

Bl(±) U(±)®1 H3(±) 1®Ï>(±)

KF Vo,t "^0,3 ® ^0,3 ^To.t ^^ 3f3-0,3 ® ^0,3

Nous noterons également D1|2(±) les applications hnéaires définies sur %F,ya t en échangeant
dans les diagrammes commutatifs 70A et F. 70A.

On étend la définition de 3?a à 3fj> où 3" est un graphe MS de type topologique (g,n) avec

n > 0. Si ia désigne la couleur associée à l'arête orientée aboutissant au sommet externe a,

(3.14) fta.Vj>, u>,-„Vj>c

Pour finir, si J désigne un graphe ms de type topologique (g, n) avec 3<? — 3 + n > 1, alors en

utilisant des morphismes ip-p convenables, on fabrique des isomorphismes entre 3Cj> et Sip, j>

par commutation du diagramme

3f.p
i>v

- 5ifi ® 3fj>,

%F»,.,2.v- V'FV1>V2.I'
-*-jvp )%T

où 27 désigne la découpe correspondant au recollement 7 FVuV2.7$(Dtj)70A qui permet
de définir le mouvement F considéré. De même FVliV2.T> correspond à 7 7'$(dj-)F.3,0,4-
Cette construction assure que si F1 .Fn est une suite finie de mouvements F dont les arêtes
associées bordent une 2-cellule du second type, alors, en notant (3)t)i<,t<n les isomorphismes
associés à chacun des mouvements Fk, on a bien

(3.15) 'JX 0 O 'Jn 1;K

3.3.4 Les matrices en genre un

Les données nouvelles sont définies relativement au type topologique (1,1). L'écriture des équations

de Moore et Seiberg nécessite l'introduction d'autres isomorphismes entre espaces associés
à des graphes ms de type topologique (1,0) et (1,2) mais nous allons voir qu'il s'expriment en
fonction des données introduites dans les sections précédentes.

Type topologique (1,1). U existe une seule classe d'isomorphisme de graphe MS de type
topologique (1,1) dont représentant est décrit par:
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Nous supposons l'existence de S et T deux isomorphismes de l'espace associé à cette classe. Leurs
propriétés seront décrites en section 3.3.6. Ici, nous nous contentons de poser les notations et nous
montrons comment fabriquer d'autres isomorphismes entre certains espaces 3fj> à partir de S et 7.

Leur matrices dans la base fournie par les coloriages du graphe seront notées S et T. Nous
notons ^i'i- le vecteur de base correspondant au coloriage

a

de 7XA. Moore et Seiberg introduisent la notation suivante pour les éléments de matrice de S et T:

(3.16) S.tff E SUhJ^^
i' ,a'

(3.17) 7.$? e TUhX-o'Vî,;,1'°')

i',a'

Moore et Seiberg supposent que S et T vérifient les deux propriétés suivantes:

- S préserve la couleur j de l'arête orientée dont l'extrémité initiale est le sommet externe de

- Dans la base des ipxf 7 est diagonal et !({_,/*'¦"') Wi Çia,a' où f est de module un. Dans la
littérature des théories conformes, £ est noté exp (—2îric/24) où c est appelé la charge centrale
du modèle.

De même, on note C l'automorphisme de 3f j>, défini par la commutation de

-^TYi »"•"¦Po,»

e

ir **'•' v
où b est défini par son action sur ft") avec a G [i,j, fc] par

(3.18) b. ^°) w(<Ti23(a)) </>(""(<¦»

Enfin, exactement comme dans le cas du genre zéro, nous pouvons définir des isomorphismes §
et 7 sur certains espaces Jfj.. Bs dépendent d'un sous-graphe MS de type topologique (1,1) de 7.
Nous laissons au lecteur le soin d'écrire les définitions correspondantes.

Type topologique (1,0). Il existe un seul graphe ms de type topologique (1,0) à isomorphisme
près. B possède un groupe d'automorphisme d'ordre deux. Le graphe trivalent sous-jacent est défini

par S 0 et A {a,â}. B n'y a pas de sommets externes. L'automorphisme non trivial envoie a

sur ô. On note 3\0 ce graphe.



Degiovanni 829

Notons Xj l'état de %y, 0
obtenu à partir du coloriage a h-> j. L'automorphisme a h-» â de 710

donne naissance à C : Xj >-* Xj, involution linéaire de Jf?,,,,- B existe une injection 3 de %j>, 0
dans

Jfj»,,! qui envoie X; sur ^>/jJ où t)1' est l'unique élément de [0,j,]\. On définit alors § et T sur
3fii0 par les diagrammes commutatifs suivants18:

s

-*3fPi,:

S

-3f.

et

^i.i

^3>i,o

¦j
¦

^fj'i.o

-*-3fi

-*-3C^i.i

Moore et Seiberg notent S et T les matrices de S et T dans la base (Xj)jei, et C la matrice de C.

Nous avons donc dans les notations de Moore et Seiberg,

(3.19) Si3 S(0)(i^^
{t^t(o).;X^

Type topologique (1,2) Le complexe 2J12 possède trois sommets:

3>_ : ^^O 7+ : CX 0>o ; ~0~
Notons 3fo, 3f+ et !K_ les espaces associés à ces trois graphes. Nous noterons V±, V0 et V'a les

découpes de 7± et 7a respectivement qui correspondent aux recollements:

j j

et pour ï>o et

V\ / V'

Nous notons

(3.20)

V;+ : %+ —? Jfa>o,3 ® ^i.i
V>- : %- —? 3Ca>„., ® «s-...
V>o : 3fo —? 5fr0.4

V>'„ : %0 — (%j.0.s)®2

Rappelons que 8 et T laissent stables 3(^K;p1 0) en vertu des contraintes imposées dans le paragraphe précédant.
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les injections associées. De plus, le graphe G\,2 sous-jacent à 70 possède un automorphisme P
d'ordre deux:

b b'
a f, \ a' a' /V >> a

v' vH- •- ——v v

'b' ^b
et nous lui associons Iß une involution de 3f0- On dispose également de

(3.21) (J+ : ^0 ~* K+
I j_ : 3to —*" -*t-

associées aux mouvements F qui permettent de passer de '.Po à 7±. Grâce à ip±i0 et à îp, nous allons
définir §±, deux isomorphismes de 3f± respectivement par (1;k„ 3 ® S)°^± ip±o$±. Introduisons
maintenant Ta et 7b deux isomorphismes de 3f0:

- Pour 7a, nous utilisons V'o de 3f0 dans (3fi>0,,,)'82. L'automorphisme 7a est défini par la
commutation du diagramme suivant:

% 7T^ «3-0,3 ® «!¦„,,
V o

T„ lK,03®(3i,3!r')

«0 rr— « j,0 3 ® X3-0,,
V o

- Pour Tj,, nous commençons par envoyer !K0 dans 3f j>0 4 au moyen de l'application injective
ij)0. Puis nous composons avec B Œ5( — (isomorphisme de %voi défini par l'équation 3.24),
et nous revenons dans 3f0- Finalement 7\, est défini par:

(3.22) 7b o Vo ÇP o V-o o B(+)

3.3.5 Equations de genre zéro

Les équations de genre zéro sont les traductions matricielles de quelques relations entre les

morphismes que nous avons introduits. Ainsi, l'équation pentagone 3.26 consiste principalement à

traduire le pentagone dans le complexe 2)0,5 en termes d'isomorphismes induits par 3r sur les espaces
vectoriels associés aux graphes MS de type (0,5). De même, l'équation 3.27, dite hexagonale, est

une condition de compatibilité entre 7 et D1?2(±):

(3.23) JoD1(±)oJ=D2(±)oyoD2(±)

On définit S(±), deux isomorphismes de "Ky01 par

(3.24) S(±) D1(±)o3ro'D,(±)

dont la traduction matricielle n'est autre que 3.28. On impose aussi une condition de compatibilité
entre V et les (1Ra)a€Eyo s:

(3.25) 'D(±)2 (K3oK2oK-1)±
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Finalement, les équations de genre zéro telles que les ont écrites Moore et Seiberg dans [52] sont:

(3-26) F23FX2F23 — P23F13F12

(3.27) F(Ü(±)®1)F (10ß(±))F(l®ß(±))
(3.28) B(±) (ü(+) ® 1) F (l ® ü(±))

La relation 3.25 se traduit, dans les notations de Moore et Seiberg, de la manière suivante:
notons ujj exp (2itihj), alors y(a) où a G [i,j, fc] est de la forme

(3.29) u(a) e(a) exp (iir(hk + h,- - h{))

où e(a)e(cr23(a)) ±1. Selon Moore et Seiberg, e(a) e(a23(a)) est un signe. Dans notre travail,
afin de simplifier les calculs, nous supposons que ces signes ne sont pas présents. Toutefois, dans
les exemples explicites, il faudra veiller à les rétablir si besoin est!!

3.3.6 Equations de genre un

Pour le type topologique (1,1), nous avons:

(3.30) (ST)3 S2 e

(3.31) e2 ^r1

Avec les notations de Moore et Seiberg,

(3-32) (S(3)T)laf'-°'ï (O',)/
(3.33) (S(j))2 (S(j)Tf

où (Q){)a" est le facteur de phase présent dans l'équation 3.18.

La compatibilité entre 3.30, 3.31 et la relation entre S et T sur les espaces %y, et Jfy,, via 3
entraîne que dans %?, 0:

(3.34)
r(ST)3 S2 e

Nous disposons ainsi d'une action linéaire de SL(2,ï), qui est le groupe modulaire relatif au type
topologique (1,0), sur l'espace JCj>li0.

La dernière identité est relative au type topologique (1,2):

(3.35) S± o J± o 7„ o 'Jg1 o 8g1 =î±oJ,o 7g1

Nous laissons le soin au lecteur de traduire dans les notations de Moore et Seiberg cette identité,
et de montrer que l'on retrouve ainsi la relation de genre un avec deux points qui apparaît dans

[53].
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3.4 Quelques conséquences des équations

Dans cette section, nous allons montrer quelques identités à partir des équations de Moore et
Seiberg. Ces relations sont indispensables dans la construction d'une théorie topologique tridimensionnelle.

Nous montrerons d'abord deux relations de compatibilité entre F et B(±), puis nous
obtiendrons explicitement les inverses de F et B(±). Enfin, nous montrerons que B(±) satisfait à

l'équation de Yang-Baxter quantique.

3.4.1 Compatibilité entre F et B(±), équations de Yang-Baxter.

Relations fusion/entrelacement.

Théorème 3 Les matrices F et B(±) vérifient:

(3.36) FB(e) (l®û(-e))F
(3.37) P-23Bl3(e)FX2 F23BX2(e)B23(e)

Preuve : Démontrons la relation 3.37. Inversons la relation 3.28 entre F et B pour la remplacer
dans le pentagone 3.26; nous obtenons alors

P23Ui(e)B13(e)Û3(-e)Fx2 F23Üi(e)Bi2(e)B23(e)ü3(-e)

Nous pouvons commuter û3(—s) avec Bx2(e) et en simplifiant par les deux matrices û(±e), nous
obtenons 3.37.

En combinant la relation 3.28 et l'hexagone 3.27, nous obtenons l'identité 3.36:

FB(e) F(ü(-e)®l)F(l®Ü(e))
(l®Ù(-e))F

D

Equation de Yang-Baxter.

Théorème 4 Les matrices B(±) vérifient l'équation de Yang-Baxter quantique:

(3.38) BX2(e)B23(e)B1,(e) B23(e)BX2(e)B23(e)

Preuve: Le plus simple consiste à multiplier les deux membres à gauche par F23 et à utiliser
l'identité 3.37. Ainsi, le membre de gauche devient:

F23BX2(e)B23(E)BX2(e) P23BX3(e)F12B12(e)

(3.39) P23BX3(s)Ü2(-e)Fn
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et d'autre part, le membre de droite se réécrit:

F23B23(e)Bi2(e)B23(e) Ü3(-e)F23Bu(e)B23(e)

n3(-e)P23B13(e)Fi2

(3.40) P23n2(-e)Bi3(e)Fn

Les expressions 3.39 et 3.40 sont clairement égales! Ceci montre les deux équations de Yang-Baxter
à partir du pentagone, des hexagones et de la relation entre F et B(±). D

3.5 L'invariance de jauge des équations

Nous allons détailler une classe importante de transformations qui sont des symétries des équations

de Moore et Seiberg et qui jouent, un rôle important dans la recherche de solutions.

3.5.1 Transformations de jauge

Les espaces 7Cy associés à un graphe MS 7 sont définis par la donnée d'une base dont les vecteurs
sont indexés par les coloriages du graphe 7. Nous disposons de plus des injections ip-r, associées aux
découpes maximales de 7: ip-p : Jfj. —? ®%yos qui relient les espaces Jiy aux espaces Kyos. Une
transformation de jauge consiste à multiplier les différents vecteurs de la base de 7Cy03 par des

nombres complexes non nuls. Précisément

Définition 17 Soit

X: \J [i,j,k] - C
(<J,*)€/3

a h* A„

On définit une transformation de jauge A0,3 de paramètre X par

(3.41) Va G [J ['•**]. A0,3.^(o) Ao^

Et à partir de là, nous définissons des changements de base dans tous les espaces 3fy:

Définition 18 Pour tout graphe MS 7 et toute découpe maximale V de ce graphe, on définit h-r>

par la commutation du diagramme:

3f J> *¦ ®„6Vy 9f3»o,3

Soit QSy la base de %y dont nous sommes partis, nous définissons la base transformée 35'y

Ap.Sj..
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Ceci fournit une famille de bases des différents espaces "Ky toutes compatibles avec les injections
V>î>. Une solution des équations de Moore et Seiberg matricielles provient d'isomorphismes Centre
%y„^ et KF,yot, î>(±) G GI(3fj>03), (3?„)i<0<3 G GL(3iyùs)3 et S et 7 qui sont des isomorphismes
de TCy,,. Les matrices de 7 et 'D(±) étant notées F et fi(±) dans les bases de départ, et celles de

S et T étant notées S et T, nous notons F', Çl(+)', S' et T'les matrices de ces isomorphismes dans
les bases transformées par Atj. Elles sont données par:

(3-42)

et de même:

(3.43)

Et pour finir:

(3.44)

(3.45)

F'
XcXd

n'(±; .» £n(±).»

s'Uh, ,(•",«') _

r
Xa

T

S(3h, Ai',"')

La dernière équation est justifiée par le fait que 7 est diagonale dans les bases choisies. De même,
les matrices des Ka ne changent pas. Les équations de Moore et Seiberg 3.26 à 3.28 sont clairement
invariantes de jauge. Par contre, la relation qui relie wfa) aux (u>j );S/ ne l'est pas. On garde toutefois
une invariance de jauge restreinte en supposant que

(3.46)
Xa(a) — Xa|VaG [i,j,k], VffG 63,

l_Va €[:',», 0], Xa 1

Avec cela, les équations de genre un sont aussi invariantes de jauge et Xv ne dépend pas de la
découpe maximale choisie mais seulement du graphe 7.

3.5.2 Symétrie tétraédrale

La symétrie tétraédrale est un ingrédient important dans la construction d'une théorie topologique

tridimensionnelle à partir d'une solution des équations de Moore et Seiberg. Nous pouvons
dire que:

Définition 19 On dira qu'une solution des équations de Moore et Seiberg possède la symétrie
tétraédrale si et seulement si, modulo une transformation de jauge au sens de la définition 17 les

coefficients des matrices F et S vérifient la propriété suivante: on peut associer à

: d
(3.47)

le tétraèdre

W„
Sa0

a P b

de manière compatible à l'action du groupe des isométries le préservant.
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Nous ne discuterons pas ici quelles sont les hypothèses qui permettent de s'assurer que cette
propriété est vérifiée. Nous supposerons que tel est le cas dans la suite de ce texte.

4 Théories tridimensionnelles

Dans cette section, nous rappelons comment à partir d'une solution des équations de Moore et
Seiberg, nous construisons une théorie topologique basée sur une catégorie de variétés
tridimensionnelles décorées par des graphes trivalents coloriés et munis de framings.

Nous nous contenterons de rappeler ici la méthode et quelques calculs simples. Nous détaillerons
quelques points trop brièvement expliqués dans [15], comme la construction des représentations
projectives des groupes modulaires, ainsi que la trivialité de ce cocycle en genre zéro.

4.1 Plan de la construction

Dans cette section, nous décrivons le cheminement de la preuve sans en donner les détails. Nous
donnerons ensuite quelques exemples de calculs afin d'illustrer pourquoi nous avons bien défini des

invariants topologiques. Nous partons d'une solution des équations de Moore et Seiberg au sens
de la section 3. Nous supposons de plus qtie cette solution possède la symétrie tétraédrale - voir
définition 19.

Nous allons définir la théorie topologique projective associée à ces données en donnant une
prescription de calcul de tous les éléments de matrice associés à tous les morphismes de Ma3]i.
Puis, nous vérifierons que cette prescription définit bien des invariants topologiques. Les éléments
de matrice des opérateurs 4>[M] seront identifiés avec des fonctions de partition de variétés sans
bord. Bien sûr, nous devons disposer d'une procédure pour calculer la fonction de partition d'une
variété sans bord. Les techniques de chirurgie et le calcul de Kirby permettent de se ramener au
cas de la sphère S3 avec un graphe trivalent décoré. Ce cas est traité par une méthode de matrice
de transfert.

On montre que les axiomes d'une théorie des champs topologique projective sont bien satisfaits
(définition 7). La fonctorialité projective est un des points cruciaux de la preuve. Comme nous
allons le voir un peu plus loin, la procédure de calcul par chirurgie des invariants est non-locale:
elle ne s'effectue pas en utilisant une décomposition de Morse. Mais du coup, la fonctorialité n'est
plus du tout évidente!

4.1.1 Espace des états associé à une surface.

Dans ce qui suit, le corps de base est C. L'espace des états Hgn sera défini à partir des espaces %y
introduits dans la section précédente. Toutefois, on se limitera aux graphes MS dans la composante
connexe du graphe 7gn. Chaque graphe définira une base de Hgn. Les vecteurs de la base sont
obtenus en faisant varier le coloriage du graphe. Nous introduirons également pour chacun de ces

graphes 7 G 2),t„(7g,„) des tores pleins dont 7 est un 1-squelette avec n pattes externes. De tels
tores pleins, définis précisément plus loin, seront appelés des tores pleins standards. L'idée de base
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consiste à associer à chaque tore plein standard de graphe MS sous-jacent 7 un élément de la base

associée à 7.

B existe toutefois plusieurs choix de 1-squelette à type topologique fixé. Le choix d'un autre
graphe définit un changement de base. A topologie donnée, le passage d'un graphe à un autre
peut être décomposé en un nombre fini de mouvements élémentaires: les mouvements F. Nous leur
associons les matrices F. Si 7 et 7' sont reliés par une succession de tels mouvements élémentaires,
la matrice de passage P(7,7I) associée sera le produit des matrices élémentaires correspondantes.
En fait, le résultat ne dépend pas de la séquence choisie pour passer de 7 à 7'. Elle est donc bien
définie.

Nous définirons le produit scalaire sur HN suivant les conventions de Witten [66]. B faudra
vérifier que ce produit scalaire est bien compatible avec l'interprétation en terme de recollement
trivial:

(MX\M2) Z[M2\MX\

avec \Mi) </>[Mi].l pour Mx G homMajl(0, E) et (M2\ G H^ pour M2 G homMa,,,(£,0). De

même, nous devrons vérifier que l'introduction des matrices F pour représenter les changements de

base est bien cohérente avec l'interprétation tridimensionnelle de F. Cette cohérence du formalisme
utilisé est indispensable.

Nous imposerons enfin
Hnun' HN ® HNi

pour définir H% dans le cas où S n'est pas connexe. Nous posons Ht C.

4.1.2 Construction des opérateurs

Fonction de partition des variétés sans bord. La cas de la sphère S3 est de loin le plus simple
car nous disposons d'une fonction de Morse dont les sections à temps donné sont des sphères sauf

pour deux valeurs critiques où elles se réduisent à un point. En conséquence, une méthode de matrice
de transfert est aisément applicable. La définition de Z[S3, K] - où K est un graphe trivalent décoré

plongé dans S3 - par la méthode de la matrice de transfert est donnée dans la section 4.2. On montre
que Z[S3, K] ainsi calculé est un invariant topologique de graphes décorés dans S3 en suivant une
méthode utilisée par Reshetikhin et Turaev dans le contexte des groupes quantiques [58]. Le cas
des éléments de homy,, j(0,0) se ramène à celui de la sphère grâce au résultat suivant [48]:

Théorème 5 (W.B.R. Lickorish et A.H. Wallace) Toute variété M de dimension trois
compacte connexe orientable sans bord s'obtient par chirurgie à partir de S3.

Cela s'étend au cas des variétés décorées par un graphe trivalent au sens de la définition 5. La
chirurgie est effectuée le long de tores: on se donne un entrelac de S3, chaque composante étant
munie d'un framing. Ce framing définit un difféomorphisme du tore. Pour effectuer la chirurgie,
on prend des voisinages tubulaires de chaque composante de Pentrelac. Ce sont des tores pleins
D2 x Sx que l'on retire et que l'on recolle ensuite via les difféomorphismes déduits des framing. Le
détail de cette opération sera explicité en section 4.3.
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B existe différentes présentations par chirurgie d'une même variété. En l'absence de décoration,
un critère d'équivalence entre deux présentations par chirurgie est dû à Kirby [40] ainsi qu'à Fenn et
Rourke [27]. B n'est pas difficile d'adapter ces travaux au cas d'une variété décorée. Ceci permet de

prouver l'invariance topologique du nombre que nous avons associé à une variété sans bord décorée

et constituera notre définition de la fonction de partition d'un élément de homMas^(0,0) à partir
d'une présentation par chirurgie.

Variétés à bords. A chaque morphisme M de Ma3|i n'interpolant pas entre 0 et 0, nous associons

un opérateur que nous définissons via ses éléments de matrice. Nous choisissons une base de chaque

espace Hti„ intervenant dans le problème et un vecteur de chaque base; puis nous considérons la
fonction de partition obtenue en saturant chaque composante connexe du bord d'un représentant
du morphisme M avec le tore plein associé au vecteur précédemment choisi. Ce nombre ne dépend

pas du choix du représentant de M grâce à l'invariance topologique. Pour l'interpréter comme
un élément de matrice d'un opérateur, nous devons vérifier que ce procédé est bien covariant: si

nous changeons une base par un mouvement élémentaire F, les éléments de matrice ainsi définis
sont linéairement reliés via la bonne matrice19. Seule la fonctorialité dans S3 le long de S2 est

utilisée pour obtenir ce résiiltat; mais c'est une conséquence directe du formalisme de matrice de

transfert utilisé dans S3. Intuitivement, les mouvements élémentaires sont locaux et ne vont donc

pas interférer avec nos chirurgies. Nous pouvons donc associer un opérateur à chaque morphisme
Ma

Fonctorialité projective. On déduit la fonctorialité projective dans le cas où Mi$M2 appartient
à homMa3I(0,0) à partir de la fonctorialité pour des scindements particuliers de S3. Ce Lemme
relativement technique repose uniquement sur des calculs faits dans S3 en coupant selon des sphères.
Ceci suffit pour justifier la fonctorialité projective en toute généralité.

Enfin, la propriété </>[Af[yj] TtHy(4>[M]) se déduit de l'invariance topologique et de la
fonctorialité projective. Toute ces étapes étant menées à bien, on a fabriqué une théorie topologique
projective à partir d'une solution des équations de Moore et Seiberg. Nous montrerons alors
comment une telle théorie permet de fabriquer des représentations projectives des groupes modulaires.

4.2 Les invariants dans S3

Nous allons rappeler brièvement comment définir les invariants de graphes trivalents, coloriés
et avec framing clans S3. La méthode utilisée repose sur l'utilisation de matrices de transfert.

Considérons un graphe K trivalent colorié plongé dans la sphère S3. Choisissons un plan de

projection régulier20 et une une fonction de Morse qui sépare les croisements, points de création et
points d'annihilation de l'image du graphe K par le plongement ainsi que les vertex. Cela définit une
décomposition du graphe en cylindres S2 X [0,1] dont chacun contient un et un seul des événements

représentés sur la figure 1.

Pour chacun de ces événements, nous construisons une tranche de topologie S2 x [0,1], qui
possède n points marqués du coté entrant S2 x {0} et telle que la fc-ème et la fc + 1-ème ligne

Si on agit sur les espaces sortants, on doit prendre la conjuguée hermitique.
20Aucun croisement triple n'apparaît dans la projection.
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Fig. 1 - : Les différents événements élémentaires dans S3.

soient reliées à l'événement considéré. Cette tranche sera notée Cp(k, k + 1) où p G< 1,6 > désigne
l'événement considéré. A chacune de ces tranches, nous associons une matrice que nous allons
maintenant définir.

4.2.1 Matrices associées aux événements élémentaires.

Les matrices considérées sont rectangulaires. Si C est un cylindre et que K intercepte sa frontière
en n points entrants et m sortants, alors cj>[CT(k,k + 1)] G C(H0n,H0im). Nous choisissons la base
de Hotn correspondant au graphe multipériphérique:

lx l2 l\ !|+1 î„_l ln

Pi

ax o;_i ai a„_2

Les matrices correspondant aux événements élémentaires sont alors:

Création de paires: Ci(k, k+ 1) Nous créons une paire portant les indices k et fc. L'amplitude
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est donnée par:

839

<f>[Ci(k,k + i)
ix i2 i[ ii+i i„-i i„

Pi
E

«i o,_i a, a„_2

S0°S0"

So"-So"

«1 »2 il k k ÎJ+1 *n-l «n

Pi p 1 Pi

«i aj-i a â ai an-2

Destruction de paires C2(k,k + 1) De la même manière, nous supprimons une paire de lignes
et:

#72(fc,fc + l)]
il i-i il k k il+l î'n-l in

Pi Pi
a,x a,_i a b ai an-2

So'So*

»'^i{p"'1
h «2 «I Î/+1 în-l «n

Pi

ax Cll-\ 0*1 an-2

Vertex C3(fc, fc + 1) et C4(k) Deux cas doivent être distingués: la fusion de lignes et l'ouverture
d'une ligne en deux. Dans le premier cas l'amplitude vaut:

<Ä[C3(fc,fc+l)]

«1 î2 } fc «n-l 0

P

ai a b °n-2

a,SojSak â
o Ò

H *2 ^n —1 &n

«1 «7-1 «n-2
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et dans le cas de la scission d'une ligne i( en deux indexées j et j':

4>{C<(k)]

«1 *2 în-1 îrfi

Oi ûi_i a„_2

E

F - a,ri a
6 ô

où a est l'indice du vertex.

îl i2 i fc in-l in\

ax a b an-2

Croisements C5]6(fc, fc + 1) Deux types de croisements sont possibles C+(fc, fc + 1) C5(fc, fc + 1)
et C_(fc, fc + 1) C6(fc, fc + 1). Ils sont reliés aux deux matrices B(-) et B(+):

çA[C±(fc,fc+l)]

»1 «2 Il tf+1 în -i »A

Pl-l /) E
p,a,6

a! o,_i a; a„_2

*w-,*(±) o,_i a,
a b

i2 î/+i i, in_i i^

ai n 6 an_2

4.2.2 Définition de Z[S3,K].

Tout d'abord, nous définissons la fonction de partition d'un plongement du graphe K avec un
framing normal au plan de projection par:

Définition 20 Soit K plongé dans S3, et

[S3,K] B3U(UÏ=xCk)uB3

la décomposition de Morse d'une projection régulière de K. La fonction de partition de S3 décorée

par K muni du framing normal au plan de projection est donnée par:

(4.1) Z[S3,K] S0°<f>[Cn]o...o<ß[Ci}
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B ne reste plus qu'à examiner ce qui se passe dans un changement de framing. Supposons avoir
choisi un plan de projection, notons îi3 l'écart entre le framing de la ligne j et le framing normal
au plan de projection, alors on pose:

(4.2) Z[S3,K] Z[S3,K1.] J] exp(27rin,hil)
l ligne

où ij désigne la couleur de la ligne j. On montre que cette prescription est bien invariante topologique.

Le lecteur trouvera une preuve dans [16, Chapitre 6] ou encore dans [15]. La méthode utilisée
est directement inspirée du travail de Reshetikhin et Turaev [58].

4.2.3 Quelques exemples.

A partir de là, il est facile de montrer que les données de Moore et Seiberg admettent une

"interprétation" tridimensionnelle. Ainsi, nous rappelons [55][66]:

(4-3)

et de même,

S(3hXtt,) J^Z S3,

f
â'

J V
i'

V

(4.4)

(4.5)

(4.6)

Bp.,{+)

BP.,(-)

c d

a b

Ç 0

- r-ïl Z[S3,

\ n &
y t=i,. .,4

- r± z[S3,

\ n &
V 1=1 4

ç 0

- rXl Z[S3,

\ n ^

a

c

a

c

£
P̂

o

b

d

cd'
a b

p b

d

c d

a b xa P

Enfin ex.p(2irihj) est le facteur de phase associé à la torsion du framing d'une unité sur une ligne
portant la couleur j.
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4.3 Chirurgie

Nous allons ici rappeler ce qu'est une présentation par chirurgie d'une variété tridimensionnelle
orientée, compacte et sans bords, éventuellement décorée par un graphe comme en section 2.1.2.

Dans N variété de dimension 3 sans bord, considérons un nœud C muni d'un framing. Le

framing définit un plongement du tore plein D2 x Sx dans N. Sur D2 x Sx on dispose d'une notion
naturelle de cycles (a0) et (60): un modèle du tore plein est

D2 x S! {(p eitf, e'"); p G [0,1] et (â, <p) G R/2ttZ }

et (a0) est la courbe ¦& >-> (exp(iii), 1). De même, (60) est la courbe ip i-» (l,exp(iip)). Dans
l'identification donnée par le framing de C, (6o) est envoyé sur une courbe parallèle à C notée C"

et (ao) est envoyé sur une courbe que nous noterons (a). Alors, on définit la chirurgie le long de C
munie d'une framing par [40]:

Définition 21 Soit C un nœud muni d'un framing dans N, W un voisinage tubulaire de C dif-
féomorphe à D2 x S\, on le retire de N et on le recolle en recollant (a0) sur C" courbe parallèle à

C définissant le framing et (b0) sur —(a). La variété obtenue est appelée la chirurgisée de N selon
C, notée Nc-

La chirurgie selon un entrelac est une chirurgie selon chaque composante de l'entrelac effectuée

avec des voisinages tubulaires ne s'intersectant pas. Bien sûr, la définition s'étend trivialement
au cas où N est décorée par un graphe trivalent. Il suffit que les voisinages tubulaires que l'on
utilise n'intersectent pas le graphe. Notre définition du framing par le plongement d'un ruban est

parfaitement compatible avec la chirurgie: la chirurgisée d'une variété décorée par un graphe avec
son framing est encore une variété décorée par un graphe muni d'un framing. Ainsi, le théorème 5

se généralise en

Théorème 6 Soit [M, K] une variété, décorée par un graphe trivalent colorié K, il existe un
entrelac L de S3 muni d'un framing et un graphe trivalent colorié plongé dans (S3 \ L) et noté K tels

que par chirurgie le long de L, [S3, K] devienne [M, K].

On montre également que le graphe combinatone sous-jacent à K est identique au graphe
combinatoire sous-jacent à A'. Par contre le plongement diffère! Si [M, K] est une variété tridimensionnelle

décorée par A', nous dirons que [£,A"] est une présentation par chirurgie de [M,K] si et
seulement si, par chirurgie le long de l'entrelac L, [S3,K] devient [M, A'].

Toutefois, il est bien connu qu'il existe une infinité de présentations par chirurgie d'une même
variété tridimensionnelle. La description, due à Kirby [40] et Fenn et Rourke [27] des relations entre
toutes les présentations par chirurgie d'une variété donnée, s'étend au cas des variétés décorées

par un graphe trivalent. Nous allons décrire ce résultat. Pour cela, nous définissons la notion de

mouvement de type A' sur une présentation par chirurgie [L,K]\

Définition 22 Soit [L, K] une présentation par chirurgie et C une composante non nouée de L
ayant un framing e ±1, choisissons un disque D bordant C; un mouvement de type K sur [L,K]
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>>

Fig. 2 - : Le mouvement K sur une composante de framing —1.

sur une composante C de L dont le framing est e ±1 est obtenu en enlevant la composante en
question, et en tournant toute ligne de L\C et de K qui perce un disque D2 de bord C, ainsi que
leur courbes parallèles de —2x£.

L'effet d'un tel mouvement est illustré sur la figure 2 où, pour simplifier, nous avons supposé

que deux lignes seulement traversaient un disque bordé par C_i. La prescription que nous avons
donné pour les courbes parallèles à chacune des lignes considérées permet de connaître l'effet sur
le framing.

Le choix du disque bordé par C est arbitraire. Changer ce disque produit une nouvelle présentation

[L'i,K'i] qui diffère de [Z',A"] par une isotopie ambiante compatible aux coloriages et aux
framing. En conséquence, cela ne pose aucun problème. Lorsque nous parlerons de mouvement de

type K, nous sous entendrons qu'un choix de disque a été effectué.

Signalons que la partie "dure" de ce résultat remonte aux travaux de Kirby d'une part [40], et
d'autre part à ceux de Fenn et Rourke [27] à la fin des années soixante:

Théorème 7 (R. Kirby, R. Fenn et C. Rourke) Deux entrelacs L et L' constituent deux
présentations par chirurgie d'une même variété, de dimension trois orientable compacte et sans bords à

isomorphisme près si et seulement si on peut passer de l'un à l'autre par une suite finie d'isotopies
dans S3 et de mouvements de type K ou de leurs inverses.

L'extension au cas des variétés décorées par des graphes trivalents est explicitée dans [15] et
[16, Appendice 6.A].

Dans la suite, nous aurons besoin d'une notion accessoire, qui est celle de mouvement de type
02 [40]:

Définition 23 Soit [L, K] une présentation par chirurgie, un mouvement de type 02 sur une ligne
C (de L ou de K) relativement à une composante Cj de L consiste à amener C près de Cj et, par
somme connexe, à lui adjoindre courbe parallèle, à Cj.

La figure 3 explicite un tel mouvement. Parmi les mouvement de type K, nous appelons mou-
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(C),n=l

(C),n=l

Fig. 3 - : Le mouvement de type 02.
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vements de type K spéciaux21, ceux pour lesquels aucune ligne de L \ C ou de K ne perce le disque
bordant C que l'on a choisi. Dans ce cas, le mouvement consiste simplement à retirer la composante

C. B résulte des travaux de Kirby, Fenn et Rourke et de [16] que les mouvements de type
ö2 relativement sur les lignes de L et de Ä', et les mouvements de type K spéciaux permettent de

réaliser tous les mouvements de type K.

4.4 Quelques calculs d'invariants

La définition de la fonction de partition d'une variété M décorée par un graphe trivalent colorié
K nécessite l'emploi de o(L) que nous allons définir comme suit: si L est muni d'un framing, notons

Uj le framing de la composante j de L et (Li,Lj) le nombre d'intersection22 de la composante i
avec la composante j de L (i =£ j) et posons:

(4.7)
iLSJ ni
[Lij (Li,Lj) si i^j

On note a(L) la signature de la forme quadratique dont la matrice est (Ljj)ìj. Si [i, A] est une
présentation par chirurgie, nous noterons o(L, K) cette signature, qui bien sûr ne dépend que de

L. Fenn et Rourke ont montré que

Théorème 8 Dans un mouvement de type K spécial portant sur un cercle non noué de framing
e ±1, la variation de a(L,K) est donnée par:

(4.8) a(L',K') a(L,K)-e
et dans un mouvement de type ö2 qui porte sur une ligne de L ou de K,

(4.9) o(L',K') a(L,K)

La définition de la fonction de partition pour une présentation par chirurgie est alors:

Définition 24 La fonction de partition de la présentation par chirurgie [L, K] est définie par:

(4.10) Z,[L, K] e-2"-^.*)/8 £ [f[ SCt°] Z[S3, Lc, K].
c t=i

où la somme porte sur tous les coloriages de L.

Pour que cela puisse servir de définition à la fonction de partition d'un élément de homMa3, (0,0)
nous devons montrer que deux présentations par chirurgie de la même variété tridimensionnelle
décorée à isomorphisme près ont la même fonction de partition.

La méthode consiste à montrer l'invariance par les mouvements de type K spéciaux et les

mouvements de type ö2. Un exemple permet de bien comprendre l'utilité du facteur de phase que

Aussi appelés mouvements de type Cj dans [40].
Ceci suppose que l'on a orienté chacune des composantes. Toutefois, la signature que nous allons calculer ne

dépend pas du choix des orientations!
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nous avons introduit: considérons la sphère 5*3 qui peut s'obtenir par chirurgie le long de l'entrelac
vide ou bien le long d'un cercle C\ non noué de framing 1. Dans ce cas, si nous notons Z[L,K]
l'expression obtenue à partir de 4.10 en enlevant le facteur en exp (2xic/8):

2lL,K} J2lf[X]Z[S3,Lc,K],
c it=l

alors

Clairement 2[0,0]= Sa°.

Et d'autre part:
2[Ci,0] e2"</24£(TS)t°Z[S3,Ciü)]

Mais Z[S3,C[0)] S0k et donc 2[Ci,0] (STS^exp(27ric/24). En utilisant la relation
(ST)3 C, il vient

Ï[C„ -lute/» f [0,0].

Les deux expressions obtenues diffèrent par un facteur exp (2inc/8). Ceci montre l'utilité de

cette phase.

Dans le cas général, nous appelons Cc la composante de L de framing £ sur laquelle le mouvement
de type K va porter. Nous allons calculer la fonction de partition de la présentation par chirurgie
[i, A] puis la fonction de partition de [L',K'} qui est déduite de [i, A'] par un mouvement de type
K sur la composante Cc.

Mouvements de type K: Cas [L, K] Rappelons que la fonction de partition de la présentation
par chirurgie [L, K] est donnée par:

(4.11) Z[L, K] Yl E f II e*"n'"C"' S°Cr-' j Saje2™h>Aj[(L \ Cc)Cr U Ä]

où nous avons séparé la somme sur les couleurs Cr des composantes de L \ Cc et la couleur j de Ce.
La définition de Aj[(L \ Cc)Cr U Â'] est:

Aj[G] Z[S3,Cj,G] Z[S3

(O.
box

où la ligne portant la couleur j est supposée avoir un framing normal au plan de la feuille. G

représente toutes les lignes de A'U(£\C£). Nous supposons que m lignes passent à travers le disque
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délimité par C. Afin de calculer Aj[(L\Cc)cr UA'], nous introduisons une base commode de H02m:

2 1
«1

"2
'2

«m-1

î 3

que par soucis de légèreté nous noterons23

a ß

De notre méthode de calcul dans S3, nous déduisons

AAS]= E MU M|2^^3,
[il

V

3

JÎ
De plus, nous savons que

]Z[S3,

rs~\ ^

[i]

box

Ck a

Vjy

Z[S3,

f X
r [i]

\ i

v y^

Z[S3

p-
S«"'

Nous utilisons alors les calculs ci-dessus pour évaluer

£ SoUjU \ Cc)Cr U Ä] exp (2-KiEhj)

Nous avons rappelé où circulent les indices (îi ïn) en portant le symbole [i] sur nos schémas.
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et grâce aux relations 52 (ST)3 — C, nous obtenons pour cette quantité l'expression suivante

(4.12)

,,a,ß um»IIWW>IIJ
Z[S3,

r y[i]

P

v
W

]Z[S3,

box

V;« ] exp (2îri£(^-/>„))

LA'
Mouvements de type K: Cas [i',Â'] Nous allons maintenant comparer Z[L,K] et Z[L',K'],
où [X',Ä'] est déduite de [L,K] par un mouvement de Kirby de type K. Par définition d'un tel
mouvement, la composante Ct est retirée et le graphe G devient

P ^
box

1 1

TW

U J
La boîte TW contient les parties des lignes qui ont tourné. Nous calculons alors une nouvelle
fonction de partition où les lignes qui passent dans la boite ont un framing qui pointe vers le
lecteur. Grâce à la base de H0t2m précédemment utilisée, nous pouvons "détordre" les 2m lignes qui
passent à travers D: l'interversion de deux lignes arrivant à un vertex fait apparaître des facteurs
de phases et finalement, l'expression associée au graphe ci-dessus est remplacée par:

\U„a,ßWZ{S^

f x
[i]

V w
]Z[S3,

r>
box

p

X)>
]exp \2iice(YJhi, - hp)

B ne reste plus qu'à rétablir les framings utilisés pour évaluer la fonction de partition de la présentation

[L',K'] ce qui permet d'éliminer le facteur

Uei^phi,)]

.12 à un facteur

Z[L,K] 2[I',Â']exp (^ie^)

\ i=i

Finalement, nous retrouvons l'expression 4.12 à un facteur exp (2nice/8) près. En conséquence,

(4.13)
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D'après le théorème 8, dans un mouvement de type K spécial, la variation de phase due à la signature

compense exactement la variation de phase de Z[L,K]. Ceci montre l'invariance de Z,[L,K]
dans les mouvements de type A spéciaux.

Mouvements de type 02 Pour traiter le cas des mouvements de type ö2, il suffit de montrer
que ceux-ci peuvent être obtenus par une succession de mouvements de type K. Dans le cas de

mouvements de type ö2 portant sur une ligne de L, la preuve est donnée dans [27]. Si le mouvement
porte sur une ligne de K, le lecteur vérifiera sans peine que l'argument donné par Fenn et Rourke
fonctionne encore. Le comptage des facteurs de phase montre que

(4.14) Z[L, K] Z[L, K']

car dans la suite de mouvements de type K donnés par Fenn et Rourke apparaissent un nombre
égal de mouvements de type A sur une ligne avec framing +1 que de mouvements portant sur une
ligne avec framing -1. D'après le théorème 8, dans un mouvement de type ö2, a(L, K') cr(L, K).
Cela montre l'invariance de Z,[L,K] dans un mouvement de type 02.

Fin de la preuve Pour conclure, rappelons que deux présentations par chirurgie [L, K] et [i', A]
sont reliées par une suite

- De mouvements de type A' spéciaux, et de leurs inverses.

- De mouvements de type 02 relativement à une ligne de L et agissant sur une autre ligne de

L ou sur une ligne de A, et les inverses de ceux-ci.

- D'isotopies dans S3.

Nous venons de montrer que dans de tels mouvements, Z,[L,K] Z,[L',K']. Ceci montre que
Z,[L,K] ne dépend que de la classe d'isomorphisme de [M,K] et que, en conséquence, on sait
associer un élément du corps de base à chaque élément de homMa31(0,0).

4.5 Définition des opérateurs dans la théorie topologique

Nous allons maintenant définir les opérateurs 4>[M] pour M morphisme de la catégorie Ma31.
Tout d'abord, nous allons introduire une famille de bases de chaque espace Hgn. Chacune de ces
bases est définie par un tore plein standard, que nous allons définir.

Nous verrons comment les différentes bases sont reliées entre elles. Et nous examinerons l'unicité
de la matrice de changement de basé. Puis nous définirons les opérateurs par leurs éléments de

matrice dans les bases précédentes.

4.5.1 Tores pleins standard et bases de Hgn

Les tores pleins standard Considérons 7t<„ le graphe MS - voir la définition 10 - de type
topologique (g, n) introduit en section 3.2.2. Un tel graphe peut être plongé dans le plan R2. Le
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plan R2 est considéré comme plongé dans R3 par (x, y) i-> (x, y, 0). Soit ÏÏOyt „ un voisinage tubulaire
de ce plongement du graphe dans R2 C R3, c'est un tore plein dont le bord est une surface de genre
g. Nous l'orientons grâce à l'orientation usuelle de R3. On définit le framing en posant, pour toute
arête orientée a du graphe sous-jacent à 7gn, fa(s,t) (fa(t),ss) € R3 où t >-? fa(t) définit le

plongement de l'arête o dans R2 et où £ est assez petit pour que (fa(t),es) £ %B?,,„ pour tout
s 6 [0,1]. Nous munissons d'un paramétrage le bord de ce tore plein qui envoie les sommet marqué
de 7g „ sur le point Pi de l'objet de Ma3 i considéré. De même, l'ensemble des sommets externes
de 7gn étant ordonné, le fc-ème sommet externe est envoyé sur le point Pk. On assure également
la condition de compatibilité entre le framing et les demi-droites (Ak)k. Ceci nous donne, lorsque
l'on choisit un coloriage C du graphe trivalent G sous-jacent à 7, un élément de homMa3?1(0,Ej,n)

que nous noterons [Tj,{7c]. En munissant 2Dj> „ de l'orientation opposée et en gardant la même

paramétrisation de d(Wylt„), on obtient un élément de homMa31(0,2j,n). On dira que (g,n) est le

type topologique du tore plein considéré.

Si maintenant 7 désigne un graphe ms de type topologique (g,n) dans la composante connexe

- au sens du complexe 2)jn - de 7gn, nous pouvons encore le plonger24 dans R2 C R3 de sorte

que son image soit incluse dans le tore plein 2Dj>
n précédent et que les sommets externes soient

envoyés sur les mêmes points que ceux de 7ljn. Du coup, on obtient directement25 un morphisme
de Ma3i que nous noterons [Tg,Gc]- Remarquons que le graphe trivalent G est pour tout 7 un
1-squelette du tore plein considéré.

De tels éléments de honiMa3 ,(0, S,n) seront appelés des tores pleins standards. Nous allons les

utiliser pour définir les éléments de matrice des opérateurs associés aux morphismes de Ma3]!.

Les espaces Hti„ et leurs bases D'autre part, nous allons décrire explicitement des bases de

Hgn. Nous nous basons sur le Lemme suivant:

Lemme 1 Les espaces Jiy pour 7 parcourant la composante connexe de 7g<n sont deux à deux

canoniquement isomorphes.

Preuve: En effet, le Lemme 1.2 de [44] est valable lorsqu'on l'applique à la composante connexe
tys.nC^s,")- Nous avons vu en sections 3.3.1 et 3.3.2 comment associer à chaque chemin 7 G

Ti(^)g,n(1'g,n),7,7') un isomorphisme P7(7,7') entre %y et %yi. De plus, grâce aux équations
3.15 et 3.26, et à la simple connexité de %)g,n(7Stn), l'isomorphisme Py(7,7l) ne dépend que de 7
et 3". D

Nous considérons donc un modèle d'espace vectoriel Hg „ isomorphe aux espaces %y ainsi

qu'un isomorphisme explicite entre My _
et Hgn. Ce choix est arbitraire mais sans importance:

deux choix différents fournissent des théories topologiques équivalentes au sens de la définition 9.

Enfin, on définit HN pour N non connexe par Hn,un2 HNl ® HNj.

Pour chaque graphe ms, nous disposons donc d'une base <8y associée au graphe. Dans ce langage,
la matrice F de Moore et Seiberg apparaît comme une matrice de changement de base. Nous verrons
en section 5.4.2 quelques raisons pour ne pas identifier brutalement tous les Hy à un même espace
H„_„.

Nous gardons la même prescription que précédemment pour le framing.
5Après choix d'un coloriage.
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4.5.2 Définition des opérateurs

Pour définir une théorie topologique, nous devons définir les opérateurs <j>[M] pour tout
morphisme M de la catégorie Ma3|1. La définition 24 des fonctions de partition nous fournit 4>[M]

pour tout M € homMa3,,(0,0). Considérons maintenant M € homMa31(E1,E2) où, pour fixer
les idées EJ2 sont des objets de Ma31 de types topologiques respectifs (gi,nx) et (g2,n2). Nous
allons définir </>[M] par sa matrice dans des bases <By. Nous choisissons la base en spécifiant26

[îi, öi,Ci] € homMa3 ,(0,2^ et [T2,G2,C2] e homMa3il(0, E2) qui sont tous deux des tores pleins
standards de types topologiques respectifs (<7i,ni) et (g2,n2).

La stratégie consiste alors à considérer les bases <By de Hgn et à définir les éléments de matrice
de 4{M) dans Viy, et <8g>2 grâce à Z[(Ti,G\,Ci)\Ml(T2,G2,c*)]- Il est crucial de vérifier la covariance
de cette définitionpar changement de base: si on change de base 7 >-» 7', alors on change l'élément

[(Ti,öi,Cl)»Ml!(r2,ö2,C2)] de homMa3I(0,0) en [(T1,G'i,c-t)tMI(Tx,G,2tc;)]. La définition 24 de la
fonction de partition de ce morphisme ainsi que la définition 20 des fonctions de partition dans S3

permettent de relier les matrices calculées dans différentes bases. Il faut vérifier que cette relation
est bien compatible avec l'interprétation de F comme matrice de changement de base! Une fois
cela fait, nous pouvons dire que nous avons vraiment défini les opérateurs 4>[M\ pour tous les

morphismes de la catégorie Ma3i. Finalement, nous arrivons à:

Définition 25 Soit M 6 homMa3.i(S1,E2), l'opérateur 4>[M] exprimé dans les bases <By, (Vylc )Cl

et <By2 (Vy.2C:t)c2 est défini par

(4.15) m]. Vy,Ci £ ^i,MwiiXoD,a x v^
r. Il V?tc~ Il

4.5.3 Expression du cocycle

Une fois l'invariance topologique obtenue, il reste à démontrer la propriété clef des théories

topologiques projectives, à savoir la fonctorialité projective exprimée par 2.15. Dans le cas qui nous
intéresse, nous considérons Mx £ homM(>31(0, S) et M2 € homMa3 ,(S,0). Dans ce cas particulier,
la fonctorialité projective s'exprime par l'existence de p,(Mx,Mx) non nul tel que

(4.16) zmMi]=,(Mi, M2) ç m^mmMm.
où la somme porte sur tous les coloriages du graphe G définissant une base de Hg„. Le coloriage
des pattes externes est compatible avec la décoration de MX2.

lia. preuve de ce résultat, que nous ne détaillerons pas ici faute de place, permet d'accéder à une
expression explicite pour le cocycle p.(Mi,M2).

Pour donner cette expression, nous devons d'abord élargir notre notion de présentation par
chirurgie aux morphismes de la catégorie Ma31. Soit [Af0,Â"] 6 homMa3 ,(NX,N2) un morphisme
de Ma3|1 et L un entrelac avec framing plongé dans ce cobordisme, la définition 21 de la chirurgie

Ici <?i,2 est le graphe trivalent sous-jacent à Ti.2-
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le long de L s'adapte naturellement. La notion ainsi obtenue est celle de chirurgie le long de L sur
un morphisme de Ma31. Le résultat est un morphisme de Ma31:

[M„,Â] € homMa31(Ai, A2) -±* [ML,K] 6 homMa31(Ai,N2)

Nous considérerons [M, K] 6 homMa, t(0, E), et le théorème 6 se généraUse en27

Théorème 9 Tout [M,K] G homma3|1(0, E) admet une présentation par chirurgie de la forme
[(Tg, K),L] où la chirurgie est effectuée le long de L.

Considérons alors pour fixer les notations [(Tg, Kx), Li] une présentation par chirurgie de [Mi, Ai]
et [(S3\Tg, K2), L2] une présentation par chirurgie de [Af2, A'2]. Alors clairement, [(53, AijjA2),LiU
L2] est une présentation par chirurgie de Mi$M2. Je note oXy2 la signature associée à cette présentation

et ai celle associée à \(Tg\\(S3 \ Tg), KXIG), £i] ~ qui est une présentation de Mi\\(Tg,G) -
et a2 celle associée à \fTg\(S3 \ Tg),GÌK2),L2] - qui est une présentation de \(Tg,G)lM2]. Alors,
fi(Mx,M2) est donné par (voir [15, Section 4.3]):

(4.17) ß(MuM2) exp (2ttì^ (<t1]2 - ox - o2)j

En combinant cette équation avec la définition des éléments de matrice des opérateurs cj>[M] pour
tout morphisme M de Ma31, nous obtenons une expression explicite du cocycle général.

4.6 Propriétés des représentations des groupes modulaires fournies par les théo¬
ries topologiques projectives.

Chaque théorie topologique projective basée sur une catégorie géométrique Ma donne naissance
à des représentations projectives des groupes modulaires des différents objets de la catégorie Ma.
La philosophie générale est la suivante: pour chaque objet N de Ma, le groupe Diff+(A) agit
linéairement et projectivement sur l'espace HN- En utilisant l'invariance topologique, on montre
alors que la composante connexe de l'identité de Diff+(A) agit par l'identité sur l'espace Hn-

Nous allons préciser comment ces idées se mettent en place dans le cas des théories topologiques
déduites des solutions des équations de Moore et Seiberg. Puis, nous discuterons plus explicitement
le cas du genre zéro: nous montrerons la trivialité du cocycle fournit par la théorie topologique
et nous discuterons les implications de la trivialité du groupe modulaire de la sphère sans point
marqué.

4.6.1 Représentations des groupes modulaires

Dans le cas qui nous intéresse, il existe, pour chaque couple (g,n) plusieurs groupes modulaires
intéressants:

- 93\(g,n): Groupe modulaire des surfaces de genre g avec n points marqués, respectant l'ordre
des points.

Avec un énoncé analogue pour les M £ Iiorimr, ,(2,0).
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- M(g,n): Groupe modulaire des surfaces de genre g avec n points marqués, ne respectant pas
l'ordre des points.

- 7H*(g,n): Groupe modulaire des surfaces de genre g avec n points marqués, et un vecteur
tangent non nul en chaque point, respectant l'ordre des points.

- M*(g,n): Groupe modulaire des surfaces de genre g avec n points marqués, et un vecteur
tangent non nul en chaque point, ne respectant pas l'ordre des points.

Dans les notations de [6, Chapitre 4], nous avons

(418)
(m(g,n) *0(Fa,n(Tg),lT,)
{M(g,n) T0(Mo,n(Tg),lTg)

Et de plus, nous disposons de suites exactes

..-^Z» — m*(g,n)—+m(g,n)-+l^ Z--^M'(g,n)-^M(g,n)-^ 1

Pour définir la première flèche, considérons (Pjt)te<i,n> les points marqués sur la surface. On note

7i une courbe simple correspondant au bord d'un voisinage de Pk difféomorphe au disque fermé.
L'orientation de -)k est donnée par l'orientation de la surface. On désigne par tyt le twist de Dehn au
sens de [6, Chap. 4, §4] relativement à ~/k. Alors, l'injection de Zn dans M*(g, n) associe à (àj,k)j la
classe dans M*(g, n) de t7k. La seconde flèche associe à la classe de / G Diff+(Ej„) dans M*(g, n)
sa classe dans M(g, n). Enfin, nous avons également

(4.20) i_an(5,r»)—>A<f(0,n)—* £„ —? 1

où la première flèche est l'injection naturelle, et la seconde associe à la classe de / G Diff+(Ej]n)
son action sur l'ensemble des n points marqués.

Considérons maintenant / G M*(g,n) représenté par / G Diff+(Ej,„), qui induit sur l'ensemble

{Pi,... ,P„} des n points marqués sur la surface une permutation os. Si Ak désigne la demi-
droite dans (TE,n)Pl, (df)(Pk). Ak Aff/(t). Considérons alors la variété T,Si„ X [0,1], dont nous
paramétrons les bords par <p'0 : (x,0) i-> x et ip'x : (x,l) >-? /(x). Ce cylindre est décoré de la
manière suivante:

- Le graphe est formé de n arêtes disjointes: A Dk=i{ak,ai} et di(ak) ek, et djak e'k.

- H est plongé "trivialement" dans [E„,„ x [0, \],<p'o,<p'i]: fixons k G< l,n >, si px désigne la
première projection dans le produit cartésien E,„x[0, 1],(h (Pi°fak)(- ,*)est une application
constante et de plus, si p2 désigne la seconde projection, alors pour tout (s,t) G [0, l]2,
(P2 ° fak)(s,t) t. Notons que cette prescription définit le framing.

Si nous colorions les points Pk par les couleurs ik, alors nous colorions l'arête ak par la couleur ik.
Nous venons donc de définir un cobordisme paramétré qui interpole entre E^'n""*"' et ^g.n'1' '"'"' '*"'•

Ici, E^"-,'"l désigne l'objet de Ma31 basé sur la surface E,„ munie des points marqués avec direction

tangente (Pk, AA)jte<iin> et du coloriage Pk i-> ik. Le choix du représentant / de / G M'(g,n)
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n'est pas unique mais changer de représentant produit un cobordisme paramétré isomorphe, au
sens de la définition 1. En conséquence, nous avons défini

M[h ,.,(/) G homM^E^ • HS'T °'X
Nous définissons

(4.21) Pg,n(f){Hl,, .1 <t>[M[t ,,-„)(/)].

Notons E (ii,... ,i„), il est clair que pg,n(f) envoie HgE} sur Hgf^E^. Pour voir que l'on dispose
d'une représentation projective de M*(g,n), nous considérons le cobordisme paramétré obtenu

comme précédemment mais en remplaçant les paramétrisations des bords par <p"0 : (x,0) h-» f(x)
et ip"i : (x,0) t-+ f'(f(x)). Soit Mj(f') ce cobordisme, il est isomorphe à M(f'), et comme

M(f)\]Mj(f') est isomorphe à M(f o /), nous en déduisons que28

(4.22) ps,n(f o /) <t>[M(f)W(f)] ß(M(f), M(f')) x pg,n(f) ° P,Af)

Ceci montre explicitement que les théories topologiques déduites des solutions des équations de

Moore et Seiberg fournissent des représentations projectives des groupes M*(g,n) dans chaque

espace Hgn. Cela nous fournit un 2-cocycle /i„ „ pour le groupe M*(g,n).

4.6.2 Trivialité en genre zéro

Compte tenu de l'expression explicite obtenue pour le cocycle, nous remarquons que:

Proposition 10 Soient Mx G homMa3il(£i, E) et M2 G homMa, ,(E, E2), et si E est de genre zéro,

alors

(4.23) p,(Mx,M2) l

Preuve : Pour commencer, nous nous limitons au cas où Ei]2 0. Il existe des présentations

par chirurgie de Mx et de M2 respectivement à partir de [B3,LX] et [B3,L2]. En conséquence,
[B303,Lx U L2] est une présentation par chirurgie de MX\M2. Considérons alors Mx MiJJ33
et M2 B3$M2. Ce sont des variétés tridimensionnelles sans bord, et elles admettent aussi des

présentations par chirurgies qui font intervenir Lx<2. Ainsi, [i?3|j.B3,£1H0] est une présentation par
chirurgie de Mx et [B3IB3,®$L2] est une présentation par chirurgie de M2. En conséquence, comme

o(LiUL2) a(Li) + a(L2) et que l'on calcule les éléments de matrice des opérateurs associés à Afi2
respectivement en termes de fonctions de partitions de M12 décorées par des graphes appropriés,
nous en déduisons que

Z[MX$M2] 4>[Mi] o cj>{Mx].

Notre raisonnement n'est pas modifié si Et ^ 0 ou E2 -fi 0. D

Considérons maintenant / un difféomorphisme préservant l'orientation de la sphère 5"2 avec n
points marqués. Nous pouvons lui associer un morphisme de la catégorie Ma3i, noté M(f), dont

8Pour alléger les notations, j'ai omis les indices de couleur.
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un représentant du cobordisme tridimensionnel sous-jacent est le cylindre S2 X [0,1] paramétré par
tpo : (x,0) t-+ x et ipx : (x, 1) >-> /(x). La proposition 10 montre alors que

Corollaire : Les représentations p0n des groupes M*(0,n) ne sont pas projectives.

Quelques remarques s'imposent dans le cas du genre zéro: la trivialité de 971(0,0) [6] nous dit qu'il
existe un représentant du morphisme M(f) de Ma3J basé sur le cylindre S2 x [0,1] et paramétré
par <p0 : (x,0) •-» x et ipi : (x, 1) i-> x. Pour un tel représentant, le graphe reste le même mais son

plongement au sens de la définition 5 change! Considérons F : [0,1] —? Diff+(5'2) tel que F(0) lSa
et F(l) /, alors F est un isomorphisme entre les cobordismes non décorés [S2 X [0,1], <p0, fi] et
[S2 X [0,1], cpo, f ° <Pi]- Au niveau des décorations, il existe un plongement du graphe à n arêtes

non orientées sans vertex dans S2 x [0,1] qui est envoyé sur le plongement trivial discuté plus
haut. Comme dans [6, Page 102] considérons l'espace des configurations, que nous notons <£„(S2)

des n-uplets de couples (P, A) formés d'un point de S2 et d'une direction dans l'espace tangent
à la sphère au point P. Le groupe fondamental Bn(S2) Kx(€n(S2),(Pk,Ak)k) de cet espace est

isomorphe au produit semi-direct du groupe des tresses29 d'Hurwitz Bn(S2) Xi(£n(S2),(Pk)k)
par Zn, où Bn(S2) agit sur Z" via l'action naturelle du groupe de permutations de n objets sur Z".
Le nouveau plongement définit un chemin dans <t„(S2). Il suffit pour cela de considérer le chemin
t i-> (fak(0,t),(dsfak)(0,t). R+). Sa classe d'homotopie dans l'espace de configuration nous fournit
alors un élément du groupe Bn(S2).

D'une manière générale, ces considérations permettent de construire une représentation linéaire
de Bn(S2) dans l'espace H0,n: partons de 7 un élément de30 Bn(S2) 7ri(î„(52),*),un représentant
7 de 7 définit un plongement du graphe à n arêtes non orientées sans vertex dans [S2 X [0,1], tp0, ipi]
au sens de la définition 5. Changer de représentant produit un cobordisme à la Milnor isomorphe.
Fixons ii,... ,i„ les couleurs des points (Pk)i<k<n, soit Afp,,...,i,](t) le morphisme de Ma3]1 ainsi
défini31, Mpll.„iij(77/) Mpll„.lj.j(7)||M<,T.pll„.ljj(7'). En conséquence, on vient de fabriquer une

représentation linéaire p0,„ de Bn(S2) dans H0,„.

D'un autre coté, de manière analogue à [6, Page 153], on dispose d'un morphisme surjectif de

Bn(S2) dans le groupe modulaire A4*(0,n). Notons Bn ce morphisme, alors nous avons

(4.24) pa,n Po,„°î>«

Cette équation montre clairement la relation entre les représentations des groupes "des tresses avec

framing" Bn(S2) et celle des groupes modulaires At*(0,n).

Action de Gal(Q/Q) sur les solutions des équations de Moore
et Seiberg provenant des théories rationnelles.

Dans cette section, nous suggérons quelle est la traduction de l'action du groupe de Galois absolu

Gal(Q/Q) sur le groupe fondamental algébrique de la droite projective privée de trois points dans

29Ici CfSî) est l'espace de configuration de Birman pour n points sur la sphère.
30Le point base * est formé par la configuration (Pk, At)i<i<„ associée aux objets de type topologique (0, n) de

la categorie Ma3,i.
31Ici, y y' signifie y suivi de y'.
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le cadre des théories topologiques rationnelles déduites des solutions des équations de Moore et
Seiberg. Si, comme nous le conjecturons, les théories topologiques tridimensionnelles sont bien des

représentations de la "Tour de Teichmüller" entrevue par Grothendieck, l'action que nous décrivons
reflète l'action de Galois sur la Tour qui se trouve dans [33].

Toutefois, les raisonnements qui vont suivre sont encore assujettis à quelques hypothèses qui ne
trouveront de justification que dans une définition précise de la notion d'algèbre chirale et ensuite de

théorie conforme rationnelle. Avant de rentrer dans le vif du sujet, voici brièvement les conditions
essentielles aux raisonnements qui vont suivre:

- Les raisonnements qui vont suivre ne sont valables que pour des solutions de ces équations
de Moore et Seiberg qui peuvent être jaugées à des solutions algébriques. Cela semble être le

cas dans tous les exmples qui ont été étudiés. Toutefois, en utilisant les équations de Moore
et Seiberg, on sait seulement montrer que les éléments de matrice de SetT sont des nombres
algébriques! Par contre, aucun résultat général n'est connu pour les éléments de matrice F.

- L'algèbre chirale de cette théorie conforme doit vérifier certaines propriétés - de rationalité -
que je détaille plus loin. C'est le cas des exemples que je connais. En particulier, je discuterai
les modèles minimaux relativement à une algèbre de Virasoro ou à une algèbre de Kac-Moody
non tordue.

Dans un premier temps, nous rappelons comment définir une action de Gal(Q/Q) sur le grou-
poïde fondamental algébrique de Pi(C) \ {0, l,oo}. Puis nous montrerons comment cette action
induit l'action de la théorie des nombres sur les éléments de matrice des données de Moore et
Seiberg. Enfin, nous discuterons l'action induite sur les théories topologiques. Ceci nous conduira
à envisager une modification de l'axiomatique des théories topologiques en vue de formuler plus
naturellement (i.e. comme dans l'énoncé du théorème 1) la traduction sur les données de Moore et
Seiberg de l'action de Gal(Q/Q) sur le groupoïde fondamental de la sphère privée de trois points.

Dans cette section, nous supposons le lecteur familier avec les idées fondamentales des théories
conformes telles qu'elles sont exposées dans [4] (en particulier la notion de bloc conforme).

5.1 L'action de Gal(Q/Q) sur nfs(Pi(C) \ {0,1, oo}, *).

Le but de cette section est de rappeler ce qu'est le groupoïde fondamental algébrique de Pi(C)\
{0,l,oo} (ou plus généralement d'une surface de Riemann compacte privée d'un nombre fini de

points), puis d'expliquer comment Gal(Q/Q) agit naturellement sur celui-ci. Le point de vue exposé
ici est relativement naïf et ne fait appel qu'à la théorie classique des surfaces de Riemann et des

variétés algébriques. H existe une formulation considérablement plus générale de ces idées (voir [32]
et [17, Paragraphes 10.18 et suivants]).

Nous aurons également besoin de donner une formulation plus adaptée au contexte des théories
conformes. Ceci se fait en utilisant les idées de Y. Ihara [35] ainsi que la notion de point base à
la Deligne [17, Paragraphe 15]. Dans cette section, nous rappellerons la définition du groupoïde
fondamental algébrique de Pi(C) \ {0,1,00} par rapport à deux points base x et y de Pi(C) \
{0,1, 00}. Puis nous définirons l'action du groupe de Galois absolu sur ce groupoïde. Nous étendrons
ensuite ces considérations en décrivant la notion de point base à la Deligne et nous donnerons une
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prescription explicite pour le calcul de l'action de Galois sur le groupoïde fondamental relativement
à de tels points base.

Le groupoïde fondamental algébrique: cas des points bases ordinaires Nous considérons
ici des revêtements topologiques finis de Pi(C) \ {0,1,00} ainsi que la catégorie des revêtements
topologiques finis de Pi(C) ramifiés au dessus de {0,1,00} (au sens de la définition 6.1.7 de [23]). Au
paragraphe 6.1.11 de cet ouvrage, on montre que la catégorie des revêtements finis d'une surface

topologique B qui ramifient au dessus d'un ensemble fini A est équivalente à la catégorie des

revêtements finis au dessus de B \ A. Nous noterons donc Revtop(Pi(C) \ {0,1,00}) la catégorie
des revêtements finis de Pi(C) \ {0,1, 00} ramifiant au dessus de {0,1,00}. Le foncteur d'oubli
de la structure analytique définit une équivalence de catégories entre la catégorie des revêtements
analytiques finis de Pi(C) ramifiant au dessus de {0,1, 00} et Revtof.(Pi(C) \ {0, l,oo}).

Enfin, le théorème d'uniformisation de Riemann nous dit que la catégorie Revan(Pi(C)\{0,1,00})
des revêtements analytiques de Pi(C) qui ramifient seulement au-dessus de {0,1, 00} est équivalente

à la catégorie des courbes algébriques au dessus de Pi(C) ramifiant au dessus de {0,1,00}
[59, Chapitre 7].

Nous allons maintenant définir le groupoïde fondamental algébrique à partir de transformations

naturelles entre foncteurs fibres qui vont de la catégorie des revêtements dans la catégorie
des ensembles finis. Les différentes catégories de revêtements étant équivalentes, les groupoïdes
fondamentaux obtenus seront isomorphes. Toutefois, la catégorie des revêtements algébriques nous

permettra de définir une action naturelle du groupe de Galois Gal(Q/Q) sur le groupoïde
fondamental algébrique.

Rappelons que dans le cas d'un point x G Pi(C) \ {0,1,00} (qui est dit ordinaire, par opposition
aux points base à la Deligne), la fibre au dessus de x d'un revêtement (X,p) est l'ensemble fini
p~1(x). Ceci définit la partie objet d'un foncteur fibre 5^.op de la catégorie Rey_top(Pi(C)\{0, l,oo}) à

valeurs dans la catégorie Ens des ensembles finis. Rappelons que si ip : X —? Y est un morphisme de

revêtements de X dans Y, on lui associe 31°p(y>), application de 51°P(A) dans S"J.op(y) par restriction
aux fibres. On procède de même dans le contexte algébrique et on note 5*g le foncteur fibre en x.
Nous allons maintenant définir le groupoïde fondamental algébrique de la base Pi(C) \ {0,1,00}.

Soient x et y deux points de Pi(C) \ {0,1, 00}, l'ensemble des transformations naturelles entre
?ì°p et Kop est en bijection canonique avec l'ensemble des transformations naturelles entre les

foncteurs :$?« et J*1«. Cet ensemble est noté 7rf8(Pj(C) \ {0,1, 00}, x, y).

La catégorie dont les objets sont les points de Pi(C) \ {0,1, 00} et les morphismes entre deux
objets x et y sont les éléments de ;rf's(Pi(C) \ {0, l,oo},x,y) est appelée le groupoïde
fondamental algébrique de Pi(C) \ {0,1,00}. Elle est notée ^(P^C) \ {0,1,00}). Dans le contexte
topologique, on définit de même le groupoïde fondamental topologique 7rJop(Pi(C) \ {0, l,oo}). On
vérifie facilement que c'est une sous catégorie de ttx]s(Px(C) \ {0,1,00}): leurs ensembles d'objets

sont identiques et, pout tout couple d'objets (x,y), on dispose d'une injection canonique de

Ti°p(Pi(C) \ {0, l,oo},x, y) dans irfs(Px(C) \ {0, l,oo},x,y) définie grâce aux théorèmes de

relèvement des chemins et des homotopies [23, Paragraphes 4.8.4 et 4.8.5]. Rappelons également
que, grâce à la théorie de Galois des revêtements [23, Paragraphe 4.5.8], on montre que pour tout
x G Pi(C) \ {0,l,oo}, le groupe fondamental algébrique ifs(P1(C) \ {0, l,oo},x,x) est le
complété profini du groupe fondamental topologique, i.e. la limite projective de tous les quotients finis
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de xJop(P1(C) \ {0, l,oo}, x). En clair, le groupe fondamental algébrique est parfois beaucoup plus
"gros" que son avatar topologique. Nous invitons le lecteur à expliciter le cas de Pi(C) \ {0,00} et
à montrer que wf^P^C) \ {0,00}, 1) ~ (Z, +).

L'action de Gal(Q/Q) On dispose d'une action naturelle de Gal(Q/Q) sur la catégorie Revaig(Pi(C)\
{0,1,00}) par isomorphisme fonctoriel. Elle est définie de la manière suivante:

- Soit (X,p) un revêtement algébrique de Pi(C) \ {0,1,00} défini sur Q. On fabrique alors
(ct. X, a. p) en appliquant a aux coefficients d'un quelconque système d'équations définissant
A et p sur Q.

- Si (X,p) et (Y,q) sont deux revêtements algébriques de Pi(C) \ {0,1,00} définis sur Q, et

/ : X —* Y un morphisme entre eux (également défini sur Q), on définit o. f en appliquant o
aux coefficients des équations définissant /.

Ces prescriptions fournissent un automorphisme fonctoriel de la catégorie Rev.,, (Pi(C)\{0.1,00}).
A partir de là, on dispose d'une action naturelle de Gal(Q/Q) sur ^^(P^Q) \ {0,1,00}). En effet,
soient a et b deux éléments de Pi(Q)\{0,l,oo},et 7 un élément de 7r*lg(Pi(Q)\{0,1,00}, a,b), pour
chaque revêtement algébrique (X,p) de la sphère privée de 0, 1 et 00, notons 7(js» l'isomorphisme
entre les fibres p~1(a) et p_1(b). On considère alors

(5.1) a o 7„-i.(x,p) 0 c'1

qui est un isomorphisme de la fibre de (X,p) au dessus de a dans celle au-dessus de b. Le
lecteur vérifiera que la définition 5.1 est compatible aux morphismes de revêtements algébriques. En
conséquence, nous pouvons définir o. 7 au moyen de cette prescription. On vérifie alors que cela

définit bien un isomorphisme fonctoriel de la catégorie Tcfe(Px(Q) \ {0,1,00}) obtenue à partir de

îriUg(Pi(|C)\{0, l,oo}) en se limitant aux objets x G Pi(Q)\{0, l,oo}. Cet isomorphisme agit comme
l'identité sur l'ensemble des objets car ce sont les points rationnels de la sphère de Riemann.

Les points base à la Deligne Lorsque l'on veut prendre un point base qui, intuitivement,
corresponde à approcher "infiniment près" de 0, 1 ou 00 (ce qui est naturel dans le contexte
des théories de champs invariantes conformes bidimensionnelles), nous devons rajouter un peu de

structure car un revêtement fini au dessus de Pi(C) \ {0,1,00} est ramifié au dessus de Pi(C).
Nous avons besoin d'un moyen de distinguer entre les différentes branches qui partent d'un même

point dans la fibre au dessus du point considéré32. C'est ce que les vecteurs tangents de Deligne
permettent de faire.

Pour fixer les idées, raisonnons en zéro. Choisissons un vecteur u ^ 0 tangent à Pi(C) en zéro.
Soit (X,p) un revêtement fini de Pi(C) qui ramifie seulement au dessus de {0, l,oo}, alors la "fibre
en (0,u)" est formée par les couples (x,w) où x G P_1(0) et w est une uniformisante de X en ce

point, dont une puissance est z (c'est à dire une fonction méromorphe sur la surface X, qui au
voisinage de x est de germe d tel que uj" p). Il va de soi que le choix d'une telle uniformisante
permet de choisir entre les différentes branches topologiques issues de X, tracées sur X, et dont la

Cette idée est naturelle dans le contexte des théories conformes car nous considérons des opérateurs dont les

poids conformes sont non nuls.
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projection sur Pi(C) part dans la direction u. Supposons avoir associé à la branche 61 l'uniformisante
u»i, alors nous associons à l'uniformisante u l'unique branche fe telle que ui/^i prenne des valeurs
rééles positives sur la branche b au voisinage du point de ramification.

Séries de Puiseux Nous allons maintenant donner une traduction des idées précédentes en

termes purement algébriques. Cela nous permettra d'une part de décrire explicitement l'action du

groupe de Galois absolu sur 7r]alg(P1(C) \ {0, l,oo},x,y) où x et/ou y sont des points base à la
Deligne, et d'autre part, facilitera la traduction de ces idées dans le contexte des théories conformes
rationnelles (voir section 5.2).

L'idée importante consiste à associer à une fonction méromorphe / sur X (courbe algébrique
au dessus de Pi(C)) un développement de Puiseux pour chaque point de la fibre au dessus du point
base considéré. Rappelons qu'un développement de Puiseux (en zéro pour fixer les idées) est une
série de la forme [59, Page 5]

+00

(5.2) £ a" Z"/P

où n0 est un entier. Intuitivement, la construction est la suivante:

- Dans le cas où a est un point base ordinaire, le revêtement est étale au voisinage de a. La
fonction / admet un développement de Laurent de la forme

(5.3) /=E«»P"
n>n0

et nous lui associons donc le développement de Laurent J2n a"(z ~ a)"- ^e point de la fibre
définit un morphisme de C(T)-algèbre du corps des fonctions méromorphes sur X dans le

corps des séries de Puiseux en z — a.

- Dans le cas où le point base est un point base à la Deligne (0,u), nous choisissons (x,w)
un point de la fibre au dessus de (0,u) du revêtement (X,p). Soit / G M(X) une fonction
méromorphe sur X, elle admet un développement de Laurent en fonction de l'uniformisante:

(5.4) / £ an w"
n>rio

et nous lui associons le développement de Puiseux

(5.5) 52anz"'e*
n>no

où ex est l'indice de ramification au point x. De ce fait, nous construisons un morphisme de

C(T)-algèbre de M(X) dans le corps des séries de Puiseux en z.

D'après la descente de Weil [65] (C'est l'argument donné par Bielyi dans [5]), les courbes
algébriques qui sont des revêtements de la droite projective ramifiés seulement au dessus de {0,1,00}
sont définies sur Q. En conséquence, le corps des fonctions méromorphes d'une telle courbe X
est de la forme M(X(€)) ~ A4(X(Q)) &C. Pour chaque choix d'un point au dessus d'un point
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base, nous disposons d'un plongement du corps M(X(Q)) dans le corps des séries de Puiseux
à coefficients dans Q.

Dans le cas de Pi(C) \ {0,1, oo}, on utilisera les points base à la Deligne Tf définis pour i et j
deux éléments distincts de {0,1, oo}. Précisément, (voir par exemple [35, page 105]) soient i et j
deux éléments distincts de {0,1, oo}, il existe un et un seul automorphisme analytique t-^ de Pi(C)
qui envoie i et j sur 0 et 1 dans cet ordre. Si / est une fonction méromorphe sur une surface de

Riemann connexe X qui est un revêtement fini de Pi(C) ramifiant seulement au dessus de {0,1, oo},
grâce au choix d'une uniformisante au dessus de i, on lui associe naturellement un développement
de Puiseux en la variable î-rj. Dans la suite de ce texte, nous utiliserons 01 et ÏO. Dans ce cas, la
variable utilisée sera: tjj 1 — z.

A chaque point de la fibre (x,w) au dessus du point base Tf, nous associons un morphisme
de M(X(Q)) dans un corps de séries de Puiseux en la variable tjj à coefficients dans Q. Cette
idée permet de développer une description purement algébrique de la théorie des revêtements de

Pi(C) \ {0,1,oo}: nous allons décrire les notions de foncteur fibre et de groupoïde fondamental
algébrique dans ce cadre. Cela nous permettra de donner la prescription d'Ihara pour le calcul
explicite de l'action de Gal(Q/Q) sur le groupoïde fondamental algébrique de la sphère privée de
trois points.

La sous-catégorie Rey_top(P1(C)\{0,1, oo}) formée par les revêtements connexes est anti-équivalente
à la catégorie des extensions algébriques finies de Q(T) non ramifiées33 hors de {0,1, oo} [23]. Dans
cette formulation, un point de la fibre de (X,p) au dessus de Tf est un morphisme y>(I>tu) de Q(T)-
algèbre de M(X(Q)) dans le corps des séries de Puiseux en tjj à coefficients algébriques (noté
Puisç(%)) qui étend l'injection de Q(T) dans M(X(Q)) canoniquement associée à p. Le foncteur
fibre 5?jls associe au corps M(X(Q)) l'ensemble des morphismes ip(x,w) précédents. C'est un foncteur

contravariant de la catégorie des extensions finies de Q(T) ne ramifiant pas hors de {0,1, oo}
dans la catégorie des ensembles finis.

On définit le groupoïde fondamental algébrique comme une catégorie dont les objets sont les

différents points base considérés et les morphismes entre deux objets x et y (pouvant être des points
base à la Deligne 01, 10, loo, ool, ooO ou Ooo) les transformations naturelles entre les foncteurs
fibres 5^U1S et 5jUls. A titre d'illustration, la transformation naturelle T7 entre les foncteurs 5aUls
et 3ßUls associée à 7 G 7rJop(Pi(C) \ {0,1,00}, a, fi) est donnée par la prescription suivante: si M est

une extension finie de Q(T) non ramifiée au dessus de {0,1,00}, et <f> G $%ms(M), on pose:

(5-6) V/GM, (7,.cj>)(f) 7.<j>(f)

où 7. cf>(f) désigne le développement de Puiseux du prolongement analytique le long de 7 du germe
défini par le développement de Puiseux cj>(f). Dans ce cadre, T7 est l'image de 7 par l'injection
canonique de ^""(P^C) \ {0,1,00},a,ß) dans 7ifg(Pi(C) \ {0, l,oo},a,ß).

L'action du groupe de Galois absolu sur un chemin 7 G 7rfop(Pi(C) \ {0, l,oo},a,6) où (a,b)
sont deux points base rationnels (i.e. dans Pi(Q) ou bien un des six points base à la Deligne) est
alors facile à décrire en s'inspirant de l'équation 5.1. Pour fixer les idées, supposons que a 01 et

Voir l'Exercice 6.3 dans [23] pour une définition.
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fe 10. L'action de a G Gal(Q/Q) sur 7 € ir?s(Px(C) \ {0,1, 00},Öl, ÏO) est alors décrite par le

diagramme commutatif suivant:

l^n>n0 anz'ri/e _

7

£„>„„ °(K) (i - ^"''VL^. K (i - *)»/•'

où e et e' sont les indices de ramification en 0 et 1 respectivement.

5.2 Traduction sur les blocs conformes.

L'idée importante dans ce qui va suivre est que les blocs conformes d'une théorie rationnelle
admettent justement des développements de type Puiseux au voisinage des points coïncidants car,
comme l'ont montré Moore et Anderson [2] ou Vafa [63], les dimensions conformes des champs
primaires et la charge centrale sont des rationnels! A partir de là, nous associons à chaque point
base à la Deligne pertinent une base de blocs conformes, et donc une famille libre finie de développement

de Puiseux. De plus, les matrices de Moore et Seiberg se calculent comme des matrices de

monodromie entre les bases précédentes. Comme les matrices sont définies en dimension modulaire
au plus égale à un, nous nous ramènerons toujours sur la sphère de Riemann privée de quelques
points. Puis nous montrerons comment l'action de Galois sur le groupoïde fondamental algébrique
de la sphère privée de trois points induit une action sur les matrices de Moore et Seiberg. Nous

avons choisi d'illustrer cette idée sur les matrices P et S. La démarche est identique dans le cas des

autres matrices.

5.2.1 Le cas de la sphère avec quatre points marqués.

Considérons quatre points deux à deux distincts sur la sphère de Riemann; grâce à une
homographie, on peut envoyer trois de ces quatre points sur {0,1,00}. Ceci permet, comme expliqué
dans [4], d'associer à chaque bloc conforme un développement de Puiseux au voisinage de zéro.

En effet, un bloc est indexé par deux opérateurs de vertex chiraux [53]. Le développement de

Puiseux du bloc

T(ôi) J 3 k\ z3, Z4)

3 k

P
l

est obtenu de la manière suivante: notons <fia(z) ¦ VJ ® V} —? Vp et 4>h(z) : Vp ® Vk —» Vj- les opérateurs
de vertex chiraux considérés, étant entendu que la première représentation est insérée en 0, la
seconde en z et la représentation "en sortie" en 00. Nous introduisons alors

(5-7) rif(z) <v,|(>.(i)(*.(*)(|<w) ® Wi)) ® [*>*))

qui est reliée à notre bloc conforme par

(5.8) FÌf(z) ^zl<«Flf{j. *}(0, *,!,*))
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C'est une fonction analytique sur un voisinage du segment réel ]0,1[ mais qui peut avoir des mono-
dromies non triviales autour de 0, 1 et oo! Dans les théories conformes bidimensionnelles, elle est
définie pour z "proche de zéro" sur l'axe réel positif, soit par une expression asymptotique, soit en
resolvant une équation différentielle comme l'équation de Knizhnik-Zamolodchikov ou une équation
BPZ. Ceci revient à prendre comme point base pour le calcul des monodromies, le point base à

la Deligne 01. Nous allons maintenant définir la matrice F en termes de monodromie le long d'un
élément particulier de 7rî°p(P1(C) \ {0,l,oo},01,10). Il est donc indispensable de définir une base
de blocs conformes associés au voisinage du point z 1 dans Pi(C). A chaque élément de la base

est associé son développement de Puiseux dans la variable tjj 1 — z. Ce développement peut
se calculer en fonction d'éléments de matrice d'opérateurs de vertex chiraux [4, 53]. Nous notons

(Fc,d )c,d la base ainsi obtenue. Enfin, nous noterons T^d (1 — z) le développement de Puiseux de

T^d ' pour z voisin de 1 dans l'intervalle réel ]0,1[.

Nous notons p. T^b ' le prolongement méromorphe de Tyh ' le long de p G ttJ°p(Pi(C)\{0,1, oo}, 01, ÏO)
représenté par t G]0, l[i-> t G Pi(C) \ {0,1, oo}. La matrice F est définie de la manière suivante:

(5-9) p.rif J2Ff(ôî)

c,d

c d

a b
r(ï5)

Le développement de Puiseux de Ta \ en 0 est donné par

(5.10) ^f(z) zh>-h--h' 5>,|M1)0„ {q}) ® \<p„)) X (<pp, {q}\Va(l){\<Pi) ® 9i)) ^({,))
M

où (\<pp, {?})){,} désigne ici une base de Vp orthonormée et propre pour L0. L'entier A({ç}) est la
différence entre la valeur propre de L0 sur \<pp,{q)) et hp. L'exposant hp — hi — hj est rationnel.

C'est maintenant que vont intervenir des hypothèses de rationalité et/ou d'algébricité de certains
éléments de matrice des opérateurs de vertex chiraux. Je vais discuter ce point important plus loin.

Supposons pour le moment que le développement de Puiseux de Fa b au voisinage de zéro soit de

la forme suivante:

(5.11) Xi\z) AaA,, x zh>-h'-h> x £ aa,b(n) z"

où les aab(n) sont dans Q (hypothèse de rationalité) et Aa<b G C*. Nous discuterons plus loin la
forme et l'origine de ces facteurs Aa.

Nous prolongons a G Gal(Q/Q) en un automorphisme du corps C grâce au choix d'une base de

transcendance de C sur Q. Ce choix est arbitraire mais nous allons voir que, du point de vue de la
théorie topologique, il ne change rien. Nous désignons encore ce prolongement par a. Considérons

p comme un élément de irfs(Px(C) \ {0,1, oo}, 01, 10), et par analogie avec la prescription de Ihara,
nous effectuons les opérations suivantes sur le développement de Puiseux de Ta t

Aa Ab x z1"-"--"' x 2>a,»(n)*n cr-\AaAh) x z"--"--'» x £>a,6(n)z"
n>0 n>0

c d

a b

a-^AaA,) vAaAb ^(l-*)
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et nous arrivons, par application de <r, à l'expression suivante

'cT-\AtAb)
(5.12)

AaAh l)*Z- c d

a b

\ a(AcAd) (ï
-aTaT'<̂?>(!-,)

Nous supposons maintenant que les éléments de matrice de F sont algébriques dans la jauge considérée

(hypothèse d'algébricité) et donc, ceci montre que la matrice F se transforme sous l'action
de Gal(Q/Q) par la formule suivante:

(5.13)
J / (q,»);(c<0

(Aa/o(Aa))(Ab/cr(Ab))
(Ac/o(Ac))(Ad/cr(Ad))

(o,t);(c,d)

Il faut remarquer que cette action se décompose entre d'une part une action "naïve" du groupe de

Galois absolu, et d'autre part une transformation de jauge au sens de la définition 17. Au niveau de

la théorie topologique, nous savons bien que les transformations de jauge ne changent pas la théorie
topologique. On s'attend donc à ce que seule compte pour l'action de Gal(Q/Q) l'action "naïve"
sur les fonctions de partition de la théorie topologique tridimensionnelle déduite de la solution des

équations de Moore et Seiberg.

5.2.2 Le cas du tore sans points marqués.

Dans ce cas, nous identifions l'espace des modules avec le quotient du disque unité privé de

l'origine par l'action de PSL(2, Z) sur la variable34 q — exp (2wir). Nous prenons comme point
base le point 0, muni d'un vecteur tangent pointant vers 1. La transformation S se calcule en

prenant le chemin p qui va de 01 vers le point base ÏO à la Deligne35. Les blocs conformes en genre
un sont les caractères des représentations irréductibles de l'algèbre chirale de la théorie. Ce sont des

fonctions holomorphes (Xj)j sur le demi-plan de Poincaré, qui joue le rôle d'espace de Teichmüller

pour les tores. Ces caractères fournissent des développements de Puiseux de la forme suivante:

(5.14) X$n> «»'-/»£«,(»)«"

en la variable q exp(2xir). Bien entendu, les coefficients aj(n) sont des entiers car ce sont des

dimensions d'espaces vectoriels de dimension finie. Ces développements sont naturellement associés

au point base 01 en la variable q.

(5.15)

La matrice S de Moore et Seiberg est définie par

-1
T

Xj £S/X*(r)

Comme nous le verrons plus loin, les éléments de matrice de S sont des nombres algébriques. JQ est
même conjecturé que les caractères sont des fonctions algébriques de l'invariant modulaire j.

ïu:

(5.16)

A partir deri-> Xj(~l/r), nous fabriquons un développement de Puiseux relatif au point base

x$B) «*'-«/M2XB)«"

En fait, q
' serait un choix plus judicieux si on veut utiliser la variable de Picard A(r) (î?4/i?2)4(t")-

Dans le demi-plan de Poincaré H, cela revient à aller de l'infini à l'origine le long de l'axe imaginaire iK+.
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où q exp (—2xi/r). La matrice S relie alors le prolongement analytique du développement x\
le long de p G 7rJop(P1(C) \ {0,1, oo}, Ôï, ÏO) aux (xk )k- Notons s. x le prolongement analytique
de x le long du chemin p, nous avons:

(5.17) s.xf^E^-Vxi15'
k

L'action d'un élément o du groupe de Galois absolu est alors triviale à obtenir:

s-(o-\xf) £tf-Vx(tM)
k

„.(s.W-Kxf']) E-((5-1)/)xiîî)
k

où on a utilisé de manière essentielle le fait que les aj(n) sont des rationnels et donc sont fixes
sous l'action de o. En conséquence, l'action de a sur la matrice 5" est simplement l'action de o sur
chacun de ses éléments de matrice!

Finalement, on peut reprendre le même genre de raisonnement pour T en considérant le chemin
ci dessous:

T,

q=lq=0

et là encore, le même argument montre que l'action de a sur T est simplement l'action de <r sur les

éléments de matrice exp(27ri(/ij — c/24)) de T (qui est diagonale). Comme les dimensions /i; et la
charge centrale c sont rationnelles, c'est seulement la partie abélienne Gal(Qab/Q) qui agit.

On peut se poser la question de Palgébricité des éléments de matrice de S et de T. Les résultats
connus actuellement sont les suivants:

Matrice S Considérons les règles de fusion Nitjk, nous savons que les matrices Ni (N{jk)jik
forment une famille de matrices normales mutuellement commutantes qui sont simultanément
diagonalisées par la matrice 5". Les valeurs propres de Nt sont les A; 5,-J/5oJ. Comme les

matrices Âj sont à coefficients entiers, ces nombres appartiennent à Q. H reste à montrer que
Sok est algébrique sur Q. Pour cela, utilisons l'équation S2 C,

Ainsi, les (So*)2 sont les solutions d'un système de Cramer à coefficients dans Q dont le second
membre est un vecteur à coordonnées dans Q. En conséquence, ces nombres sont algébriques
sur Q. En conséquence, pour tout k, Sak est algébrique sur Q ce qui achève la preuve. Citons
également le travail de De Boer et Goeree [7] qui montre que les rapports A; Sj/So' sont
des entiers dans un corps cyclotomique, i.e.. des combinaisons linéaires à coefficients entiers
de racines de l'unité.
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Matrice T L'argument "massue" consiste à utiliser le travail de Moore et Anderson [2] qui montre
que c et les dimensions des opérateurs sont des rationnels dès lors que la théorie est rationnelle.
H existe une preuve qui se base sur l'article de Vafa [63]. Elle consiste à utiliser l'identité dite
"de la lanterne chinoise" qui est une relation du groupe modulaire pour la sphère avec quatre
points marqués, afin d'obtenir une relation entre les différentes dimensions conformes. Vafa
montre alors que les ht doivent être des rationnels. En prenant le déterminant de l'identité
matricielle (ST)3 — C sachant que S2 - C et C2 1, on montre que exp(27tic/4) est

algébrique et donc que c est rationnel. Cette preuve présente l'avantage de n'utiliser que les

équations de Moore et Seiberg.

5.3 Justification des hypothèses sur la structure des blocs conformes sur la
sphère avec quatre points marqués.

Je n'ai pas de justification générale de l'hypothèse de rationalité que j'ai énoncé plus haut
sauf dans certains cas particuliers que je voudrais détailler ici. Il en est de même pour l'hypothèse
imposée sur l'algébricité des coefficients de la matrice F. Dans cette section, nous discuterons tout
d'abord l'hypothèse de rationalité des coefficients du développement de Puiseux des blocs (0,4),
puis nous passerons aux propriété d'algébricité des coefficients de la matrice F. Nous discuterons
aussi de l'algébricité des caractères sur le tore sans point marqué.

5.3.1 Hypothèse de rationalité

Nous allons montrer que l'hypothèse de rationalité des cxah(n) est vérifiée dans le cas des modèles
minimaux de Belavin, Polyakov et Zamolodchikov, ainsi que dans le cas des modèles de Wess,
Zumino et Witten associés à un groupe de Lie compact, connexe et simplement connexe.

Commençons par les les modèles minimaux relativement à l'algèbre de Virasoro. Dans la
suite, je noterai V ®„V'"' un module de plus haut poids irréductible muni de sa graduation

naturelle due à l'action de L0. Le vecteur de plus haut poids sera noté \<p). Les vecteurs

\f, {?}) p(L-qi) ¦ ¦ ¦ p(L-qN)\ip) forment un système générateur de V en temps que C-espace
vectoriel. Nous en extrayons une base 25 et Q5n désigne la base de V'n^ que nous obtenons par ce

procédé.

Nous pouvons énoncer les résultats suivants:

- La forme contragédiente définie par la condition />(£_„) p(L„y dans la base 3Sn est le

produit de (<p\ip) par une matrice à coefficients rationnels.

- Soit ^"^(z) un opérateur de vertex chiral au sens de Moore et Seiberg [53] entre les trois
représentations irréductibles, unitaires et de plus haut poids V, ® V, et Vk, alors les quotients

(<Pk,{g}\4>w(i)(Wi)®Wj)) (fk\4>(a\i)(Wi,{q))®\<Pj))
M*M(i)(to> ® Wj)) (^M(i)(|^) ® Wj))

sont rationnels
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La première assertion provient de la rationalité des constantes de structure de l'algèbre de

Virasoro et de la rationalité des poids conformes et de la charge centrale dans les modèles minimaux.
La seconde est peu plus délicate. Nous avons besoin des propriétés d'entrelacement des opérateurs
de vertex chiraux relativement à l'algèbre de Virasoro. Là encore, la rationalité des poids conformes
est essentielle. Considérons les éléments de matrice (<pp\cftaW<+>i,{q})®\<Pj) et {<^p, -{g}je/>(a)(l)(|cpi) ®

\<Pj)). On utilise les formules suivantes qui se trouvent dans [53]:

(5.18) n>-l, A0,2(£„) L„. ® 1 + 1 ® (V (" + 1)!
zkLn.k

{kTo k-(n + - k)-

'+°° (n + 1). .Jji - k + 2

k\
(5.19) n<-l, Ao.,(£„) Ln ® 1 + 1 ® £ K-^ tl : : ff ^ tl z"+1-kLk_x

et les propriétés fondamentales suivantes:

(5.20) 4>i°)(z)o(pi®P})(A0,z(Ln)) pP(Ln) o (/,<">(z)

(5.21) dX^l <f(a)(z)o(lv,®Pl(L.x))

qui donnent les propriétés de commutation des opérateurs de vertex chiraux avec l'algèbre de Virasoro.

Ces formules permettent de calculer (<pp\cj>(aï(l)(\tp>i, {q))®\<Pj)) en termes de (</?p|^°^(l)(|y>,-)®

\tpj)). Je vais détailler ces expressions pour le calcul de ((pp, {?}|^")(l)(lv>) ® IVj))- Considérons

pp(LgN)...pp(Li,)cj>^(i)(\^)®W]))

où les entiers ç; sont positifs. Comme \ipi) et \ipj) sont des états de plus haut poids pour l'algèbre
de Virasoro, en utilisant 5.18, 5.20 et 5.21, nous obtenons

(5.22) (^.{«^(lXMOlVi» ((2>lo...oDw)^->(*)(|W)®|W)))rai
(5.23) V, (q, + l)z'»hj+z'»+1dz

De plus, l'équation 5.21 montre que

(*Vl^W(l)(lw) ® IW»
(5.24) <V,l*(a)(*)(l¥*>®to»

2'k.+fcj-fc.

Les dimensions /^ étant des rationnels, ceci montre que

(^,{<i}\ïia)W(Wi)®\vj)) cn
(<pPW-\\)(\9i) ® w,)) v

Par le même genre de raisonnement, on montre que:

(Pp|^a)(i)(hfr,{q})®|p,-))r0
(wl^->(i)(l«.> ® lw))

Enfin, la forme quadratique définie par />;(£_„) />,•(£„)' vérifie:

(v«lv«>

En conclusion, les blocs conformes des modèles minimaux sur la sphère avec quatre points marqués
vérifient l'hypothèse que nous avons imposé.
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Considérons maintenant une algèbre de Lie simple g de dimension finie sur le corps des complexes
C, nous allons montrer que les théories minimales relativement à l'algèbre affine g^1' vérifient
l'hypothèse de rationalité. L'essence de la preuve réside dans l'existence des bases de Chevalley

pour les algèbres de Lie semi-simples qui permettent de construire g sur l'anneau Z. L'analogue des

formules 5.18 et 5.19 est donné par:

(5.25) n>0, A„,,(J«) J"n® 1 + 1 ® iX j~- fc)|
zk J^_k\

(5.26) n<0, A0M:) J:®l + l®(^n---{n~k + 1)z"-kA

Les représentations de l'algèbre affine g*1' sont caractérisées par une représentation de plus haut
poids A intégral de l'algèbre de dimension finie g [37]. Soit V* cette représentation de n'1', alors

nÇN

où V[n' ker(px(L0) - (h\ + n)l). Comme d'habitude, hx désigne le poids conforme de Sugawara
[42] associé à la représentation V*. L'espace VA0) est stable sous l'action des p\(Jô) qui forment une
algèbre de Lie isomorphe à g. C'est une représentation de g de plus haut poids A. Soit g h©n+©n_
une décomposition de g en une algèbre de Cartan et deux algèbres de Borei, on note |A) un vecteur
de plus haut poids du g-module VJ; et \{q,a},X) l'état p\(Y[, Jl\, )\X). Ces vecteurs forment une
famille génératrice du g(1'-module Va.

Considérons alors (Xp,{q,a}\<f>("\l)(\Xi) ® \Xj)) et utilisons 5.25, ce qui nous donne

(5.27) (Ap,{î,fl}|^(*)(|A,>® |A;-)) 22>(AP|<^>(1)(|A,-) ® Px(J^ JS")\X})

De plus, ^"^(z) induit sur V^y ® V[0) un opérateur d'entrelacement pour l'action de g lorsque l'on

projette sur Vx0' (A0,z( J£) J% ® 1 + 1 ® J^ n'est autre que le coproduit usuel sur g) et de plus

si \y) G V{°} et \x) G Vx°> et \z) G VA°> alors

(z\^\z)(\x) ® \y)) zh>-h'-h>(z\4a)(l)(\x) ® \y))

ce qui montre que
(AP,{9,«}|<£W(1)(|A,.)®|A;.))

ne dépend que des éléments de matrice de l'opérateur d'entrelacement induit par </>^ entre les

représentations VXi' ® Vx° et VJ; On montre qu'il en est de même pour les éléments de matrice

(X0>'\l)(\{q,a.},Xp)®\Xk)).

De même en ce qui concerne la forme contragédiente: elle est entièrement déterminée par la forme
analogue sur la représentation de dimension finie. On peut alors invoquer les résultats de Chevalley
et Serre [34, Section 25.2] qui montrent, l'existence d'une base de g dans laquelle les constantes
de structure sont des rationnels. Dans [34] est expliqué comment construire une base de Chevalley

pour g. Mais au paragraphe 25.4 est expliqué que la structure d'algèbre de Lie sur Z déduite de la
base de Chevalley choisie est en fait, indépendante de cette base. Nous la notons ga-
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Soit maintenant K une forme de Killing sur g, elle vérifie

V(x, y, z) € g3, K([x, y],z) + K(y, [x, z]) 0

et donc, si il existe une base de g dans laquelle les constantes de structures sont rationnelles, il
existe un choix de forme de Killing rationnel au sens suivant36: si (ea)a est la base en question,

V(a,/3), K(ea,eß)eQ.

C'est une forme de Killing sur la Z-algèbre de Lie gz.

Les relations de commutation de l'algèbre affine, extension centrale de C[t,i-1] ®cg par C sont

[tn ®x,tm®y] tn+m ® [x, y] + H„,_mK(x, y)

où A est une forme de Killing sur g. Donc, si k est rationnel, il existe une base de l'algèbre affine dans

laquelle les constantes de structure de g'1' sont rationnelles. Il s'en suit que la forme contragédiente
pour l'algèbre affine, évaluée dans la représentation V* associée au poids A, est proportionnelle à

une matrice rationnelle.

En ce qui concerne les opérateurs d'entrelacement, nous procédons de même. Tout d'abord,
considérons V une représentation de g de dimension finie sur C. D'après [34, §27.1], il existe dans

V une base pour la structure de C-espace vectoriel qui est stable sous l'action de ìli, algèbre
enveloppante sur Z de la Z-algèbre de Lie g^. En conséquence, soit 2$ï> une de ces bases, Vq

Vect^SS-p) définit une Q-structure sur V qui est stable sous l'action de l'algèbre enveloppante il%.
De ce fait, chaque pv(x) pour x G g<j est un endomorphisme Q-rationnel de (V, V<j) au sens de [8,

Chapitre 2, §8, déf. 3] et donc sa matrice dans la base fBT> est à coefficients rationnels.

Un opérateur d'entrelacement u entre les représentations V et V de g est une application
linéaire ip telle que

(5.28) V(x, u) G g x V, <p(pv(x). u) pv>(x). <p(u)

Choisissons alors les bases 23p et 2$^/ comme précédemment, l'équation 5.28 devient un système
linéaire à coefficients dans Q. L'espace vectoriel des solutions sur Q a la même dimension que
l'espace vectoriel des solutions sur C. Nous pouvons donc choisir des Q-structures sur les espaces
d'opérateurs d'entrelacement entre représentations de g. En conséquence, on peut travailler sur le

corps des rationnels pour la théorie des modules de plus haut poids et de dimension finie pour g.

Finalement, en combinant ce dernier résultat et 5.27, il existe une base de l'espace des opérateurs
de vertex chiraux entre Va, ® VXj et Va, telle que (Xp, {q, a}\<p<-a\l)\(\Xi) ® \Xj)) soit rationnel

pour tout descendant \Xp,{q,a}) de |AP). Le même type de raisonnement montre la rationalité
de (A/|^')(l)(|Ap,{ç,a}) ® |A,)). En conséquence, les blocs conformes sur la sphère avec quatre
points marqués des modèles de Wess-Zumino-Witten associés à une algèbre de Lie semi-simple et
de dimension finie (sur C) vérifient les hypothèses voulues sur les développement de Puiseux des

blocs.

6Explicitons l'argument: l'équation d'invariance de la forme de Killing s'écrit ^2d{fa,b Kd>c -r fa.c Kb,d) 0

pour tout (a, b, c). Les fa,bc sont les constantes de structures de l'algèbre de Lie considérée. C'est un système linéaire
homogène à coefficients rationnels que l'on résout sur le corps Q et qui possède des solutions car le rang est indépendant
du corps de base.
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5.3.2 Hypothèses d'algébricité

Dans cette section, nous allons discuter les hypothèses d'algébricité des coefficients des matrices
de Moore et Seiberg. Nous nous intéresserons au cas de la matrice F, puis au cas de la matrice S
via la question de l'algébricité des caractères sur le tore sans point marqué.

Sur l'algébricité des éléments de matrice F Dans ce paragraphe, nous allons discuter
brièvement les problèmes liés à l'algébricité des coefficients de la matrice F de Moore et Seiberg. Nous
discuterons également la forme et l'origine des coefficients Aa et Ab qui apparaissent dans l'équation
5.11.

Deux faits "expérimentaux" se sont imposés dans l'étude des théories conformes rationnelles et
des équations de Moore et Seiberg:

- A règles de fusion fixées, les solutions des équations de Moore et Seiberg associées à ces règles
fournissent une matrice F qui est toujours jaugeable à une matrice à coefficients algébriques.

- A partir d'une théorie conforme rationnelle, l'étude des monodromies des blocs sur la sphère
avec quatre points marqués fournit une matrice F jaugeable à une matrice à coefficients
algébriques.

Il est tentant de conjecturer que ces faits sont un phénomène général pour toute théorie conforme
rationnelle. Toutefois, aucun embryon de preuve n'existe à l'heure actuelle. Nous allons rappeler,
sans rentrer dans le détail, quel est l'état de l'art sur l'exemple des modèles minimaux.

Dans le cas des modèles minimaux de Belavin, Polyakov et Zamolodchikov [4], un certain nombre
de résultats sont connus. Les blocs sur la sphère avec quatre points marqués faisant intervenir un des

deux champs primaires cj>X2 ou cj>21 (avec les notations de [4]) vérifient des équations différentielles
d'ordre deux qui se ramènent, après une transformation adéquate, à des équations de Riemann-
Papperitz [26]. Dans ce cas, nous savons associer à chaque point base à la Deligne 1^ (avec (i,j) G

{0,1, oo}2 distincts) une base de solutions de l'équation différentielle qui fournit naturellement des

développements de Puiseux de la forme

(%)r£«^)(%)n

où les coefficients aajb(n) sont rationnels ainsi que l'exposant r. Le calcul des éléments de matrice
de F relativement à ces bases remonte au siècle dernier (voir [26]). Toutefois, dans cette base, la
matrice F n'est pas toujours à coefficients algébriques. Mais on montre qu'un simple changement
de base de la forme

(5.29) rtf ^ a;1 AZ1 rif
permet de jauger la matrice F a une matrice à coefficients clans Q. Ceci montre, d'une part que le

développement de Puiseux de ces blocs est de la forme 5.11, et d'autre part que dans cette base, la
matrice F est à coefficients algébriques.

L'extension de cette étude aux autres blocs se trouve en partie dans le travail de Cremmer,
Gervais et Roussel [12]. Ces auteurs y étudient les blocs formés par quatre champs de type çAi,r,
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et montrent que la matrice F est jaugeable à une matrice dont les coefficients sont les symboles 6j
du groupe quantique il,(sl(2)) où le paramètre q est une racine de l'unité. Vu l'expression de ces

symboles en termes de q, la matrice F est jaugeable à une matrice à coefficients algébriques. La
démarche suivie par ces auteurs procède par étapes:

- Us calculent la matrice F dans le cas où un des quatre champs primaires intervenant dans le

bloc est <412.

- Par récurrence, ils montrent comment déterminer les coefficients Aa pour tout indice de vertex
a.

- En utilisant l'équation pentagonale 3.26 vérifiée par F et par les symboles 6j, ils montrent
que F est jaugée aux symboles 6j par les coefficients précédemment mentionnés.

L'avantage de cette méthode est qu'elle ne nécessite pas la détermination d'une base de solutions
des équations de Belavin, Polyakov et Zamolodchikov pour chaque quadruplet de champs primaires
possible. Toutefois, il serait intéressant d'étudier de plus près les développements de Puiseux des

blocs et de considérer le cas à cinq points marqués37 afin de souligner la relation entre l'étude des

théories conformes et l'approche d'Ihara. On peut aussi se demander dans quels cas les blocs sur
la sphère avec quatre points marqués sont des fonctions algébriques du birapport des quatre points
d'insertion. Cette question n'a pas été beaucoup étudiée dans la littérature. Nous espérons y revenir
ultérieurement.

Sur l'algébricité des caractères Nous rappelons ici l'état de l'art concernant l'algébricité des

caractères des théories rationnelles en genre un sans point marqué. La conjecture principale, qui
remonte à la fin des années 80, et qui a été formulée précisément par plusieurs auteurs peut s'énoncer
ainsi:

Conjecture 1 Les caractères d'une théorie conforme rationnelle sont des fonctions algébriques du

paramètre de Picard X.

Comme l'invariant j est une fonction rationnelle du paramètre de Picard A, il revient au même
de dire que les caractères sont des fonctions algébriques de j. Cette conjecture est équivalente à la
suivante: -

Conjecture 2 Le groupe modulaire SL2(ï) agit sur les caractères au travers d'un de ses quotients
d'ordre fini.

En effet, soit p : SL2(Z) —> %10 la représentation de SL2(%) fournie par les caractères, notons
rp son noyau. Introduisons Tp(2) Tp n T(2) qui est un sous-groupe distingué du sous-groupe
principal de congruence de niveau deux de SL2(Z), noté T(2). Les caractères sont des fonctions
holomorphes sur le quotient du demi-plan de Poincaré par rp(2). Comme Tp(2) est un groupe

Il s'agit alors de développements à deux variables.
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distingué d'indice fini dans T(2), H/Tp(2) Xp est une surface de Riemann compacte38. De plus,
si à la classe de r G H modulo Tp(2), on associe sa classe modulo T(2), on définit une application

holomorphe ß : Xp —> Pi(C) ~ f)/r(2) qui ramifie seulement au dessus de {0,1, oo}. En conclusion,
chaque caractère est une fonction méromorphe sur une surface de Riemann compacte qui, de plus,
est définie sur Q.

Rappelons au passage que, dans le cas des modèles minimaux de BPZ, le sous-groupe Tp est

un sous-groupe de congruence de SL2(Z). Il en est de même dans les modèles de WZW associés

au groupe SU(N) pour toutes valeurs du niveau et pour les théories de type Z/AZ pour tout
A G N*. Nous ne savons pas si cela est une caractéristique générale des théories rationnelles. Plus

généralement, il serait intéressant de caractériser quels sous-groupes de SL2(Z) peuvent apparaître
comme noyau de la représentation p associée à une théorie conforme rationnelle.

Pour finir, comme l'a fait remarquer M. Kontsevich, cette conjecture est étroitement reliée à

une conjecture plus générale de Grothendieck sur les systèmes d'équations différentielles linéaires
de la forme

du
(5.30) ^ A(z).u(z)

où A(X) est une matrice carrée à coefficients dans Q(A). Cette conjecture permet, si elle est

vraie, de décider si un système d'équations différentielles de la forme précédente admet une base

de solutions algébriques. Dans le cas des théories conformes, les équations en question sont, par
exemple, les équations différentielles d'Eguchi et Ooguri [25] exprimées dans le paramètre de Picard
A. Le critère utilisé fait intervenir les différentes réduites du système d'équations différentielles
modulo chaque nombre premier [38]. A notre connaissance, l'analyse de ces réduites dans le cas des

équations différentielles issues de théories conformes n'a jamais été abordée aussi bien dans le cas

du tore (g,n) (1,1) que dans le cas de la sphère avec quatre points marqués (g,n) (0,4)! Nous

renvoyons le lecteur intéressé à [1] et [38] pour plus de détails.

5.4 Action sur les théories topologiques déduites des solutions des équations
de Moore et Seiberg.

Nous allons maintenant déduire des considérations précédentes une action du groupe de Galois

sur les théories topologiques. Un élément a de Gal(Q/Q) transforme une solution S des équations
de Moore et Seiberg en une autre solution o. S des équations de Moore et Seiberg. Pour chaque
solution des équations de Moore et Seiberg, on sait associer à chaque M G homiu,,, (0,0) un nombre

Z[M] algébrique sur Q. Comme la procédure de construction ne fait appel qu'à des additions et

multiplications, nous avons:

(5.31) VMGhomMa5I(0,0), c(Zs[M\) Z„S[M]

Ceci décrit l'action du groupe de Galois au niveau des fonctions de partition. Remarquons que le

groupe de Galois relie des invariants numériques différents.

Dans ce qui va suivre, nous allons décrire quelles sont les données minimales utilisées pour
le calcul des fonctions de partition. Puis, nous discuterons l'extension de ces idées au cas des

L'ouvrage de Shimura [62] explique comment traiter les "cusps" et les éventuels points fixes sous l'action du

sous-groupe rp(2).
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théories topologiques déduites des solutions des équations de Moore et Seiberg. Il apparaît alors
une difficulté, qui provient sans aucun doute d'une formulation un peu inadaptée et qui est liée à

une ambiguïté liée au choix de la Q-structure dans les espaces HN - A G Ob(Ma3pl) - pour ces

théories de champs.

En effet, dans ces théories tridimensionnelles, on définit les Q-structures par le choix d'une
base dans chaque HSt„. Bien entendu, ces bases sont associées à des graphes trivalents munis
de framing, plongés dans des tores pleins et la principale subtilité provient que différents graphes
ne définissent pas la même Q-structure sur Hgn. Toutefois, toutes ces Q-structures sont Q-équivalentes
et "compatibles" au travers de l'action de Gal(Q/Q) comme on va le voir.

5.4.1 Quelles sont les données minimales pour définir une théorie topologique tridi¬
mensionnelle.

Tout d'abord, il est important de déterminer quelles sont les données minimales qui sont utiles
pour définir une théorie tridimensionnelle selon la prescription donnée dans [15]. En fait, il suffit
de connaître

(5.32) V F Ü(±) (JsJJsPj exp(27Ti^)

pour calculer toutes les fonctions de partition39 dans la théorie topologique. Nous noterons Ks
l'extension normale de Q engendrée par ces données dans le cas d'une solution S des équations de
Moore et Seiberg. Une question importante, mais non résolue, est de savoir quels corps de nombres
sont obtenus de cette manière.

Données nécessaires En effet, nous savons que si [M, A] est une variété sans bords se déduisant
de [S3, K] par chirurgie le long de l'entrelac L, alors,

(5.33) Z[M, A] exp (-2™^) £ (JJ SCA Z[S3, LC,K]

où, contrairement à [15], je suppose que L est muni de son framing originel et non du framing
zéro. Ceci montre qu'il suffit de savoir quelles données minimales servent à calculer les fonctions de

partition dans S3.

Soit A' un graphe trivalent colorié, muni d'un framing et plongé dans 53, nous coupons [S3, K]
[S3, A'JJISa, A'2] par une sphère avec n points marqués. Les couleurs des lignes coupées par cette
sphère sont (jx,... ,j„). Nous avons alors:

(5.34) Z[S3, A] T ^3'^.?53'^1 x (n |V
l'2

c S» \i=i V',
Cette formule est à la base de la méthode de la matrice de transfert pour le calcul de Z[S3, K].

On choisit une fonction de Morse pour [S3, K] (au sens de [16, Section 6.2.2]). Nous supposons
que le framing est normal au plan de projection choisi pour K. De toutes façon, changer de framing

Ce sont les scalaires Z[M] pour tout M € honiMa3 ,(9,9).
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ne fait qu'introduire des facteurs exp(2irihj). Alors, en utilisant plusieurs fois 5.34 on montre que
Z[S3, K]/So° se calcule en fonction des S0> /S0° et des fonctions de partitions de S3 décorée par un
des graphes suivants40:

Pour les deux graphes de droite, nous nous ramenons facilement, en coupant le long de sphères avec
deux points marqués, aux fonctions de partition

Z[S3, ] et Z[S3,

ainsi que la fonction de partition correspondant à B(-), multipliées par un produit de (S0'/S0°)1/2.
En termes des données de Moore et Seiberg, les fonctions de partitions ci-dessus valent:

n s«*'
* 1,...,4

V Bp,,(+)
c d
a b

et

n ^
V -A„

c d

a b

En conséquence, les données minimales sont bien celles de la Uste 5.32 car B(±) s'exprime en
fonction de F et de il(±) et les exp (2xi/i,) se calculent en fonction de n(+), tout simplement en

mettant une des pattes à zéro.

Finalement, il ressort de ces considérations que les données minimales pour le calcul des fonctions
de partition sont bien données par la liste 5.32. Nous allons maintenant examiner l'action du groupe
de Galois au niveau de la théorie topologique tridimensionnelle, et les problèmes liés au choix des

Q-structures sur les espaces Hgn.

Corps engendrés par les données de Moore et Seiberg Les nombres exp (2iric/8) et

exp(2wihj) sont clairement inclus dans un corps cyclotomique. Comme nous l'avons déjà signalé,

on sait également dire des choses sur le corps engendré par les éléments de matrice de S. En
particulier, le corps engendré par les éléments de matrice de S ainsi que celui engendré par les A^

sont inclus dans un corps cyclotomique. De plus, A. Coste m'a informé de la possibilité de calculer

explicitement et en toute généralité l'action d'un élément a G Gal(Q/Q) sur la matrice S. De

manière précise, on montre que [11]:

Proposition 11 Le corps M Q((5,,J)ij) est une extension normale de Q, au plus quadratique

par rapport à L Q((A;- ),-,;•). De plus, pour tout a G Gal(M/Q), il existe a G 6/ et i i-+ e„(i) ±1
tels que

(5.35) V(i,i)G/2, <7(Sj) e.U)Si "U) £v(i)S„(i)3

Par soucis de lisibilité le coloriage n'apparaît pas sur la figure. Enfin, nous omettons le graphe obtenu en tressant
les deux lignes "dans l'autre sens" mais il doit être considéré.
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et qui vérifient o(k) o(k) et e„(k) £„(k).

Signalons que ce résultat provient essentiellement du fait que les sous-espaces propres communs
aux matrices A; (Nijk)jik sont des droites. Nous donnons ici une preuve de la proposition 11 qui
met l'accent sur ce point ainsi que sur les relations vérifiées par Set C.

Preuve: Notons A; la matrice dont les coefficients sont les Nitjk. Introduisons également A, la
matrice diagonale dont la valeur propre d'indice j est A- Si'/Sa'¦ La formule de Verlinde, qui
est une conséquence des équations de Moore et Seiberg [52]

C.n on c k

(5.36) ^/ E Cn

se traduit par

(5.37) A, 5 A, S'1

Soit M une matrice carrée à coefficients dans Q, et a G Gal(Q/Q), on note a(M) la matrice obtenue
en faisant agir ct sur chaque coefficient.

Remarquons que cr(Ai) est encore diagonale. Elle possède le même ensemble de valeurs propres
que A<: ce sont les racines du polynôme caractéristique de Aj qui sont simplement permutées par
o. En appliquant o aux deux membres de 5.37, nous trouvons:

(5.38) A, o(S)o(Ai)o(S)-1

En conséquence, a(S) diagonalise simultanément toutes les matrices Aj. Utilisons alors le Lemme
suivant [14]:

Lemme 2 Tout sous espace propre commun à toutes les matrices Ni est une droite.

En conséquence, il existe a G 6/ et i >-* £„(i) G C* tels que:

(5.39) V(i,j)G/2, o(SJ) ea(j)Si°(»

La symétrie de S entraîne que:

(5.40) V(i, j) G I2, ea(j)Si°M £,(i)S„(0'

Il reste à montrer que Ea(j) ±1. Pour cela, nous allons utiliser les relations modulaires vérifiées

par S et C:

(5.41) S2 C

(5.42) SC CS S'

En appliquant a aux deux membres de 5.41, nous obtenons

(5.43) V(i,j)G/2, e,(i)e,(fc)*.<o*55==««1
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et donc

\o(k) a(k)
(5.44)

[e,(k)s,(k) 1

Appliquons maintenant o aux deux membres de SC 5*, il vient

\cr((S,>y) o(Si>) e<T(i)S^

Utilisons manitenant SC CS et ct(Î) c(ï), nous obtenons £„(£) e„(k) pour tout k € I.
Comme ec(k)ea(k) 1, nous en déduisons que pour tout k Ç, I, ec(k) — ±1.

Ceci conclut la preuve de l'existence de o G S/ et i t-+ £„(i) ±1 tels que

(5.46) V(i,j) G P, ct(SJ) e„(j)S^ e.(t)W

La formule 5.46 montre immédiatement que M est une extension normale de Q car elle est

globalement stable par tout élément de Gal(Q/Q). Soient a et a' deux éléments de Gal(M/Q),
nous avons

aa'(Si') £„(i)tAJ) S,(if'(i) cr'o(S^)

et donc le groupe de Galois Gal(M/Q) est abélien. En conséquence41, M est inclus dans une extension

cyclotomique de Q. D

Nous pouvons maintenant comparer les groupes TM Gal(M/Q) et TL Gal(i/Q). Les corps
M et i sont reliés très simplement: comme

(5.47) SJ So" X^ X\0)

nous voyons que M Q(£,50°). De plus, nous savons que

(5.48) £(s„')2 (s0°y (l>r)2) i

Ceci montre que M coïncide avec L ou bien en est une extension quadratique. Deux cas sont à

distinguer:

- Lorsque So0 e L, alors M L et TL TK.

- Si S0° $. L, le degré de M par rapport à i est exactement deux. Nous avons une suite exacte

(5.49) 1 —4 Gal(M/i) —- TM —> TL - 1

({±1},X)

car M est une extension normale de L.

C'est l'argument de De Boer et Goeree.
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En revanche, dire quelque chose à priori sur les éléments de matrice F ne semble pas évident.
Dans les exemples que nous connaissons, on peut, par une transformation de jauge, se ramener
au cas ou les coefficients F appartiennent, à un corps cyclotomique. Nous n'avons pas à ce jour
d'explication conceptuelle de ce fait, ni même de preuve générale s'appuyant sur les équations de

Moore et Seiberg comme nous venons de le faire pour S.

Il serait intéressant de pouvoir répondre à cette question: que dire du corps Kg pour une
solution S des équations de Moore et Seiberg. Est-ce que les données de Moore et Seiberg voient la
partie "non-abélienne" de Q (i.e. celle qui n'est pas incluse dans Qab)? Peut-être qu'une meilleure
compréhension de la relation entre la géométrie des espaces des modules des sphères avec cinq
points marqués, et la géométrie de l'espace des courbes elliptiques avec deux points marqués et une
décoration adéquate permettrait d'avancer sur ces questions.

5.4.2 Ambiguïté dans le choix des Q-structures sur les espaces Hgn.

Nous considérons une théorie topologique déduite d'une solution des équations de Moore et

Seiberg au sens de [15]. Je noterai Su la liste 5.32 relative à cette solution.

Soit (g,n) un couple d'entiers, nous avons introduit pour chaque graphe MS dans %)g,n(7gin)

une base Q5S. Les vecteurs de cette base s'obtiennent également en appliquant cj> à des tores pleins
standard dont le 1-squelette est le graphe MS considéré. Nous écrivons QSg (\Tg,Gc))c qui est

orthogonale mais non orthonormée42[66]:

IT S *k

(5-50) (Tg,Gc\Tg,Gc) sicun ^oy-^n/2)

et nous Porthonormalisons par

\Tg,Gc)
(5.51) |(7,C>

\T„Qc

Cette nouvelle base sera notée QSC. Le choix de Q3S détermine une Q-structure sur Hgn. Changer
G change la Q-structure.

Précisément, si G' désigne un autre graphe, nous savons qu'il existe une matrice de changement
de baseP(G,G'):

(5.52) \G,C) YIP(S,G')\G',C)
c

est La formule 5.51 montre que la matrice P(G,G') est également la matrice de changement de

base entre QSg et 2$s.. En conséquence, ses éléments de matrice sont dans le corps Ksa. Avec nos
hypothèses, cela entraîne que P(G,G') G M<nm(H,,.)(Q)- Sur chaque Hgn, nous disposons donc
d'une Q-structure naturelle et de plusieurs Q-structures.

Nous avons vu en section 2.3 une action naturelle de Gal(Q/Q) sur les théories topologiques
à valeurs dans une catégorie de Q, munies de Q structures compatibles au vide, au dual et aux
produits tensoriels. Nous aimerions pouvoir dire que l'action de Galois sur les solutions des équations

2h, ¦ ¦ ¦ ,jn désignent les couleurs des pattes externes de Çc ¦
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de Moore et Seiberg décrite dans les sous-sections précédentes induit cette action naturelle sur la
théorie topologique tridimensionnelle. Toutefois, l'ambiguïté dans le choix des Q structures sur les

différents espaces Hgn montre que nous ne pouvons procéder aussi directement.

Nous aimerions ne pas avoir cette ambiguïté de Q-structure à discuter. Pour le moment, je n'ai
pas trouvé de formulation qui me convienne mais nous allons donner un angle d'attaque possible
de ces problèmes. Bien entendu, ce qui va suivre est n'est encore qu'une ébauche.

Pour aller plus loin, on aurait envie de privilégier une stratégie où l'on considère qu'à chaque
graphe G est associé un espace vectoriel, et que, pour des graphes distincts, ces espaces vectoriels
sont distincts mais isomorphes. En passant, on remarque que cette remarque va dans le sens des

idées de Grothendieck. En effet, si on se souvient qu'un groupe est une catégorie avec un seul

objet, une représentation linéaire du groupe est un foncteur de cette catégorie dans la catégorie
des espaces vectoriels. L'image de l'unique objet de la catégorie groupe est alors l'espace vectoriel
sous-jacent à la représentation. Dans le cas du groupoïde, nous avons plusieurs objets! Si on appelle
représentation linéaire du groupoïde, un foncteur à valeurs dans la catégorie des espaces vectoriels
(sur un corps de base donné), nous ne pouvons plus parler d'un unique espace vectoriel sous-jacent.
D y en a un pour chaque objet du groupoïde... Si les différents graphes G sont reliés aux différents
points base "à la Deligne" d'une des variantes de la Tour de Teichmiiller (qui correspond aux
découpes en pantalons), alors il y a lieu de définir un espace vectoriel pour chacun de ces graphes.
Comme j'estime que ce que je sais sur ce point n'est pas encore satisfaisant, je n'en dirai pas plus.

Ceci suggère qu'il serait sans doute plus naturel d'utiliser une version des théories topologiques
tridimensionnelles dans laquelle on associe un espace des états non pas seulement à un objet de

Ma3i mais à une surface munie de structures supplémentaires de sorte que les matrices de changement

de base apparaissent comme des matrices d'isomorphismes entre espaces vectoriels différents
et non des matrices de changement de base dans un même espace vectoriel. Nous pensons cependant

qu'une réflexion plus approfondie sur la Tour de Teichmiiller est nécessaire afin de pouvoir
introduire la notion de théorie topologique la plus naturelle dans ce cadre.

6 Conclusion

6.1 Comparaison avec d'autres travaux

La construction que nous avons donné des théories topologiques tridimensionnelles à partir des

solutions des équations de Moore et Seiberg recoupe un certain nombre de travaux déjà existants.
Toutefois, et à notre grand regret, un dictionnaire complet et précis entre les principaux d'entre
eux n'existe pas encore. Le principal obstacle, du point de vue "Moore et Seibergien" que nous
avons adopté, provient de la difficulté à résoudre ces équations. La méthode la plus "naturelle"
pour attaquer ce problème, qui a été suggérée par Moore et Seiberg eux-mêmes [55], consiste à se

donner les règles de fusion et à calculer les différentes matrices F, Sl(±), S et T.

Force est de constater que, même dans le cas des modèles de WZW associés au groupe 5(7(2)
au niveau k, ce programme n'a pas été mené à terme! Les travaux dont nous avons eu connaissance
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sont les suivants:

- Dans [53], les auteurs détaillent la résolution des équations dans quelques cas à petit nombre
d'indices de couleurs, ainsi que dans le cas de règles de fusion "de type groupe abélien". En
collaboration avec A. Buhot et D. Carpentier et L. Gallot, nous avons redérivé ces résultats
(à quelques signes près...).

- Dans [20], on montre comment obtenir les matrices S et T ainsi que les règles de fusion
qui correspondent aux orbifolds des théories conformes holomorphes. Plus tard, Dijkgraaf,
Pasquier et Roche ont construit une quasi-algèbre de Hopf dont la théorie des représentations
fournit précisément les mêmes règles de fusion. En principe, il est donc possible de calculer
les matrices de Moore et Seiberg correspondantes. La construction de théories topologiques
tridimensionnelles, à la Reshetikhin-Turaev a été effectuée dans ce cas par Altschüler et Coste
[13]. Toutefois, la détermination explicite des matrices de Moore et Seiberg n'a pas été faite,
hormis le cas des matrices S et T.

- Dans [14], on calcule les matrices S et T à partir de règles de fusion de type groupe abélien.
Dans le cas où les règles de fusion obtenues dans [20] sont de "type groupe" associées à un

groupe cyclique, nous avons explicité la correspondance entre les résultats de [14] et [20]

(voir [16, Chapitre 4]). De plus, dans ce cas, la construction d'Altschüler et Coste fournit des

représentations non projectives des groupes modulaires, ce qui est compatible d'une part avec
le fait que c 0 (mod 8) dans les orbifolds de théories holomorphes [20], et d'autre part avec
le fait que le cocycle que nous avons obtenu est une puissance entière de exp (27ric/8).

- Dans leur étude des modèles minimaux [12], Cremmer, Gervais et Roussel ont calculé les

éléments de matrice de F. Leur méthode est basée sur l'étude de la monodromie de certains
blocs conformes et l'utilisation de l'équation pentagonale pour déterminer de proche en proche
les différents éléments de matrice.

Signalons également que l'action de Galois sur les fonctions de partition de variétés
tridimensionnelles orientées, compactes, sans bords et sans décoration dans les théories avec règles de fusion
de type Z/AZ a été étudiée dans [9]. Le lecteur y trouvera une illustration concrète des idées
développées ici. Le nombre d'orbites de telles fonctions de partitions sous l'action de Galois est de deux

(respectivement une) quand N 0,1 (mod 4) (respectivement A 2,3 (mod 4)). Les invariants
obtenus coïncident avec ceux donnés par Kohno dans [43].

6.2 Perspectives

Nous espérons que le lecteur se sera convaincu de la nécessité de fonder le travail de Moore et
Seiberg sur des bases saines. De manière équivalente, il nous semble crucial de donner une bonne
définition de la "Tour de Teichmüller" entrevue par Grothendieck [33, Paragraphe 2]. Ensuite, la
définition et l'étude de représentations de cette Tour apparaît comme naturelle.

Un tel travail permettrait sans doute de clarifier relation entre d'une part les théories
topologiques tridimensionnelles et les équations de Moore et Seiberg, et d'autre part la théorie des

représentations de la Tour. Nous conjecturons en effet qu'une certaine classe - à préciser - de

représentations de la Tour, fournit les solutions des équations de Moore et Seiberg, et donc, des
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théories topologiques tridimensionnelles. A partir de là, les constructions que nous avons présentées

ici pourront sans doute être reformulées d'une manière beaucoup plus précise et élégante. En
particulier, les arbitraires dans la définition des tores pleins standard montrent bien que notre
formalisme n'est pas le plus adapté au problème. De même, on aimerait bien voir le groupe des

permutations sur les n points marqués jouer un rôle plus transparent.

Nous avons également suggéré dans la section 5 pourquoi selon nous, la traduction de l'action de

Gal(Q/Q) sur la Tour n'est autre que l'action naturelle de Galois sur la théorie topologique (celle-ci
étant définie sur Q). Bien sûr, ceci n'est que conjectural mais il serait intéressant de confirmer ce

fait et d'en déduire les conséquences pour la famille des invariants topologiques en dimension trois
déduits des solutions des équations de Moore et Seiberg. L'étude des fonctions de partition dans
les théories Z/AZ que nous avons mentionné plus haut n'est qu'une première étape dans cette
direction. De même, il serait intéressant de comprendre la structure de ces classes d'invariants et
de les comparer aux invariants de Vassiliev.
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