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Abstract. We recall the construction of a three-dimensional projective topological field theory starting from
a solution to Moore and Seiberg equations. The conjectural relation between Moore and Seiberg’s equations
and the second paragraph of the “Esquisse d’un programme” by A. Grothendieck is discussed. Then, following
Grothendieck’s ideas, we suggest how to translate Gal(Q/Q)’s natural action on w?’g(Pl(C) \ {0,1, 00}, ¥)
into an explicit action on a wide class of topological field theories deduced from two-dimensional rational
conformal field theories.

The Introduction is in English and the main text in French.

1 English Introduction

This paper aims at pointing out some relationships between recent developments in Topological
Field Theories, the classification program of Rational Conformal Field Theories and deep ideas
expressed by A. Grothendieck in the “Esquisse d’un Programme” [33].

Our exposition does not pretend to be a definitive and complete mathematical theory since
most of this wonderful story is still to be discovered. We would like to point out why, in our
opinion, there is a deep connection between the world of Rational Conformal Field Theory and

TURA 14-36 du CNRS, associée 4 ’E.N.S. de Lyon, et au L.A.P.P. (IN2P3-CNRS) d’Annecy-le-Vieux



800 Degiovanni

Grothendieck’s one. In the end, the best advice we can give to the reader is to read the wonderful
text by Grothendieck [33] and make up his own mind.

Conformal field theory was originally studied for a systematic description of isotropic universa-
lity classes in two dimensions [4]. A few years after their discovery, it became apparent that these
theories were a prototype for the so-called geometrical quantum field theories [60][3]. A special class
of them, called Rational Conformal Field Theories (RCFT), attracted special attention during the
late eighties. It turned out that RCFTs provided very interesting representations of various modu-
lar groups. This was discovered firstly in genus one [10], and then in genus zero [63]. The important
discovery of Verlinde [64] drew attention to this structure. Moore and Seiberg then produced an
important synthesis of this subject [52][54][53]. In this work, they showed the importance of a
few matrices associated with each Rational conformal field theory. These matrices have to satisfy
polynomial equations, called the Moore and Seiberg’s equations. It must be mentioned that these
matrices can be computed as monodromy matrices of some holomorphic multivalued functions on
moduli space: see [10] for the genus one case and [21][22] for the some examples in genus zero.
In passing, one notices that the Moore and Seiberg matrices represent endomorphisms of spaces
associated with the following values of (g, n):

(0,3) (0,4) (1,1)

and that Moore and Seiberg’s equations involve endomorphisms of spaces associated with

(0,5) (1,2).

Other authors [31][56][28] also discovered independently the same structure but in a completely
different context.

At the same time, Witten discovered from the point of view of Chern-Simons theory, a deep
connection between Moore and Seiberg’s data associated with any RCFT and three-dimensional to-
pological theories [67]. More precisely, Chern-Simons theory associated with a compact, connected,
Lie group G can be “solved”? using Moore and Seiberg’s data associated with the Wess-Zumino-
Witten model based on G. This mapping has been made more precise by many authors, for example
[29][30][18]. It also became clear that Moore and Seiberg’s equations could be obtained from the
requirement of topological invariance [67][55]. In fact, this result can be proved partially: one has
to impose a few hypotheses and to consider only non projective topological field theories. In this
case, only solutions to Moore and Seiberg’s equations with ¢ = 0 (mod 8) can be recovered (see
[16, Chapter 5]). On the other hand, it was expected that one could reconstruct a 3D TFT from
any solution to Moore and Seiberg’s equations. For example, topological invariants were defined
by Kontsevitch in the case of undecorated closed manifolds [45] and also by Crane using Heegaard
decompositions. The latter technique was used also by Kohno [43] with explicit use of some so-
lutions to Moore and Seiberg’s equations coming from the WZW model based on SU(2). It was
shown in [15] how to reconstruct a projective topological field theory from any solution to Moore
and Seiberg’s equations.

In a slightly different context, Reshetikhin and Turaev [57] defined Topological Field Theories
(TFT) using Kirby’s calculus and quantum groups. The quantum group is an example of a modular
Hopf algebra, the representation theory of which provides us with a solution to Moore and Seiberg’s
equations. Other works were also based on the same point of view: [46][49].

2That is to say, any partition function, or any correlation function of any observable can be explicitly computed.
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Besides this already widely spread work, Grothendieck developed between 1981 and 1985 an ex-
tremely ambitious research program summarized in [33]. One of the main proposal of this program
was to develop a new understanding of the absolute Galois group of the field Q (i.e. Gal(Q/Q))
by interpreting it as a group of transformations of an appropriate combinatorial object. The third
paragraph of [33] explains how this group acts on the set of all “children’s drawings” which were
widely discussed during the International Conference on the theory of “Dessins d’enfants” (CIRM,
Luminy, April 1993) organized by L. Schneps. This is a first combinatorial approach to this des-
cription of the Galois group. On the other hand, the second paragraph suggests that one should
consider an important notion, called the Teichmiiller tower. It is formed by the system of all moduli
spaces M, , of Riemann surfaces of any genus and with any number of punctures, together with
a few fundamental operations such as the “sewing of surfaces”, the “forgetting of marked points”
and so on... As explained by Grothendieck, all this structure is reflected on suitable families of
fundamental groupoids (with respects to suitable families of base points).

Two fundamental conjectures appear in [33, Paragraph 2]:

— The reconstruction conjecture: the whole structure of the tower can be reconstructed from
the two first floors (the floors are indexed by 3¢ — 3 + n, which is the complex dimension of
the corresponding moduli space). The first floor provides a “system of generators” and the
second one, a “system of relations”. This gives the following values of (g, n):

Generators : (0,3) (0,4) (1,1)
Relations : (0,5) (1,2)

— The Galois action conjecture: The structure of the tower is rigid enough for Gal(Q/Q) to
act on its profinite completion, preserving all relations between the corresponding profinite
groupoids.

Grothendieck then suggested that one should parametrize each element of the Galois group
by one or several elements of the profinite completion of the free group with two generators?,
subjected to certain relations. It is extremely important to find necessary and sufficient condi-
tions for such elements to arise from the action of the absolute Galois group.

To our knowledge, these results remain conjectural, although some evidence for their validity
exists.

Finally, reading the Esquisse made it clear that there is a deep relationship between Grothen-
dieck’s unpublished work and Rational Conformal Field theory. In fact, this relationship is far
from being established with all the rigor and precision suitable for this subject. The central object
considered by Grothendieck — i.e. the Teichmiiller tower — has, up to now, not been constructed®.
Hence, none of its properties have been proved. Our purpose will be to explain or suggest how this
story should go. A great deal of work will be necessary before this “philosophy” turns into a clean
mathematical theory.

— For us, the starting point was noticing that Grothendieck’s values for (g, n) in his reconstruc-
tion conjecture for the tower were exactly the values relevant in Moore and Seiberg’s work.

3This is nothing but the algebraic fundamental group of P;(C) \ {0, 1,00} with respect to some base point, which
is the moduli space for Riemann surfaces of genus zero with four ordered points on it.

*It is likely that various versions of the notion exist, depending on the framework - algebraic geometry, combina-
torics ... — considered... -
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From this emerged the idea that solutions to Moore and Selberg s equations define projective
representations of the Teichmiiller tower.

My opinion is that Moore and Seiberg’s work needs to be settled on a firmer basis. A possible
way of performing this would be to define the Teichmiiller tower, then study its projective
representations, and produce Moore and Seiberg’s data from such representations. The so
called completeness theorem [53, Appendix B] of Moore and Seiberg should then be the
expression, in representation theory, of the reconstruction conjecture of Grothendieck [33,
Paragraph 2].

Finally, starting from an axiomatic definition of a conformal field theory a la Segal, and
an intrinsic definition — still to be found - of what a chiral algebra is, one should be able,
first to define RCFTs, then to be able to prove that any RCFT should provide a projective
representation of the Teichmiiller tower. All these steps being completed, Moore and Seiberg’s
work could be considered as rigorously based.

— In the “Esquisse d’un programme”, Grothendieck explained that elements of the absolute Ga-
lois group Gal(Q/Q) act as outer automorphisms of the tower itself. We were led to conjecture
the existence of an action of Gal(Q/Q) on solutions to Moore and Seiberg’s equations, or equi-
valently, on three dimensional topological field theories.

Of course, what remains to be done is to explore the consequences of this program for the
study of three-dimensional geometry.

Contents

In the first section, we recall the axiomatic formulation of topological field theory in the spirit
of Atiyah [3], Segal [60][61] and [18]. Our presentation is a refined version of [16, Chapter 1] and
[15] suitable for dealing with other ground fields than C. In a second section, we describe Moore
and Seiberg’s equations. We have tried to present this subject in a more intrinsic way than in the
original papers [53]. Nevertheless, our presentation is far from being satisfactory...

Then, we review the construction of a three-dimensional topological projective field theory [15]
from solutions to Moore and Seiberg’s equations. We’ve put the emphasis on representations of the
modular groups that arise from these topological field theory. The proof of topological invariance
using Kirby’s calculus is also recalled.

The last section is devoted to the action of Gal(Q/Q) on a certain class of topological field
theories. We inform the reader that it requires some familiarity with Conformal Field Theory. As
explained above, we suggest that the translation on 3D TFTs of the action of Gal(Q/Q) discovered
by Grothendieck [33] is nothing other than the number theory action on the matrix elements of
the operators in the 3D TFT. Our reasoning is based on the computation of Moore and Seiberg’s
matrices from conformal blocks in RCFTs. Hence it relies on some hypotheses about these blocks:

— Coefficients of Moore and Seiberg matrices must be, in a suitable gauge, algebraic numbers
(algebraicity hypothesis). This is a consequence of Moore and Seiberg’s equations for S, T,
and (%) matrices but nothing general is known for the F' matrix: the hypothesis can only
be checked during explicit computations.

— Conformal blocks on the four-punctured sphere must have a Puiseux expansion near zero of
a specific form (see page 64, this is the rationality hypothesis). We show that this hypothesis
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is satisfied by minimal models with respect to the Virasoro algebra and by any non twisted
Kac-Moody algebra associated with a finite dimensional simple Lie algebra over C.

Let us mention that since no definition of a chiral algebra is available, we still do not know any
good definition of RCFTs and therefore, we are not able to justify these hypotheses in a general
framework!

Finally, we recall that such a Galois action has been considered in a slightly different context
by Drinfel’d [24]. In his work, Drinfel’d described this Galois action by a pair (A, f) € Z* x F;
satisfying particular conditions®. Equivalent results were also obtained by Y. Ihara in [35]. We
shall make use of IThara’s point of view in section 5 of the present paper. These approaches follow
Grothendieck’s insight of describing elements of the absolute Galois group by outer automorphisms
of the Teichmiiller tower. Since a precise definition of the Teichmiiller tower is still lacking, our
strategy will be to rely on what is conjectured to be its representation theory — that is TFTs in
3D - and to try to translate this Galois action on the tower onto its representations. The surprise
is that our final result is not expressed in terms of a pair (A, f) € Z* x F;. We find instead
the number theory action on matrix elements of operators representing elements of the various
modular groups. An important question is to understand the implications of this phenomenon. In
our opinion, a (good) definition of the Teichmiiller tower is necessary in order to firstly formulate
Grothendieck’s questions in a precise way, and then secondly to understand the connection between
the various approaches.

2 L’axiomatique des théories topologiques.

Nous allons rappeler ici 'axiomatique utilisée pour décrire les théories topologiques. Cette
présentation suit d’assez prés celle qui est donnée dans [16, Chapitre 1] et qui est briévement
rappelée dans [15). Toutefois, afin de pouvoir décrire ’action du groupe de Galois Gal(Q/Q) sur
les théories topologiques, nous avons été amenés a modifier certains points. C’est cette version un
peu améliorée que nous présentons ici. Il s’agit principalement de disposer de la notion de théorie
topologique définie sur un corps K quelconque. Nous avons également étudié comment une théorie
définie sur un corps K pouvait en fait étre définie sur un sous corps k de K. Je me suis inspiré treés
fortement de [8, Chapitre II, §8].

Rappelons qu’une théorie géométrique n’est rien d’autre qu’un foncteur entre une catégorie de
variétés et une catégorie d’espaces vectoriels. Nous commencerons donc par définir les catégories
géométriques utilisées ici, puis nous donnerons la définition d’une théorie topologique & valeurs
dans une catégorie de K-espaces vectoriels. Nous discuterons alors divers problémes de rationalité.
Finalement, nous verrons que si les objets de la catégorie d’espaces vectoriels considérés sont munis
de k-structures — compatibles aux produits tensoriels et au dual en un sens que nous préciserons
— alors, on dispose d’une action naturelle de Gal(K/k) sur la catégorie des théories topologiques
rationnelles basées sur les catégories considérées.

®See equations (4.3), (4.4) and (4.10) of [24]
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2.1 Catégories géométriques.

Je reprends ici les notations du chapitre 1 de [16]. Enfin, je me limiterai aux théories topologiques
et rationnelles. -

Une catégorie est définie par la donnée de ses objets et morphismes [50]. Ici, nous supposerons
que toutes les variétés considérées sont topologiques. En dimension deux et trois, les catégories
topologiques, linéaires par morceaux et différentielles sont équivalentes [41] et c’est pourquoi nous
nous permettrons d’employer des notions différentielles dans la suite de ce texte car nous nous
limiterons a ces dimensions!

2.1.1 Définitions générales.

Les objets de Ma seront des modeles topologiques de variétés de dimension d — 1 orientées, pas
forcément connexes. Le renversement d’orientation est noté N — N. Nous imposons que la variété
vide (qui n’a qu’une orientation) soit un objet.

Suivant Milnor [51, Chapitre 1], nous considérons les triplets (M, ¢, ¢') ot M est une variété dont
le bord est une union disjointe de deux variétés dM;, et IM,y; et ¢ : OMi, — N et ¢’ : IMyy —
N’ sont des difféomorphismes appelés paramétrisations de dM;, et dM,,. Nous supposons que
I'orientation induite par M sur dM,, est envoyée par ¢ sur celle de N, et que ’orientation induite
sur OM,,, est envoyée par ¢' sur ’opposée de celle de N'. N est appelée variété entrante et N’
variété sortante. On dit aussi que M interpole entre N et N'. La donnée d’une paramétrisation du
bord permet de recoller les variétés. Si M, interpole entre N; et N, et M, entre N, et N, alors si
g € Diff (N;), on note M;§, M, le recollé de M, avec M, selon (¢'1)"! o gop,. Dans le cas g = 1y,,
on note f l'opération ainsi définie. Remarquons que la prescription choisie pour les orientations
permet de munir M, §, M, d’une orientation qui est compatible avec celles de M, et M,. Enfin, nous
introduisons: '

Définition 1 Soient M et M’ deux variétés interpolantes entre Ny et No, ¢, o les paramétrisations
des bords N, , de M (respectivement ¢’y » pour N’y ,, bords de M') et f un homéomorphisme de
M sur M'. On dira que f est un isomorphisme entre les variétés interpolantes si et seulement si
on a la compatibilité auz bords (OM, » = @7 3(Ny12)):

P12 = 9’—"1,2 o ftBM,,g-
On notera M ~ M’ si M et M’ sont isomorphes.

Ceci permet de définir la catégorie Ma grace a ses morphismes. Par définition, les morphismes
de N, vers N, sont les classes d’isomorphismes de triplets [M, ¢;, ¢.] interpolants entre N; et N,.
La composition des morphismes est définie grace au recollement § des triplets [M, ¢, ¢,]. On vérifie
que § est bien compatible & la relation d’isomorphisme et on note encore § I’opération ainsi définie.

Il est judicieux de disposer des propriétés suivantes:

— L’union disjointe de deux morphismes est encore un morphisme qui est représenté par ’union
disjointe de deux cobordismes. Si M € hom(N,, N,) et M’ € hom(N'y, N';) alors MU M’ €
hom(N1 U NII,NQ U N’g).
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- Si M € hom(N;,N;) est représenté par [M,p, '], on définit M qui est représenté par
[M, ¢, ¢] oti 'on a renversé 'orientation. C’est encore un morphisme noté M € hom(N,, N;).

2.1.2 Exemples

Nous allons construire explicitement des exemples de telles catégories, adaptés & nos besoins
ultérieurs. Tout d’abord, nous commengons par rappeler quelques définitions combinatoires élé-
mentaires, qui seront également utilisées dans la section 3.

Préliminaires combinatoires Dans la suite, nous noterons I un ensemble fini dont les éléments
sont appelés indices de couleur, vérifiant les propriétés suivantes:

— On se donne une involution 7 — i de I, avec au moins un point fixe noté 0.

— Pour chaque triplet (i,7,k) € I®, on dispose d’un ensemble [,7,k] de cardinal N; ;. Ses
éléments sont appelés indices de vertex et on impose les conditions suivantes:

— Pour chaque permutation o € &y; ; x} de 'ensemble & trois éléments {%, j, k}, on se donne
Ti,j,k) Qui est une bijection de [i, j, k] sur [e(z), (), o(k)]. De plus,

(2.1) V(0,0") € 8Li ik} Tlo(o(i)o®)] © Thijk] = (070,81

De plus, nous supposons qu’il existe a € [i,j,k] — & € [t, ], fc] telle que @ = a.
L’existence de telles applications entraine la symétrie de N; ; x en 1, j et k et I'invariance
par conjugaison simultanée des trois indices: N;;p = N; ;5.
— Nous imposons N,',j'() = 6",]- et

(2.2) SNt Nead =Y Ny N,

Cela permet de définir pour tout graphe trivalent, la notion de coloriage. Rappelons ce que I'on
entend par graphe trivalent orienté:

Définition 2 Un graphe trivalent est la donnée d’un ensemble S - de sommets — et d’un ensemble
A - des arétes orientées — et:

- De deuz applications 0; ; : A — P<1(S), a valeurs dans ’ensemble des parties de S de cardinal
inférieur a un®, telles que, 8;(a) soit vide si et seulement si 9;(a) est vide’. De plus, pour
tout 2 € S, on demande que le cardinal de {a € A, 0;(a) = z} soit égal d trois ou un.

Dans le premier cas, on parle de vertex, et dans le second, de sommet externe. Nous noterons
E Pensemble des sommets externes d’un graphe et V ’ensemble de ses vertez.

8Si le cardinal est zéro, on dit que l'on a une ligne fermée.
" Cela supprime les arétes sans bout.
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- D’une involution sans point firei:a € A— a € A telle que

Ya € A, 6{]}(&) = 61',;((&)

Dans la suite, si s est un vertex du graphe G, nous noterons A, = {a € A, 3J(a) = s}
I’ensemble des arétes orientées qui partent de s. Une circularisation du graphe est la donnée, pour
chaque vertex s, d’une permutation d’ordre trois w, de A,. Enfin, si G = [A, S, 0; ;, 1] est un graphe
orienté, on construit ’ensemble des arétes non orientées de G de la maniere suivante:

Définition 3 Une aréte non orientée est une paire {a,a'} € P2(A) telle que a’ = a. Si A désigne
Vensemble des arétes orientées, = : A — A définie par 7(a) = {a,&} € A, est une surjection de
degré deux eractement.

Enfin, un coloriage d’un graphe trivalent orienté G = [A, S, J; ;,1] n’est autre que:

Définition 4 Soit G = [A, S,0;;,i] un graphe trivalent orienté, un coloriage du graphe G est la
donnée

- D’une application i : A — I telle que i(a) = z(c?) (en clair, changer l'orientation d’une ligne
transforme sa couleur en la conjuguée).

~ Pour chaque vertex v du graphe, et pour chaque ordre total < sur A,, on se donne un
élément ac, € [iy, fy, ky] 0t (4y, Ju, ky) sont les couleurs des trois arétes orientées qui arrivent
- 1.e. 0;a’ = v - en v, prises dans lordre <. Le groupe &, opére sur l’ensemble des ordres
totaux sur A, et soit 0 € &,,, on demande que

Qo gn = Tliyjy k] (C<r)

On appellera coloriage opposé d’un coloriage C de G, le coloriage obtenu en changeant tous les
indices en leurs conjugués. Nous le noterons C.

Considérons maintenant G = [Ag, Sg, 0; 5,1 et G’ = [Agr, Sg/, 0; 4, 1] deux tels graphes. Donnons
nous D une partie non vide de Eg; et j une injection de D dans Eg:. Nous définissons un nouveau
graphe, appelé le recollé de G et G’ selon (D,j) comme suit:

— & est 'union disjointe de Sg \ D et de Sg. \ j(D). Sur I'union disjointe Ag U Ag/, on définit la
relation d’équivalence ~; par: a ~; @’ si et seulement si

a=a
(2.3) ou (dia € D et 0;d' = j(0ia))
ou (0yja € D et 9;a’ = j(0;a))
et alors A = (Ag U Ag/)/ ~;. Notons que i et i’ définissent une involution sans point fixe sur

I’union disjointe de Ag et Ag: compatible & ~;. On en déduit une involution sans points fixe
sur A.
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— Nous définissons d; ; sur A de la maniére suivante:

— Si a € A est une classe de ~; de cardinal un, 9; ;(a) est le 9; ; de son représentant.

— Si @ € A est une classe de ~; de cardinal deux: a = {a;, a2}, et si pour fixer les idées
0;(a,) € DUj(D), alors on pose d;a = 8;a,. Si par contre d;a; € D Uj(D), alors on pose
d;a = 0;a,. De méme, on définit d;a.

Ainsi, nous avons fabriqué un graphe que 'on note Gf(p ;)G'. Munissons G et G’ de coloriages
au sens de la définition 4, ces deux coloriages permettent de définir un coloriage de Gfi(p G’ si et
seulement si:

(2.4) V(G/,ﬂ‘l) € (Ag U Agf), a ~; a = 15 2 ial

Le lecteur vérifiera que Vg, ¢ = Vg U Vg et que l'on dispose bien d’un coloriage des vertex au
sens de la définition 3. Enfin, si § et G’ sont a vertex circularisés, Gi(p ;)G' 'est trivialement.

Catégories Maz; Nous allons maintenant décrire les catégories Maz ; qui serviront a définir les
théories topologiques tridimensionnelles.

Pour tout (g,n) € N?, considérons ¥, , un modéle topologique de surface de genre g avec n
points marqués ordonnés, muni des décorations suivantes:

— A chaque point marqué, on associe une demi-droite dans I’espace tangent a la surface au point
considéré.

~ On se donne une application de ’ensemble des points marqués dans I (coloriage des points
marqués).

Les objets de Maj; sont les unions disjointes finies de telles surfaces décorées.

Afin de définir les morphismes, nous allons employer des cobordismes au sens de Milnor que nous
allons “décorer”. Pour cela, nous définirons la notion de plongement d’un graphe trivalent orienté, a
vertex circularisés, colorié dans une telle variété. Dans le cas tridimensionnel, nous serons conduits
a rajouter une structure supplémentaire appelée le framing. Enfin, nous munirons ’ensemble des
cobordismes au sens de Milnor d’une relation d’équivalence. Les morphismes seront les classes
d’équivalence pour cette relation.

Considérons alors:

— Une variété tridimensionnelle M dont le bord est difféomorphe & N, U N,. Nous distinguons
dans M deux composantes dM;, ~ N, et dM,,, ~ N, que nous appellerons entrantes et
sortantes.

— Deux difféomorphismes ¢, (respectivement ) de dM;, (respectivement 8 M,,.) vers N; (res-
pectivement N,).
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— Une orientation O sur M telle que, si Oy, , désignent les orientations de N, ,, ¢, , assure
la compatibilité entre ’orientation induite par Oy au bord et Oy, ,:

(2.5) 1 € Diff+([aMinaoM]) [Nla 0N1])
(2.6) w2 € Diffy ([0 Mo, Oul, [N2, Og,])

— Un plongement d’une graphe trivalent orientés, a vertex circularisés, est défini par:

Définition 5 Soit G un graphe trivalent orienté a sommets circularisés, un plongement de
ce graphe dans [M, (X, ¢i)i] est la donnée de

- Une injection ig : E — OM qui met en bijection E et ’ensemble des points marqués sur
oM.

- Une injection iy : V — M \ (OM).

— Pour chaque aréte orientée a € A qui ne soit pas une ligne fermée, une application
fa :[0,1]> > M qui soit un difféomorphisme de [0,1]? sur f,([0,1]%).

— Pour une aréte a qui est une ligne fermée - 0; ;(a) = 0 - il eziste f, : [0,1] X (R/Z) —
M\ M telle que f,([0,1] x (R/Z)) soit difféomorphe a [0,1] x S;.

qui vérifient les conditions suivantes:

- Pour toute aréte orientée a € A qui ne soit pas une ligne fermée, f, vérifie:

{V(s,t) € [0,1]%, fi(s,t) = fa(s,1—1)

(2.7) £a(0,0) = is(8i(a))  fa(0,1) = is(dy(a))

— Pour toute aréte orientée a qui est une ligne fermée, f, vérifie:
(2.8) V(s,t) € [0,1] x (R/Z), fa(s,—t) = fa(s,t).

— Pour tout vertex v € V, il ezxiste U,, voisinage de is(v) isomorphe a la boule ouverte
unité dans R3, tel que via cet isomorphisme, le plongement soit du type suivant:

De plus, on demande que la permutation cyclique d’ordre trois induite par l’orienta-
tion de M, et (9,f,)(0,0) sur les trois lignes (f,(0,[0,1]) N QU )qaea, coincide avec la
circularisation en w,.

- Soit a € A telle que 0;(a) € E, on impose que (dp)(is(0:a)).((0,£4)(0,0)) soit dans la
demi-droite associée a ¢(is(0;a)).
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~ Pour tout couple (a,a’) d’arétes orientées telles que a # a' et a # a’,on demande que
fa([0,1]x]0,1)) N for([0,1]x]0,1[) = @. C’est la condition de plongement.

- Soit a telle que d;a € (OM )iy, alors la couleur de ’aréte orientée a est celle du point
marqué ¢(is(8;(a))). De méme, si 8;(a) € (OM )ou, la couleur de a n’est autre que celle

de ¢'(is(0(a))). :
Ainsi, & chaque ligne de K, nous associons un ruban comme sur le schéma suivant:
(s,0)=(1,1)

(s,)=(1,0) (s,0=(0,1)

(s,0=(0,0)

Nous dirons que t — f,(0,t) définit le plongement de ’aréte a et que t — f,(1,¢) définit une courbe
parallele & cette aréte (cf [27]). Bien entendu, il existe d’autres maniéres de définir le framing: on
peut par exemple supposer que 1’on se donne le plongement ¢ — ¢,(t) = f,(0,t) de ’aréte orientée,
et qu’en chaque t € [0,1], on dispose d’un vecteur tangent non nul & M en ¢,(t), qui n’est pas
colinéaire & I’espace tangent a ¢,([0,1]) en ¢4(2).

Pour étre complet et aussi pour faire le lien avec d’autres travaux, nous considérons maintenant
le cas du plongement d’un cercle® dans S3, communément appelé un nceud. Dans a la philosophie
ci-dessus, le framing d’un nceud est défini par une courbe paralléle a celui-ci.

Parmi tous les framings possibles et imaginables d’un nceud donné, il en existe un privilégié.
En effet, considérons une surface (de Seifert) qui s’appuie sur le nceud considéré C [39, Chapitre 5],
elle n’est pas unique car on peut lui rajouter une anse; mais en revanche, elle définit, a une isotopie
prés, une unique courbe C’, parallele & C. En conséquence elle fixe completement le framing de
C. Ce framing particulier est appelé le framing canonique ou encore framing zéro du nceud et les
autres framings sont comptés relativement a celui-ci. Lorsque nous dirons qu’un nceud posséde un
framing n € Z, nous sous entendrons toujours que le nombre d’intersection® de C avec sa courbe
parallele C’ est n.

Enfin, choisissons un plan de projection pour notre nceud. Le framing normal relativement a ce
plan de projection est obtenu en utilisant un ruban orthogonal au plan de projection. Cette notion
dépend clairement du plan de projection.

Le recollement de deux cobordismes paramétrés décorés par des graphes trivalents coloriés se
définit naturellement. Considérons [M,(Zy, i )r, Gc, (1s,t4)] €t [M',(Z, @)1, Gery (15,7 4)] deux
tels cobordismes, interpolant respectivement entre O, et O,, puis O; et O3, on définit

[MEM', (Zm, @m)my (GHG Nerer, (ishi's, ialli’a)]

qui interpole entre O; et Q3. On doit utiliser le recollement des graphes coloriés, & vertex circularisés.
L’injection j et le domaine D sont donnés grace i ’application de recollement entre M et M'. La

8Le graphe correspondant est décrit par S =0, A = {a,@}. Ce graphe est colorié par la donnée de ia(a) € I.
°Il s’agit du nombre d’intersection de Gauss. Il ne dépend pas de Porientation de P’aréte car Porientation de la
courbe paralléle C' est définie i partir de celle de C.
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seule complication provient du framing mais grice aux conditions de compatibilité au bord il n’y a
aucun probléme. Finalement, ceci permet de définir le recollement § des cobordismes.

Enfin, nous considérerons deux tels cobordismes paramétrés comme isomorphes si et seulement
si:

— Les cobordismes a la Milnor sont isomorphes.

- Si F € Diff (M, M’) désigne 'isomorphisme en question, alors nous avons G¢ = G'c/, f's =
Fofset f'fa=Fo fas.

Cette définition contient la notion d’isotopie ambiante relative des plongements de graphes
trivalents orientés munis de framings. Les morphismes de la catégorie Mag ; sont par définition les
classes d’isomorphismes de tels cobordismes paramétrés décorés. Le recollement entre cobordismes
est compatible avec la relation d’isomorphisme. Ceci définit la composition des morphismes de
Maj; ;. Les morphismes qui interpolent entre () et () sont les classes de variétés orientées compactes
munies d’un plongement d’un graphe trivalent orienté, colorié et muni d’un framing.

Nous sommes maintenant préts a définir les théories topologiques.

2.2 Théories topologiques définies sur un corps K, et k-structures pour les
théories topologiques.

Dans [8], on trouve la définition d’une k-structure pour un K -espace vectoriel (Page 119, déf.
1). Ceci conduit naturellement & définir la notion de théorie topologique sur un corps K ainsi que
la notion de k-structure pour une théorie des champs définie sur un corps K.

2.2.1 Théorie définie sur un corps K.

Définition 6 Une théorie topologique définie sur une catégorie Ma et d valeurs dans la catégorie
Spk des espaces vectoriels sur le corps K est définie par un foncteur contravariant x de Ma dans
Spx tel que, si on note Hy = ®(N) pour tout N € Ob(Ma),

(2.9) Hy = K

(2.10) Hy = HE

(2.11) Trny (¢[M]) = o[My]

(2.12) Hyun, = Hy, ® Hy,
(2.13) $[My UM, = ¢[M]®xk ¢[M-]

et Hy ne dépend que de la topologie de N.

Une remarque s’impose: on pourrait définir la notion de théorie des champs géométrique mais
pas topologique sur un corps K. Toutefois, je ne crois pas que ’on puisse obtenir des exemples
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intéressants en gardant des catégories Ma “trop grosses”. Je fais allusion au fait que dans les
théories conformes par exemple, ou dans la théorie de Yang-Mills en dimension deux, on peut rendre
certaines fonctions de partition transcendantes en choisissant des variétés sans bords particulieres.
On se souvient par exemple de la fonction de partition de la théorie conforme associée au module
du Moonshine: Z(7) = |j(r) — 744|%. 1l existe un tore de paramétre modulaire T (ce tore n’est pas
défini sur Q!) pour lequel j(7) = 7 4 744 et donc pour lesquels la fonction de partition de cette
théorie prend une valeur transcendante. Le méme phénomeéne se produit dans le cas de la théorie
de Yang-Mills bidimensionnelle & cause du facteur exp (—e2¢’.A/2) qui est en facteur des différents
termes de la fonction de partition de la théorie de Higgs topologique [16, Chapitre 1].

Dans [15] et [16], on imposait au foncteur des conditions supplémentaires. Tout d’abord, le corps
de base était C et chaque objet de Sp était un espace de Hilbert. Enfin, on imposait

(2.14) VM € hompa, ¢[M]= (¢[M])!

Ces relations ne sont pas forcément préservées par l'action de Gal(Q/Q). C’est pour cela que nous
les avons relaxées ici.

Enfin, il existe aussi une version projective de ces axiomes. C’est celle qui nous servira pour les
théories tridimensionnelles. La définition est alors la suivante:

Définition 7 Une théorie topologique projective définie sur une catégorie Ma et a valeurs dans
Spk est définie par ®x de Ma dans Spy tel que

(2.15) M M) = p( My, M) X ¢[M>] 0 [ M, ]

ot pu(M,, M;) € K vérifie la relation dite de cocycle

(2.16) u[ MM, Ma) x p[ My, My] = p[My, My§Ma] X p[ My, Ms]
ainsi que la condition de compatibilité

(2.17) p[My U My, M3 U My] = p[My, M3] x u[M,, M)

Enfin, on impose également les relations 2.9 a4 2.13 et Hy ne dépend que de la topologie de N.

Nous pouvons changer ¢[M] en A[M] x $[M] ot A\[M] est une fonction qui a chaque morphisme
de Ma associe un élément de K non nul. Si on veut préserver la condition de cohérence 2.17, on doit
imposer que A[M; U M;] = A[M;] X A\[M,]. Pour définir une nouvelle théorie topologique projective
a partir de ¢, il suffit de poser

(2.18) ¢'[M] = AM] x 9 M]
pour tout morphisme M de Ma. Le cocycle se transforme selon:

A[M My

(2.19) w My, Ms] = NANDA

/L[Mla M2]

Le lecteur est renvoyé a [16, Chap. 1, Section 5] pour plus d’informations.
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Nous allons maintenant définir & partir d’une théorie a valeurs dans Spx une théorie a valeurs
dans Spy ou L est une extension de K. Alors, pour la partie objet, on pose

(2.20) VN € Ob(Ma), @, (N)=Hnyn®k L

et pour la partie morphisme

(2.21) VM € hompma(Ny, Ny), @ (M) =¢[M]®x 1,

Si je note H'yy = ®(N), alors il est bien clair que H'y,un, = H'n, ®¢ H'n,. En revanche,
Hy=H,®x L=Lxk(Hn,K)®xk L

mais cet espace n’est que plongé dans L1 (Hy®p L, L). Lorsque la dimension est finie, nous pouvons
les identifier. C’est pour cette raison que l’on se limite ici aux théories rationnelles! Alors H'y =
(H'n)*. Les autres propriétés sont triviales a vérifier.

Proposition 1 Si7x = [Ma,Spg, ] est une théorie topologique rationnelle définie sur un corps
K, alors

(222) VN € Ob(Ma) H'N =Hy ®x L
(2.23) VM € hom(Ma)  &[M] = ¢[M]®x 1.

définit une théorie topologique qui est dite obtenue par extension des scalaires de K d L.

On notera T @k L cette nouvelle théorie topologique. La définition des k-structures pour les
TTR permet de faire le chemin inverse.

2.2.2 k-structures pour les théories topologiques.

J'utilise les notations suivantes: (H, H') désigne un K -espace vectoriel H muni d’une k-structure
définie par le sous-k-espace vectoriel H'. Enfin L. ((Hy, H'1);(H,, H',)) désigne I’espace des ap-
plications linéaires k-rationnelles entre les espaces munis de k-structures (Hy, H';) et (H,, H',).
Nous posons:

Définition 8 Soit T = [Ma,Spk, ®x] une théorie topologique rationnelle définie sur K, pour
k C K, une k-structure sur Ty est la donnée d’une k-structure sur chaque espace Hy telle que:

(2.24) Hy = Lgi((Hnv,H'n);(K,k))
(2.25) Hy = k

(2.26) H'nyun, = H'n, @i H'w,

et de plus

(2.27) VM € hompma(Ni, Ny), ¢[M] € Lxr((Hn,, H'n,)i (Hn,, H'N,))
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On notera alors ¢[M] I’application k-linéaire de H'y, dans H'y, qui posséde le méme graphe
que #[M]. Dans ce cas, il est clair qu’avec ®.(N) = H'y, nous définissons 7; = [Ma, Spy, ®:] qui
est une théorie topologique rationnelle définie sur le sous-corps k de I et Tx est obtenue a partir
de T; par extension des scalaires de k 4 K.

On dira aussi que le systéme des k-structures vérifiant les identités 2.24 4 2.26 est compatible
au dual, au vide et au produit tensoriel.

Il existe un critére trés simple pour savoir si une théorie définie sur un corps K peut étre munie
d’une k-structure.

Proposition 2 Supposons que pour chaque N, objet-de Ma, on ait trouvé By une base de Hy,
vérifiant les propriétés suivantes:

(2.28) By = {1g}

(2.29) By = (Bn)" base duale de Kronecker
(2.30) Byuv, = By, @By,

alors, Ty peut étre munie d’une k-structure si et seulement st

(2.31) VM € hompa(Ny, N2), Ms, 8y, € Maim(n,)xdim(n;)(K)

Exactement comme précédemment, on dira que le systéme de bases By est compatible au vide,
au dual et aux produits tensoriels.

Bien entendu, la totalité des résultats énoncés dans Bourbaki se transpose dans ce contexte:

— Il existe une notion de plus petit corps de rationalité: on se donne k C K (voir [8, Chapitre
I1, §6, n° 6])'° et on a:

Proposition 3 Munissons tous les Hy de k-structures compatibles au dual, au vide et auz
produits tensoriels, il eziste alors un plus petit sous corps L tel que k C L C K et tel que
Tk =T @ K

— Nous pouvons donner un critére de rationalité basé sur 'utilisation du commutant d’un sous-
corps de K [8, Chapitre II, §6, n° 7]. Soit .A une partie de End;(K), le commutant de A, noté
L 4 est ’ensemble des éléments = de K tels que

(2.32) Vye K, Vo€ A, ¢(zy) = 2. ¢(y)

Ceci permet de définir ¢y si (H, H’) est un K -espace vectoriel muni d’une k-structure: on
identifie H avec H’' ®; I et on pose

(2.33) Y(z, )€ H x K, @u(z @A) =1® @)

C’est un endomorphisme du Z-module H, ou encore un endomorphisme du k-espace vectoriel
H' ®; K. Alors, le critére de rationalité s’exprime ainsi:

Proposition 4 La théorie Tx admet une L 4-structure si et seulement st

(2.34) VM € homMa(Nl, NQ), V(,O € .A, (,OHN2 [¢] ¢[M] = ¢{M] o) (PHNl

1°La notion de plus petit sous-corps de rationalité n’a de sens que relativement a cette paire
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Si on choisit un systeme de bases (By)nveob(ma) compatible au vide, au dual et aux produits
tensoriels, le critére de rationalité devient:

(2.35) VM € homma(Ny, N2), Vo € A, o(Ms,, 8y, (¢[M]) = My, s, ($[M])

Enfin, le plus intéressant est sans doute ’action des groupes de Galois sur les théories topolo-
giques.

2.3 Action des groupes de Galois sur les théories topologiques rationnelles.

Dans cette section, je vais discuter I’action naturelle de Gal(XK /k) sur les théories topologiques
rationnelles basées sur le corps K et a valeur dans une catégorie de K-espaces vectoriels munis
de k-structures compatibles au vide, au dual et au produit tensoriel. Considérons 7x une théorie
topologique rationnelle & valeurs dans Sp, ® I, catégorie d’espaces vectoriels munis de k-structures
compatibles au vide, au dual et aux produits tensoriels... Alors, soit ¢ € Gal(K/k), et (H, H') une
k-structure sur le K{-espace vectoriel H, ’équation 2.33 permet de définir oy )y € Li(H) qui est
un endomorphisme du k-espace vectoriel H. Je pose donc

VN € Ob(Ma), Ty = 0@ya'n)

qui associe a chaque objet de Ma un isomorphisme de k-espace vectoriel de Hy. Si je définis
maintenant o(®) de la maniére suivante:

— Pour la partie objet: pour tout objet N de Ma, on pose
(2.36) a(®)N)= ®(N)
— Pour la partie morphisme: si M € hompa(N;,"N2), on pose

(2.37) o(®)[M] =Ty, o ®[M] o Ty!

J’obtiens une nouvelle théorie des champs topologique rationnelle sur Ma. En effet, remarquons
que les propriétés imposées aux espaces Hy restent vraies. Notons ¢[M|] l'application k-linéaire
Tn, o $[M] o Tx!. Examinons les propriétés que doivent vérifier les opérateurs ¢[M]:

~ ¢[M] est K-linéaire: en effet, c’est un morphisme pour I'addition mais si z € Hy,, A € K,
alors comme og(A.z) = o(A). z, et comme ¢[M] est K-linéaire, le résultat est immédiat.

— $[MtM,] = $[M,]) o $[M,] tout simplement en intercalant of' o 0.

-~ %[Ml UM, = $[M1] R K a[M,.] en effet, utilisons pour cela des bases By de chacun des
espaces Hy qui soient k-rationnelles et compatibles au produit tensoriel. Notons M1 et
M® les matrices de @[M,] et ¢[M,] dans ces bases. Alors, M) ®x M® est la matrice
de ¢[M,] @k ¢[M,] dans la base produit tensoriel. Comme o est un morphisme de corps,
(MDD @x M®) = a(MM) @k o(M®). Mais la formule 2.37 montre que o(M®)) n’est autre
que la matrice de'! ¢[M )] dans les bases By, et By,. En conséquence, ¢[M;] ®x ¢[M,)] et
¢[M, U M) ont les mémes matrices dans les mémes bases. Ils sont donc égaux.

"Pour fixer les idées, M) € homma(N;, N2).
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— Soit M € hompma(N, UY, NoUY), ¢[My] = Try, ($[M]). Considérons une base k-rationnelle
By de Hy et B, des bases k-rationnelles de Hy, , respectivement. Par compatibilité des
k-structures avec les produits tensoriels, B, , U By sont des bases k-rationnelles de Hy, ,uy.
Un calcul élémentaire sur les matrices montre que la relation désirée s’obtient a partir de 2.11
par application de ’élément o € Gal(K'/k).

A partir de 7k, je fabrique donc o(7}) définie par les formules 2.36 et 2.37. Ces deux théories
des champs different par une transformation naturelle locale (donnée par N +— Ty ) k-linéaire. Mais
toutefois, les théories Ty et o(7k) ne sont pas équivalentes au sens de [16, Chap. 1, déf. 12] en tant
que théories des champs a valeurs dans la aégorie des I'-espaces vectoriels.

Il est facile de définir la notion de transformation naturelle locale entre théories des champs

au sens de la définition 6. On doit bien entendu supprimer ’axiome d’unitarité T;-fTN = Ly
Précisément:

Définition 9 Une transformation naturelle locale entre les TTR T = [Ma, Sp, ®] et T' = [Ma, Sp’, ¥']
est une transformation naturelle N — Ty € GLg(Hy) telle que:

(2.38) ' Ty, = 1g
(2.39) Tnone = Tn ®x Tne
(2.40) Te = YTy

Seule la propriété 2.40 demande quelques commentaires. Dans [16, Section 1.3.1], on montre
cette identité en faisant appel au cylindre N x [0, 1] muni de paramétrisations en N x {0} et N x {1}
se déduisant 1'une de I’autre par translation mais considéré comme un élément de homya(NUN, 0).
Ceci donne sur £y = Vectx ((#[M])mehomma(o,n) ), Videntité (*T5Tn ey = ley- En conséquence, jai
choisi d’imposer 2.40. On pourrait trés bien laisser tomber cette propriété mais dans les théories
tridimensionnelles déduites des solutions des équations de Moore et Seiberg, Hy = Ey! Dans ce
cas, qui est celui qui nous intéresse, la propriété 2.40 est vérifiée.

A partir de 13, si 7; et 7, sont deux théories topologiques rationnelles basées sur Ma qui sont
reliées par une TNL T : N — Ty au sens de la définition 6 et Spx = Spix @ K, et si o € Gal( K /k),
o(7,) et o(7;) sont reliées par une TNL o(T): N — o(Tx). La seule chose & vérifier est que 2.40
est préservée sous 0. La encore, il suffit de choisir By une base de Hy k-rationnelle et Bz la base
duale au sens de Kronecker sur Hg. Finalement, nous obtenons

Théoréme 1 Le groupe de Galois Gal(K/k) opére sur la catégorie des théories des champs topo-
logiques rationnelles basées sur Ma et Spx = Spir ® K.

3 Equations de Moore et Seiberg

Dans cette section, nous allons expliquer ce que sont les équations de Moore et Seiberg. Notre
présentation ne prétend pas étre définitive. Les articles originaux sur ce sujet sont [52, 53]. L’article
de revue [55] est également utile.
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3.1 Les graphes MS

Nous supposons disposer des données combinatoires présentées page 7, & savoir ’ensemble I des
indices de couleur et les ensembles d’indices de vertex. Dans cette sous-section et les suivantes, les
graphes considérés seront connexes.

3.1.1 Graphes MS

Définition 10 On appelle graphe Ms (colorié) la donnée d’un graphe trivalent orienté G , a vertexr
circularisés (colorié) au sens des définitions 2 (et 4), et d’un sommet externe e de ce graphe.

Le type topologique d'un graphe trivalent est un couple (g,n) € N? défini comme suit:

— n est le nombre de sommets externes du graphe.

- Plongeons le graphe dans R3, le bord d’un voisinage tubulaire de I'image par le plongement
du graphe est une surface compacte orientable sans bords. Son genre est indépendant du
plongement choisi. Notons le g. Par abus de langage, on dira que le graphe est “de genre g”.

Un graphe de genre zéro est un arbre. Bien siir, on dispose d’une notion naturelle d’isomorphisme
entre graphes Ms: c’est la notion d’isomorphisme entre les graphes trivalents orientés a vertex
circularisés qui envoie le sommet externe marqué du premier graphe sur le sommet externe marqué
du second graphe.

Proposition 5 Soit (G,e) un graphe Ms de type (g,n) avec n > 0, son groupe d’automorphismes
est trivial.

Preuve: Un tel automorphisme est défini par son action sur les sommets externes fg € &g, les
vertex fy € Gy et les arétes orientées f, € G 4. Nous procédons par récurrence sur le nombre de
vertex du graphe. Dans le cas (g,n) = (0,3), il suffit de remarquer que si h est une permutation
d’un ensemble & trois éléments qui commute & un cycle d’ordre trois et qui stabilise un élément,
alors h est l'identité.

Supposons maintenant que la proposition soit prouvée pour tous les graphes avec p < n vertex
et considérons P = (G,e) un graphe Ms avec n + 1 vertex. Comme fg(e) = e, fa stabilise les
deux arétes orientées qui ont comme extrémité e. En conséquence, fy stabilise le vertex v (unique)
qui est extrémité de ces deux arétes. En utilisant le méme argument que pour régler le cas du
type topologique (0, 3), nous montrons que f4 stabilise toutes les arétes qui ont comme extrémité
initiale ou finale ce vertex v. Considérons alors le graphe obtenu en retirant de G le vertex v et en
mettant aux arétes libres ainsi crées des sommets externes. L’automorphisme ( fg, fv, fa) induit un
automorphisme de ce nouveau graphe, qui laisse fixe les sommets externes que nous avons rajouté.
On peut alors appliquer ’hypothése de récurrence pour conclure?. O

12Le nouvean graphe peut ne pas étre connexe mais alors les sommets externes rajoutés sont sur les deux compo-
santes connexes du nouveau graphe et on applique deux fois I’hypothése de récurrence.
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Dans le cas d’un type topologique (g,0), il peut apparaitre des groupes d’automorphismes non
triviaux comme le montrent les exemples suivants:

O—CO

qui ont comme groupes d’automorphismes respectifs Z/2Z et Z /3Z. Sur ce schéma, les circulari-
sations en chacun des vertex correspondent i lire les arétes arrivant ou partant de vertex selon le
sens des aiguilles d’'une montre. Sauf mention expresse du contraire, nous utiliserons toujours cette
convention dans la suite de ce texte.

Avant de définir ce que sont les données de Moore et Seiberg, nous avons besoin de nous
limiter & une sous-classe de graphes Ms. Nous ne sommes arrivés & la caractériser de maniére
relativement intrinséque que pour le genre zéro et le genre un. Dans les autres cas, nous nous
limiterons a une classe restreinte arbitrairement, en vue de la construction des théories topologiques
tridimensionnelles (voir page 37).

Soit P un graphe Ms, définissons f qui & une aréte orientée a du graphe associe i(a) si Oi(a) e E
et, dans le cas contraire, wy, (5)(i(a)) olt w, est la circularisation du vertex d¢(a). L’application f est
une bijection sans point fixe de ’ensemble des arétes orientées du graphe sur lui méme. Considérons
quand n > 1, 'unique aréte orientée a, dont I’extrémité initiale est le sommet externe marqué de
P, et son orbite O sous ’action de f. Cette orbite est une famille finie aq,...a, d’arétes orientées
telles que ayy; = f(ar) et an41 = ao.

Nous nous intéressons aux cas pour lesquels la suite des sommets J;(ay);, indexée par les
éléments de l'orbite de aq, recouvre la totalité de ’ensemble des sommets externes du graphe.

(3.1) Ec{o(aw)) 1<k<n)

Cette propriété est compatible aux isomorphismes de graphes Ms. Elle admet une interprétation
géométrique trés simple due a Ladegaillerie. A partir d’un graphe 4 sommets circularisés, on définit
une surface a bords [47, paragraphe 3.2]. La propriété 3.1 signifie que les sommets externes sont
tous sur la méme composante connexe du bord de cette surface. Notons que chaque sommet externe
est visité une seule fois. On obtient ainsi un ordre naturel sur I’ensemble des sommets externes.

Dans certains cas, il existe un ordre naturel sur ’ensemble des vertex du graphe. C’est le cas
lorsque la totalité des vertex sont inclus dans 'orbite D5. Nous ordonnons alors les vertex dans
l'ordre oii nous les rencontrons: (vy, ... ,v,). Soit v un vertex du graphe, la premiére aréte orientée
rencontrée dans O dont I'extrémité finale est v ainsi que la circularisation du vertex définissent
un ordre sur les arétes orientées d’extrémité initiale!? v,

Bien entendu, il nous faut préciser a quelles conditions la propriété 3.1 est réalisée. Par récur-
rence sur le nombre de vertex, on montre que:

Proposition 6 Si P est de type topologique (0,n) avec n > 3, alors il vérifie 3.1.

130u finale, on transporte 'ordre grace A i.
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Les problémes commencent 4 apparaitre en genre un: le graphe suivant de type topologique
(1,2) ne vérifie pas la condition 3.1:

L’aréte arrivant au sommet externe non marqué n’est pas dans ’orbite de I’aréte arrivant ou partant
du sommet externe marqué. Pour chaque n € N*, on définit le graphe multipériphérique de type

(1,n) par:

On peut caractériser les graphes de type topologique (1,7n) (n > 1) qui vérifient 3.1:

Proposition 7 Les graphes Ms de type topologique (1,n) vérifiant la propriété 3.1 sont obtenus a
partir d’un graphe multipériphérigue de genre un en recollant a certains de ses sommets erternes
un graphe en arbre.

Nous laissons au lecteur le soin de démontrer cette proposition par récurrence sur le nombre de
sommets externes n.

3.2 Découpes de graphes

Nous allons maintenant définir la notion de découpe d’un graphe trivalent & vertex circularisés.
Elle généralise d’une maniére agréable celle de recollement des graphes. Nous définirons ensuite celle
de découpe d’un graphe Ms. Puis nous montrerons comment a partir d’une découpe d’un graphe
en composantes, un coloriage du graphe nous fournit un coloriage de chacune des composantes.

Découpes de graphes trivalents & vertex circularisés

Définition 11 Soit G et G' deuzx graphes trivalents @ sommets circularisés, un plongement de G
dans G' est la donnée de iy : V — V' injective et i : A — A’ telles que

(3.2) Va€ A, (@ = (iv(a))
(3.3) ' Va€ A, 8ij(a) eV = 08(iala)) = iv(8;;(a))
(34) ai,f(a) =peV = wu(iA(a)) = iA(w,-v(,,)(a))

Ces conditions assurent la compatibilité de (iy,74) au changement d’orientation des arétes, aux
relations d’incidences dans le graphe, et aux circularisations des différents vertex. Il convient de
remarquer que 14 n’est pas forcément injective.

Définition 12 Une découpe du graphe G est la donnée d’une famille finie (G,,1,) de graphes
plongés dans G tels que (i\)(V,))a soit une partition de V.
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Les différents graphes G, sont appelés les composantes de la découpe. Par exemple, si G est un
graphe, on pose iy = 1y et iy = 14, [(G,(iv,i4)),G] est une découpe de G. On dit que c’est la
découpe triviale de §. Maintenant si f désigne un automorphisme du graphe G, on notera D; la
découpe [(G,(f7', f2')),G]. Elle n’a qu'une composante. La découpe triviale est Dy,.

Si G est un graphe obtenu par recollement: G = G,§(p j)Ga, le lecteur construira une découpe de
G en deux composantes qui ne sont autres que G, et G,. Si un graphe G est connexe, alors pour
toute découpe ayant N > 1 composantes, chaque graphe G, posséde au moins un sommet externe.

Isomorphismes de découpes et découpes emboitées Il est souhaitable de définir la notion
d’isomorphisme entre découpes:

Définition 13 Soit P = [(Gusia)arG] €t P'[(G'art'a)arG’'] deur découpes, on dira qu’elles sont
isomorphes si et seulement si, il existe une bijection h entre les ensembles de composantes de P
et P’ un isomorphisme f de G sur G' et une famille f, : Go — G'na) d’isomorphismes de graphes
trivalents a vertezx circularisés tels que

Oyl

N

!
g h e
(a) o

/!

commutent'*

Enfin, on utilisera la notion de découpe emboitée:

Proposition 8 Soit P = [(Ga,ta)a, ] une découpe de G et pour chaque @, Py = [(Gapstap)ss Gal
une découpe de G, Si On PoSe jop = iy Ota s, alors [(Gap,iap)a s, G| €st une découpe de G.

Preuve: En effet, pour chaque («,8), iy 0 i, 5 définit bien un plongement de G, s dans G et les
Jivg (Va,p) forment bien une partition de V. O

On dira que [(Gu 5, %ap)a s, G) est la découpe emboitée de P et des P,. Elle sera notée [(Py, ta)a, P].

Découpes et coloriages Si C est un coloriage de G, et si P est une découpe de G de composantes
(Ga)a, nous fabriquons canoniquement pour tout a, C, qui est un coloriage de G,. Notons j, la
couleur de l’aréte orientée a du graphe G.

— Soit @ € A, une aréte orientée de G,, on lui associe la couleur j{*) = j‘.'(:)(a). Comme

(i) (a)) = iA)(i(a)), nous avons jf(‘:’) = 5§,

% En tant que diagramme de morphismes de graphes. Cela signifie que la partie vertex et la partie arétes orientées
commautent.
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- Soit v un vertex de G,, ’ensemble A, des arétes de G, issues de v, est en correspondance
biunivoque avec I’ensemble des arétes orientées du graphe G issues de i&,")(v). En conséquence,
a tout ordre total sur A, est associé un ordre total sur A‘.g.)(v). De ce fait, nous pouvons
colorier le vertex v comme dans la définition 4. Les propriétés imposées dans cette définition
sont trivialement vérifiées.

En conséquence, cela montre qu’a tout coloriage C de G, la découpe P permet d’associer des
coloriages de chaque composante G,.

Découpage maximal

Définition 14 Un découpage mazimal est un découpage dont toutes les composantes ont un type
topologique (0, 3).

Les composantes d’un tel découpage sont canoniquement indexées par les vertex du graphe G.
Un découpage maximal est, modulo un réarrangement des composantes, de la forme [(Gg 5,9 )vev, G)
ol Gj ;3 est la composante de type topologique (0,3) dont le vertex est envoyé sur v € V. Soient
[(Go.35 %0 )vev, ] et ['(ggﬁa,i',,)ugv,g] deux tels découpages, pour chaque vertex v € V, il existe une
permutation ¢, de A, commutant & w, tel que, au niveau des arétes orientées, i', = ¢, o0 i,.

Cas des graphes MS Nous pouvons également définir la notion de découpe d’un graphe Ms en
graphes MS.

Définition 15 Une découpe (mazimale) d’un graphe Ms est une découpe (marimale) du graphe
trivalent sous-jacent, munie d’un choiz d’un sommet externe pour chaque composante de la découpe.

Nous emploierons la notation [(P,,%q)a,P] pour une découpe du graphe Ms en composantes
Po. Les notions d’isomorphisme de découpes et de découpe emboitée sont trivialement définies en
prenant dans la définition 13 des isomorphismes de graphes Ms. Soit D un découpage maximal d'un
graphe Ms P = [G, €], et C un coloriage de G. Nous en déduisons un coloriage C, de chaque compo-
sante G, du découpage. Comme chaque composante est aussi munie d’une structure de graphe Ms,
cela nous définit, pour chaque composante, un ordre total sur ’ensemble des trois arétes orientées
issues du vertex. En conséquence, nous savons associer a chaque composante une unique couleur
de vertex a,.

Dans certains cas, cas, il existe une découpe maximale de P “naturelle”. Ainsi, pour le type
topologique (0,n) avec n > 3, nous disposons d’un ordre naturel sur I’ensemble des vertex de P.
Dans la suite de ce texte, lorsque nous ferons figurer des couleurs sur un vertex d’un graphe Ms,
nous supposerons qu’elles sont obtenues par I’algorithme que nous venons de décrire. Bien entendu,
cela supposera un choix d’un découpage maximal du graphe Ms considéré. Lorsque, comme dans le
cas des types topologiques (0,n) un choix naturel existe, il sera sous entendu.
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3.2.1 Mouvements F sur les graphes

Un probléme important est de savoir comment classer tous les graphes Ms de type topologique
donné a isomorphisme prés. La réponse se trouve en partie dans l’article de Kohno [44, Lemme
1.2]. Toutefois, Kohno ne considére pas que les vertex des graphes sont munis de circularisations.
Cela le conduit a identifier des graphes que nous ne considérons pas comme isomorphes. En vertu
de la proposition 6, cette subtilité ne se manifeste pas en genre zéro. Elle apparait pour le type
topologique (1,2). Toutefois, le Lemme 1.2 de [44] s’adapte & nos besoins.

Pour comprendre comment sont classés les graphes, analysons quels sont les graphes Ms pos-
sibles pour (g,n) = (0,4). Nous numérotons les sommets externes de 1 a 4 selon l'ordre déduit
des circularisations et du choix d’un sommet externe particulier. Alors, il existe exactement deux
graphes de type (0,4):

2 "N
1 4

1 4

Il est entendu que les ensembles des sommets externes pour ces deux graphes sont identifiés via
la numérotation de 1 a 4. On dira que ces deux graphes sont reliés par un mouvement de type F'.
Nous définissons les mouvements de type F pour des graphes de type topologique quelconque par:

Définition 16 Soient deuz graphes Ms (G, ¢) et (G',€'), Nous dirons qu’ils sont reliés par un mou-
vement F' si et seulement si ils sont isomorphes en tant que graphes MS d deuz graphes Ms dont les
graphes trivalents sous-jacent sont de la forme:

Gol(p,1)G0,4 €t Goll(p j)(F. Go,4)

ot Gy 4 et F.Gy 4 désignent les graphes sous-jacents & deux graphes Ms de de topologie (0,4) qui
différent par un mouvement'® F.

Enfin, on montre qu’il est 1égitime d’étudier ’action des mouvements F sur la classe des graphes
Ms vérifiant 3.1: si P est un graphe Ms vérifiant la condition 3.1, alors F. P la vérifie. En effet, un
mouvement F' ne change pas la surface associée a un graphe trivalent 3 sommets circularisés.

3.2.2 Le complexe ), ,

Dans [44], 'auteur utilise des graphes trivalents, dont les vertex ne sont pas circularisés, et dont
I’ensemble des sommets externes est ordonné. La notion de mouvement de type F pour ces graphes
se définit comme dans la section précédente. Pour chaque valeur du type topologique (g,n), Kohno

1*En conséquence, ils ont méme ensemble de sommets externes, ce qui permet de dire que l’on ne change pas
Uapplication de recollement j : D C Eg, — Eg, ,
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introduit un complexe Y, , dont les sommets sont les graphes, les arétes sont les mouvements de
type F sur ces graphes. Il définit également des 2-cellules et il montre que Y, , est connexe et
simplement connexe.

Dans cette section, nous allons construire des complexes 9 , et 21 n, les classes d’isomorphismes
de graphes Ms vérifiant la propriété 3.1 et dont les arétes sont les mouvements de type F. Ce
complexe jouera pour nous le réle du complexe Y, , de Kohno.

Les 2-cellules Bien siir, étant donné G; et G; deux graphes Ms, il existe plusieurs suites finies
de mouvements de type F permettant de passer de I'un a I’autre. Examinons le cas (g,n) = (0,5):
il existe exactement cing classes d’isomorphisme de graphes Ms de ce type topologique. La figure
suivante montre des représentants de ces cinq classes ainsi que les mouvements F' les reliant:

De la méme maniére que précédemment, nous considérons un graphe Ms de type topologique (g, )
quelconque. Supposons — modulo un isomorphisme de graphes Ms — que le graphe trivalent sous-
jacent soit isomorphe & un recollement via une injection j de deux graphes G, et J{; ot ce dernier est
de type topologique (0,5). L’application de recollement permet de munir ’ensemble des sommets
externes de H; d’un ordre total. On peut donc voir H, comme un graphe MS en choisissant un de
ses sommets externes. Il existe cinq graphes Ms , de graphes trivalents notés (H,)1<a<s ayant méme
ensemble de sommets externes, et méme sommet externe marqué, et reliés par des mouvements F'
comme dans la figure ci-dessus. Nous considérons alors les graphes Gof(p ;)Ho qui sont reliés par des
mouvements de type F. Nous dirons qu’ils forment les cinq sommets d’une 2-cellule de 9, . Une
telle 2-cellule sera dite du premier type ou pentagonale. Nous rajoutons comme 2-cellules (dites du
second type) les polygones formés par une suite périodique d’arétes fi, ..., fn, fay1 = fi telles que
fr et fiy1 portent sur des paires de vertex d’intersection vide.

Simple connexité du complexe, exemples On montre alors:
Théoreme 2 Les complezes 9, et ;. sont connezres et simplement connezes.

Le cas du genre zéro est réglé par Kohno car les complexes Qg , et Yy , coincident pour n > 3.
C’est aussi une autre maniére d’énoncer le théoréme de cohérence de Mac-Lane [36, Page 58].
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Un exemple instructif est fourni par le complexe (0,6). Le lecteur vérifiera qu'’il existe exacte-
ment quatorze'® graphes Ms de type topologique (0,6) et que le complexe est le suivant:

o

Nous avons indiqué deux graphes Ms particuliers. Ce sont ceux qui ont un graphe trivalent sous-
jacent avec un groupe d’automorphisme cyclique d’ordre trois. Ce graphe trivalent sous-jacent
admet trois “sous-graphes” trivalents distincts de type topologique (0, 5). Ceci explique qu’en ces
deux sommets se rencontrent trois faces. Le complexe ), ¢ possede en tout six faces pentagonales
" du premier type, et trois faces carrées!” du second type qui correspondent & deux mouvements de
type F sur des couples de vertex distincts. Sa topologie est celle d’une sphere 5,: il est donc bien
simplement connexe.

Un autre exemple instructif est fourni par les complexes ), ,, pour n = 1,2,3. Dans le cas n = 1,
il n’y a qu’un seul graphe de type topologique (1,1) et donc pas d’aréte ni de 2-cellule. Dans le cas
n = 2, nous avons exactement trois graphes Ms de type topologique (1,2) et le complexe est:

&- @ B
Il n’apparait aucune 2-cellule sur cet exemple. Ce cas est I’analogue du cas (0,4) en genre zéro.
En revanche, pour n = 3, nous avons dix graphes Ms de type topologique (1,3), et il apparait

1811 est trivial de calculer une fonctionnelle génératrice du nombre de sommets de (Qo,n)n, c’est z(z) = (1 —
v/1 — 4z)/2z. Nous obtenons ainsi directement le nombre de graphes (0,6) qui vaut quatorze, (0,7) qui vaut 42 etc
7Indispensables pour la simple connexité!
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exactement trois 2-cellules pentagonales. C’est I’analogue du cas (0,5) en genre zéro:

3

" o

Remarque: Cette valeur du type topologique a été utilisée par R. Dijkgraaf et E. Verlinde dans

[19] pour montrer la “formule de Verlinde”, c’est & dire l'identité suivante:

S,—"S-"S n
(3.5) Nijp= Z ——_bg;;_"

qui relie la matrice S aux entiers (N; ; ¢);i j&- O

Genre supérieur En genre supérieur, nous nous contenterons de fixer un graphe Ms particulier
P,n et de considérer Y, (P, ) formé par la composante connexe de ce graphe.

Enfin, il est intéressant de remarquer que le nombre de coloriages d’un graphe de type topo-
logique (g, n) fixé, sachant que 'on a fixé les couleurs des sommets externes, est indépendant du
graphe. Ceci découle de la connexité de Y, ,, de la condition 2.2 et de la symétrie des (N;; )ik
par permutation des trois indices.

Pour finir, introduisons une famille de graphes Ms de type topologique (g,n) qui nous seront
utiles par la suite. On appelle P, , la famille, indexée par n > 2 de graphes a n sommets externes
2 n-1 n

et g boucles suivants:
- |
N,

ol le point noir désigne le sommet externe marqué. Nous avons numéroté les sommets externes
suivant ’ordre déduit des circularisations et du sommet marqué.

3.3 Les données de Moore et Seiberg

Considérons un graphe Ms (G,e), notons Hg .y l'espace vectoriel engendré par les coloriages
du graphe (G,e). Les données de Moore et Seiberg consistent en certains isomorphismes entre les
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espaces H(g .) pour des graphes de types topologiques (0, 3), (0,4), (1,0) et (1,1). Elles sont définies
dans les sections 3.3.1, 3.3.2 et 3.3.4.

Nous donnerons en section 3.3.3 un procédé pour construire a partir de ceux-ci des isomor-
phismes entre les autres espaces Hg .). Cette construction s’appuie sur des injections entre l'espace
Hy et un produit tensoriel ®Hp, qui sont définies & partir d’une découpe [(Pq, ia)qs, P] de P.

A partir de 13, il devient possible d’écrire les équations de Moore et Seiberg (section 3.3.5 et

3.3.6). Elles portent alors sur des isomorphismes entre espaces Hg .) pour des types topologiques
(0,4), (0,5), (1,1) et (1,2).

3.3.1 La matrice F

Comme nous ’avons vu, il existe deux classes d’isomorphismes de graphes Ms de type (0,4).
Nous supposons qu’il existe un isomorphisme F entre les espaces associés et on notera F'la matrice
de cet isomorphisme dans les bases associées aux coloriages. Moore et Seiberg emploient la notation
suivante pour les éléments de matrice de F:

& C d
(3.6) F. . { =Y F, { ¢ d ] at
i }D — g.c,d ‘
a b 2 o—o—c—o— l

3.3.2 Autres données de genre zéro

Il existe une seule classe d’isomorphisme de graphe Ms de type (0, 3): celle de Py 5. Nous numé-
rotons les trois sommets externes dans ’ordre défini par la circularisation du vertex et le sommet
marqué. Moore et Seiberg définissent un isomorphisme D(+) de ’espace Hyp, , par la donnée de

(3.7) w: || [ k—C

(i.4,k)Er?

La donnée d’un indice de vertex a € [1, 7, k] spécifie un unique élément de la base considérée de
Hp, o il suffit de colorier les arétes orientées issues des sommets numérotés 1, 2, 3 respectivement
par i, j et k et le vertex par a. Notons ¢(*) le vecteur de base associé. L’automorphisme D(=) est
défini par

(3.8) D(£). ¢ = w(a)** ploa)

On dispose également de trois automorphismes (R,)scr de Ho s indexés par les trois sommets
externes du graphe considéré. Ils sont de la forme suivante: nous supposons qu'’il existe une famille
(wi)ier d’éléments de C* telle que wy = 1 et w; = w;. Alors, si i, désigne la couleur de l’aréte
orientée aboutissant au sommet externe a,

(3.9) Re- $ = wy, ¢
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3.3.3 Transport des données F, D et R, sur les espaces Hyp

Dans l’optique de [33, Paragraphe 2], il est crucial de pouvoir transporter les générateurs qui
vivent dans le premier étage de la Tour de Teichmiiller dans les étages supérieurs. Nous allons
montrer ici que 'on peut définir des morphismes entre espaces Hyp pour des graphes Ms P de
type topologique arbitraire a partir de morphismes correspondant & des types topologiques (g’,n’)
d’étage 3¢’ — 3+ n’ inférieur. L’ingrédient essentiel de ces constructions est fourni par des injections
linéaires de Jp a valeurs dans un produit tensoriel de Hp_ que l'on construit a partir de découpes
du graphe Ms P [16].

Morphismes entre espaces Hy Nous avons vu en section 3.2 comment définir la notion de
découpe d’un graphe trivalent i vertex circularisés. Nous avons vu qu’a chaque coloriage C d’un tel
graphe, une découpe de G en composantes G, permet d’associer un coloriage de chacune des com-
posantes de la découpe. En conséquence, pour tout graphe Ms P et toute découpe D = [(Pq,iq)a; P
en composantes P,, nous posons

(3.10) ¥p. Ve = @ Ve,

Le produit tensoriel est ordonné suivant I’ordre des composantes de la découpe. Ceci définit 1p qui
est une injection linéaire de Hp dans @Hp_. Ces applications possédent la propriété suivante:

Proposition 9 Si D est une découpe du graphe P en composantes P, et si D, est une découpe de
chaque P, en composantes P, 5 alors,

(3.11) VU(Daria)a, D] = (® ¢D,,) o Pp

De plus, pour tout graphe Ms P, nous disposons d’une action naturelle du groupe Aut(G) des
automorphismes du graphe trivalent a vertex circularisés G sous-jacent a P sur Hyp. En effet, si G est
le graphe sous-jacent au graphe Ms P, et si f est un automorphisme de G, on note 3; I’application
linéaire de Hy dans Hyp associée a la découpe D, définie page 20. Clairement, 1, est bijective et
de plus f +— ; fournit une représentation de Aut(G) dans Hsp.

Dans le cas d’une découpe maximale (définition 14), nous tombons dans un produit tensoriel
d’espaces Hp,,. Une découpe maximale associe a chaque coloriage de P une suite ordonnée de
couleurs de vertex: (a,),ev. Dans le cas ou il existe un découpage maximal naturel de P, nous
noterons ¥y l'injection associée. Par exemple, avec les notations de Moore et Seiberg, nous avons:

ik
(3.12) $ra i ) ‘ = ) g ¢
e S waad
et
j——k
(3.13) Bemy _ 49 g ¢
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Transport des isomorphismes En utilisant les injections ¥, nous allons transporter F, D(+)
et les R & divers espaces Hyp:

— A partir de D(+) nous définissons D,(+), isomorphisme de Hyp,, sur Hpyp,, et Da(+),
automorphisme de Hsp, ,, par la commutation des diagrammes suivants:

Yoy,

Y2,
%?0,4 L g{'yn,a ® g{Tu,s }C:POA :H:fpu,s ® r}cfpo.a
lpl(i) I)(i)@:l lD’(i) lmfn(i)
¥r.2g ¥
F.Fo,4 o }CTn.a ® :}CTu,s D{Tn,q Tt 5{?0,3 ® j{3’0,3

Nous noterons également D, ,(+) les applications linéaires définies sur Hp »,, en échangeant
dans les diagrammes commutatifs Py 4 et F. Pg 4. '

— On étend la définition de R, & Hyp ol P est un graphe Ms de type topologique (g,n) avec
n > 0. Si ¢, désigne la couleur associée i ’aréte orientée aboutissant au sommet externe a,

(314) fR.a,. V_pc =W, V:]JC

— Pour finir, si P désigne un graphe Ms de type topologique (g,n) avec 3g —3 4+ n > 1, alors en
utilisant des morphismes 1)p convenables, on fabrique des isomorphismes entre Hy et Hp, , o
par commutation du diagramme

¥
Hyp = Hp @ Hop,,
?vl,ugl 1@3"1
g{F"l'"""P Yy up P Ho ® Hem,,,

ou D désigne la découpe correspondant au recollement P = F, ... P4p,)Po,4 qui permet
de définir le mouvement F' considéré. De méme F,, ,,.D correspond & P = P'§p ;) F. Py 4.
Cette construction assure que si F] ... F, est une suite finie de mouvements F' dont les arétes
associées bordent une 2-cellule du second type, alors, en notant (F)i1<r<n les isomorphismes
associés a chacun des mouvements Fj, on a bien

{3:15) Fro0...0F, =14,

3.3.4 Les matrices en genre un

Les données nouvelles sont définies relativement au type topologique (1, 1). L’écriture des équa-
tions de Moore et Seiberg nécessite l'introduction d’autres isomorphismes entre espaces associés
a des graphes Ms de type topologique (1,0) et (1,2) mais nous allons voir qu’il s’expriment en
fonction des données introduites dans les sections précédentes.

Type topologique (1,1). Il existe une seule classe d’isomorphisme de graphe Ms de type topo-
logique (1, 1) dont représentant est décrit par:
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Nous supposons I’existence de 8§ et T deux isomorphismes de ’espace associé i cette classe. Leurs
propriétés seront décrites en section 3.3.6. Ici, nous nous contentons de poser les notations et nous
montrons comment fabriquer d’autres isomorphismes entre certains espaces Hyp & partir de S et 7.

Leur matrices dans la base fournie par les coloriages du graphe seront notées S et T'. Nous
notons qb(l',’l‘,’) le vecteur de base correspondant au coloriage

de Py ;. Moore et Seiberg introduisent la notation suivante pour les éléments de matrice de § et T":

Y S(f)aa )

i',a’

> T(J')(i,a)("”“f)¢(1';1'a )

i'al

(3.16) 8. ¢ii )

(3.17) T 8
Moore et Seiberg supposent que S et 7 vérifient les deux propriétés suivantes:

— 8 préserve la couleur j de I’aréte orientée dont I’extrémité initiale est le sommet externe de

Pia

— Dans la base des ¢§';’1°), T est diagonal et T; o)) = w; £6, o+ 0l £ est de module un. Dans la
littérature des théories conformes, £ est noté exp (—2wic/24) ou c est appelé la charge centrale
du modeéle.

De méme, on note C 'automorphisme de Hyp, , défini par la commutation de

Yy,
:}CTL] —>g'c'_p0.3

2

Pia _'_—“')J{'Po,s

ol b est défini par son action sur ¢*) avec a € [¢, j, k] par

(3.18) b. ¢(*) = w(023(a)) (@)

Enfin, exactement comme dans le cas du genre zéro, nous pouvons définir des isomorphismes §
et T sur certains espaces Hyp. Ils dépendent d’un sous-graphe Ms de type topologique (1,1) de P.
Nous laissons au lecteur le soin d’écrire les définitions correspondantes.

Type topologique (1,0). Il existe un seul graphe Ms de type topologique (1,0) & isomorphisme
pres. Il possede un groupe d’automorphisme d’ordre deux. Le graphe trivalent sous-jacent est défini
par § = (et A = {a,a}. Il n’y a pas de sommets externes. L’automorphisme non trivial envoie a
sur a. On note P, o ce graphe.
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Notons x; 1’état de Hp, , obtenu & partir du coloriage @ — j. L’automorphisme a — & de P, o
donne naissance a C: x; — x;j, involution linéaire de Hsy, ,. Il existe une injection J de Hyp, , dans

;1) )
Hyp, , qui envoie x; sur qb(f,':’ ) ot tg-l) est I'unique élément de [0, 7,7]. On définit alors 8§ et T sur

Hi,0 par les diagrammes commutatifs suivants'®:

j{fpl,o 3 5{5’1,1 j{fpl,o 5 j{g)l,l
H'.pl,o ;:' "}CT]_’;L %?1,0 :i 3 g-cfpl,l

Moore et Seiberg notent S et T les matrices de § et I dans la base (x;)jer, €t C la matrice de C.
Nous avons donc dans les notations de Moore et Seiberg,

Ci = bi;
(3.19) S = 5(0)(:_,1(1)}(1.4")
Tij = T(O)(;yt(l))(_},tgl))

Type topologique (1,2) Le complexe 9), » posséde trois sommets:

‘P_:>_O (P+:O_< Tg:@

Notons Hy, H, et H_ les espaces associés a ces trois graphes. Nous noterons Dy, Dy et D'y les
découpes de Py et P, respectivement qui correspondent aux recollements:

. 3
- () > == )

S

et pour D, et
3

Q=

¥y 1 Hy — Hp,, @ Ho, ,
Yot Ho — Hyp, , @ Hp, ,
Yo 1 Hy — j{fpo,a

Yo :Hy — (3{5’0,3)@2

et D’Q:

Nous notons

(3.20)

18Rappelons que $ et T laissent stables J(H 5, ,) en vertu des contraintes imposées dans le paragraphe précédant.
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les injections associées. De plus, le graphe Gg?g sous-jacent a P, posséde un automorphisme P

d’ordre deux:
b b’
a (I > a’ a' ( > a
b’ b

et nous lui associons P une involution de H,. On dispose également de

Fo:Ho —H
(3.21) {gf _ }C" }c+
- B -

associées aux mouvements F' qui permettent de passer de Py a P.. Grace & 94 o et & B, nous allons
définir 84, deux isomorphismes de H, respectivement par (14, , ®8) oty = 14 084. Introduisons
maintenant T, et T, deux isomorphismes de H,:

- Pour T,, nous utilisons 'y de H, dans (Hyp,,)®% L’automorphisme T, est défini par la
commutation du diagramme suivant:

j{0 ' j{3’0.3 ® J{fpo.a
:ni 11m'yo ,O(RaRTY)
:H:O e :H"'J’o,a ® :}c'f’o.a

— Pour T3, nous commengons par envoyer X, dans Hyp,, au moyen de I’application injective
tho. Puis nous composons avec B = B(—) (isomorphisme de Hyp,, défini par ’équation 3.24),
et nous revenons dans H,. Finalement T est défini par:

(3.22) Ty 0t = PothoB(+)

3.3.5 Equations de genre zéro

Les équations de genre zéro sont les traductions matricielles de quelques relations entre les
morphismes que nous avons introduits. Ainsi, ’équation pentagone 3.26 consiste principalement a
traduire le pentagone dans le complexe ), 5 en termes d’isomorphismes induits par F sur les espaces
vectoriels associés aux graphes Ms de type (0,5). De méme, I’équation 3.27, dite hexagonale, est

une condition de compatibilité entre F et D, ,(+):

(3.23) FoDi(t)oF =Dy(x)oFoDy(L)
On définit B(+), deux isomorphismes de Hyp,, par

(3.24) B(x) = Di1(£) 0o Fo Dy(+)

dont la traduction matricielle n’est autre que 3.28. On impose aussi une condition de compatibilité
entre D et les (:R-a)aEEyu o

(3.25) D(£)* = (Rg0 Ry 0 RTH)*
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Finalement, les équations de genre zéro telles que les ont écrites Moore et Seiberg dans [52] sont:

(3-26) Fy3Fi3Fo3 = PyaFisF,
(3.27) FOE)DF = (19Q+)) F(18 Q%))
(3.28) B(+) = (AF)®1)F(1RQL))

La relation 3.25 se traduit, dans les notations de Moore et Seiberg, de la maniére suivante:
notons w; = exp (27:h;), alors w(a) ol a € [, j, k] est de la forme

(3.29) w(a) = g(a) exp (in(hy + h; — h;))

out £(a)e(oq3(a)) = 1. Selon Moore et Seiberg, ¢(a) = £(03(a)) est un signe. Dans notre travail,
afin de simplifier les calculs, nous supposons que ces signes ne sont pas présents. Toutefois, dans
les exemples explicites, il faudra veiller & les rétablir si besoin est!!

3.3.6 Equations de genre un

Pour le type topologique (1, 1), nous avons:

(3.30) (87)P = §*=¢
(3.31) g =

Avec les notations de Moore et Seiberg,

(3.32) (SO = (85:)a"
(3:33) (S()* = (SHT)

ol (O;i)a“‘ est le facteur de phase présent dans I’équation 3.18.

La compatibilité entre 3.30, 3.31 et la relation entre & et T sur les espaces Hyp, , et Hyp, , via J
entraine que dans Hsp, :

(3.34) {(8‘3')3 =8 =

2
e - 1”{3’1.(-

Nous disposons ainsi d’une action linéaire de SL(2,Z), qui est le groupe modulaire relatif au type
topologique (1,0), sur I’espace Hyp, .

La derniére identité est relative au type topologique (1,2):
(3.35) §:0F10T,0F:' 087 =FL0T,0F !

Nous laissons le soin au lecteur de traduire dans les notations de Moore et Seiberg cette identite,

et de montrer que I'on retrouve ainsi la relation de genre un avec deux points qui apparait dans
[53].
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3.4 Quelques conséquences des équations

Dans cette section, nous allons montrer quelques identités a partir des équations de Moore et
Seiberg. Ces relations sont indispensables dans la construction d’une théorie topologique tridimen-
sionnelle. Nous montrerons d’abord deux relations de compatibilité entre F' et B(%), puis nous
obtiendrons explicitement les inverses de F et B(+). Enfin, nous montrerons que B(+) satisfait &
I’équation de Yang-Baxter quantique.

3.4.1 Compatibilité entre F et B(+), équations de Yang-Baxter.

Relations fusion/entrelacement.

Théoréme 3 Les matrices F et B(x) vérifient:

(3.36) FB(e) = (1@ Q(-¢))F
(3.37) Py3Bia(e)Fiz = FiaBia(e)Bas(e)

Preuve: Démontrons la relation 3.37. Inversons la relation 3.28 entre F' et B pour la remplacer
dans le pentagone 3.26; nous obtenons alors

P2391(5)313(€)93(—€)F12 = F’zaﬂl(5)312(5)323(5)93(—5)

Nous pouvons commuter 3(—¢) avec Bjs(¢) et en simplifiant par les deux matrices (+¢), nous
obtenons 3.37.

En combinant la relation 3.28 et I’hexagone 3.27, nous obtenons 'identité 3.36:

FB(e) = F(Q-€)®1)F(1® Q(e))
= (1@ Q(-¢))F

Equation de Yang-Baxter.

Théoréme 4 Les matrices B(+) vérifient l’équation de Yang-Bazter quantique:

(3.38) Bu(E)st(E)Bw(E) = B23(5)312(E)B23(5)

Preuve: Le plus simple consiste a multiplier les deux membres a gauche par F,3 et a utiliser
I'identité 3.37. Ainsi, le membre de gauche devient:

anBlz(E)Bza(E)Bw(f) = P23-Bl3(E)F12B12(E)
P'za-Bls(f)Qz("E)Fw

(3.39)
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et d’autre part, le membre de droite se réécrit:

Fy3B3(€)B1a(e)Bas(e) = SQa(—¢)Fa3B13(€)Bas(c)
= Q3(—¢€)PaaBia(e)F12
(3.40) = PyQly(—€)Bis(e) Fiz

Les expressions 3.39 et 3.40 sont clairement égales! Ceci montre les deux équations de Yang-Baxter
a partir du pentagone, des hexagones et de la relation entre F et B(+). O

3.5 L’invariance de jauge des équations

Nous allons détailler une classe importante de transformations qui sont des symétries des équa-
tions de Moore et Seiberg et qui jouent un role important dans la recherche de solutions.

3.5.1 Transformations de jauge

Les espaces Hp associés & un graphe Ms P sont définis par la donnée d'une base dont les vecteurs
sont indexés par les coloriages du graphe P. Nous disposons de plus des injections 1p associées aux
découpes maximales de P: ¥p : Hp — @Hs,, qui relient les espaces Hyp aux espaces Hsp,,. Une
transformation de jauge consiste & multiplier les différents vecteurs de la base de Hyp,, par des
nombres complexes non nuls. Précisément

Définition 17 Soit

Ao | bkl - C©
(i,§,k)er?
a — A

On définit une transformation de jauge Ao 3 de paramétre A par

(3.41) Vae || [64k), Ags 8 =x¢@

(i,d,k)er’
Et a partir de 14, nous définissons des changements de base dans tous les espaces Hyp:

Définition 18 Pour tout graphe Ms P et toute découpe maximale D de ce graphe, on définit Ap
par la commutation du diagramme:

Yo (v)
9{5’ ®u €EVy j{ipu,a
Ap lem.‘,fg
Yo (v)
Hyp ®U EVy ‘{‘H:To.s

Soit By la base de Hyp dont nous sommes partis, nous définissons la base transformée B'p =
Ap.Bsp.
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Ceci fournit une famille de bases des différents espaces Hy toutes compatibles avec les injections
%p. Une solution des équations de Moore et Seiberg matricielles provient d’isomorphismes J entre
Hsp,, et Hpp,,, D(£) € GL(Hyp,,), (Ra)i<acs € GL(Hyp,,)® et 8 et T qui sont des isomorphismes
de Hsyp, ,. Les matrices de F et D(+) étant notées F et {}(+) dans les bases de départ, et celles de
S et T étant notées S et T', nous notons F’, Q(x), S’ et T" les matrices de ces isomorphismes dans
les bases transformées par Ap. Elles sont données par:

5 c d| AN c d
(3-42) Fp,q[a b]_me'q[a b]

et de méme:

(3.43) (). = 32 0(2)."
b
Ft pour finir:
i, i’ a' )‘a - i'a'
(3.44) S D™ = T25(0ea™”
(3.45) T =T

La derniere équation est justifiée par le fait que 7 est diagonale dans les bases choisies. De méme,
les matrices des R, ne changent pas. Les équations de Moore et Seiberg 3.26 4 3.28 sont clairement
invariantes de jauge. Par contre, la relation qui relie w(a) aux (w;);¢; ne ’est pas. On garde toutefois
une invariance de jauge restreinte en supposant que

N 1k
(3.46) Va € [".’fv'l"]a Vo € &3, Asa) = Aa
Ya € [1,3,0], A,=1

Avec cela, les équations de genre un sont aussi invariantes de jauge et Ap ne dépend pas de la
découpe maximale choisie mais seulement du graphe .

3.5.2 Symétrie tétraédrale

La symétrie tétraédrale est un ingrédient important dans la construction d’une théorie topolo-
gique tridimensionnelle & partir d’une solution des équations de Moore et Seiberg. Nous pouvons
dire que:

Définition 19 On dira qu’une solution des équations de Moore et Seiberg posséde la symétrie
tétraédrale si et seulement si, modulo une transformation de jauge au sens de la définition 17 les
coefficients des matrices F' et S vérifient la propriété suivante: on peut associer d

d V' So*So? SoF S0 d
(3.47) Wp,qlz b]_ ( ;000 OFp.q[Z b]

le tétraédre
c

L7 N

a p b
de maniére compatible a action du groupe des isométries le préservant.
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Nous ne discuterons pas ici quelles sont les hypothéses qui permettent de s’assurer que cette
propriété est vérifiée. Nous supposerons que tel est le cas dans la suite de ce texte.

4 Théories tridimensionnelles

Dans cette section, nous rappelons comment a partir d’une solution des équations de Moore et
Seiberg, nous construisons une théorie topologique basée sur une catégorie de variétés tridimen-
sionnelles décorées par des graphes trivalents coloriés et munis de framings.

Nous nous contenterons de rappeler ici la méthode et quelques calculs simples. Nous détaillerons
quelques points trop brievement expliqués dans [15], comme la construction des représentations
projectives des groupes modulaires, ainsi que la trivialité de ce cocycle en genre zéro.

4.1 Plan de la construction

Dans cette section, nous décrivons le cheminement de la preuve sans en donner les détails. Nous
donnerons ensuite quelques exemples de calculs afin d’illustrer pourquoi nous avons bien défini des
invariants topologiques. Nous partons d’une solution des équations de Moore et Seiberg au sens

de la section 3. Nous supposons de plus que cette solution posséde la symétrie tétraédrale — voir
définition 19.

Nous allons définir la théorie topologique projective associée i ces données en donnant une
prescription de calcul de tous les éléments de matrice associés & tous les morphismes de May ;.
Puis, nous vérifierons que cette prescription définit bien des invariants topologiques. Les éléments
de matrice des opérateurs ¢[M] seront identifiés avec des fonctions de partition de variétés sans
bord. Bien siir, nous devons disposer d’une procédure pour calculer la fonction de partition d’une
variété sans bord. Les techniques de chirurgie et le calcul de Kirby permettent de se ramener au

cas de la sphére S3 avec un graphe trivalent décoré. Ce cas est traité par une méthode de matrice
de transfert.

On montre que les axiomes d’une théorie des champs topologique projective sont bien satisfaits
(définition 7). La fonctorialité projective est un des points cruciaux de la preuve. Comme nous
allons le voir un peu plus loin, la procédure de calcul par chirurgie des invariants est non-locale:
elle ne s’effectue pas en utilisant une décomposition de Morse. Mais du coup, la fonctorialité n’est
plus du tout évidente!

4.1.1 Espace des états associé 4 une surface.

Dans ce qui suit, le corps de base est C. L’espace des états H, , sera défini & partir des espaces Hyp
introduits dans la section précédente. Toutefois, on se limitera aux graphes Ms dans la composante
connexe du graphe P,,. Chaque graphe définira une base de H,,. Les vecteurs de la base sont
obtenus en faisant varier le coloriage du graphe. Nous introduirons également pour chacun de ces
graphes P € 9, .(P, ) des tores pleins dont P est un 1-squelette avec n pattes externes. De tels
tores pleins, définis précisément plus loin, seront appelés des tores pleins standards. L’idée de base
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consiste a associer a chaque tore plein standard de graphe Ms sous-jacent P un élément de la base
associée a P.

Il existe toutefois plusieurs choix de 1-squelette & type topologique fixé. Le choix d’un autre
graphe définit un changement de base. A topologie donnée, le passage d’un graphe a un autre
peut étre décomposé en un nombre fini de mouvements élémentaires: les mouvements F'. Nous leur
associons les matrices F'. Si P et P’ sont reliés par une succession de tels mouvements élémentaires,
la matrice de passage P(P,P’) associée sera le produit des matrices élémentaires correspondantes.
En fait, le résultat ne dépend pas de la séquence choisie pour passer de P a P'. Elle est donc bien
définie.

Nous définirons le produit scalaire sur Hy suivant les conventions de Witten [66]. Il faudra
vérifier que ce produit scalaire est bien compatible avec 'interprétation en terme de recollement
trivial: )

(M| M) = Z[M,§M,]

avec |M;) = ¢[M;].1 pour M; € homuma,,(D,X) et (M,| € Hy pour M, € hompy,,,(Z,9). De
méme, nous devrons vérifier que 'introduction des matrices F pour représenter les changements de
base est bien cohérente avec l'interprétation tridimensionnelle de F. Cette cohérence du formalisme
utilisé est indispensable.

Nous imposerons enfin

pour définir Hy dans le cas ou ¥ n’est pas connexe. Nous posons Hy = C.

4.1.2 Construction des opérateurs

Fonction de partition des variétés sans bord. La cas de la sphére S; est de loin le plus simple
car nous disposons d’une fonction de Morse dont les sections a temps donné sont des spheéres sauf
pour deux valeurs critiques ou elles se réduisent & un point. En conséquence, une méthode de matrice
de transfert est aisément applicable. La définition de Z[S3, K] - ol K est un graphe trivalent décoré
plongé dans S3 — par la méthode de la matrice de transfert est donnée dans la section 4.2. On montre
que Z[S;, K] ainsi calculé est un invariant topologique de graphes décorés dans S5 en suivant une
méthode utilisée par Reshetikhin et Turaev dans le contexte des groupes quantiques [58]. Le cas
des éléments de homya, , (0, 0) se ramene & celui de la sphére grace au résultat suivant [48]:

Théoréme 5 (W.B.R. Lickorish et A.H. Wallace) Toute variété M de dimension trois com-
pacte connezxe orientable sans bord s’obtient par chirurgie a partir de S3.

Cela s’étend au cas des variétés décorées par un graphe trivalent au sens de la définition 5. La
chirurgie est effectuée le long de tores: on se donne un entrelac de S3, chaque composante étant
munie d’un framing. Ce framing définit un difféomorphisme du tore. Pour effectuer la chirurgie,
on prend des voisinages tubulaires de chaque composante de l'entrelac. Ce sont des tores pleins
D, x S; que lon retire et que 'on recolle ensuite via les difféfomorphismes déduits des framing. Le
détail de cette opération sera explicité en section 4.3.
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Il existe différentes présentations par chirurgie d’une méme variété. En 1’absence de décoration,
un critére d’équivalence entre deux présentations par chirurgie est di & Kirby [40] ainsi qu’a Fenn et
Rourke [27]. Il n’est pas difficile d’adapter ces travaux au cas d’une variété décorée. Ceci permet de
prouver l'invariance topologique du nombre que nous avons associé 3 une variété sans bord décorée
et constituera notre définition de la fonction de partition d'un élément de homua,,(?,0) & partir
d’une présentation par chirurgie.

Variétés a bords. A chaque morphisme M de Majs ; n’interpolant pas entre () et ), nous associons
un opérateur que nous définissons via ses éléments de matrice. Nous choisissons une base de chaque
espace H, , intervenant dans le probléme et un vecteur de chaque base; puis nous considérons la
fonction de partition obtenue en saturant chaque composante connexe du bord d’un représentant
du morphisme M avec le tore plein associé au vecteur précédemment choisi. Ce nombre ne dépend
pas du choix du représentant de M grice & l'invariance topologique. Pour l'interpréter comme
un élément de matrice d’un opérateur, nous devons vérifier que ce procédé est bien covariant: si
nous changeons une base par un mouvement élémentaire F, les éléments de matrice ainsi définis
sont linéairement reliés via la bonne matrice!®, Seule la fonctorialité dans S5 le long de §, est
utilisée pour obtenir ce résultat; mais c’est une conséquence directe du formalisme de matrice de
transfert utilisé dans S5. Intuitivement, les mouvements élémentaires sont locaux et ne vont donc

pas interférer avec nos chirurgies. Nous pouvons donc associer un opérateur a chaque morphisme
Ma3 1-

Fonctorialité projective. On déduit la fonctorialité projective dans le cas ou M, M, appartient
a homya,,,(0,0) a partir de la fonctorialité pour des scindements particuliers de S3. Ce Lemme
relativement technique repose uniquement sur des calculs faits dans S3 en coupant selon des spheres.
Ceci suffit pour justifier la fonctorialité projective en toute généralité.

Enfin, la propriété ¢[My)] = Try, (#[M]) se déduit de I'invariance topologique et de la fonc-
torialité projective. Toute ces étapes étant menées & bien, on a fabriqué une théorie topologique
projective a partir d’une solution des équations de Moore et Seiberg. Nous montrerons alors com-
ment une telle théorie permet de fabriquer des représentations projectives des groupes modulaires.

4.2 Les invariants dans 53

Nous allons rappeler briévement comment définir les invariants de graphes trivalents, coloriés
et avec framing dans S3. La méthode utilisée repose sur ’utilisation de matrices de transfert.

Considérons un graphe K trivalent colorié plongé dans la sphére 3. Choisissons un plan de
projection régulier?® et une une fonction de Morse qui sépare les croisements, points de création et
points d’annihilation de I'image du graphe I par le plongement ainsi que les vertex. Cela définit une
décomposition du graphe en cylindres S, x [0, 1] dont chacun contient un et un seul des événements
représentés sur la figure 1.

Pour chacun de ces événements, nous construisons une tranche de topologie S3 x [0,1], qui
possede n points marqués du coté entrant S, X {0} et telle que la k-éme et la k 4+ 1-&éme ligne

1%Si on agit sur les espaces sortants, on doit prendre la conjuguée hermitique.
20 Aucun croisement triple n’apparait dans la projection.
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— YA XX

Fi1G. 1 - : Les différents événements élémentaires dans 3.

soient reliées a I’événement considéré. Cette tranche sera notée C,(k,k+ 1) ol p €< 1,6 > désigne
I’événement considéré. A chacune de ces tranches, nous associons une matrice que nous allons
maintenant définir.

4.2.1 Matrices associées aux événements élémentaires.

Les matrices considérées sont rectangulaires. Si C est un cylindre et que K intercepte sa frontiere
en n points entrants et m sortants, alors ¢[C,(k,k + 1)] € L(Ho,n, Ho,m). Nous choisissons la base
de H, , correspondant au graphe multipériphérique:

1 iy U 41 tho1
\I . 2] ‘ V
a; ai-1 @ An_2

Les matrices correspondant aux événements élémentaires sont alors:

Création de paires: Ci(k,k + 1) Nous créons une paire portant les indices k et k. L’amplitude
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est donnée par:

il 2'2 il i;+1 z‘n—-l z'n
$(Ci(k, k + 1)) =2
P p.a
ay L] ) Up_2
7:1 7:2 i} i(\: k‘ 2'(+1 in—l in
8540807
SoP1 SoF o p P
a G-, o« 7} a; Qn 2

et:

il i2 13 ];; k z'H-l In-1 tn
o[Ca(k, k + 1)] =
2 p Pi

a ap_ a b a; ap—3

YR 7:1 7:2 il iH-l in—l in
0P So ’
"““——6 ‘6 ]
SOOSOPI a,b PP w 1 P ’ I/
a, -1 @ Ap—2

Vertex Cs(k,k + 1) et Cy(k) Deux cas doivent étre distingués: la fusion de lignes et 'ouverture
d’une ligne en deux. Dans le premier cas Pamplitude vaut:

31 1y J S SR A
SCa(k, k +1)] \] ‘ , { V _
ar . a b Gn-s

- il Z'2 il 2.r|~--1 z.n
SUJ S()k F. ay (ft
S8t P a b
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et dans le cas de la scission d’une ligne 7, en deux indexées j et j:

1 i y i g

$[Ca(k)]

Yy

P
1=
o

a, a1 An-2

e
| —— |
=3
oo T
o
[PT——
|

j k in—] iﬂ
a b @n-2
ol o est I’indice du vertex.

Croisements C; ¢(k,k + 1) Deux types de croisements sont possibles C(k,k+ 1) = Cs(k,k+ 1)
et C_(k,k+ 1) = Cs(k,k+ 1). IIs sont reliés aux deux matrices B(—) et B(+):

7 19 U Ugl  la-1 In

o+ )l N 1,1 1) -Z

a; a1 a) Qp_2

ty (PN TY R VR FOIPR A
aj_ a
st 3] N L |
@ a b G2

4.2.2 Définition de Z[S;, K].

Tout d’abord, nous définissons la fonction de partition d’un plongement du graphe K avec un
framing normal au plan de projection par:

Définition 20 Soit K plongé dans Ss, et
[53, I\'] = B3 U (UE::]_C,],) U B3

la décomposition de Morse d’une projection réguliére de K. La fonction de partition de S décorée
par K muni du framing normal au plan de projection est donnée par:

(4.1) Z[S83, K] = So° $[Cp] 0 ...0 $[C}]
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Il ne reste plus qu’a examiner ce qui se passe dans un changement de framing. Supposons avoir
choisi un plan de projection, notons n; ’écart entre le framing de la ligne j et le framing normal
au plan de projection, alors on pose:

(4.2) Z[83, K] = Z[S3, K1] J] exp(2minhy,)

! ligne

ou ¢; désigne la couleur de la ligne j. On montre que cette prescription est bien invariante topolo-
gique. Le lecteur trouvera une preuve dans [16, Chapitre 6] ou encore dans [15]. La méthode utilisée
est directement inspirée du travail de Reshetikhin et Turaev [58].

4.2.3 Quelques exemples.

A partir de 13, il est facile de montrer que les données de Moore et Seiberg admettent une
“interprétation” tridimensionnelle. Ainsi, nous rappelons [55][66]:

4. 1 1 (i"a’) =
(4.3) 5360 S

Z

et de méme,

(4.4) FM[Z ‘” -
(4.5) B,,,q(+)[; H =
e __d
c d 5"
(4.6) Bp,q(—)[ b] = \/—Q“Z[S& ]
a H Sgik
St LN

Enfin exp (27ih;) est le facteur de phase associé & la torsion du framing d’une unité sur une ligne
portant la couleur j.
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4.3 Chirurgie

Nous allons ici rappeler ce qu’est une présentation par chirurgie d’une variété tridimensionnelle
orientée, compacte et sans bords, éventuellement décorée par un graphe comme en section 2.1.2.

Dans N variété de dimension 3 sans bord, considérons un nceud C muni d’un framing. Le
framing définit un plongement du tore plein D, x §; dans N. Sur D, x S; on dispose d’une notion
naturelle de cycles (ao) et (by): un modéle du tore plein est

Dy x 8 ={(pe”,e¥); pe[0,1] et (9,9) € R/27Z}

et (ao) est la courbe ¥ — (exp(i?),1). De méme, (by) est la courbe ¢ — (1,exp(ip)). Dans
'identification donnée par le framing de C, (by) est envoyé sur une courbe paralléle & C notée C’
et (ao) est envoyé sur une courbe que nous noterons (a). Alors, on définit la chirurgie le long de C
munie d’une framing par [40]:

Définition 21 Soit C' un neud muni d’un framing dans N, W un voisinage tubulaire de C dif-
féomorphe & D, x Sy, on le retire de N et on le recolle en recollant (ay) sur C' courbe paralléle a
C définissant le framing et (by) sur —(a). La variété obtenue est appelée la chirurgisée de N selon
C, notée Ng¢.

La chirurgie selon un entrelac est une chirurgie selon chaque composante de I’entrelac effectuée
avec des voisinages tubulaires ne s’intersectant pas. Bien sir, la définition s’étend trivialement
au cas ou N est décorée par un graphe trivalent. Il suffit que les voisinages tubulaires que l'on
utilise n’intersectent pas le graphe. Notre définition du framing par le plongement d’un ruban est
parfaitement compatible avec la chirurgie: la chirurgisée d’une variété décorée par un graphe avec
son framing est encore une variété décorée par un graphe muni d’un framing. Ainsi, le théoréme 5
se généralise en

Théoréme 6 Soit [M, ] une variété décorée par un graphe trivalent colorié K, il existe un en-
trelac L de S35 muni d’un framing et un graphe trivalent colorié plongé dans (S3\ L) et noté K tels
que par chirurgie le long de L, [S3, K] devienne [M, K.

On montre également que le graphe combinatoire sous-jacent &4 K est identique au graphe
combinatoire sous-jacent a I{'. Par contre le plongement differe! Si [M, K] est une variété tridimen-
sionnelle décorée par K, nous dirons que [L, K] est une présentation par chirurgie de [M, K] si et
seulement si, par chirurgie le long de ’entrelac L, [S3, K] devient [M, K].

Toutefois, il est bien connu qu’il existe une infinité de présentations par chirurgie d’une méme
variété tridimensionnelle. La description, due a Kirby [40] et Fenn et Rourke [27] des relations entre
toutes les présentations par chirurgie d’une variété donnée, s’étend au cas des variétés décorées
par un graphe trivalent. Nous allons décrire ce résultat. Pour cela, nous définissons la notion de
mouvement de type K sur une présentation par chirurgie [L, K |

Définition 22 Soit [L, K] une présentation par chirurgie et C une composante non nouée de L
ayant un framing € = £1, choisissons un disque D bordant C'; un mouvement de type K sur [L, K]
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K
e w
-—+——-—
n=-1

Fi1G. 2 - : Le mouvement K sur une composante de framing —1.

sur une composante C de L dont le framing est ¢ = +1 est obtenu en enlevant la composante en
question, et en tournant toute ligne de L \ C et de K qui perce un disque D, de bord C, ainsi que
leur courbes paralléles de —2xe.

L’effet d’un tel mouvement est illustré sur la figure 2 ou, pour simplifier, nous avons supposé
que deux lignes seulement traversaient un disque bordé par C_;. La prescription que nous avons
donné pour les courbes paralléles & chacune des lignes considérées permet de connaitre effet sur
le framing.

Le choix du disque bordé par C est arbitraire. Changer ce disque produit une nouvelle présen-
tation [L’), K] qui differe de [L’, K'] par une isotopie ambiante compatible aux coloriages et aux
framing. En conséquence, cela ne pose aucun probléme. Lorsque nous parlerons de mouvement de
type K, nous sous entendrons qu’un choix de disque a été effectué.

Signalons que la partie “dure” de ce résultat remonte aux travaux de Kirby d’une part [40], et
d’autre part a ceux de Fenn et Rourke [27] & la fin des années soixante:

Théoréme 7 (R. Kirby, R. Fenn et C. Rourke) Deuz entrelacs L et L' constituent deuz pré-
sentations par chirurgie d’une méme variété de dimension trois orientable compacte et sans bords d
isomorphisme preés si et seulement si on peut passer de I'un d Uautre par une suite finie d’isotopies
dans S3 et de mouvements de type K ou de leurs inverses.

L’extension au cas des variétés décorées par des graphes trivalents est explicitée dans [15] et
[16, Appendice 6.A].

Dans la suite, nous aurons besoin d’une notion accessoire, qui est celle de mouvement de type

Og [40]

Définition 23 Soit [L, K] une présentation par chirurgie, un mouvement de type O sur une ligne
C (de L ou de K ) relativement & une composante C; de L consiste ¢ amener C prés de C; et, par
somme conneze, a lui adjoindre courbe paralléle a C;.

La figure 3 explicite un tel mouvement. Parmi les mouvement de type K, nous appelons mou-
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(©),n=1

FIG. 3 - : Le mouvement de type O,.
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vements de type K spéciaux?!, ceux pour lesquels aucune ligne de L\ C ou de K ne perce le disque
bordant C' que ’on a choisi. Dans ce cas, le mouvement consiste simplement a retirer la compo-
sante C. Il résulte des travaux de Kirby, Fenn et Rourke et de [16] que les mouvements de type
O, relativement sur les lignes de L et de I, et les mouvements de type K spéciaux permettent de
réaliser tous les mouvements de type K.

4.4 Quelques calculs d’invariants

La définition de la fonction de partition d’une variété M décorée par un graphe trivalent colorié
K nécessite I'emploi de o(L) que nous allons définir comme suit: si L est muni d’un framing, notons
n; le framing de la composante j de L et (L;, L;) le nombre d’intersection?? de la composante i
avec la composante j de L (¢ # j) et posons:

(4.7) Ljy =y
L,-'j = (L,',LJ') si 1# ]

On note o(L) la signature de la forme quadratique dont la matrice est (L;); ;. Si [L, K] est une
présentation par chirurgie, nous noterons o(L, K) cette signature, qui bien sir ne dépend que de
L. Fenn et Rourke ont montré que

Théoréme 8 Dans un mouvement de type K spécial portant sur un cercle non noué de framing
¢ = %1, la variation de o(L, K) est donnée par:

(4.8) o(L', K"y = o(L,K) - ¢

et dans un mouvement de type O, qui porte sur une ligne de L ou de K,

(4.9) o(L',K') = o(L, K)
La définition de la fonction de partition pour une présentation par chirurgie est alors:

Définition 24 La fonction de partition de la présentation par chirurgie [L, K] est définie par:

(4.10) Z,[L, K] = e~?mico(L.K)/8 Y I Se. 2185, Le, K).

¢ k=1

ou la somme porte sur tous les coloriages de L.

Pour que cela puisse servir de définition 4 la fonction de partition d'un élément de homya, ,(0,0)
nous devons montrer que deux présentations par chirurgie de la méme variété tridimensionnelle
décorée a isomorphisme prés ont la méme fonction de partition.

La méthode consiste & montrer l'invariance par les mouvements de type K spéciaux et les
mouvements de type ;. Un exemple permet de bien comprendre 1'utilité du facteur de phase que

21 Aussi appelés mouvements de type O; dans [40].
#2Ceci suppose que l'on a orienté chacune des composantes. Toutefois, la signature que nous allons calculer ne
dépend pas du choix des orientations!
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nous avons introduit: considérons la sphére S3 qui peut s’obtenir par chirurgie le long de I’entrelac
vide ou bien le long d'un cercle C; non noué de framing 1. Dans ce cas, si nous notons Z[L, K]
I’expression obtenue a partir de 4.10 en enlevant le facteur en exp (27ic/8):

Z[La f\'] = Z [H SCEO] Z[S3v LC$ IE’]:
C k=1

alors

— Clairement Z[0,0] = S,°.

- Et d’autre part:
Z[Cl, 0] o eZnic/24 Z(TS)kOZ[S;;, C‘,EO)]
k

Mais Z[Ss,C{"] = S,* et donc Z[C1,0] = (STS)o" exp (27ic/24). En utilisant la relation
(ST)® = C, il vient
Z[C1,0] = e™/82(0, 0.

Les deux expressions obtenues different par un facteur exp (2imc/8). Ceci montre 'utilité de
cette phase.

Dans le cas général, nous appelons C, la composante de L de framing ¢ sur laquelle le mouvement
de type K va porter. Nous allons calculer la fonction de partition de la présentation par chirurgie
[L, K] puis la fonction de partition de [L’, K'] qui est déduite de [L, K] par un mouvement de type
K sur la composante C,.

Mouvements de type K: Cas [L, K] Rappelons que la fonction de partition de la présentation
par chirurgie [L, K] est donnée par:

(4,11) Z[L,I_\’:] = ZZ ( H e2imnihc, SOCT,:) S(}jEQ’riEthj [(L \ Ce)C, U R]
Cr

J Ci#C.

ou nous avons séparé la somme sur les couleurs C, des composantes de L\ C, et la couleur j de C..

La définition de A4;[(L\ C.)c, U K] est:

4;[G] = 2[85,C;,6] = Z[Ss, ]

ou la ligne portant la couleur j est supposée avoir un framing normal au plan de la feuille. G
représente toutes les lignes de K U(L\C,). Nous supposons que m lignes passent a travers le disque
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délimité par C. Afin de calculer A;[(L\ C,)¢, U K], nous introduisons une base commode de Hp oy

?:1 i'l
?:2 ll2
i3 ila
i m

que par soucis de légéreté nous noterons??

[¢] [] -

1
1= Zﬁ ) s

De plus, nous savons que

Nous utilisons alors les calculs ci-dessus pour évaluer

Z Sol A;(L\ Co)e, U K exp (2mich;)
i

#3Nous avons rappelé ot circulent les indices (i1, ... ,i,) en portant le symbole [i] sur nos schémas.
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et grace aux relations S? = (ST)® = C, nous obtenons pour cette quantité ’expression suivante

(4.12)

1
—_— 7|83,
2 Moo 2L

p,a,p

» @ Jexp (2m’s(§ - hp))
B

Mouvements de type K: Cas [L', K’] Nous allons maintenant comparer Z[L, K] et Z[L’, K'],
ou [L', K'] est déduite de [L, K] par un mouvement de Kirby de type K. Par définition d’un tel
mouvement, la composante C, est retirée et le graphe G devient

box

|

La boite TW contient les parties des lignes qui ont tourné. Nous calculons alors une nouvelle
fonction de partition ou les lignes qui passent dans la boite ont un framing qui pointe vers le
lecteur. Grace a la base de Hg 2, précédemment utilisée, nous pouvons “détordre” les 2m lignes qui
passent a travers D: l'interversion de deux lignes arrivant a un vertex fait apparaitre des facteurs
de phases et finalement, ’expression associée au graphe ci-dessus est remplacée par:

1 s,

”|¢p,a,p)”2 ]Z[S:s,

» * Jexp (inrs(zq: h;, — hp))
ﬂ =3

Il ne reste plus qu’a rétablir les framings utilisés pour évaluer la fonction de partition de la présen-
tation [L’, K'] ce qui permet d’éliminer le facteur

exp (25i1r(zqi h;, ))

Finalement, nous retrouvons I’expression 4.12 & un facteur exp (2mwice/8) prés. En conséquence,

(4.13) 2[L, K] = Z[L', K" exp (271'3'6-;-)
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D’apres le théoréme 8, dans un mouvement de type K spécial, la variation de phase due 3 la signa-
ture compense exactement la variation de phase de Z[L, K]. Ceci montre l'invariance de Z,[L, K]
dans les mouvements de type K spéciaux.

Mouvements de type O, Pour traiter le cas des mouvements de type ,, il suffit de montrer
que ceux-ci peuvent étre obtenus par une succession de mouvements de type K. Dans le cas de
mouvements de type O, portant sur une ligne de L, la preuve est donnée dans [27]. Si le mouvement
porte sur une ligne de K, le lecteur vérifiera sans peine que I’argument donné par Fenn et Rourke
fonctionne encore. Le comptage des facteurs de phase montre que

(4.14) Z[L, K] = Z[L, K"]

car dans la suite de mouvements de type K donnés par Fenn et Rourke apparaissent un nombre
égal de mouvements de type K sur une ligne avec framing +1 que de mouvements portant sur une
ligne avec framing —1. D’aprés le théoréme 8, dans un mouvement de type @, o(L, K') = (L, K).
Cela montre l'invariance de Z,[L, K] dans un mouvement de type O,.

Fin de la preuve Pour conclure, rappelons que deux présentations par chirurgie [L, K] et [L’, K]
sont reliées par une suite

— De mouvements de type K spéciaux, et de leurs inverses.

— De mouvements de type O, relativement & une ligne de L et agissant sur une autre ligne de
L ou sur une ligne de I, et les inverses de ceux-ci.

— D’isotopies dans 53.

Nous venons de montrer que dans de tels mouvements, Z,[L, K] = Z,[L’, K']. Ceci montre que
Z,[L, K] ne dépend que de la classe d’isomorphisme de [M, K] et que, en conséquence, on sait
associer un élément du corps de base i chaque élément de hompa, ,(0,0).

4.5 Définition des opérateurs dans la théorie topologique

Nous allons maintenant définir les opérateurs ¢[M] pour M morphisme de la catégorie Mag ;.
Tout d’abord, nous allons introduire une famille de bases de chaque espace H,,. Chacune de ces
bases est définie par un tore plein standard, que nous allons définir.

Nous verrons comment les différentes bases sont reliées entre elles. Et nous examinerons ’unicité
de la matrice de changement de base. Puis nous définirons les opérateurs par leurs éléments de
matrice dans les bases précédentes.

4.5.1 Tores pleins standard et bases de Hin

Les tores pleins standard Considérons P,, le graphe Ms — voir la définition 10 - de type
topologique (g,7n) introduit en section 3.2.2. Un tel graphe peut étre plongé dans le plan R% Le
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plan R? est considéré comme plongé dans R? par (z,y) — (z,y,0). Soit Wy, . un voisinage tubulaire
de ce plongement du graphe dans R? C R?, c’est un tore plein dont le bord est une surface de genre
g. Nous l'orientons grace a l’orientation usuelle de R3. On définit le framing en posant, pour toute
aréte orientée a du graphe sous-jacent & P, ., fa(s,t) = (fu(t),es) € R3 ot t — f,(t) définit le
plongement de l’aréte a dans R? et ol ¢ est assez petit pour que (f.(t),es) € Wy, , pour tout
s € [0,1]. Nous munissons d’un paramétrage le bord de ce tore plein qui envoie les sommet marqué
de P, , sur le point P, de I'objet de Ma;; considéré. De méme, I’ensemble des sommets externes
de P, , étant ordonné, le k-éme sommet externe est envoyé sur le point P;. On assure également
la condition de compatibilité entre le framing et les demi-droites (Ag);. Ceci nous donne, lorsque
’on choisit un coloriage C du graphe trivalent G sous-jacent & P, un élément de hompa, , (0, X, )
que nous noterons [T,,Gc]. En munissant 205, = de Porientation opposée et en gardant la méme
paramétrisation de 0(2Wsy, , ), on obtient un élément de homma, , (0, Z—);_,,) On dira que (g, n) est le
type topologique du tore plein considéré.

Si maintenant P désigne un graphe Ms de type topologique (g,n) dans la composante connexe
— au sens du complexe 9),,, — de P, ., nous pouvons encore le plonger?* dans R? C R® de sorte
que son image soit incluse dans le tore plein 20p, = précédent et que les sommets externes soient
envoyés sur les mémes points que ceux de P, ,. Du coup, on obtient directement?® un morphisme
de Mas; que nous noterons [I,,Gc]. Remarquons que le graphe trivalent G est pour tout P un
1-squelette du tore plein considéré.

De tels éléments de homya, , (0, Z, ) seront appelés des tores pleins standards. Nous allons les
utiliser pour définir les éléments de matrice des opérateurs associés aux morphismes de Majs ;.

Les espaces H,, et leurs bases D’autre part, nous allons décrire explicitement des bases de
H, .. Nous nous basons sur le Lemme suivant:

Lemme 1 Les espaces Hp pour P parcourant la composante connere de P,, sont deuzr a deuz
canoniquement isomorphes.

Preuve: En effet, le Lemme 1.2 de [44] est valable lorsqu’on ’applique a la composante connexe
Dyn(Pyn). Nous avons vu en sections 3.3.1 et 3.3.2 comment associer & chaque chemin vy €
T1(Dgn(Pyn), P, P) un isomorphisme P,(P,P') entre Hyp et Hyp. De plus, grace aux équations
3.15 et 3.26, et a la simple connexité de 9, (P, ), 'isomorphisme P,(P,P') ne dépend que de P
et ?. 0O

Nous considérons donc un modéle d’espace vectoriel H,, isomorphe aux espaces Hp ainsi
qu’un isomorphisme explicite entre Hy et H,,. Ce choix est arbitraire mais sans importance:
deux choix différents fournissent des théories topologiques équivalentes au sens de la définition 9.
Enfin, on définit Hy pour N non connexe par Hy,un, = Hy, ® Hy,.

Pour chaque graphe Ms, nous disposons donc d’une base By associée au graphe. Dans ce langage,
la matrice F' de Moore et Seiberg apparait comme une matrice de changement de base. Nous verrons

en section 5.4.2 quelques raisons pour ne pas identifier brutalement tous les Hp a un méme espace
H

gan:

?*Nous gardons la méme prescription que précédemment pour le framing.
25 Aprés choix d’un coloriage.
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4.5.2 Définition des opérateurs

Pour définir une théorie topologique, nous devons définir les opérateurs ¢[M] pour tout mor-
phisme M de la catégorie May ;. La définition 24 des fonctions de partition nous fournit ¢[M]
pour tout M € hompya,,(0,0). Considérons maintenant M € hompya,,(X;,X,) ol, pour fixer
les idées X, , sont des objets de Mas,; de types topologiques respectifs (g;,n,) et (g2, 72). Nous
allons définir [M] par sa matrice dans des bases Bp. Nous choisissons la base en spécifiant?®
[T1,G1,C1] € hompya,,(D,E,) et [T3,G,,C,) € homua,,(0, £2) qui sont tous deux des tores pleins
standards de types topologiques respectifs (g;,n;) et (gz, n2).

La stratégie consiste alors a considérer les bases By de H, , et a définir les éléments de matrice

de ¢[M] dans By, et By, grace & Z[(T},G, cl)ﬁMﬂ(T:(_g;;z)] Il est crucial de vérifier la covariance
de cette définition n par changement de base: si on change de base .P — P, alors on change I’élément
[(T1,G1e )BMH(T5, G c,)] de homma,,(0,0) en [(T1,G'1 ¢, )ﬁMﬂ(Tz,g 2.¢1,)]- La définition 24 de la
fonction de partition de ce morphisme ainsi que la définition 20 des fonctions de partition dans S
permettent de relier les matrices calculées dans différentes bases. Il faut vérifier que cette relation
est bien compatible avec l'interprétation de F comme matrice de changement de base! Une fois
cela fait, nous pouvons dire que nous avons vraiment défini les opérateurs ¢[M] pour tous les
morphismes de la catégorie Mas ;. Finalement, nous arrivons a:

Définition 25 Soit M € hompma, (X1, E,), Uopérateur ¢ M] exprimé dans les bases By, = (Vym1 )e,
et By, = (Vp,., )c, est défini par

Z(T MY(T5, Ga e
(4-15) ¢[M]- V'Plcl = Z [( 1,GI,|C|'{/): ﬁ”(2 2 gz’cg)] X V.P?C?
Cz 2C3

4.5.3 Expression du cocycle

Une fois 'invariance topologique obtenue, il reste 3 démontrer la propriété clef des théories
topologiques projectives, a savoir la fonctorialité projective exprimée par 2.15. Dans le cas qui nous
intéresse, nous considérons M; € homuma,,(0,X) et M; € homya,,(X,0). Dans ce cas particulier,
la fonctorialité projective s’exprime par I’existence de p(M;, M,) non nul tel que

Z\(Ty, G M) ZIMiH(T,, o))
11Ty Ge)lI? '

ol la somme porte sur tous les coloriages du graphe G définissant une base de H,,. Le coloriage
des pattes externes est compatible avec la décoration de M, ,.

(4.16) ZIM,§M;) = p(My, M, )Z

La preuve de ce résultat, que nous ne détaillerons pas ici faute de place, permet d’accéder a une
expression explicite pour le cocycle u(M;, Ms).

Pour donner cette expression, nous devons d’abord élargir notre notion de présentation par
chirurgie aux morphismes de la catégorie May ;. Soit [My, K] € homya,, (N1, N3) un morphisme
de Mas; et L un entrelac avec framing plongé dans ce cobordisme, la définition 21 de la chirurgie

?%Ici G1,2 est le graphe trivalent sous-jacent a Pi2.
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le long de L s’adapte naturellement. La notion ainsi obtenue est celle de chirurgie le long de L sur
un morphisme de Mags ;. Le résultat est un morphisme de Mag ;:

[M(),K] € homMas‘l(Nl, Nz) i* [ML,I(] € homMaa‘l(NhNg)

Nous considérerons {M, K] € hompma,, (0, L), et le théoréme 6 se généralise en®’

Théoréeme 9 Tout [M, K] € homma,,(#,E) admet une présentation par chirurgie de la forme
(T,, K), L] ou la chirurgie est effectuée le long de L.

Considérons alors pour fixer les notations [(7}, K), L,] une présentation par chirurgie de [My, K]
et [(S3\T,, I_(z), L,] une présentation par chirurgie de [M,, K,]. Alors clairement, (S5, I?lﬁﬁ'z), L,u
L,] est une présentation par chirurgie de M,§M,. Je note o, , la signature associée i cette ﬁr_é;s_;_en-
tation et o, celle associée a [(T,#(53 \ T,), K1§G), L1] — qui est une présentation de M;§(T,,G) -
et o, celle associée & [(T,§(Ss \ T,),G4K3), Ls] — qui est une présentation de [(T,,G)§M>)]. Alors,
p( M, M,) est donné par (voir [15, Section 4.3]):

(4.17) B, My) = exp (278 (01— o = 03) )

En combinant cette équation avec la définition des éléments de matrice des opérateurs ¢[M] pour
tout morphisme M de Maj;, nous obtenons une expression explicite du cocycle général.

4.6 Propriétés des représentations des groupes modulaires fournies par les théo-
ries topologiques projectives.

Chaque théorie topologique projective basée sur une catégorie géométrique Ma donne naissance
a des représentations projectives des groupes modulaires des différents objets de la catégorie Ma.
La philosophie générale est la suivante: pour chaque objet N de Ma, le groupe Diff (N) agit
linéairement et projectivement sur I’espace Hy. En utilisant I'invariance topologique, on montre
alors que la composante connexe de 'identité de Diff (V) agit par I'identité sur ’espace Hy.

Nous allons préciser comment ces idées se mettent en place dans le cas des théories topologiques
déduites des solutions des équations de Moore et Seiberg. Puis, nous discuterons plus explicitement
le cas du genre zéro: nous montrerons la trivialité du cocycle fournit par la théorie topologique
et nous discuterons les implications de la trivialité du groupe modulaire de la sphére sans point
marqué.

4.6.1 Représentations des groupes modulaires

Dans le cas qui nous intéresse, il existe, pour chaque couple (g, n) plusieurs groupes modulaires
intéressants:

- M(g,n): Groupe modulaire des surfaces de genre g avec n points marqués, respectant ’ordre
des points.

2" Avec un énoncé analogue pour les M € homma, , (Z, ).
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- M(g,n): Groupe modulaire des surfaces de genre g avec n points marqués, ne respectant pas
P’ordre des points.

— 9M*(g, n): Groupe modulaire des surfaces de genre g avec n points marqués, et un vecteur
tangent non nul en chaque point, respectant ’ordre des points.

— M*(g,n): Groupe modulaire des surfaces de genre g avec n points marqués, et un vecteur
tangent non nul en chaque point, ne respectant pas 'ordre des points.

Dans les notations de [6, Chapitre 4], nous avons

(4.18) { (g,n)=mo (-7:011 b 1’1’,)
M(ga ) =T (Mo,n(Ty)a ]-T,)

Et de plus, nous disposons de suites exactes:

(4.19) {1 — Z" — M*(g,n) — M(g,n) — 1

1—Z" — M*(g,n) — M(g,n) — 1

Pour définir la premiére fleche, considérons (P )ie<1n> les points marqués sur la surface. On note
v une courbe simple correspondant au bord d’un voisinage de P; difféomorphe au disque fermé.
L’orientation de 7; est donnée par I'orientation de la surface. On désigne par t,, le twist de Dehn au
sens de [6, Chap. 4, §4] relativement a ;. Alors, l'injection de Z™ dans M*(g,n) associe & (§; x); la
classe dans M*(g,n) de t,,. La seconde fleche associe & la classe de f € Diff (¥, ,) dans M*(g,n)
sa classe dans M(g,n). Enfin, nous avons également

(4.20) 1 — M(g,n) — M(g,n) — Z, — 1

ol la premiére fleche est I'injection naturelle, et la seconde associe & la classe de f € Diff (£, ,)
son action sur ’ensemble des n points marqués.

Considérons maintenant f € M*(g, n) représenté par f € Diff, (2, ,), qui induit sur ’ensemble
{P,...,P,} des n points marqués sur la surface une permutation as. Si A désigne la demi-
droite dans (T, .)p,, (df)(Pe). Ax = A, ). Considérons alors la variété X, , x [0, 1], dont nous
paramétrons les bords par ¢’y : (2,0) — 2 et ¢'; : (z,1) — f(z). Ce cylindre est décoré de la
maniere suivante:

— Le graphe est formé de n arétes disjointes: A = U?_,{ax,ar} et 0;(ax) = ek, et 0ya; = €.

— Il est plongé “trivialement” dans [X,, X [0,1], ', ¢"1]: fixons k €< 1,n >, si p, désigne la
premiére projection dans le produit cartésien I, , x[0,1],t — (piofs, )(. ,t) est une application
constante et de plus, si p, désigne la seconde projection, alors pour tout (s,t) € [0,1]%
(p2 o fa,)(s,t) = t. Notons que cette prescription définit le framing.

Si nous colorions les points P, par les couleurs i,, alors nous colorions ’aréte a; par la couleur ;.
Nous venons donc de définir un cobordisme paramétré qui interpole entre it in] et Tlos -t 001 4],
Tei, E[“’ -] désigne 1'objet de Mag; basé sur la surface ¥, ,, munie des pomts marqués avec direc-
tion ta,ngente (P, Ak )re<1n> €t du coloriage Py — 1,. Le choix du représentant f de f e M*(g,n)
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n’est pas unique mais changer de représentant produit un cobordisme paramétré isomorphe, au
sens de la définition 1. En conséquence, nous avons défini

M, 5a)(F) € hompge,, (Sftg 2, Slog v orid),

Nous définissons

(4.21) Pan( Fginoint = M., i ()]

Notons E = (iy,...,i,), il est clair que p, .(f) envoie Hf,,] sur H;,{,([ED. Pour voir que I’on dispose
d’une représentation projective de M*(g,n), nous considérons le cobordisme paramétré obtenu
comme précédemment mais en remplagant les paramétrisations des bords par ¢"; : (z,0) — f(z)
et @1 : (2,0) — f'(f(x)). Soit M;(f") ce cobordisme, il est isomorphe a M(f’), et comme
M(f)§M;(f") est isomorphe & M(f’ o f), nous en déduisons que®®

(4.22) Pan(f 0 f) = SIM(PIM(F)] = w(M(F), M(F)) X pg.a(F') © pgn(f)

Ceci montre explicitement que les théories topologiques déduites des solutions des équations de
Moore et Seiberg fournissent des représentations projectives des groupes M*(g,n) dans chaque
espace H, ,. Cela nous fournit un 2-cocycle y,, pour le groupe M*(g,n).

4.6.2 Trivialité en genre zéro

Compte tenu de 'expression explicite obtenue pour le cocycle, nous remarquons que:

Proposition 10 Soient M, € homya,,(X1,X) et My € homya, , (X, X;), et si X est de genre zéro,
alors

(4.23) u(My, Mz) =1

Preuve: Pour commencer, nous nous limitons au cas ol ¥;; = 0. Il existe des présentations
par chirurgie de M, et de M; respectivement & partir de [B3, L] et [B3,L2] En conséquence,
[B3ﬂB3,L] U L,] est une présentation par chirurgie de M,;jM,. Considérons alors M, = MlttBa
et M, = BsfM,. Ce sont des variétés tridimensionnelles sans bord, et elles admettent aussi des
présentations par chirurgies qui font intervenir L, ;. Ainsi, [Bsﬁ.é;, L,40] est une présentation par
chirurgie de M, et [B3ﬁl/3’;, O L,] est une présentation par chirurgie de My. En conséquence, comme
o(LiUL,) = o(L;)+0(L,) et que ’on calcule les éléments de matrice des opérateurs associés a M, 5
respectivement en termes de fonctions de partitions de M, , décorées par des graphes appropriés,
nous en déduisons que

Z[M 3 M,) = ¢[M,] o $[M,].

Notre raisonnement n’est pas modifié si £; # Qou X, # 0. O

Considérons maintenant f un difféomorphisme préservant I'orientation de la sphére S, avec n
points marqués. Nous pouvons lui associer un morphisme de la catégorie Mas ;, noté M(f), dont

28Pour alléger les notations, j’ai omis les indices de couleur.
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un représentant du cobordisme tridimensionnel sous-jacent est le cylindre S; x [0, 1] paramétré par
@o : (£,0)— z et ¢, : (z,1) — f(z). La proposition 10 montre alors que

Corollaire : Les représentations p, , des groupes M*(0,n) ne sont pas projectives.

Quelques remarques s’imposent dans le cas du genre zéro: la trivialité de 91(0, 0) [6] nous dit qu’il
existe un représentant du morphisme M(f) de May, basé sur le cylindre S, x [0, 1] et paramétré
par ¢g : (z,0) — z et ¢, : (z,1) — z. Pour un tel représentant, le graphe reste le méme mais son
plongement au sens de la définition 5 change! Considérons F : [0, 1] — Diff(S2) tel que F(0) = 14,
et F(1) = f, alors F est un isomorphisme entre les cobordismes non décorés [S, X [0, 1], ¢o, 1] et
[S2 x [0,1],¢0, f © ¢1]. Au niveau des décorations, il existe un plongement du graphe a n arétes
non orientées sans vertex dans S, x [0,1] qui est envoyé sur le plongement trivial discuté plus
haut. Comme dans [6, Page 102] considérons I’espace des configurations, que nous notons ¢, (852)
des n-uplets de couples (P,A) formés d’un point de S, et d’une direction dans l’espace tangent
3 la sphére au point P. Le groupe fondamental B,(S5;) = m1(€.(S2), (P, A)i) de cet espace est
isomorphe au produit semi-direct du groupe des tresses®® d’Hurwitz B,(Ss) = m1(€.(S2), (Pe)x)
par Z", ou B,(S2) agit sur Z" via ’action naturelle du groupe de permutations de n objets sur Z".
Le nouveau plongement définit un chemin dans €,(S,). Il suffit pour cela de considérer le chemin
t > (f,(0,2),(,f2,)(0,t). Rt). Sa classe d’homotopie dans ’espace de configuration nous fournit
alors un élément du groupe E,._(.S'g).

D’une maniére générale, ces considérations permettent de construire une représentation linéaire
de E,,(Sg) dans l’espace H, ,: partons de 7 un élément de®” ﬁ,,(.S'g) = rl(én(Sz), %), un représentant
4 de ¥ définit un plongement du graphe & n arétes non orientées sans vertex dans [S; X [0, 1], @0, ¢41]
au sens de la définition 5. Changer de représentant produit un cobordisme & la Milnor isomorphe.
Fixons %y,...,1, les couleurs des points (Pi)i<k<n, s0it My, . i,1(7) le morphisme de Maj; ainsi
défini®', My, ia(v7Y) = My, (M, iy, i.)(7"). En conséquence, on vient de fabriquer une
représentation linéaire g ,, de EH(SZ) dans H, ,.

D’un autre coté, de maniére analogue a [6, Page 153], on dispose d’un morphisme surjectif de
B,(S,) dans le groupe modulaire M*(0,n). Notons d,, ce morphisme, alors nous avons

(4'24) Pon = Pon ©0n

Cette équation montre clairement la relation entre les représentations des groupes “des tresses avec
framing” B,(S,) et celle des groupes modulaires M*(0, ).

5 Action de Gal(Q/Q) sur les solutions des équations de Moore
et Seiberg provenant des théories rationnelles.

Dans cette section, nous suggérons quelle est la traduction de I’action du groupe de Galois absolu
Gal(Q/Q) sur le groupe fondamental algébrique de la droite projective privée de trois points dans

*°Ici €,(S2) est ’espace de configuration de Birman pour n points sur la sphére.

0 Le point base % est formé par la configuration (Pk, Ax)i<k<n associée aux objets de type topologique (0,n) de
la categorle May ;.

817ci, v ' signifie v suivi de v'.
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le cadre des théories topologiques rationnelles déduites des solutions des équations de Moore et
Seiberg. Si, comme nous le conjecturons, les théories topologiques tridimensionnelles sont bien des
représentations de la “Tour de Teichmiiller” entrevue par Grothendieck, I’action que nous décrivons
reflete ’action de Galois sur la Tour qui se trouve dans [33].

Toutefois, les raisonnements qui vont suivre sont encore assujettis a quelques hypothéses qui ne
trouveront de justification que dans une définition précise de la notion d’algebre chirale et ensuite de
théorie conforme rationnelle. Avant de rentrer dans le vif du sujet, voici brievement les conditions
essentielles aux raisonnements qui vont suivre:

— Les raisonnements qui vont suivre ne sont valables que pour des solutions de ces équations
de Moore et Seiberg qui peuvent é&tre jaugées a des solutions algébriques. Cela semble étre le
cas dans tous les exmples qui ont été étudiés. Toutefois, en utilisant les équations de Moore
et Seiberg, on sait seulement montrer que les éléments de matrice de S et T sont des nombres
algébriques! Par contre, aucun résultat général n’est connu pour les éléments de matrice F.

— L’algebre chirale de cette théorie conforme doit vérifier certaines propriétés — de rationalité —
que je détaille plus loin. C’est le cas des exemples que je connais. En particulier, je discuterai
les modeles minimaux relativement a une algébre de Virasoro ou a une algebre de Kac-Moody
non tordue.

Dans un premier temps, nous rappelons comment définir une action de Gal(Q/Q) sur le grou-
poide fondamental algébrique de P;(C) \ {0,1,00}. Puis nous montrerons comment cette action
induit l'action de la théorie des nombres sur les éléments de matrice des données de Moore et
Seiberg. Enfin, nous discuterons ’action induite sur les théories topologiques. Ceci nous conduira
a envisager une modification de I’axiomatique des théories topologiques en vue de formuler plus
naturellement (i.e. comme dans 1’énoncé du théoréme 1) la traduction sur les données de Moore et
Seiberg de I'action de Gal(Q/Q) sur le groupoide fondamental de la sphere privée de trois points.

Dans cette section, nous supposons le lecteur familier avec les idées fondamentales des théories
conformes telles qu’elles sont exposées dans [4] (en particulier la notion de bloc conforme).

5.1 L’action de Gal(Q/Q) sur 725(P,(C) \ {0, 1,00}, *).

Le but de cette section est de rappeler ce qu’est le groupoide fondamental algébrique de P,(C)\
{0,1,00} (ou plus généralement d’une surface de Riemann compacte privée d’un nombre fini de
points), puis d’expliquer comment Gal(Q/Q) agit naturellement sur celui-ci. Le point de vue exposé
ici est relativement naif et ne fait appel qu’a la théorie classique des surfaces de Riemann et des
variétés algébriques. Il existe une formulation considérablement plus générale de ces idées (voir [32]
et [17, Paragraphes 10.18 et suivants]).

Nous aurons également besoin de donner une formulation plus adaptée au contexte des théories
conformes. Ceci se fait en utilisant les idées de Y. Ihara [35] ainsi que la notion de point base a
la Deligne [17, Paragraphe 15]. Dans cette section, nous rappellerons la définition du groupoide
fondamental algébrique de P,(C) \ {0,1,00} par rapport & deux points base z et y de P;(C) \
{0, 1, 00}. Puis nous définirons ’action du groupe de Galois absolu sur ce groupoide. Nous étendrons
ensuite ces considérations en décrivant la notion de point base a la Deligne et nous donnerons une
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prescription explicite pour le calcul de ’action de Galois sur le groupoide fondamental relativement
a de tels points base.

Le groupoide fondamental algébrique: cas des points bases ordinaires Nous considérons
ici des revétements topologiques finis de P;(C) \ {0,1, 00} ainsi que la catégorie des revétements
topologiques finis de P,(C) ramifiés au dessus de {0, 1,00} (au sens de la définition 6.1.7 de [23]). Au
paragraphe 6.1.11 de cet ouvrage, on montre que la catégorie des revétements finis d’une surface
topologique B qui ramifient au dessus d’un ensemble fini A est équivalente a la catégorie des
revétements finis au dessus de B \ A. Nous noterons donc Rev,, (Pi(C) \ {0,1,00}) la catégorie
des revétements finis de P;(C) \ {0,1, 00} ramifiant au dessus de {0,1,00}. Le foncteur d’oubli
de la structure analytique définit une équivalence de catégories entre la catégorie des revétements
analytiques finis de P,(C) ramifiant au dessus de {0, 1,00} et Rev, (P (C) \ {0,1,00}).

Enfin, le théoréme d’uniformisation de Riemann nous dit que la catégorie Rev,, (P (C)\{0,1,00})
des revétements analytiques de P;(C) qui ramifient seulement au-dessus de {0,1,00} est équiva-

lente & la catégorie des courbes algébriques au dessus de P;(C) ramifiant au dessus de {0,1, 00}
[59, Chapitre 7).

Nous allons maintenant définir le groupoide fondamental algébrique a partir de transforma-
tions naturelles entre foncteurs fibres qui vont de la catégorie des revétements dans la catégorie
des ensembles finis. Les différentes catégories de revétements étant équivalentes, les groupoides
fondamentaux obtenus seront isomorphes. Toutefois, la catégorie des revétements algébriques nous
permettra de définir une action naturelle du groupe de Galois Gal(Q/Q) sur le groupoide fonda-
mental algébrique.

Rappelons que dans le cas d’un point z € P;(C)\ {0, 1,00} (qui est dit ordinaire, par opposition
aux points base a la Deligne), la fibre au dessus de z d’un revétement (X, p) est I'ensemble fini
p~!(z). Ceci définit la partie objet d’un foncteur fibre F:°P de la catégorie Rev, (P (C)\{0,1,00}) &
valeurs dans la catégorie Ens des ensembles finis. Rappelons que si ¢ : X — Y est un morphisme de
revétements de X dans Y, on lui associe F'°P(y), application de F'°P(X') dans F°P(Y") par restriction
aux fibres. On procéde de méme dans le contexte algébrique et on note F2 le foncteur fibre en z.
Nous allons maintenant définir le groupoide fondamental algébrique de la base P;(C) \ {0, 1, 00}

Soient z et y deux points de P;(C) \ {0,1,00}, ’ensemble des transformations naturelles entre
FP et F;°P est en bijection canonique avec I’ensemble des transformations naturelles entre les

foncteurs F2 et F26. Cet ensemble est noté 73¢(P,(C) \ {0,1, 00}, z,y).

La catégorie dont les objets sont les points de P;(C) \ {0, 1,00} et les morphismes entre deux
objets z et y sont les éléments de 73'(P,(C) \ {0,1,00},z,y) est appelée le groupoide fonda-
mental algébrique de P;(C) \ {0,1,00}. Elle est notée 73¥(P,(C) \ {0,1,00}). Dans le contexte
topologique, on définit de méme le groupoide fondamental topologique 7;°P(P;(C) \ {0,1,00}). On
vérifie facilement que c’est une sous catégorie de 72%(P;(C) \ {0,1,00}): leurs ensembles d’ob-
jets sont identiques et, pout tout couple d’objets (z,y), on dispose d’une injection canonique de
mP(P(C) \ {0,1,00},z,y) dans 72¥(P,(C) \ {0,1,00},,y) définie grice aux théorémes de re-
levement des chemins et des homotopies [23, Paragraphes 4.8.4 et 4.8.5]. Rappelons également
que, grace a la théorie de Galois des revétements [23, Paragraphe 4.5.8], on montre que pour tout
z € P,(C)\ {0,1,00}, le groupe fondamental algébrique 7$5(P,(C) \ {0,1,00},z,2) est le com-
plété profini du groupe fondamental topologique, i.e. la limite projective de tous les quotients finis
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de 7i°°(Py(C) \ {0,1,00}, ). En clair, le groupe fondamental algébrique est parfois beaucoup plus
“gros” que son avatar topologique. Nous invitons le lecteur a expliciter le cas de P;(C) \ {0,00} et
4 montrer que 738(P,(C) \ {0,00},1) ~ (Z, +).

L’action de Gal(Q/Q) On dispose d’une action naturelle de Gal(Q/Q) sur la catégorie Rev,.(P(C)\
{0,1, 00}) par isomorphisme fonctoriel. Elle est définie de la maniére suivante:

— Soit (X,p) un revétement algébrique de P,(C) \ {0,1,00} défini sur Q. On fabrique alors
(0. X,0.p) en appliquant o aux coefficients d’un quelconque systéme d’équations définissant
X et psur Q. '

- Si (X,p) et (Y, q) sont deux revétements algébriques de P;(C) \ {0, 1,00} définis sur Q, et
f:X — Y un morphisme entre eux (également défini sur ), on définit 0. f en appliquant o
aux coefficients des équations définissant f.

Ces prescriptions fournissent un automorphisme fonctoriel de la catégorie Rev,;,(P1(C)\{0, 1, 00}).
A partir de 13, on dispose d’une action naturelle de Gal(Q/Q) sur 7}¥(P;(Q)\ {0,1,00}). En effet,
soient a et b deux éléments de P;(Q)\{0,1,00},et 5 un élément de 73'8( P,(Q)\ {0, 1,00}, a,b), pour
chaque revétement algébrique (X, p) de la sphére privée de 0, 1 et co, notons ¥(x p) 'isomorphisme
entre les fibres p~(a) et p~(b). On considére alors

(51) g o ?U—IA(X,P) o] 0'_1

qui est un isomorphisme de la fibre de (X,p) au dessus de a dans celle au-dessus de b. Le lec-
teur vérifiera que la définition 5.1 est compatible aux morphismes de revétements algébriques. En
conséquence, nous pouvons définir 6.5 au moyen de cette prescription. On vérifie alors que cela
définit bien un isomorphisme fonctoriel de la catégorie 73'8( P,(Q) \ {0,1,00}) obtenue & partir de
T18(Py(C)\{0,1,00}) en se limitant aux objets = € P;(Q)\{0,1,00}. Cet isomorphisme agit comme
I'identité sur ’ensemble des objets car ce sont les points rationnels de la sphére de Riemann.

Les points base & la Deligne Lorsque 'on veut prendre un point base qui, intuitivement,
corresponde a approcher “infiniment prés” de 0, 1 ou oo (ce qui est naturel dans le contexte
des théories de champs invariantes conformes bidimensionnelles), nous devons rajouter un peu de
structure car un revétement fini au dessus de P;(C) \ {0,1,00} est ramifié au dessus de P;(C).
Nous avons besoin d’un moyen de distinguer entre les différentes branches qui partent d’un méme
point dans la fibre au dessus du point considéré®?. C’est ce que les vecteurs tangents de Deligne
permettent de faire.

Pour fixer les idées, raisonnons en zéro. Choisissons un vecteur v # 0 tangent 3 P;(C) en zéro.
Soit (X, p) un revétement fini de P;(C) qui ramifie seulement au dessus de {0, 1, 00}, alors la “fibre
en (0,u)” est formée par les couples (z,w) ot # € p~!(0) et w est une uniformisante de X en ce
point, dont une puissance est z (c’est & dire une fonction méromorphe sur la surface X, qui au
voisinage de z est de germe w tel que w™ = p). Il va de soi que le choix d’une telle uniformisante
permet de choisir entre les différentes branches topologiques issues de X, tracées sur X, et dont la

*2Cette idée est naturelle dans le contexte des théories conformes car nous considérons des opérateurs dont les
poids conformes sont non nuls.



Degiovanni 859

projection sur P;(C) part dans la direction u. Supposons avoir associé a la branche b, 'uniformisante
wy, alors nous associons a 'uniformisante w 1’unique branche b telle que w/w, prenne des valeurs
rééles positives sur la branche b au voisinage du point de ramification.

Séries de Puiseux Nous allons maintenant donner une traduction des idées précédentes en
termes purement algébriques. Cela nous permettra d’une part de décrire explicitement l’action du
groupe de Galois absolu sur 7{'8(P,(C) \ {0,1,00},z,y) olt = et/ou y sont des points base a la
Deligne, et d’autre part, facilitera la traduction de ces idées dans le contexte des théories conformes
rationnelles (voir section 5.2).

L’idée importante consiste & associer & une fonction méromorphe f sur X (courbe algébrique
au dessus de P,(C)) un développement de Puiseux pour chaque point de la fibre au dessus du point
base considéré. Rappelons quun développement de Puiseux (en zéro pour fixer les idées) est une
série de la forme [59, Page 5]

+ 00
(5.2) Z an 27

n=nqg

ol ng est un entier. Intuitivement, la construction est la suivante:

— Dans le cas ol a est un point base ordinaire, le revétement est étale au voisinage de a. La
fonction f admet un développement de Laurent de la forme

(5.3) f= 3 anp”

n2no

et nous lui associons donc le développement de Laurent 3 a.(z — a)". Le point de la fibre
définit un morphisme de C(T')-algébre du corps des fonctions méromorphes sur X dans le
corps des séries de Puiseux en z — a. '

— Dans le cas ol le point base est un point base a la Deligne (0, u), nous choisissons (z,w)
un point de la fibre au dessus de (0,u) du revétement (X, p). Soit f € M(X) une fonction
méromorphe sur X, elle admet un développement de Laurent en fonction de 'uniformisante:

(5.4) fe= Z a, w"

n>no

et nous lui associons le développement de Puiseux

(5.5) Z a, 2"

n2no

ol e, est I'indice de ramification au point x. De ce fait, nous construisons un morphisme de
C(T)-algebre de M(X) dans le corps des séries de Puiseux en z.

D’aprés la descente de Weil [65] (C’est ’argument donné par Bielyi dans [5]), les courbes algé-
briques qui sont des revétements de la droite projective ramifiés seulement au dessus de {0,1, 00}
sont définies sur Q. En conséquence, le corps des fonctions méromorphes d’une telle courbe X
est de la forme M(X(C)) ~ M(X(Q)) ®g C. Pour chaque choix d’un point au dessus d’un point
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base, nous disposons d’un plongement du corps M(X(Q)) dans le corps des séries de Puiseux
a coefficients dans Q.

Dans le cas de P,(C) \ {0,1, 00}, on utilisera les points base & la Deligne 77 définis pour 7 et j
deux éléments distincts de {0,1,00}. Précisément, (voir par exemple [35, page 105]) soient i et j
deux éléments distincts de {0, 1,00}, il existe un et un seul automorphisme analytique t3; de P;(C)
qui envoie ¢ et j sur 0 et 1 dans cet ordre. Si f est une fonction méromorphe sur une surface de
Riemann connexe X qui est un revétement fini de P;(C) ramifiant seulement au dessus de {0, 1, co},
grace au choix d’une uniformisante au dessus de 7, on lui associe naturell(inent un développement
de Puiseux en la variable ¢3;. Dans la suite de ce texte, nous utiliserons 01 et 10. Dans ce cas, la
variable utilisée sera: ¢t = 1 — 2.

A chaque point de la fibre (z,w) au dessus du point base 77, nous associons un morphisme
de M(X(Q)) dans un corps de séries de Puiseux en la variable t5; a coefficients dans Q. Cette
idée permet de développer une description purement algébrique de la théorie des revétements de
P,(C) \ {0,1,00}: nous allons décrire les notions de foncteur fibre et de groupoide fondamental
algébrique dans ce cadre. Cela nous permettra de donner la prescription d’Ihara pour le calcul
explicite de 1’action de Gal(Q/Q) sur le groupoide fondamental algébrique de la sphere privée de
trois points.

La sous-catégorie Rev,,.( Pi(C)\{0, 1, c0}) formée par les revétements connezresest anti-équivalente

a la catégorie des extensions algébriques finies de Q(7T’) non ramifiées®® hors de {0, 1, c0} [23]. Dans
cette formulation, un point de la fibre de (X, p) au dessus de 77 est un morphisme ¢, .,y de Q(T)-
algébre de M(X(Q)) dans le corps des séries de Puiseux en ty & coefficients algébriques (noté
Puisg(ts)) qui étend l'injection de Q(T') dans M(X(Q)) canoniquement associée & p. Le foncteur
fibre FE}'® associe au corps M(X(Q)) ensemble des morphismes ¢, ) précédents. C’est un fonc-
teur contravariant de la catégorie des extensions finies de Q(7") ne ramifiant pas hors de {0,1,00}
dans la catégorie des ensembles finis.

On définit le groupoide fondamental algébrique comme une catégorie dont les objets sont les
différents points base considérés et les morphismes entre deux objets z et y (pouvant &tre des points
. ‘ e Pl .
base a la Deligne 01 ) 1_6, oo, oa, 000 ou 0o0) les transformations naturelles entre les foncteurs
fibres FL"* et Frs. A titre d’illustration, la transformation naturelle T, entre les foncteurs e
et F5*¢ associée & v € m;°P(P,(C)\ {0, 1,00}, @, B) est donnée par la prescription suivante: si M est
une extension finie de Q(7’) non ramifiée au dessus de {0,1,00}, et ¢ € F5U*(M), on pose:

(5.6) - VieM, (%,.8)(f)=-¢(f)

ol 7. ¢( f) désigne le développement de Puiseux du prolongement analytique le long de 7 du germe
défini par le développement de Puiseux ¢(f). Dans ce cadre, T, est I'image de v par l'injection
canonique de 7;°°(P;(C) \ {0,1,00}, a, B) dans 73"8(P,(C) \ {0,1, 00}, e, B).

L’action du groupe de Galois absolu sur un chemin vy € 7!°®(P,(C) \ {0,1,00},a,b) ol (a,b)

sont deux points base rationnels (i.e. dans P;(Q) ou bien un des six points base & la Deligne) est
==

alors facile a décrire en s’inspirant de I’équation 5.1. Pour fixer les idées, supposons que a = 01 et

33Voir ’Exercice 6.3 dans [23] pour une définition.
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b = 10. L’action de o € Gal(Q/Q) sur v € ='(P,(C) \ {0, 1, oo},(ﬁ, E)’) est alors décrite par le
diagramme commutatif suivant:

-1

Zn>nn a‘ﬂzn/e z annn 0_1(0‘71)2“/8

z:ﬂzno U(bn) (1 - Z)nIEI <0_Zﬂ2ﬂn bﬂ (1 - z)n/e'

ot e et e’ sont les indices de ramification en 0 et 1 respectivement.

5.2 Traduction sur les blocs conformes.

L’idée importante dans ce qui va suivre est que les blocs conformes d’une théorie rationnelle
admettent justement des développements de type Puiseux au voisinage des points coincidants car,
comme ’ont montré Moore et Anderson [2] ou Vafa [63], les dimensions conformes des champs
primaires et la charge centrale sont des rationnels! A partir de 14, nous associons a chaque point
base & la Deligne pertinent une base de blocs conformes, et donc une famille libre finie de dévelop-
pement de Puiseux. De plus, les matrices de Moore et Seiberg se calculent comme des matrices de
monodromie entre les bases précédentes. Comme les matrices sont définies en dimension modulaire
au plus égale a un, nous nous rameénerons toujours sur la sphére de Riemann privée de quelques
points. Puis nous montrerons comment ’action de Galois sur le groupoide fondamental algébrique
de la spheére privée de trois points induit une action sur les matrices de Moore et Seiberg. Nous
avons choisi d’illustrer cette idée sur les matrices F et §. La démarche est identique dans le cas des
autres matrices.

5.2.1 Le cas de la sphére avec quatre points marqués.

Considérons quatre points deux & deux distincts sur la sphére de Riemann; grace a une homo-
graphie, on peut envoyer trois de ces quatre points sur {0,1,00}. Ceci permet, comme expliqué
dans [4], d’associer a chaque bloc conforme un développement de Puiseux au voisinage de zéro.

En effet, un bloc est indexé par deux opérateurs de vertex chiraux [53]. Le développement de
Puiseux du bloc

i ok
ik
]:(_I){ .z l }(21722323324) = I }
) 4

1

est obtenu de la maniére suivante: notons ¢,(2) : V;@V; — V, et ¢(2) : V, @ Vi — V; les opérateurs
de vertex chiraux considérés, étant entendu que la premiére représentation est insérée en 0, la
seconde en z et la représentation “en sortie” en co. Nous introduisons alors

(5.7) FED(2) = (@l (1) (Bal2)([0) @ |93)) ® |i24))

qui est reliée a notre bloc conforme par

(5.8) (1)(2)“ lim (2’“]-‘{_“{ : ?}(0,2,1,2'4))
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C’est une fonction analytique sur un voisinage du segment réel ]0, 1[ mais qui peut avoir des mono-
dromies non triviales autour de 0, 1 et oco! Dans les théories conformes bidimensionnelles, elle est
définie pour 2 “proche de zéro” sur I’axe réel positif, soit par une expression asymptotique, soit en
resolvant une équation différentielle comme 1’équation de Knizhnik-Zamolodchikov ou une équation
BPZ. Ceci revient & prendre comme point base pour le calcul des monodromies, le point base &
la Deligne 01. Nous allons maintenant définir Ia, matrlce F en termes de monodromle le long d’un
élément particulier de 7r1°p(P1(<C) \ {0,1, 00}, 01 10) Il est donc indispensable de définir une base
de blocs conformes associés au voisinage du point z = 1 dans P;(C). A chaque élément de la base
est associé son développement de Puiseux dans la variable ¢t = 1 — 2. Ce développement peut
se calculer en fonction d’éléments de matrice d’opératenrs de vertex chiraux [4, 53]. Nous notons

(.7-' (_6))c 4 la base ainsi obtenue. Enfin, nous noterons F, (i d )(1 - 2) le développement de Puiseux de

.7-'(1 ) pour z voisin de 1 dans intervalle réel ]0, 1[.

Nous notons p. }— ) le prolongement méromorphe de .7-' ) le long de p € 7!°P(P,(C)\{0, 1, 00}, of, _0))
représenté par t €]0, 1[H t€ P(C)\ {0,1,00}. La matrice F est définie de la maniére suivante:

(5.9) FO = Z [ ]}ﬂ)

Le développement de Puiseux de fc(,ii) en 0 est donné par

(5.10) FI(2) = 2275 3 (1lu(1)(Ieps {41) © k) X {25, {0} ia( 1)1105) © ) 25480
{q}

olt (|y,{q})){q) désigne ici une base de V, orthonormée et propre pour Lo. L'entier A({q}) est la
différence entre la valeur propre de L, sur |¢@,,{¢}) et h,. L’exposant h, — h; — h; est rationnel.

C’est maintenant que vont intervenir des hypothéses de rationalité et /ou d’algébricité de certains
éléments de matrice des opérateurs de vertex chiraux. Je vais discuter ce point important plus loin.

P 2 ol . 5 .
Supposons pour le moment que le développement de Puiseux de % au voisinage de zéro soit de
PP q PI ab
la forme suivante:

(5.11) (01)(7;) A Ay X gl Zaa,b(n) 2"

n>0

ol les o, (n) sont dans Q (hypothése de rationalité) et A,, € C*. Nous discuterons plus loin la
forme et l'origine de ces facteurs A,.

Nous prolongons o € Gal(Q/Q) en un automorphisme du corps C grace au choix d’une base de
transcendance de C sur Q. Ce choix est arbitraire mais nous allons voir que, du point de vue de la
théorie topologique, il ne change rien. Nous demgnons encore ce prolongement par o. Considérons
p comme un élément de 7¢(P,(C)\ {0, 1, x}, 01, 10) et par analogie avec la prescription de Thara,

ol
nous effectuons les opérations suivantes sur le développement de Puiseux de F, ; £k,

-1
Ay Ay % g Z(Xﬂ,b(n) P o N AGAy) x iR i Za’a,b(n) z"
nz>0 n>0

p 07 (AlAs) ¢ (T0)
A gFm[a Foa'(1-z)




Degiovanni 863

et nous arrivons, par application de ¢, & I’expression suivante:

o~ (A A4) c d 0(AcAg) (T0)
5.12 PO, s ekt sl P -
(5.12) (R )XZC,,G Boala o)) aa, Toa 172

Nous supposons maintenant que les éléments de matrice de F sont algébriques dans la jauge consi-
dérée (hypothese d’algébricité) et donc, ceci montre que la matrice F se transforme sous I’action
de Gal(Q/Q) par la formule suivante:

019 (5,5 5]) (o] ])x GefeldDCheta)

(a,)i(e.d) ¢ (Ac/o(Ae)) (Al o(A0)) ] (41500
Il faut remarquer que cette action se décompose entre d’une part une action “naive” du groupe de
Galois absolu, et d’autre part une transformation de jauge au sens de la définition 17. Au niveau de
la théorie topologique, nous savons bien que les transformations de jauge ne changent pas la théorie
topologique. On s’attend donc & ce que seule compte pour l’action de Gal(Q/Q) I’action “naive”

sur les fonctions de partition de la théorie topologique tridimensionnelle déduite de la solution des
équations de Moore et Seiberg.

5.2.2 Le cas du tore sans points marqués.

Dans ce cas, nous identifions I’espace des modules avec le quotient du disque unité privé de
l'origine par 1’action de PSL(2,Z) sur la variable*® ¢ = exp (27ir). Nous prenons comme point
base le point 0, muni d’un vecteur tangent pointant vers 1. La transformation § se calcule en
prenant le chemin p qui va de 01 vers le point base 10 a la Deligne®®. Les blocs conformes en genre
un sont les caracteres des représentations irréductibles de ’algébre chirale de la théorie. Ce sont des
fonctions holomorphes ()x;); sur le demi-plan de Poincaré, qui joue le role d’espace de Teichmiiller
pour les tores. Ces caractéres fournissent des développements de Puiseux de la forme suivante:

(5.14) XD = ghime/2 Y a(n) ¢
n>0

en la variable ¢ = exp (27i7). Bien entendu, les coefficients a;(n) sont des entiers car ce sont des
dimensions d’espaces vectoriels de dimension finie. Ces développements sont naturellement associés
au point base 01 en la variable q.

La matrice S de Moore et Seiberg est définie par
-1
(5.15) X; (7‘) = 5i*x(r)
k

Comme nous le verrons plus loin, les éléments de matrice de S sont des nombres algébriques. Il est
meéme conjecturé que les caractéres sont des fonctions algébriques de I'invariant modulaire j.

A partir de 7 — x;(—1/7), nous fabriquons un développement de Puiseux relatif au point base
10:

0 g o ~n
(5.16) Xt = @y a(n) §
n>0

**En fait, ¢'/2 serait un choix plus judicieux si on veut utiliser la variable de Picard A(T) = (B4 /92)*(7).
3Dans le demi-plan de Poincaré H, cela revient a aller de infini & Porigine le long de ’axe imaginaire iR*.
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ol § = exp (—27:/7). La matrice S relie alors le prolongement analytique du développement x(-m)

le long de p € 7°P(P,(C) \ {0, 1, oo},OT, HS) aux (Xga))k. Notons s. x le prolongement analytique
de x le long du chemin p, nous avons:

(5.17) s. xf,_f) 2(5 1y (‘6)

L’action d’un élément o du groupe de Galois absolu est alors triviale & obtenir:
s. (o7t x) = Z(s 1 Fof

> a((57)) 6™

k

o. (s. [0 X))

oll on a utilisé de maniére essentielle le fait que les a;(n) sont des rationnels et donc sont fixes
sous l’action de o. En conséquence, ’action de o sur la matrice S est simplement ’action de ¢ sur
chacun de ses éléments de matrice!

Finalement, on peut reprendre le méme genre de raisonnement pour T en considérant le chemin
ci dessous:

T, —

et la encore, le méme argument montre que 'action de ¢ sur T' est simplement 1’action de o sur les
éléments de matrice exp (2mi(h; — ¢/24)) de T (qui est diagonale). Comme les dimensions h; et la
charge centrale ¢ sont rationnelles, c’est seulement la partie abélienne Gal(Qa.,/Q) qui agit.

On peut se poser la question de ’algébricité des éléments de matrice de S et de T'. Les résultats
connus actuellement sont les suivants:

Matrice S Considérons les régles de fusion N;;*, nous savons que les matrices N; = (Ni,jk)j,k
forment une famille de matrices normales mutuellement commutantes qui sont simultanément
diagonalisées par la matrice S. Les valeurs propres de N; sont les )\(’ )= g /Sy’ . Comme les
matrices N; sont & coefficients entiers, ces nombres appartiennent a Q Il reste & montrer que
So* est algébrique sur Q. Pour cela, utilisons ’équation S* = C,

Syt
2_(80") 55 = bio

k

Ainsi, les (5,*)? sont les solutions d’un systéme de Cramer A coefficients dans Q dont le second
membre est un vecteur a coordonnées dans Q. En conséquence, ces nombres sont algébriques
sur Q. En conséquence, pour tout &, S,* est algébrique sur Q ce qui achéve la preuve. Citons
également le travail de De Boer et Goeree [7] qui montre que les rapports /\,(-j )= 8 /Sy’ sont
des entiers dans un corps cyclotomique, i.e. des combinaisons linéaires a coefficients entiers
de racines de 'unité.
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Matrice T L’argument “massue” consiste & utiliser le travail de Moore et Anderson [2] qui montre
que c et les dimensions des opérateurs sont des rationnels dés lors que la théorie est rationnelle.
Il existe une preuve qui se base sur ’article de Vafa [63]. Elle consiste a utiliser I'identité dite
“de la lanterne chinoise” qui est une relation du groupe modulaire pour la sphére avec quatre
points marqués, afin d’obtenir une relation entre les différentes dimensions conformes. Vafa
montre alors que les h; doivent étre des rationnels. En prenant le déterminant de l'identité
matricielle (ST)® = C sachant que §2 = C et C? = 1, on montre que exp (2mic/4) est
algébrique et donc que c est rationnel. Cette preuve présente l’avantage de n’utiliser que les
équations de Moore et Seiberg.

5.3 Justification des hypothéses sur la structure des blocs conformes sur la
sphére avec quatre points marqués.

Je n’ai pas de justification générale de I’hypotheése de rationalité que j’ai énoncé plus haut
sauf dans certains cas particuliers que je voudrais détailler ici. Il en est de méme pour I’hypothese
imposée sur ’algébricité des coefficients de la matrice F. Dans cette section, nous discuterons tout
d’abord I’hypothése de rationalité des coefficients du développement de Puiseux des blocs (0,4),
puis nous passerons aux propriété d’algébricité des coefficients de la matrice F'. Nous discuterons
aussi de I’algébricite des caractéres sur le tore sans point marqué.

5.3.1 Hypothése de rationalité

Nous allons montrer que I’hypothése de rationalité des o, ;(n) est vérifiée dans le cas des modéles
minimaux de Belavin, Polyakov et Zamolodchikov, ainsi que dans le cas des modéles de Wess,
Zumino et Witten associés & un groupe de Lie compact, connexe et simplement connexe.

Commengons par les les modéles minimaux relativement a l’algebre de Virasoro. Dans la
suite, je noterai ¥V = @,V™ un module de plus haut poids irréductible muni de sa gradua-
tion naturelle due & Paction de L,. Le vecteur de plus haut poids sera noté |¢). Les vecteurs
le,{a}) = p(L_-g,)...p(L_,)|¢p) forment un systéme générateur de V en temps que C-espace vec-
toriel. Nous en extrayons une base B et B, désigne la base de V(®) que nous obtenons par ce
procédé.

Nous pouvons énoncer les résultats suivants:

- La forme contragédiente définie par la condition p(L_,) = p(L,)! dans la base B, est le
produit de (p|p) par une matrice & coefficients rationnels.

— Soit ¢(*)(z) un opérateur de vertex chiral au sens de Moore et Seiberg [53] entre les trois
représentations irréductibles, unitaires et de plus haut poids V; @ V; et Vy, alors les quotients

(or A 6OW)Ie) Bles) , (Prld (Wl {a}) © ly))
(eel#(1){1w:) © [3)) (eld@(1)le3) ® Tes))

sont rationnels
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La premiére assertion provient de la rationalité des constantes de structure de 'algebre de
Virasoro et de la rationalité des poids conformes et de la charge centrale dans les modéles minimaux.
La seconde est peu plus délicate. Nous avons besoin des propriétés d’entrelacement des opérateurs
de vertex chiraux relativement a l’algebre de Virasoro. La encore, la rationalité des poids conformes
est essentielle. Considérons les éléments de matrice (@, |¢'®(|vi, {¢}) ®|¢;) et (@p, {g}FP(1)(|¢:) ®
l;}). On utilise les formules suivantes qui se trouvent dans [53]:

n+l 1
(5.18) n>-1, Ag.(L,) = L,®1+1® (Z L z"Ln_k)

—Ein+l-k)
+00 _
(5.19) n< -1, A, (L) = L,®1+1® (Z (n+1).. .k('n k+2) zn+1—kLk_1)
k=0 :
et les propriétés fondamentales suivantes:
(5.20) ¢ ()0 (pi @ p;)(Do:(Ln)) = pp(Ln) 0 d'¥(2)
dpl®)(z
(5.21) T - 4000 (1, @ py(L))

dz

qui donnent les propriétés de commutation des opérateurs de vertex chiraux avec I’algébre de Vira-
soro. Ces formules permettent de calculer (,|¢'®(1)(|¢i, {q})®|w;)) en termes de (¢, |4 (1)(J¢:)®
l;)). Je vais détailler ces expressions pour le calcul de (¢,, {g}#'*(1)(|¢i) ® |¢;)). Considérons

Po(Lgn) - - -pp(Ly,) 45(“)(1)('99&) ® l¥;))

ol les entiers ¢; sont positifs. Comme |@;) et |p;) sont des états de plus haut poids pour l'algébre
de Virasoro, en utilisant 5.18, 5.20 et 5.21, nous obtenons

(5.22) (epr {aH$(1)(I2r) ® l25)) ((Dro...o DN)F(2)(19) © l93)))
(523) D1 = ((_[1 ‘+' 1)Zq‘hj + z"'“ﬁz

=1

De plus, ’équation 5.21 montre que

(a . :
(5:24) (16X © lgy)) = BTN [P @ 1)

Les dimensions h; étant des rationnels, ceci montre que

(905 {0} (1) (l3) ® lp5))
{2l D(1)(|0:) ® |p5))
Par le méme genre de raisonnement, on montre que:
(2ol (L)%, {4}) ® lp5))
(@pld(1)(I0:) ® |;))
Enfin, la forme quadratique définie par p;(L_,) = p;(L,)! vérifie:

(‘Pi’ {q}l‘roh {q’})
(@ilei)

€Q

€Q

€Q

En conclusion, les blocs conformes des modeéles minimaux sur la sphere avec quatre points marqués
vérifient ’hypothése que nous avons imposé.
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Considérons maintenant une algébre de Lie simple g de dimension finie sur le corps des complexes
C, nous allons montrer que les théories minimales relativement a l’algébre affine gt!) vérifient
I’hypothése de rationalité. L’essence de la preuve réside dans 1’existence des bases de Chevalley
pour les algébres de Lie semi-simples qui permettent de construire g sur ’anneau Z. L’analogue des
formules 5.18 et 5.19 est donné par:

n n!
. > a - a k ra
(5.25) n>0, Ag,(J;) Ji®1+1Q (’?:0 Fi(n ) z Jn_k)

IXn...(n-k+1
(5.26) n<0, Ag,(J% J::®1+1®(2" (n—k+ )z""‘J,‘:)

1
k=0 k'

Les représentations de l’algébre affine g(!) sont caractérisées par une représentation de plus haut
poids X intégral de 1’algébre de dimension finie g [37]. Soit V, cette représentation de g(!), alors

v)\ = @ v)(:’a)

neN

olt V") = ker (pa(Lo) — (hx + n)1). Comme d’habitude, hy désigne le poids conforme de Sugawara
[42] associé 4 la représentation V,. L’espace V\" est stable sous 1'action des p)(J¢) qui forment une
algebre de Lie isomorphe a g. C’est une représentation de g de plus haut poids A. Soit g = hGn,. Bn_
une décomposition de g en une algébre de Cartan et deux algébres de Borel, on note |A) un vecteur
de plus haut poids du g-module V{*, et |{g,a}, A} I'état px([], J2.)IA). Ces vecteurs forment une
famille génératrice du g¥-module V.

Considérons alors (A,, {g,a}|¢?(1)(]\;) ® |A;)) et utilisons 5.25, ce qui nous donne

(5.27) (Aps {0, AW (2)(1N) © X)) = 220" (| (1)(1A) @ pa(Jg* -+ Tg™)IAs)

De plus, ¢(*)(z) induit sur V)(\?) ® Vgi’_) un opérateur d’entrelacement pour I’action de g lorsque I'on

projette sur vﬁ) (Ao (J§)=J¢ ®1+1® J¢ n'est autre que le coproduit usuel sur g) et de plus

siy) € Vg?) et |z) € Vet |2) € V,(f;) alors

(21 (2)(|2) ® ly) = 2"~"" (216 (1)(|2) @ |y))

ce qui montre que
(Aps{as @} (L)X ® 1A;))

ne dépend que des éléments de matrice de Iopérateur d’entrelacement induit par ¢(*) entre les
représentations V,(\?) ® V,(\(:.) et V,(f:). On montre qu’il en est de méme pour les éléments de matrice

(Allqs(b)(I)(l{Q?a}&)\p) ® I)‘k))

De méme en ce qui concerne la forme contragédiente: elle est entiérement déterminée par la forme
analogue sur la représentation de dimension finie. On peut alors invoquer les résultats de Chevalley
et Serre [34, Section 25.2] qui montrent ’existence d’une base de g dans laquelle les constantes
de structure sont des rationnels. Dans [34] est expliqué comment construire une base de Chevalley
pour g. Mais au paragraphe 25.4 est expliqué que la structure d’algebre de Lie sur Z déduite de la
base de Chevalley choisie est en fait indépendante de cette base. Nous la notons gz.
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Soit maintenant K une forme de Killing sur g, elle vérifie
V(z,y,2) € %, K([z,9],2)+ K(y,[z,2]) =0

et donc, si il existe une base de g dans laquelle les constantes de structures sont rationnelles, il
existe un choix de forme de Killing rationnel au sens suivant®: si (e, ) est la base en question,

Y(a,8), K(ea,es) € Q.
C’est une forme de Killing sur la Z-algébre de Lie gg.

Les relations de commutation de I’algébre affine, extension centrale de C[t,¢"!] ®¢ g par C sont
[("®z,t"@y]=t""" Q@ [z,y] + kb - m K (z,y)

ot K est une forme de Killing sur g. Donc, si & est rationnel, il existe une base de I’algebre affine dans
laquelle les constantes de structure de g(*) sont rationnelles. Il s’en suit que la forme contragédiente
pour ’algebre affine, évaluée dans la représentation V, associée au poids A, est proportionnelle a
une matrice rationnelle.

En ce qui concerne les opérateurs d’entrelacement, nous procédons de méme. Tout d’abord,
considérons D une représentation de g de dimension finie sur C. D’aprés [34, §27.1], il existe dans
D une base pour la structure de C-espace vectoriel qui est stable sous ’action de ilz, algebre
enveloppante sur Z de la Z-algébre de Lie gz. En conséquence, soit Bp une de ces bases, Vg =
Vecty(Bp) définit une Q-structure sur V qui est stable sous l’action de 1’algébre enveloppante {lz.
De ce fait, chaque pp(z) pour z € gg est un endomorphisme Q-rationnel de (V, Vg) au sens de [8,
Chapitre 2, §8, déf. 3] et donc sa matrice dans la base Bp est a coefficients rationnels.

Un opérateur d’entrelacement u entre les représentations D et D’ de g est une application
linéaire ¢ telle que

(5.28) Y(z,u) € gx D, ¢(pp(z).u)= pp(z).p(u)

Choisissons alors les bases Bp et Bp: comme précédemment, ’équation 5.28 devient un systeme
linéaire a coefficients dans Q. L’espace vectoriel des solutions sur Q a la méme dimension que
I’espace vectoriel des solutions sur C. Nous pouvons donc choisir des Q-structures sur les espaces
d’opérateurs d’entrelacement entre représentations de g. En conséquence, on peut travailler sur le
corps des rationnels pour la théorie des modules de plus haut poids et de dimension finie pour g.

Finalement, en combinant ce dernier résultat et 5.27, il existe une base de ’espace des opérateurs
de vertex chiraux entre V,, ® V), et V,  telle que (X, {q,a}|¢‘(1)|(]A:;) ® |A;)) soit rationnel
pour tout descendant |A,,{q,a}) de |},). Le méme type de raisonnement montre la rationalité
de (M|¢®(1)(1Ap, {g,a}) ® |Ai)). En conséquence, les blocs conformes sur la sphére avec quatre
points marqués des modeéles de Wess-Zumino-Witten associés a une algebre de Lie semi-simple et
de dimension finie (sur C) vérifient les hypotheéses voulues sur les développement de Puiseux des
blocs.

38 Explicitons ’argument: ’équation d’invariance de la forme de Killing s’écrit Ed(fa,bd.ﬁ'a,c + falKba) = 0
pour tout (a,b,c). Les fa,° sont les constantes de structures de I’algébre de Lie considérée. C’est un systéme linéaire
homogeéne & coefficients rationnels que I’on résout sur le corps Q et qui posséde des solutions car le rang est indépendant
du corps de base.
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5.3.2 Hypothéses d’algébricité

Dans cette section, nous allons discuter les hypothéses d’algébricité des coefficients des matrices
de Moore et Seiberg. Nous nous intéresserons au cas de la matrice F, puis au cas de la matrice §
via la question de l’algébricité des caractéres sur le tore sans point marqué.

Sur P’algébricité des éléments de matrice F Dans ce paragraphe, nous allons discuter brié-
vement les problémes liés a 1’algébricité des coefficients de la matrice F' de Moore et Seiberg. Nous

discuterons également la forme et 'origine des coefficients A, et A, qui apparaissent dans ’équation
5.11.

Deux faits “expérimentaux” se sont imposés dans ’étude des théories conformes rationnelles et
des équations de Moore et Seiberg:

— A régles de fusion fixées, les solutions des équations de Moore et Seiberg associées a ces régles
fournissent une matrice F' qui est toujours jaugeable & une matrice & coefficients algébriques.

— A partir d’une théorie conforme rationnelle, I’étude des monodromies des blocs sur la spheére
avec quatre points marqués fournit une matrice F' jaugeable a une matrice a coefficients
algébriques.

Il est tentant de conjecturer que ces faits sont un phénoméne général pour toute théorie conforme
rationnelle. Toutefois, aucun embryon de preuve n’existe a I’heure actuelle. Nous allons rappeler,
sans rentrer dans le détail, quel est I’état de I’art sur ’exemple des modéles minimaux.

Dans le cas des modéles minimaux de Belavin, Polyakov et Zamolodchikov [4], un certain nombre
de résultats sont connus. Les blocs sur la sphére avec quatre points marqués faisant intervenir un des
deux champs primaires ¢, » ou ¢, (avec les notations de [4]) vérifient des équations différentielles
d’ordre deux qui se raménent, aprés une transformation adéquate, a des équations de Riemann-
Papperitz [26]. Dans ce cas, nous savons associer a chaque point base & la Deligne 27 (avec (3,7) €
{0, 1, 00}? distincts) une base de solutions de I’équation différentielle qui fournit naturellement des
développements de Puiseux de la forme

(tz)" 3 eap(n) (t7)
neEN
ol les coefficients «, ;(n) sont rationnels ainsi que ’exposant 7. Le calcul des éléments de matrice
de F' relativement a ces bases remonte au siécle dernier (voir [26]). Toutefois, dans cette base, la
matrice F' n’est pas toujours a coefficients algébriques. Mais on montre qu’un simple changement
de base de la forme
(5.29) FT s At A LR

a

permet de jauger la matrice F & une matrice i coefficients dans Q. Ceci montre, d*une part que le
développement de Puiseux de ces blocs est de la forme 5.11, et d’autre part que dans cette base, la
matrice F est & coefficients algébriques.

L’extension de cette étude aux autres blocs se trouve en partie dans le travail de Cremmer,
Gervais et Roussel [12]. Ces auteurs y étudient les blocs formés par quatre champs de type @y .,
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et montrent que la matrice F est jaugeable a une matrice dont les coefficients sont les symboles 6j
du groupe quantique i,(s[(2)) ol le parameétre ¢ est une racine de 'unité. Vu I'expression de ces
symboles en termes de ¢, la matrice F est jaugeable & une matrice & coefficients algébriques. La
démarche suivie par ces auteurs procéde par étapes:

~ IIs calculent la matrice F’ dans le cas ou un des quatre champs primaires intervenant dans le
bloc est ¢ .

— Par récurrence, ils montrent comment déterminer les coefficients A, pour tout indice de vertex
a.

— En utilisant I’équation pentagonale 3.26 vérifiée par F et par les symboles 6j, ils montrent
que F' est jaugée aux symboles 6j par les coefficients précédemment mentionnés.

L’avantage de cette méthode est qu’elle ne nécessite pas la détermination d’une base de solutions
des équations de Belavin, Polyakov et Zamolodchikov pour chaque quadruplet de champs primaires
possible. Toutefois, il serait intéressant d’étudier de plus pres les développements de Puiseux des
blocs et de considérer le cas & cinq points marqués®” afin de souligner la relation entre I’étude des
théories conformes et ’approche d’Thara. On peut aussi se demander dans quels cas les blocs sur
la sphere avec quatre points marqués sont des fonctions algébriques du birapport des quatre points
d’insertion. Cette question n’a pas été beaucoup étudiée dans la littérature. Nous espérons y revenir
ultérieurement.

Sur P’algébricité des caractéres Nous rappelons ici I’état de I’art concernant 1’algébricité des
caractéres des théories rationnelles en genre un sans point marqué. La conjecture principale, qui
remonte a la fin des années 80, et qui a été formulée précisément par plusieurs auteurs peut s’énoncer
ainsi:

Conjecture 1 Les caractéres d’une théorie conforme rationnelle sont des fonctions algébriques du
paramétre de Picard ).

Comme l'invariant j est une fonction rationnelle du parametre de Picard A, il revient au méme
de dire que les caractéres sont des fonctions algébriques de j. Cette conjecture est équivalente a la
suivante: -

Conjecture 2 Le groupe modulaire S Ly(Z) agit sur les caractéres au travers d’un de ses quotients
d’ordre fini.

En effet, soit p : SLy(Z) — H,; o la représentation de SL,(Z) fournie par les caractéres, notons
I, son noyau. Introduisons I';(2) = I', N I'(2) qui est un sous-groupe distingué du sous-groupe
principal de congruence de niveau deux de SL,(Z), noté I'(2). Les caracteres sont des fonctions
holomorphes sur le quotient du demi-plan de Poincaré par I',(2). Comme I',(2) est un groupe

3711 s’agit alors de développements & deux variables.
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distingué d’indice fini dans ['(2), H/T,(2) = X, est une surface de Riemann compacte3®. De plus,
si a la classe de 7 € H modulo I',(2), on associe sa classe modulo I'(2), on définit une application

———
holomorphe 3 : X, — P;(C) ~ §/T'(2) qui ramifie seulement au dessus de {0,1,00}. En conclusion,
chaque caractere est une fonction méromorphe sur une surface de Riemann compacte qui, de plus,
est définie sur Q.

Rappelons au passage que, dans le cas des modéles minimaux de BPZ, le sous-groupe I', est
un sous-groupe de congruence de SL,(Z). Il en est de méme dans les modeles de WZW associés
au groupe SU(N) pour toutes valeurs du niveau et pour les théories de type Z/NZ pour tout
N € N*. Nous ne savons pas si cela est une caractéristique générale des théories rationnelles. Plus
généralement, il serait intéressant de caractériser quels sous-groupes de S L,(Z) peuvent apparaitre
comme noyau de la représentation p associée a une théorie conforme rationnelle.

Pour finir, comme 1’a fait remarquer M. Kontsevich, cette conjecture est étroitement reliée a
une conjecture plus générale de Grothendieck sur les systémes d’équations différentielles linéaires
de la forme

(5.30) Z—: = A(z).u(z)

ou A(X) est une matrice carrée a coefficients dans Q(X). Cette conjecture permet, si elle est
vraie, de décider si un systéme d’équations différentielles de la forme précédente admet une base
de solutions algébriques. Dans le cas des théories conformes, les équations en question sont, par
exemple, les équations différentielles d’Eguchi et Qoguri [25] exprimées dans le parametre de Picard
A. Le critére utilisé fait intervenir les différentes réduites du systéme d’équations différentielles
modulo chaque nombre premier [38]. A notre connaissance, I’analyse de ces réduites dans le cas des
équations différentielles issues de théories conformes n’a jamais été abordée aussi bien dans le cas
du tore (g,n) = (1, 1) que dans le cas de la sphére avec quatre points marqués (g,n) = (0, 4)! Nous
renvoyons le lecteur intéressé a [1] et [38] pour plus de détails.

5.4 Action sur les théories topologiques déduites des solutions des équations
de Moore et Seiberg.

Nous allons maintenant déduire des considérations précédentes une action du groupe de Galois
sur les théories topologiques. Un élément o de Gal(Q/Q) transforme une solution § des équations
de Moore et Seiberg en une autre solution ¢.S8 des équations de Moore et Seiberg. Pour chaque
solution des équations de Moore et Seiberg, on sait associer a chaque M € homma,, (0,9) un nombre
Z[M] algébrique sur Q. Comme la procédure de construction ne fait appel qu’a des additions et
multiplications, nous avons:

(5.31) VM € homia,,(0,0), o(Zs[M]) = Z..s[M]

Ceci décrit 'action du groupe de Galois au niveau des fonctions de partition. Remarquons que le
groupe de Galois relie des invariants numériques différents.

Dans ce qui va suivre, nous allons décrire quelles sont les données minimales utilisées pour
le calcul des fonctions de partition. Puis, nous discuterons 1’extension de ces idées au cas des

% L’ouvrage de Shimura [62] explique comment traiter les “cusps” et les éventuels points fixes sous I’action du
sous-groupe I',(2).
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théories topologiques déduites des solutions des équations de Moore et Seiberg. Il apparait alors
une difficulté, qui provient sans aucun doute d’une formulation un peu inadaptée et qui est liée &
une ambiguité liée au choix de la Q-structure dans les espaces Hy — N € Ob(Mag ;) — pour ces
théories de champs.

En effet, dans ces théories tridimensionnelles, on définit les Q-structures par le choix d’une
base dans chaque H,,. Bien entendu, ces bases sont associées i des graphes trivalents munis
de framing, plongés dans des tores pleins et la principale subtilité provient que différents graphes
ne définissent pas la méme Q-structure sur H, ,. Toutefois, toutes ces Q-structures sont Q-équivalentes
et “compatibles” au travers de Paction de Gal(Q/Q) comme on va le voir.

5.4.1 Quelles sont les données minimales pour définir une théorie topologique tridi-
mensionnelle.

Tout d’abord, il est important de déterminer quelles sont les données minimales qui sont utiles
pour définir une théorie tridimensionnelle selon la prescription donnée dans [15]. En fait, il suffit
de connaitre

(5.32) S F Q) (\/50:'/500)_ exp (27i)

J

pour calculer toutes les fonctions de partition®® dans la théorie topologique. Nous noterons Ks
I’extension normale de Q engendrée par ces données dans le cas d’une solution S des équations de
Moore et Seiberg. Une question importante, mais non résolue, est de savoir quels corps de nombres
sont obtenus de cette maniere.

Données nécessaires En effet, nous savons que si [M, K] est une variété sans bords se déduisant
de [S3, K] par chirurgie le long de I’entrelac L, alors,

: .co(L - =
(5.33) Z[M, K] = exp (—Q‘A'ZM) Z ( Sckﬂ) Z[Ss, Le, K]
8 Cc k=1
oll, contrairement a [15], je suppose que L est muni de son framing originel et non du framing
zéro. Ceci montre qu’il suffit de savoir quelles données minimales servent a calculer les fonctions de
partition dans S;.

Soit K un graphe trivalent colorié, muni d’un framing et plongé dans S5, nous coupons [§3, K| =
[S3, I1]§[S3, K 3] par une sphére avec n points marqués. Les couleurs des lignes coupées par cette
sphere sont (j;,...,J,). Nous avons alors:

(5.34) Z[83, K] =Y

C

2154, KiGe) 2(50,Geti) (7 520\ "
5,0

Cette formule est a la base de la méthode de la matrice de transfert pour le calcul de Z[S3, K.

On choisit une fonction de Morse pour [S3, K] (au sens de [16, Section 6.2.2]). Nous supposons
que le framing est normal au plan de projection choisi pour K. De toutes fagon, changer de framing

39 Ce sont les scalaires Z[M] pour tout M € homma, , (4, 0).
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ne fait qu’introduire des facteurs exp (27rih;). Alors, en utilisant plusieurs fois 5.34 on montre que
Z[Ss, K]/ So° se calcule en fonction des Sy7/S5,° et des fonctions de partitions de S3 décorée par un
des graphes suivants*°:

()& TIYIDIIXID

Pour les deux graphes de droite, nous nous ramenons facilement, en coupant le long de sphéres avec
deux points marqués, aux fonctions de partition

)

¢ q d

Z|(8,, ] et Z[Ss, ]

L

a P b

a p b

ainsi que la fonction de partition correspondant & B(—), multipliées par un produit de (So*/S,")"/%.
En termes des données de Moore et Seiberg, les fonctions de partitions ci-dessus valent:

I s I s

k=1,... 4 ¢c d k=1,.. ,4 c d
Ve pfcd] @ L g [cd]

En conséquence, les données minimales sont bien celles de la liste 5.32 car B(+) s’exprime en
fonction de F et de (%) et les exp (27ih;) se calculent en fonction de Q(+), tout simplement en
mettant une des pattes a zéro.

Finalement, il ressort de ces considérations que les données minimales pour le calcul des fonctions
de partition sont bien données par la liste 5.32. Nous allons maintenant examiner ’action du groupe
de Galois au niveau de la théorie topologique tridimensionnelle, et les problemes liés au choix des
Q-structures sur les espaces H g

Corps engendrés par les données de Moore et Seiberg Les nombres exp (27ic/8) et
exp (2mih;) sont clairement inclus dans un corps cyclotomique. Comme nous I’avons déja signalé,
on sait également dire des choses sur le corps engendré par les éléments de matrice de S. En par-
ticulier, le corps engendré par les éléments de matrice de S ainsi que celui engendré par les )\S" )
sont inclus dans un corps cyclotomique. De plus, A. Coste m’a informé de la possibilité de calcu-
ler explicitement et en toute généralité 1’action d’un élément o € Gal(Q/Q) sur la matrice §. De
maniere précise, on montre que [11]:

Proposition 11 Le corps M = Q((S/): ;) est une extension normale de Q, au plus quadratique
par rapport @ L = Q((AE"))i,j). De plus, pour tout o € Gal(M/Q), il eziste o € S et i — €,(1) = 1
tels que '

(5.35) V(i,5) € I¥, 0(S7) = €,(5)S79) = £,(3) S,y

#OPar soucis de lisibilité le coloriage n’apparait pas sur la figure. Enfin, nous omettons le graphe obtenu en tressant
les deux lignes “dans ’autre sens” mais il doit étre considéré.
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et qui vérifient o(k) = (r’(}:) et £,(k) = e, (k).

Signalons que ce résultat provient essentiellement du fait que les sous-espaces propres communs
aux matrices N; = (N, ;¥); » sont des droites. Nous donnons ici une preuve de la proposition 11 qui
met ’accent sur ce point ainsi que sur les relations vérifiées par S et C.

Preuve: Notons N; la matrice dont les coefficients sont les N, ;*. Introduisons également A; la

matrice diagonale dont la valeur propre d’indice j est )\Ej ) = 5 /S¢’. La formule de Verlinde, qui
est une conséquence des équations de Moore et Seiberg [52]

S G0 Bk
5. Npf= oitf Tn
(5.36) i =L
se traduit par
(5.37) N, =8A 8

Soit M une matrice carrée i coefficients dans Q, et o € Gal(Q/Q), on note o(M) la matrice obtenue
en faisant agir o sur chaque coefficient.

Remarquons que o(A;) est encore diagonale. Elle posséde le méme ensemble de valeurs propres
que A;: ce sont les racines du polynome caractéristique de N; qui sont simplement permutées par
o. En appliquant ¢ aux deux membres de 5.37, nous trouvons:

(5.38) N; = a(8)a(Ai)a(8)!
En conséquence, o(S) diagonalise simultanément toutes les matrices N;. Utilisons alors le Lemme
suivant [14]:

Lemme 2 Tout sous espace propre commun ¢ toutes les matrices N; est une droite.

En conséquence, il existe ¢ € &) et ¢ — ¢,(z) € C* tels que:
(5.39) Y(i,5) € I*, o(57) = &,(5)5°V
La symétrie de S entraine que:

(5.40) V(i,5) € P, €,(5)5°9 = €,(3)Soisy

Il reste a montrer que ¢,(7) = £1. Pour cela, nous allons utiliser les relations modulaires vérifiées
par S et C:

(5.41) 2 = ¢
(5.42) - SC = CS=8§"

En appliquant ¢ aux deux membres de 5.41, nous obtenons

(5.43) V(i,5) € Py en(i)en(k) bu)"® = 8F
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et donc

a(k) = a(k)

) {e,(k)sa(ic) -1

Appliquons maintenant ¢ aux deux membres de SC = §*, il vient

(5.45) {0((5';]: ) =0(87) = 50(?) 5.6
a((57)) = a(87) = €,(3) Sosy

Utilisons manitenant SC = CS et o(7) = o—'—(?), nous obtenons £,(k) = &,(k) pour tout k € I.
Comme ¢,(k)e,(k) = 1, nous en déduisons que pour tout k € I, ¢,(k) = £1.

Ceci conclut la preuve de I'existence de 0 € &; et i — £,(2) = £1 tels que

(5.46) V(i,5) € I*, a(S57) = £,(3)8:°Y) = £,(1)Sociy

La formule 5.46 montre immédiatement que M est une extension normale de Q car elle est

globalement stable par tout élément de Gal(Q/Q). Soient ¢ et ¢’ deux éléments de Gal(M/Q),
nous avons

O'O"(S,:j) p— Ea(i)fa’(j) So(i)a‘(j) = O"O'(S,'j)

et donc le groupe de Galois Gal(M/Q) est abélien. En conséquence*!, M est inclus dans une exten-
sion cyclotomique de Q. O

Nous pouvons maintenant comparer les groupes 'y = Gal(M/Q) et I'y = Gal(L/Q). Les corps
M et L sont reliés tres simplement: comme

(5.47) S = §° A0 @
nous voyons que M = Q(L, S¢°). De plus, nous savons que
(5.48) Y (565) = (5°)° (Z()‘g’))z) =1
k k

Ceci montre que M coincide avec L ou bien en est une extension quadratique. Deux cas sont a
distinguer:

— Lorsque Sy° € L,alors M= L et ', = T'gk.

- Si 8o° ¢ L, le degré de M par rapport & L est exactement deux. Nous avons une suite exacte

~({£1},x)

car M est une extension normale de L.

#1C’st I’argument de De Boer et Goeree.
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En revanche, dire quelque chose & priori sur les éléments de matrice F ne semble pas évident.
Dans les exemples que nous connaissons, on peut, par une transformation de jauge, se ramener
au cas ou les coefficients F' appartiennent a un corps cyclotomique. Nous n’avons pas a ce jour
d’explication conceptuelle de ce fait, ni méme de preuve générale s’appuyant sur les équations de
Moore et Seiberg comme nous venons de le faire pour §.

Il serait intéressant de pouvoir répondre a cette question: que dire du corps Ks pour une
solution S des équations de Moore et Seiberg. Est-ce que les données de Moore et Seiberg voient la
partie “non-abélienne” de Q (i.e. celle qui n’est pas incluse dans Q,,)? Peut-étre qu’une meilleure
compréhension de la relation entre la géométrie des espaces des modules des sphéres avec cing
points marqués, et la géométrie de 1’espace des courbes elliptiques avec deux points marqués et une
décoration adéquate permettrait d’avancer sur ces questions.

5.4.2 Ambiguité dans le choix des Q-structures sur les espaces H, ..

Nous considérons une théorie topologique déduite d’une solution des équations de Moore et
Seiberg au sens de [15]. Je noterai &, la liste 5.32 relative a cette solution.

Soit (g,n) un couple d’entiers, nous avons introduit pour chaque graphe Ms dans 2, ,(P,.)
une base Bg. Les vecteurs de cette base s’obtiennent également en appliquant ¢ a des tores pleins
standard dont le 1-squelette est le graphe Ms considéré. Nous écrivons Bg = (|T,,Gc))c qui est
orthogonale mais non orthonormée**[66]:

Hk N S(’jk
(5.50) (Tys Gel Ty Ger) = dierien (g o4 vir)

et nous l'orthonormalisons par

(5.51) 19,€) = %

Cette nouvelle base sera notée B;. Le choix de By détermine une Q-structure sur H, . Changer
G change la Q-structure.

Précisément, si G’ désigne un autre graphe, nous savons qu’il existe une matrice de changement

de base P(G,G'):

(5.52) 16,¢) = 3" P(6,9)16',C)

est La formule 5.51 montre que la matrice P(G,G’) est également la matrice de changement de
base entre Bg et B;:. En conséquence, ses éléments de matrice sont dans le corps Ks,. Avec nos
hypothéses, cela entraine que P(G,G') € Mgyimn, .)(Q). Sur chaque H,,, nous disposons donc
d’une Q-structure naturelle et de plusieurs Q-structures.

Nous avons vu en section 2.3 une action naturelle de Gal(Q/Q) sur les théories topologiques
a valeurs dans une catégorie de QQ, munies de Q structures compatibles au vide, au dual et aux
produits tensoriels. Nous aimerions pouvoir dire que ’action de Galois sur les solutions des équations

L TT Jn désignent les couleurs des pattes externes de Ge.
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de Moore et Seiberg décrite dans les sous-sections précédentes induit cette action naturelle sur la
théorie topologique tridimensionnelle. Toutefois, ’ambiguité dans le choix des Q structures sur les
différents espaces H, , montre que nous ne pouvons procéder aussi directement.

Nous aimerions ne pas avoir cette ambiguité de Q-structure a discuter. Pour le moment, je n’ai
pas trouvé de formulation qui me convienne mais nous allons donner un angle d’attaque possible
de ces problemes. Bien entendu, ce qui va suivre est n’est encore qu’une ébauche.

s 1 q

Pour aller plus loin, on aurait envie de privilégier une stratégie ou l’on considére qu’a chaque
graphe G est associé un espace vectoriel, et que, pour des graphes distincts, ces espaces vectoriels
sont distincts mais isomorphes. En passant, on remarque que cette remarque va dans le sens des
idées de Grothendieck. En effet, si on se souvient qu’un groupe est une catégorie avec un seul
objet, une représentation linéaire du groupe est un foncteur de cette catégorie dans la catégorie
des espaces vectoriels. L’image de I'unique objet de la catégorie groupe est alors ’espace vectoriel
sous-jacent a la représentation. Dans le cas du groupoide, nous avons plusieurs objets! Si on appelle
représentation linéaire du groupoide, un foncteur a valeurs dans la catégorie des espaces vectoriels
(sur un corps de base donné), nous ne pouvons plus parler d’un unique espace vectoriel sous-jacent.
Il y en a un pour chaque objet du groupoide... Si les différents graphes G sont reliés aux différents
points base “a la Deligne” d’une des variantes de la Tour de Teichmiiller (qui correspond aux
découpes en pantalons), alors il y a lieu de définir un espace vectoriel pour chacun de ces graphes.
Comme j’estime que ce que je sais sur ce point n’est pas encore satisfaisant, je n’en dirai pas plus.

Ceci suggere qu’il serait sans doute plus naturel d’utiliser une version des théories topologiques
tridimensionnelles dans laquelle on associe un espace des états non pas seulement a un objet de
Maj; mais a une surface munie de structures supplémentaires de sorte que les matrices de change-
ment de base apparaissent comme des matrices d’isomorphismes entre espaces vectoriels différents
et non des matrices de changement de base dans un méme espace vectoriel. Nous pensons cepen-
dant qu’une réflexion plus approfondie sur la Tour de Teichmiiller est nécessaire afin de pouvoir
introduire la notion de théorie topologique la plus naturelle dans ce cadre.

6 Conclusion

6.1 Comparaison avec d’autres travaux

La construction que nous avons donné des théories topologiques tridimensionnelles a partir des
solutions des équations de Moore et Seiberg recoupe un certain nombre de travaux déja existants.
Toutefois, et & notre grand regret, un dictionnaire complet et précis entre les principaux d’entre
eux n’existe pas encore. Le principal obstacle, du point de vue “Moore et Seibergien” que nous
avons adopté, provient de la difficulté i résoudre ces équations. La méthode la plus “naturelle”
pour attaquer ce probléme, qui a été suggérée par Moore et Seiberg eux-mémes [55], consiste a se
donner les régles de fusion et i calculer les différentes matrices F', (%), S et T

Force est de constater que, méme dans le cas des modeéles de WZW associés au groupe SU(2)
au niveau k, ce programme n’a pas été mené a terme! Les travaux dont nous avons eu connaissance
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sont les suivants:

— Dans [53], les auteurs détaillent la résolution des équations dans quelques cas a petit nombre
d’indices de couleurs, ainsi que dans le cas de régles de fusion “de type groupe abélien”. En
collaboration avec A. Buhot et D. Carpentier et L. Gallot, nous avons redérivé ces résultats
(& quelques signes prés...).

— Dans [20], on montre comment obtenir les matrices S et T ainsi que les régles de fusion
qui correspondent aux orbifolds des théories conformes holomorphes. Plus tard, Dijkgraaf,
Pasquier et Roche ont construit une quasi-algebre de Hopf dont la théorie des représentations
fournit précisément les mémes regles de fusion. En principe, il est donc possible de calculer
les matrices de Moore et Seiberg correspondantes. La construction de théories topologiques
tridimensionnelles, a la Reshetikhin-Turaev a été effectuée dans ce cas par Altschiiler et Coste
[13]. Toutefois, la détermination explicite des matrices de Moore et Seiberg n’a pas été faite,
hormis le cas des matrices S et T'.

- Dans [14], on calcule les matrices S et T a partir de régles de fusion de type groupe abélien.
Dans le cas ou les régles de fusion obtenues dans [20] sont de “type groupe” associées a un
groupe cyclique, nous avons explicité la correspondance entre les résultats de [14] et [20]
(voir [16, Chapitre 4]). De plus, dans ce cas, la construction d’Altschiiler et Coste fournit des
représentations non projectives des groupes modulaires, ce qui est compatible d’une part avec
le fait que ¢ = 0 (mod 8) dans les orbifolds de théories holomorphes [20], et d’autre part avec
le fait que le cocycle que nous avons obtenu est une puissance entiére de exp (27ic/8).

— Dans leur étude des modeéles minimaux [12], Cremmer, Gervais et Roussel ont calculé les
éléments de matrice de F. Leur méthode est basée sur I’étude de la monodromie de certains
blocs conformes et 1'utilisation de ’équation pentagonale pour déterminer de proche en proche
les différents éléments de matrice.

Signalons également que ’action de Galois sur les fonctions de partition de variétés tridimen-
sionnelles orientées, compactes, sans bords et sans décoration dans les théories avec regles de fusion
de type Z/NZ a été étudiée dans [9]. Le lecteur y trouvera une illustration concrete des idées déve-
loppées ici. Le nombre d’orbites de telles fonctions de partitions sous ’action de Galois est de deux
(respectivement une) quand N = 0,1 (mod 4) (respectivement N = 2,3 (mod 4)). Les invariants
obtenus coincident avec ceux donnés par Kohno dans [43].

6.2 Perspectives

Nous espérons que le lecteur se sera convaincu de la nécessité de fonder le travail de Moore et
Seiberg sur des bases saines. De maniére équivalente, il nous semble crucial de donner une bonne
définition de la “Tour de Teichmiiller” entrevue par Grothendieck [33, Paragraphe 2]. Ensuite, la
définition et 1’étude de représentations de cette Tour apparait comme naturelle.

Un tel travail permettrait sans doute de clarifier relation entre d’une part les théories topo-
logiques tridimensionnelles et les équations de Moore et Seiberg, et d’autre part la théorie des
représentations de la Tour. Nous conjecturons en effet qu'une certaine classe — a préciser — de
représentations de la Tour, fournit les solutions des équations de Moore et Seiberg, et donc, des
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théories topologiques tridimensionnelles. A partir de 13, les constructions que nous avons présen-
tées ici pourront sans doute é&tre reformulées d’une maniére beaucoup plus précise et élégante. En
particulier, les arbitraires dans la définition des tores pleins standard montrent bien que notre
formalisme n’est pas le plus adapté au probléme. De méme, on aimerait bien voir le groupe des
permutations sur les n points marqués jouer un réle plus transparent.

Nous avons également suggéré dans la section 5 pourquoi selon nous, la traduction de ’action de
Gal(Q/Q) sur la Tour n’est autre que ’action naturelle de Galois sur la théorie topologique (celle-ci
étant définie sur Q). Bien siir, ceci n’est que conjectural mais il serait intéressant de confirmer ce
fait et d’en déduire les conséquences pour la famille des invariants topologiques en dimension trois
déduits des solutions des équations de Moore et Seiberg. L’étude des fonctions de partition dans
les théories Z/NZ que nous avons mentionné plus haut n’est qu’une premiére étape dans cette
direction. De méme, il serait intéressant de comprendre la structure de ces classes d’invariants et

de les comparer aux invariants de Vassiliev.
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