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Nonmetricity Driven Inflation

By Eugene A.Poberii

Friedmann Laboratory for Theoretical Physics, Department of Mathematics,
SPb UEF, Griboedov Can., 30/32, St.Petersburg, 191023, Russia

(12.XI.1994)

Abstract. A metric-affine gravity is examined to generate inflation in cosmology. Using explicit
examples it is shown that the dynamical Weyl-type nonmetricity can play the role of a vector infla-
ton field governing a chaotic-type inflation. Within this approach it seems possible to understand
why, at the present epoch, the nonmetricity must be so small, as implied by observations.

1 Introduction

Modern theoretical understanding of evolution of the universe is based on cosmological ap-
plications of Einstein’s general relativity (GR). In this way, in 1922, A.A.Friedmann derived
equations describing an expanding universe [1]. More recently A.Guth [2] suggested that,
before the Friedmann stage, the universe had passed through an inflationary stage during
which its size was growing very rapidly. The inflationary scenario of evolution of the universe
is accepted now by many cosmologists, mainly because it solves many cosmological prob-
lems in an elegant way. On the other hand, while solving cosmological problems, inflation
produces new, genuine, problems, the main of which is the nature of the field managing
the process of inflation (the inflaton field). The original model [2] (called “old inflation”)
uses the Higgs field of SU(5) theory as the inflaton field. This theory is known to fail be-
cause there is no end for the process of inflation [3]. This difficulty was avoided in “new”
inflation models [4, 5] by selecting an appropriate shape of the effective potential for the
hypothetical inflaton field. Soon after, it was understood that inflation does not need to
occur only in very special field theories. A so-called chaotic inflationary scenario [6] shows
that, if the field evolves slowly compared to the Hubble parameter, then inflation inevitably
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arises. This scenario utilizes some minimally coupled scalar field to produce inflation. How-
ever, as was shown by Chernikov and Tagirov [7] and recently by Sonego and Faraoni [§],
such a field has no physical sense in curved space-time. Moreover, they have shown that, in
curved space-time, the physical field is the conformally coupled scalar field. Just this field
has valid quasiclassical limit and other good properties. Therefore with a scalar inflaton we
find ourselves in a paradoxical situation: the physical conformally coupled scalar field could
not generate inflation, and if inflation takes place it inevitably is caused by the unphysical
minimally coupled scalar field. Therefore a scalar inflaton is not an appropriate cause of
inflation.

Investigating the sources of inflation Ford [9] have shown that inflation could be generated
by a vector material field as well. However the nature of this field remains unclear.

In search of an appropriate inflaton field one may go beyond the framework of GR.
For instance, one can generalize Einstein’s gravity adding a term proportional to R? to the
Hilbert action [10], or using non-minimal coupling terms [11], or exploiting induced gravity
models [12]. In order to obtain an inflationary cosmology one can also use the Jordan-Brans-
Dicke theory which contains a natural scalar field representing the time varying gravitational
constant [13]. Here we shall not discuss advantages and disadvantages of these approaches
referring the reader to the article [14] and references therein. Instead we shall go beyond the
framework of GR by enlarging its geometrical background.

It is well known that Riemannian space is a very special case of general metric-affine
manifold which is characterized, besides the curvature, by torsion and nonmetricity. In order
to obtain Riemannian space from general metric-affine space one must impose two essential
restrictions: One has to require that the metric is compatible with the connection (this is a
constraint imposed on the metric), and that the connection is symmetric (this is a constraint
imposed on the connection). These constraints seem to be too artificial. At the microscopical
level there are no physical reasons for the existence of Riemannian structure on the space-time
continuum. The existence of the locally Lorentz metric is guaranteed by special relativity
while the existence of an affinity is guaranteed by the weak equivalence principle. Hence
the existence of the above two objects indicates that, in general, the space-time continuum
is a metric-affine manifold. It should be noted that the role of the torsion is rather well
understood now (see, e.g. [15, 16] and references therein) but the role of nonmetricity
remains unclear (see, however, [17, 18]). There are no sources for nonmetricity for usual
matter. Moreover, the presence of nonmetricity at the classical level would contradict the
observation data. Hence the role played by nonmetricity, as consider some physicists [18, 19],
may be important at the level of microscopic physics and at very high energies. Thus, if
such high energies are achievable at the early stage of evolution of the Universe, then the
role of nonmetricity becomes fundamental there.

The aim of this paper is to show that in metric-affine gravity there is a natural dynamical
field (namely, the Weyl vector field) which can generate and govern the process of inflation
in cosmology. Starting with a Hilbert-type Lagrangian we generalize it to account for the
nonmetrical properties of space-time completely. For the special choice of nonmetricity (in
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the Weyl form) the equations of motion following from the Lagrangian we find resemble
Einstein gravity with a vector material field as a source. Using an explicit example we
demonstrate that in the metric-affine gravity the Weyl nonmetricity can generate and govern
the process of inflation and becomes sufficiently small at the end of it.

It is interesting to note that in our approach the question “why is our space-time Rie-
mannian” may have a clear answer: the nonmetrical properties of space-time could have
produced an inflationary stage of evolution of the Universe which, in its turn, could have
“eaten” nonmetricity, so that at the present epoch it is equal to zero with a high degree of
accuracy.

2 Gravity in a Metric-Affine Space-Time

In this section we introduce basic geometrical quantities and notations needed in further
considerations. For mathematical details and more deep physical justification we refer the
reader to our recent paper [20].

We shall work with a metric-affine space-time with no constraints imposed on the metric

guv OT on the connection F"W, so that g,, and l'"\w, are completely independent gravitational

variables. The nonmetricity tensor W), is defined by
Wi = Vagu. (2.1)
It is convenient to split W), in the following way
Wi = Wi + 2Wiau, (2.2)

where W) is proportional to the trace of the nonmetricity tensor and Wy, is its traceless
part

1 .
Wa= Wy W,/ =0 (2.3)

Using ( 2.1 ) one can represent the full affine connection I'¥, , in the form
1
F'u‘yp = {uup} + Suup - Suup - Spuu + §(W‘:/p - Wu% - Wp#u)v (24)
where 5%, is the torsion tensor
st o=rh —Iqu _pe (2.5)
= 2 VP pV . .

vp vo] —

o]

The curvature tensor R i

is defined according to

R%,, = 8,I%, — 8,I'%, + %, My, — %, T, | (2.6)

Buv



748 Poberii

Let us define the Ricci tensor R, by the formula

| &
RMV = §(R pov + Rpu:ru )1 (R!W # RW‘)’ (27)

and the segmental curvature tensor €, by

Q. = i—R"UW =8,W, — 8,W,. (2.8)

Now, let us turn to the choice of the gravitational Lagrangian. As is well known, [21] the
main problem in the metric-affine gravity with the Hilbert type Lagrangian

L=oaR;, a=M?/16n (2.9)

(M, is the Planck mass) is its projective invariance, i.e., this Lagrangian is invariant under
the transformations

FAu.u — ]__‘)‘“,, + 62)\1/; G — G- (210)

As a consequence, four degrees of freedom associated with the Weyl vector W, remain
completely undetermined by the field equations obtained from this Lagrangian. It is well
known [21] that for a viable gravitational theory the projective invariance must be broken.
There are several ways to do this. Remember that in GR this problem is solved by imposing
the metric condition Vg, = 0 that implies W, = 0. Here we break the projective invariance
by including terms proportional to the square of the Weyl vector W,W* into the gravitational
Lagrangian. The total gravitational Lagrangian has the form

L=+/—3 (aR T gszu,,sw + U(f)) (2.11)

where k is a dimensionless constant, £ = W,W* and U(§) is a function (a “potential”)
which is not projectively invariant. Such form of the Lagrangian could arise as a result of
a spontaneous breakdown of scale invariance in the initially conformally invariant theory
in a metric-affine space-time (see [20]). In any way we can regard the function U(£) as an
effective potential analogous to that arising for a scalar field in modern cosmology. Equations
of motion following from this Lagrangian can be represented, after some transformations, in
the form

~ 1 = 1
Rf - §guVR = —-'éETm,; (212)
V.00, + 2U(6)W, = 0; (2.13)
Puv)\ = {MVA} - 6$W)ﬂ (214)
S,uu)\ = gy.[uWA]; (215)
W = 0. (2.16)

where the tilde above a letter denotes the ordinary Riemannian part of the corresponding
geometrical object, and the prime denotes the derivative with respect to £. The stress-energy
tensor T, is equal to

T =k Q) — égw,ﬂa,,mﬂ — g U + 2UW,W,. (2.17)
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As is seen from the above equations a remarkable feature of the theory with the La-
grangian (2.11) is that the Weyl vector here plays the role of a source of the Riemannian part
of the curvature. On the other hand, just the Riemannian part of the connection governs
the dynamics of the Weyl vector field W,,, as it is seen from Eq. (2.13). Due to this equation
there is no place for the projective invariance. One may consider this theory to be equivalent
to usual GR with some external massive vector field. But an essential difference is that
here this field is internal and is a part of the full nonmetrical connection, as it is seen from
Eq. (2.14). Moreover, this field also determines the torsion properties of the metric-affine
space-time via the algebraic relation (2.15).

3 Nonmetricity as a Cause of Inflation

Let us consider what cosmological consequences follow from the theory described by the
Lagrangian (2.11). The nonmetrical properties essential for cosmology are contained in the
stress-energy tensor (2.17) of the Weyl vector field. In general the stress tensor of this field
need not be isotropic, so we may assume that space-time will not be Friedmann-Robertson-
Walker type. Instead, we may take an anisotropic metric. Let us take a Bianchi type-I
metric

ds® = —dt* + a®(t)(dz® + dy?) + b*(t)dz>. (3.1)

Let W, be the only nonzero spatial component of the Weyl vector field. We shall be interested
in homogeneous solutions, so that W, = W),(t). This leads to the fact that in the metric
(3.1) Eq. (2.13) for W, implies that W; = 0 for such solutions, and we have for the only
nonzero component W, the following equation:

W, + |22 — b W, + EU’WZ = 0. (3.2)
a b k

The gravitational equations (2.12) for this metric are:

2— + — = —p, (33)

a ab b 1 1
o o s e e e B e 4
a + ab ¥ b 2ozpI 2apy’ (3 )

a a2 1
2— === = ==l 35
a - a? 2ap (3:5)
with the conservation law

. a b ; b
o+ (25 + 3| e+ 25ps + 2p. =0, (36)

a b a b

where the energy density o and pressures p., p, for the Weyl field are
_ kW2
2 b

0 +U, (3.7)



750 Poberii

k W2
D = 5 b2 = U, (38)
pr = —po+ 26U, (3.9)

Let us note that different inflation scenarios within the framework of GR for a material
vector field have been considered by Ford [9]. In our approach only a chaotic-type scenario
is acceptable because in this case the nonmetricity field tends to zero at the end of inflation.
Thus consider the case when initially W, was nonzero and slowly varying field (so that one
can neglect the time derivative terms in (3.7)-(3.9)) but at late times it evolves toward zero.
To obey these requirements the potential U(¢) must have a minimum at £ = 0(§ = W2 /b?).
Moreover it must be sufficiently flat for large £ in order that the duration of inflation would
be sufficiently long. With these assumptions and supposing that

U > 26U’ (3.10)
we obtain p, = p, = p, = —p, and the universe rapidly comes to the quasi-de Sitter stage
a(t) = b(t) = et (3.11)
with the slowly varying Hubble parameter
H = (U/6a)"?. (3.12)

Let us consider an explicit form of a suitable potential U(¢):

U(€) = UpIn (1 + %”%) (3.13)

where one may consider Uy as a lower boundary of inflation below which the inequality (3.10)
is broken and the potential becomes rapidly falling. The potential (3.13) mathematically
has no upper bound. Nevertheless one can consider its physical upper bound

Umae = M, (3.14)
so that inflation takes place in the region
Up SV & Ve (3.15)

Due to the high degree of flatness of the potential (3.13) the process of inflation may be
sufficiently long and the value of expansion during inflation may be extremely large. However,
in order to obtain adequate inflation one needs considerable fine-tuning.

The field W, during inflation evolves according to the following equation

. . 9
W, + HW, + ZU'W, =0. (3.16)
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For large £ (£ > Uym™2) U’ = 0, so the field is a slowly (at most linearly) falling function.
On the other hand, for small ¢ (£ <« Uym™?%) one has U = 1/2m?¢ and the field W, obeys

the equation
2

W, + HW, + %Wz =0. (3.17)
In the case
m2
2= 4= - H?>0 (3.18)

this equation has a solution in the form of damped oscillations which can be written as
1 1
W, :Aexp(“—z-Ht) sin—Q-A(t - B), (3.19)

where A and B are two arbitrary constants. Thus one may consider the region 0 S U £ Up
as corresponding to the reheating stage. In order to obtain some quantitative information
about this stage one needs to take into consideration the interaction of matter with torsion
and nonmetricity. However in the presence of material sources of torsion and nonmetricity
the resulting equations will be essentially different from (2.12)-(2.16). Let us note that due
to the fact that W, tends to zero, the stress tensor of the Weyl field vanishes, so the problem
of anisotropy at late times does not arise in this scenario.

In the example considered above we have assumed that inflation goes with the same
rates in all directions (a(t) = b(f) = exp Ht). But there is no need for this assumption in
cosmology. All that is needed is that the universe expands by the factor greater than 102
in all directions. However this process may go anisotropically, i.e., with different rates along
different axes but under the condition that at later stages the anisotropy disappears. The
process of anisotropic inflation for the material vector field was considered in detail by Ford
[9]. It may be relevant also in the case of inflation driven by vector nonmetricity.

4 Conclusion

As we have seen from the above consideration, nonmetricity in its Weylian form could
have played the role of geometrical inflaton field in metric-affine cosmology. By the end of
the process nonmetricity disappears, so that space-time becomes Riemannian (or Riemann-
Cartan type in the presence of material torsion sources). As it is easy to see, the Weyl
nonmetricity produces the cosmological term responsible for inflation because the conformal
invariance of the theory is broken from the very beginning (a more sophisticated approach
was suggested in [20] where the conformal invariance is preserved but the de-Sitter stage
nevertheless exists). However the Weylian form of nonmetricity is not unique. In the general
case the nonmetricity tensor W,,, can describe spin-2 and spin-3 fields [18]. Thus the
question what would happen, if the nonmetricity were of a more general form than the
Weylian one, needs further investigation.

The other problem concerns the unknown nature of the inflationary potential U(£). This
is a common problem in contemporary cosmology, independently of the origin of the inflaton
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field. The presence of the potential U(¢) is somewhat an ad hoc assumption, and a depen-
dence of inflationary dynamics on the precise shape of U(£) seems to be a further weakness of
inflationary cosmology in general. One may only hope that in the framework of metric-affine
gravity with a more general form of nonmetricity this problem may be resolved.
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