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Gauge Field Theories on Riemann Surfaces
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(3.VI.1994, revised 24.X.1994)

Abstract. In this paper the free gauge field theories on a Riemann surface of any genus are
quantized in the covariant gauge. The propagators of the gauge fields are explicitly derived
and their properties are analysed in details. As an application, the correlation functions of an
Yang—Mills field theory with gauge group SU(N) are computed at the lowest order.

1 Introduction

Recently, the quantized Yang—Mills field theories on Riemann surfaces have been the
subject of several investigations. A partial list of the most relevant contributions is given
in refs. [1]-[8]. Despite of many important results, for instance the nonperturbative
computation of the partition function and of the amplitudes of the Wilson loops, the
possibility of performing explicit calculations in the case of gauge fields interacting with
matter is confined until now to the simplest topologies, like the cylinder, the disk, the
sphere and the torus [9]. On the other side, the perturbative series of Yang—Mills theories
can be derived exploiting the powerful heat kernel techniques [10]. For instance it is
possible to check in this way the renormalizability of any gauge field theory up to one loop
approximation. However, apart from the difficulty of performing calculations at higher
order, we are interested here in the explicit dependence of the theory on the geometry of
the Riemann surface, which is not so easy to treat with heat kernel methods.

Consequently, in order to extend the investigations of refs. [9] also to the case of
Riemann surfaces, we propose here a perturbative approach. One important step in this
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direction is the construction of the propagator of the gauge fields. To this purpose, we
compute here the explicit expression of the propagator in terms of theta functions and
prime forms [11]. Once the propagator is known, one can derive for instance the vacuum
expectation value (VEV) of the energy—momentum tensor [12] at the lowest order. In this
calculation, the dependence on the moduli of the two point function turns out to be crucial
in order to ascertain the existence of pseudoparticles in the physical amplitudes. The latter
are connected to the presence of a gravitational background in certain local systems of
reference, see on this point refs. [13]-[14], where the example of free conformal field theories
is discussed. The knowledge of the propagator alone, however, is not sufficient in order
to evaluate the radiative corrections of the correlation functions on a Riemann surface
because of the presence of zero modes and of topologically nontrivial classical fields. For
this reason, we will give here explicit formulas also for the flat connections following refs.
[5], [6] and [15]. These connections play the role of external background fields, so that the
Yang—Mills theories on Riemann surfaces can be treated within the perturbative approach
using the techniques explained in refs. [16]. As a consequence, the final expression of the
generating functional of the one-particle irreducible Green functions will be gauge invariant
with respect to the background fields.

With the ingredients provided in this paper it is possible to start the perturbative
calculations of the n—point functions of many two dimensional gauge field theories. Indeed,
even if the generating functional considered here involves for simplicity only gauge fields,
we are able to treat also interactions with matter fields without problems. Possible models
are Yang—Mills field theories interacting with massless fermions or scalars, for which the
propagators are already known from string theory. Some of these theories are not exactly
integrable, so that the use of perturbative techniques is appropriate in these cases. On the
other side, if the theory is integrable on the complex plane, nonperturbative calculations
can be achieved also on Riemann surfaces once the free propagators are known. An example
concerning the Schwinger model [17] has been given in ref. [18].

In order to quantize the Yang—Mills field theory we choose here the class of covariant
gauge fixings V,A* = 0, where V, is the covariant derivative acting on the vector field
A#. Unfortunately, due to the presence of the metric, the equations of motion satisfied
by the Yang—Mills propagator are not easily solvable in this gauge. A possible way out
from this problem is to exploit the Lorentz gauge, in which there is the advantage that the
coexact components of the gauge fields decouple in the free Lagrangian from the unphysical
exact components. The linearized equations of motion become equivalent to biharmonic
equations whose solutions is known on every Riemannian manifold [19]. This is the strategy
followed in ref. [20] in the abelian case. In the more complicated Yang—Mills field theories,
however, the exact components remain in the nonlinear part of the action, so that the
perturbative expansion in the Lorenz gauge is very cumbersome. For this reason we will use
here another strategy, computing the propagators after choosing on the Riemann surface
a general, but conformally flat metric. This is not a limitation, because every metric on
a Riemann surface of given genus h is conformally flat modulo global diffeomorphisms.
Thus, the expressions given here for the propagators can be extended to any other metric
exploiting the invariance under global changes of coordinates of the Yang—Mills functional
quantized in the covariant gauge.
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Another problem to be solved in order to find the physical propagator of the gauge
fields is that the Green functions obtained from the equations of motion with a point source
are not unique. The origin of this nonuniqueness is the existence of the flat connections
and the residual gauge invariance typical of the covariant gauges. The latter invariance
can be related to the presence of a constant zero mode in the free equations of motion
[20]. The arbitrariness in the propagator is here removed imposing the condition that the
unphysical flat connections should not be propagated inside the amplitudes. As we will
see, this requirement is sufficient also to eliminate the constant zero mode. As a proof that
our propagator is the physical one, we check that it satisfies the Slavnov—Taylor identities
[21] at the free level. We notice that, on the contrary of what happens in string theory, the
2-D Yang—Mills field theories are not conformally invariant. Therefore, the only possible
Slavnov-Taylor identities are those associated to the gauge invariance of the theory.

The material contained in this paper is divided as follows. In Section 2 we quantize
the Yang—Mills field theories on a Riemann surface in the covariant gauge using the BRST
formalism [22]. The equations defining the propagators of the gauge fields are explicitly
derived. They are too complicated to be solved for a general metric, so that we limit
ourselves to the conformally flat metrics. We show however that the expression of the
propagator can be derived for any other metric exploiting the covariance of the theory
under general diffeomorphisms. In Section 3 the two point functions of the ghost and gauge
fields are constructed. The already mentioned arbitrariness given by the flat connections
and by the residual gauge invariance is totally eliminated by introducing three physical
requirements. In Section 4 the properties of the gauge propagator are investigated. First
of all, we verify that, on any open subset of the Riemann surface, it is equivalent to the
standard two point function of R2. Secondly, it is checked that the flat connections are
not propagated in the amplitudes. As a consequence of the physicality of our propagator,
we prove that its components fulfil the Slavnov—Taylor identities at the free level. Finally,
for future applications in perturbation theory, the structure of the divergent and finite
parts of the two point function at short distances is computed. In Section 5 the generating
functional of the correlation functions for an SU(N) Yang—Mills theory is considered.
The missing ingredient, the flat connections, are explicitly derived in terms of the abelian
differentials and of the Lie algebra generators. In Section 6 we present the conclusions
and the possible future developments. Finally, the explicit form of the components of
the propagator in the short distance limit is calculated in the appendix, pointing out the
differences that appear considering Riemann surfaces of different genera.

2 The Covariant Gauge Fixing on a Riemann Surface

In this paper we consider the following Yang—Mills functional:

Syas = f P/ Tr EFWF‘“’] (2.1)
M
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where M is a general closed and orientable Riemann surface of genus h parametrized by the

real coordinates x,, 4 = 1,2. The metric on M is given by the tensor g,, with Euclidean

signature and determinant denoted by g = det[g,.|. To fix the ideas, we suppose that the

fields A, are elements of a su(IV) algebra, so that A, =} A%T*, a=1,... ,N?2 -1, where
a

the T are the generators of SU(N) in the adjoint representation. The elements of the
gauge group connected to the identity are mappings U(z) : M — SU(N) parametrized as
follows: U(z) = exp[ika®(z)T?]. Here the a®(z) represent real functions on M and « is a
real coupling constant. The field strength F),, appearing in eq. (2.1) is of the form:

Fu = 0,4, — 8,A, +ix[Ay, Ay

In this way it is easy to see that the action (2.1) is invariant under a local SU(N) trans-
formation of the kind:

Au(z) = AL (z) = U~ (z) [Au(z) — ic718,) U(x) (2.2)

To evaluate the trace in eq. (2.1) we will use the following conventions:
arb 1 ab
T I"T") = 56 (2.3)

1
Tr(TaTbTC) — Z(dabc o ifabc) (24)
where d®%° is a totally symmetric tensor given by {T¢,T°} = d®*°T*°, with {,} denoting
the anticommutator, while the f**¢ are the structure constants of the group SU(N).

The classical action (2.1) is degenerate and in order to perform the quantization we
adopt the standard Faddeev and Popov procedure. To this purpose, we introduce the set
of nilpotent BRST transformations [22]:

§A2 = (D, (A)c)® §B® =0 (2.5)

§co = % fabechee 55 = %B“ (2.6)
where ¢* and ¢® are the ghost fields and the B play the role of Lagrange multipliers. The
covariant derivative D, (A) appearing in eq. (2.5) is of the form: D,(A) =V, —ik[A,, ].
Acting on the ghost scalar field ¢(z), the differential operator V,, is just the usual partial
derivative 8,,. After choosing a suitable gauge fixing f*(A) = 0, the total BRST invariant
action becomes:

S =Sym+ Ser + Srp (2.7)

where
Sar + Srp :(5(EaFa(A)) (2.8)

is a pure BRST variation.
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To our purposes, i.e. explicit perturbative calculations of the correlation functions, it
is convenient to impose the covariant gauge fixing

1
\/‘aﬂ

This preserves the covariance under general diffeomorphisms in the action (2.7). How-
ever, the equations satisfied by the propagators of the gauge fields are complicated by the
presence of the metric. An exception is provided by the Lorentz gauge already studied in
ref. [20], where the coexact components of the A, fields are completely decoupled from
the exact components at the free level. This fact allows the calculation of the propagator
in a relatively easy way and for any two dimensional manifold, also with boundary, once
the biharmonic Green function with the proper boundary conditions explained in [20] is
known. For this reason, the Lorentz gauge is very useful in treating some models with
abelian group of symmetry, like for instance the two dimensional massless electrodynamics,
in which the exact components can be simply factored out from the path integral [18].
The situation is however different in the case of nonabelian gauge field theories, because
the exact components remain present in the nonlinear interaction Lagrangian, making the
perturbative approach in the Lorentz gauge very cumbersome.

(Vga¥) =0 (2.9)

To solve the equations satisfied by the propagators in the covariant gauge (2.9) we
use the following strategy. First of all, we introduce on M a set of complex coordinates
z =z +1ixy, Z = 2*. Moreover, we exploit the fact that on a Riemann surface it is always
possible to choose a conformally flat metric of the kind:

9zz = 9zz = 0 Gzz = Q3zz = (210)

#(z,2) being a real function. At this point, we impose the gauge fixing (2.9), which,
in the particular metric (2.10), reduces to the simpler condition: V. A; + VzA, = 0.
This is a good gauge fixing apart from Gribov ambiguities [23], which we will not discuss
because our treatment is strictly perturbative. Once the gauge invariance is fixed, the
component A%dz (A2dz) of the gauge connection belongs to T*(1:0) (M) (T*(1)(M)), which
is an holomorphic (antiholomorphic) line bundle admitting holomorphic (antiholomorphic)
transition functions. As a consequence, the covariant gauge fixing (2.9) in a conformally
flat metric reads:

Fo(4) = 7% (0. A2 + 0,42) = 0 (2.11)

Starting from the gauge fixed action (2.7) and integrating over the Lagrange multipliers
B® with the functional measure

dp[B] = f DHg® Jn Fonlg DB
we obtain the final formula:

Z[J] = fDAMDEDcexp {_Tr/ d*z\/g [%FWF“V + —;Kfz(A) + 8,eD*(A)c+ J“A“] }
M
(2.12)
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From this generating functional it is possible to-derive perturbatively all the correlation
functions of the gauge fields in a conformally flat gravitational background. This is not
a serious limitation, since the results can be easily extended to any other metric in the
following way. For instance, let us suppose that the propagators are known for a general
metric g,z which is conformally flat. To derive the propagators also in the case of another
metric g,,(2',Z'), obtained from g,; after a global diffeomorphism plus a Teichmiiller
deformation, it is sufficient to exploit the covariance under diffeomorphisms of the action
appearing in eq. (2.12). This covariance is assured by the fact that the gauge fixing (2.11)
is nothing but the covariant gauge (2.9) written in the conformally flat metric (2.10). As
an upshot, the classical equations of motion satisfied by the propagators and the respective
solutions turn out to be covariant under global diffeomorphisms. At this point, we notice
that the metric g,.,(2',Z’) is equivalent to a conformally flat metric g,z (w, @) up to a
change of variables of the kind:

w=w(z, z) w=w(z, %) (2.13)

(see for example [24] and references therein). In the new metric g5 (w, @) the components
of the propagator are known by hypothesis. Therefore, they can be computed also in
the old metric g, (2", Z’) inverting the diffeomorphism (2.13) and using the covariance of
the propagator mentioned above under this transformation of coordinates. Concerning
the other correlation functions, they are easily obtained from the propagators exploiting
perturbation theory. Finally, let us notice that, in our perturbative framework, the addition
in eq. (2.12) of interactions with matter fields is not a problem. For example, one may
consider massless scalar or fermionic fields, for which the propagators are already known
from string theory.

3 The Propagators in the Covariant Gauge

Following the ideas of the previous section, we construct here the propagators of the
Yang—Mills field theory in the conformally flat metrics described by eq. (2.10). To this
purpose, it is sufficient to consider only the free part Sp of the action appearing in eq.
(2.12). Using a set of complex coordinates and dropping the color indices we obtain:

- 1
8y = / d?2g%% |(8,A;5)? L3 1) +(9:4,)% E_ 1) +20,A;0:A, (— +1 |+
M A A A
9, Az + 2J;A,] (3.1)

The classical equations of motion following from eq. (3.1) are:

1 e -
(1 e —)\—) 9:(97° 0. Az) — (1 - ;) 0:(97°0:A;) = J;
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(1 + %) 0.(9°*8:A,) — (1 — %) 0.(g%*8,A;) = J,

As these equations show, the advantage of working with conformally flat metrics is that the

covariant derivatives are substituted by partial derivatives, simplifying the calculations.
Now we are ready to compute the propagator of the gauge fields:

Gap(z,w) = (Aa(2,2)Ap(w, w)) (3.2)

In eq. (3.2) and in the following we adopt the conventions: a = 2,2, 8 = w,w. The
equations defining the propagator become:

(1 + ;) 85(9720,G (2, w)) — (1 = %) 8:(9°%0:Gu(2,w)) =

h
68 (zw) = - @i(®) [Im Q] wy(w) (33)
i,j=1
1 = 1 5
(1 + :{) az(gzzasz@(z,w)) - (1 - 5) Bz(gzzaszm(zu w)) =
h
82 (zw) = Y wilz) [Im Q' @;(w) (3.4)
i,j=1
1 % 1 &
(]. e X) Bg(gzzang@(z,w)) = (1 + X) Bz(gzzaszm(z,w)) = 0 (35)
1 = 1 -
(1 = X) Bz(gzzaszw(z,w)) == (1 + X) Bz(g"aszw(z,w)) =0 (36)
In the first two equations written above ;;, 4,5 = 1,...,h, denotes the period matrix

and the w;(2)dz form a canonically normalized basis of abelian differentials. Moreover, the
term in the right hand side of eqgs. (3.3) and (3.4) is a projector onto the space of the zero
modes, given in this case by the h abelian differentials w;(2), z = 1,...,h. As shown in
ref. [20] for the Lorentz gauge A = 0, the presence of this projector is necessary because
otherwise also the unphysical harmonic components of the fields would be propagated in
the amplitudes. The proof that in the flat case egs. (3.3)-(3.6) are equivalent to the usual
equations:

s = 0,0, (1-3)] Gunte 1) = 8P ) (37)

where A denotes the Laplacian in cartesian coordinates and p, v = 1, 2, is straightforward.

At this point, we use eq. (3.5) in order to derive the expression of G.4(2,w) in terms
of Gza(z,w):
A+1

8o (3y10) = (A—_—l)azcm(z,w) | (3.8)
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Substituting (3.8) in (3.4), one obtains an equation containing only Gizp(z,w):

0:(g70:Gza(zw)) _ 1 |0 ~ 1.0
(A —1) ~ 1 63 (2 w) “”Z;wn(z) [Im Q" @;(w) (3.9)

In the same way, from egs. (3.6) and (3.3) it follows that:

0:G (2, w) = (-}-t—i)BEGm(z,w) (3.10)
and:
zZZH_ PR " h .
0:(g ?;C:‘ziu)( W) :i 52 (z,w) = Y @i(2) Im Q1 wy(w) (3.11)

ij=1

Thus we are left only with the two independent equations (3.9) and (3.11) in the compo-
nents G, (2,w) and Gzg(2,w). To simplify these equations and to determine uniquely
the form of the propagator, the following physical requirements play an important role:

a) The unphysical zero modes should not be propagated.

b) The components of the propagator should be singlevalued. Taking from example their
integrals in z, the differential in w, 1 obtained in this way must not be periodic around
the homology cycles A; and B;, i =1,..., h, of the Riemann surface:

ﬁdezB(z’ w) = fdeng(z,w) = 1 (3.12)

where <y is an arbitrary nontrivial homology cycle and 8 = w, w. Analogous equations
are valid integrating in the variables w, 1.

c) The gauge fields A, and A; can be decomposed according to the Hodge decomposition
in coexact, exact and harmonic components as follows:

A, =0.0+0,p+ Ag&r (3.13)

A; = —0;0 + 8;p+ AD™ (3.14)

Here ¢ is a purely complex scalar field, while p is a real scalar field. Ah** and Ab®r
take into account the presence of the abelian differentials. The decomposition (3.13)
and (3.14) is not invertible unless

f P2g,:8(2,2) = [ P2g,20(2,%) = 0 (3.15)
M M

Accordingly, also the propagator G,p(z, w), which from point a) propagates only the
coexact and exact components, should satisfy analogous relations.
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Applying the Hodge decomposition theorem [24] to the propagator (3.2), one obtains that
the most general form of this tensor is:

h
Gop(z,w) = 0a05G(z,w) + Y (Baf'AY + AT Opf" + AT AY)

1=1

where G(z,w) = G(z,z;w,w), f*(z,2) and f¥(w,®) are scalar functions and AQT,A%T,
it =1,...,h, represent a basis for the 2h real harmonic differentials in the variables (z, z)
and (w, @) respectively. Let us notice that in the above Hodge decomposition we ignored
possible instantonic contributions. In the Yang-Mills case they are ruled out by the fact
that the group SU(N) is simply connected. In the abelian case, instead, the instantonic
gauge fields do not play any role because they decouple in the free action Sy from the exact
and coexact components.

Clearly, requirements a) and b) are satisfied only if:
Gap(z,w) = 8,08G(z, w) (3.16)

i.e. the harmonic components A*7" and A}:;T do not appear in the propagator. The function
G(z,w) can be now computed exploiting the ansatz (3.16) in egs. (3.9) and (3.11). As
an upshot, we obtain a biharmonic equation which is solvable on any Riemann surface as
shown in ref. [20] for the particular case of the Lorentz gauge:

G(z,w) = /M d*t\/gK (z,t)K (w,t) (3.17)

Here K(z,t) is the well known scalar Green function defined by the equations:

0,0;K(2,t) = 6D (z,1) — L2 A= f 4?29, (3.18)
A M
h
0:0.K (2,t) = =65 (z,8) + > @i(2) [Im Q] w;(t) (3.19)
i,j=1
f PtgK (2,8) = 0 (3.20)
M

After a straightforward computation we obtain from eqgs. (3.8)-(3.11) the following final
expressions for the components of the propagator:

A—1
Grulzw) = =2 fM P00, K (2, )8 K (w, 1) (3.21)

A+1

Gzw(z,w) = — d*tg:;0: K (2,t)0, K (w,t) (3.22)
M

Gza(z,w) = —% ]M d?tg;70: K (2,1)05 K (w, t) (3.23)
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Guolerw) = =257 [ ditgud K (., 0uK (w1 (3.24)

It is now easy to check by direct substitution that the tensors (3.21)-(3.24) satisfy the
equations of motion (3.3)-(3.6) identically. In the proof, we have to permute the derivatives
in z, w or in their complex complex conjugate variables with the integrals in d°t appearing
in eqgs. (3.21)-(3.24). This can be done without problems (see for example ref. [19])
because the components of the propagator given above are well defined distributions. As
a matter of fact, they are derivatives of the biharmonic Green function G(z,w) which has
been extensively studied on any Riemannian manifold.

We notice at this point that the requirements a)-c), together with the free equations
of motion (3.3)-(3.6), determine the propagator of the gauge fields uniquely. Indeed, from
a) and b) we obtained that the propagator should be of the form (3.16). Moreover, from
the equations of motion we were able to determine the biharmonic Green function G(z, w)
up to solutions of the homogeneous biharmonic equation Af,cp = 0 in z and w, where
Ay = 2g%%0,0;. On a closed and orientable Riemann surface this equation is equivalent
to the following one:

Agp = constant (3.25)

Now, it is well known that (3.25) does not admit any global solution on M apart from the
trivial case in which the right hand side vanishes and ¢ = ¢ is constant. This possibility
of adding a constant ¢y to the biharmonic Green function is however ruled out by the
conditions (3.15), which require that the physical biharmonic Green function satisfies the
relations:

/ d?g.:G(z,w) = fdzwgm—,G(z,w) %)
M

It is in fact easy to see with the help of (3.20) that the function G(z,w) + ¢ verifies the
above equations only if g = 0.

Before concluding this section, two remarks are in order. First of all, we notice that
egs. (3.21)-(3.24) yield the explicit form of the components of the gauge propagators on a
Riemann surface of any genus for the class of covariant gauges (2.9). As a matter of fact,
the expression of K(z,t) in terms of the prime form and of the abelian differentials is known
on every closed and orientable Riemann surface [25] and can be explicitly constructed
also on algebraic curves [11], [26]. Moreover the propagator (3.2) computed here is a well
defined tensor on M. Exploiting its covariance under diffeomorphisms in the two indices
a and (3 it is possible to extend the calculations performed here also to a general metric
as explained in the previous section.

To complete our discussion, we have to derive the propagator Ggn(2,w) of the ghost
fields. From eq. (2.12) it turns out that this Green function satisfies at the lowest order
the following harmonic equation:

A yGonlz,w) = 63 (2,w) — gj (3.26)

The term 1/A is required by the presence of a constant zero mode. Comparing with eq.
(3.18), it is clear that

Ggn(z,w) = K(z,w) (3.27)



712 Ferrari

4 Further Properties of the Propagator

First of all we verify that, locally, the components of the propagator computed in the
previous section coincide with the flat ones. To prove this fact we start with the well
known flat propagator, written in real coordinates z = (z1,z2) and y = (y1, y2):

- 0,0,
G (@,3) = 22 + (A — 1) (41)

Formally, this propagator satisfies eq. (3.7). We compute now the components of (4.1) in
complex coordinates exploiting the conventions:

z =1z + iy (8, —i8,)
{ Z=1x1 — 1T { %(81 + 232) (4'2)

After a few calculations one finds:

1 , 8,0y
Gow(z,w) = 1 [G11 — G2z — i(G12 + G21)] (z,y) = —(A = 1) A2 (4.3)
and, analogously:
zau')
Guol(z,w) = -(A+1)—5 (4.4)
00y,
Gew(z,w) = —(A+1)= A2 (4.5)
0z05
Gra(zw) = ~(r - 1) 55 (4.6)
In deriving the above equations we have used the translational invariance of the flat Green
functions, so that 8,,—& = ~Bw% and so on for the derivatives 0; and 0.

On the other side, the scalar Green function K(z,t) appearing in eq. (3.18) is propor-

tional to the inverse of the Laplacian Ay defined on the Riemann surface, i.e. K(z,t) = A2

This can be seen from eq. (3.18) noting that, in complex coordinates, g*?0,8; = %9-. Thus
it follows that the biharmonic Green function G(z,w) introduced in eq. (3.17) is equal to
A42 At this point it is easy to check that the components (4.3)-(4.6) obtained from the

flat propagator (4.1) are equivalent to those of egs. (3.21)-(3.24) on any open patch U of
M. For example, from eq. (3.21) it is possible to rewrite G, (2, w) in the following way:

0,0y

A

Gow(z,w)=—(A—1)
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Choosing on U a locally flat metric, we have A, = A and the above equation coincides
with (4.3). Analogous identities arise in the case of the remaining components completing
our proof.

Next, we verify the compatibility of the propagator derived in Section 2 with require-
ments a)-c). The proof of a) is very simple. The components of the propagator are in
fact exact or coexact differentials in z and w, so that one can exploit the orthogonality
properties of the Hodge decomposition stating that the exact and coexact differentials are
always orthogonal with respect to the abelian differentials on M [24]. Therefore, using the
standard definition of the scalar product between one—forms, one obtains:

/M d?2G,5(z,w)@;(2) = fM Gsp(z, w)w;i(z) =0

for i = 1,...,h and 8 = w,w. Analogous equations are valid in the variables w and
W proving requirement a). Also the singlevaluedness of the propagator, in particular eq.
(3.12) of point b), is a direct consequence of the form of the components (3.21)-(3.24),
which are total derivatives of the biharmonic function (3.17) with respect to the variables
z,w and their complex conjugates. Finally, eq. (3.15) follows from eq. (3.20) as already
shown in the previous section.

Since the propagator is uniquely fixed by the equations of motion and by the physical
requirements a)-c), it should also satisfy the Slavnov-Taylor identities associated to the
~ BRST invariance of the gauge fixed theory (2.12) under the transformations (2.5) and
(2.6). In particular, let us consider the Green function {A%(z, z)e*(w,w)):

0 = §(A%(z, 2)S(w, ®)) = ((Bac®(2, ) — kf*4c (2, 2) A%(2, 2)) & (w, ®))

422, 2)04% (w, )

Applying the operator 8* to both sides of the above equation and keeping only the zeroth
order terms with respect to the coupling constant «, we obtain the identity:

§a"aﬁcaﬁ(z,w) = -6@(z,w) + % (4.7)

The right hand side has been computed exploiting the equations of motion of the ghost
fields (3.26). At this point we substitute in eq. (4.7) the components of the propagator
(3.21)-(3.24) derived before. Egs. (3.8) and (3.10) yield:

%08 Gap(2, w) = g** gwm% (0,00 G20 (2, w) + 0505 Gu (2, w)] (4.8)
Using the fact that
(A—1)
Bszﬁ,(z,w) = — 4 gwwazK(Z,UJ)
(A-1)

Bszw(z,w) =

4 waazK(Z;w)
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and with the help of eq. (3.18), it is easy to see that (4.8) is nothing but the Slavnov-Taylor
identity (4.7).

To conclude this section, we compute the structure of the singularities in the compo-
nents of the propagator. In view of perturbative applications, in fact, it is important to
know the degree of divergence in the correlation functions. First of all, since the prop-
agator is defined on a compact manifold, infrared divergencies are absent. Choosing the
Feynman gauge, A = 1, one picks up in egs. (3.21)-(3.24) the components Gz, (z, w) and
G,z(z,w). In analogy with the flat case, we expect that the propagator in the Feynman
gauge has a logarithmic singularity at short distances. This implies that the derivatives
of the propagator should have a simple pole when z — w. Indeed, deriving eq. (3.22) in z
and using the property (3.18) of the scalar Green function K (z,w), one obtains:

1
azGE’w(z: w) = _—gzéawK(zaw) + ngif dztgtfawK(wat) (4'9)
2 2477 [,

Clearly, the right hand side has a simple pole, since 8, K (z,w) ~ ;_1—w No other divergen-
cies are present in eq. (4.9) because the second term in the right hand side vanishes due
to eq. (3.20). An analogous result holds in the case of G,z (z, w).

Now we consider the components G, (z,w) and Gzg(z,w). They are picked up
choosing the gauge A = —1. The possible divergencies may arise only in the limit z — w.
However, a simple look at egs. (4.3) and (4.6) shows that there are no poles in this limit at
least in the flat case. As a matter of fact, the expression of the biharmonic Green function
ﬁ at short distances is given by:

1
G flat(z, w) ~ 5[z—w|210g]z—w| +... (4.10)

From the above formula, it is clear that 8,0,,G fi4:(2, w) and 0;05G fiat(2, w) do not have
any divergence when z — w. The finiteness of these components is also clear from the
expression of the propagator (4.1) in the Fourier space. This is just an accident, caused
by the fact that the logarithmic divergence of G fj44(2,w) in z = w is hidden by the factor
|z—w|?. Indeed, G.., (2, w) and Gz (z, w) remain distributions and the singularities emerge
after exploiting the equations of motion (3.3)-(3.4). Since the short distance behavior of
the correlation functions should not depend on the topology, we expect that the finiteness
of the components holds not only in the flat case, but also on a Riemann surface of any
genus. To prove this statement, we rewrite the integral in (3.21) as follows:

f d*tg;0,. K (2, w)0, K (z,w) =
M

/dztgtfﬁzK(z,w)BwK(z,w)—l-/ d*t9,;0. K (z,w)0, K (2, w) (4.11)
D M-D

where D is a small disk of radius € cut in the Riemann surface. D contains both the points
z and w, which are supposed to be very close. The second integral in the right hand side
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of eq. (4.11) is harmless and the potential singularities are present only in the first integral
over the disk D, where K(z,w) ~ log|z —w|. As a consequence, taking a locally flat metric
on D, the leading divergent term is:

f Pt Kz, B Kol w) wo f it <z — ) (4.12)
D D

1
(t—2)?
Using a system of polar coordinates r and € centered at the point z, the above integral
becomes (see also ref. [27], pag.375):

f (t‘ffd: f / T e2iogg — o (4.13)

Therefore, inserting eq. (4.13) in eq. (4.12) and substituting again the latter into eq.
(4.11), it turns out that G,,(z,w) remains finite in the limit = — w. This result is
independent of the fact that we have used the particular topology of a disk. The choice
of another simply connected manifold with boundary amounts in fact only to a conformal
transformation, which is irrelevant in eq. (4.11), because it is written in a covariant way.
An analogous proof can be performed also in the case of Gz (z,w).

The finite parts of G..(z,w) and Gzz(z,w) may also play a role in perturbation
theory. In order to compute them, one has to evaluate the following integrals:

Gon(2,7) = /M Pig [0.K (2,1)]2 (4.14)

Gee(s,2) = [ igleK (=) (4.15)

G::(2,%) and Gzz(z, Z) should be singlevalued tensors on a Riemann surface without sin-
gularities. The strategy exploited in order to solve these integrals is to rewrite the inte-
grand in another form, which reproduces the poles of 8,K(z,t)2 at z = ¢ but is linear in
K(z,w). For instance, we start with the sphere of genus zero S2. Choosing the metric
g.zdzdz = (ﬁfd_z)z the scalar Green function K (z,w) becomes:

|z — wl?
(14 22)(1 + ww)

K(z,w) = log (4.16)

and one can apply this formula in egs. (3.21)-(3.23) in order to obtain the explicit form of
the propagator. Moreover, from eq. (4.16) we infer the following nice identity:

[0.K(2,1)]° = —V,8,K(z,1) (4.17)

where V, = 8, + ¢.:0.,97% is the covariant derivative acting on the (1,0)—forms. Substi-
tuting eq. (4.17) in eq. (4.14) and exploiting the properties of the scalar Green function
K(z,w), in particular eq. (3.20), one obtains:

G..(z,2) = fsz d*tg;;V ,0,K (z,t) =0 (4.18)
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An analogous result holds for G;;(z, 2).

On the torus the computation of G,.(z,2) and G;:(z,%) is very simple due to the
translational invariance of the scalar Green function K(z,w) = K(z — w). As a matter
of fact, choosing a flat metric g;f = 1 in eqs. (4.14) and (4.15), one can perform the
substitution t’ = z — t and set 8,K(z —t) = —8;K(z — t). The upshot is that G, (z, Z)
and G;;(z, Z) are constants given by:

Gzz(za 2) = f dZtl [at’K(t’)]z GEE(Z! .-Z_) = dzt’ [a-’K(t,)]z
M M
On the Riemann surfaces of genus g > 1, however, there is no translational invariance, so
that the tensors G,.(z, Z) and G;z(z, Z) receive a dependency on z. Their expression will
be explicitly computed in appendix A.

5 Yang-Mills Field Theories

In the previous sections the propagators of Yang—Mills field theories quantized in the
covariant gauge have been explicitly computed on any Riemann surface of genus h. Adding
also the color indices, which play however an irrelevant role in the free equations of motion
(3.3)-(3.6), the components of the propagator read:

G2 (2,w) = *6“"/\—;] d*tg,;0. K (2,1)0, K (w,1t) (5.1)
M
ab ab)\ +1 2
Gio(z,w) = =6 e d“tg:;0: K (2,t) 0y K (w, t) (5.2)
- M
ab oA = 1 2
Gio(z,w) = =6 — d°tg;;0: K (z,1)045 K (w, t) (5.3)
M
ab apA+1 2 .
Goo(z,w) = -6 T d°tg:;0, K (2,t)05 K (w, t) (5.4)
M

Analogously we have for the ghost fields:
G‘;;’,(z,w) = §%°K (2, w) ; (5.5)
where K(z,y) is the scalar Green function (3.18).

Unfortunately, the knowledge of the propagators alone is not sufficient on a Riemann
surface in order to compute all the other correlation functions perturbatively. The second
necessary ingredient is provided by the flat connections [1], [5], [6] and [15]. In complex
coordinates, they are given by the independent solutions of the equation:

BZAE = BEAZ + iE[Az, A;-f] =0 (56)
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which can be constructed as follows (see also the Appendix of ref. [15]). We consider the
2h(N? — 1) independent gauge fields A%?(z) and AY#(2) = (AP"®(2))* defined by:

ADA(2) = w;(2)670T® AP (2) = @i(2)6%(T)* (5.7)
wherei=1,...,hand @ =1,...,(N? —1). In the usual representation of the connections

as su(N) valued vector fields A, = AT®, we have that (A,(zi)’a(z))b = w;(2)6% and

(A9%(2))> = —@;(2)6%. Thus a labels the possible independent solutions of eq. (5.6) and
simultaneously is also a color index.

We recall that the T* are in the adjoint representation, so that we can use here the
standard form of the SU(N) generators (T9);, = if%*. In this way the f°% turn out
to be real structure constants from the commutation relations [, T®] = i f**°T* and the
elements of the totally antisymmetric matrices T are purely imaginary, i.e. (T%)f = T°
and (T*)* = —T° It is now clear that the commutator [Ag)’a(z),Ag)’a(Z)] vanishes,
because [T, (T*)*] = —[T*,T°] = 0 and therefore

[AD2(2), AV (2)] = [T, T%] wi(2)@:(2) =0
Moreover, since the w;(z) and @;(z) are abelian differentials, the following identity is valid:
8,AN% _ 5. 402 = (5.8)
Hence, we have shown that the differentials Ag)’a(z) and Ag)’&(i) satisfy eq. (5.6). Ex-

ploiting the freedom of performing gauge transformations of the kind (2.2), the most
general expression of these flat connections will be:

AP (2,2) = U7 APA(2) - is 0, ]U (59)
AP (2,2) = U AP (2) — in~18;U (5.10)

We notice at this point that the 2h(N? — 1) special flat connections given above are
apparently independent, but some degrees of freedom can still be eliminated by means of
the gauge transformations (5.9) and (5.10). The dimension of the moduli space of flat
connections Mp(M, SU(N))) is indeed (2h — 2)(N? — 1). A proof of this fact, extended
also to the more general self-dual connections, is in ref. [6]. In our particular case the
dimensionality of Mp(M,SU(N))) does not play an important role, since we are only
interested in the perturbative expansion of the Yang—Mills amplitudes near a classical
configuration AS(z,z) satisfying eq. (5.6). Clearly, A%(z,%) can be always written as a
linear combination of the basis (5.7). Accordingly to our strategy, we expand the gauge
fields as follows:

An(2,2) = AL (2,2) + AL(2, 2) (5.11)

where AY(z, ) describes a quantum fluctuation around A¢.

To quantize the theory, it is now possible to proceed as in the previous sections,
imposing the covariant gauge (2.11) only on the quantum perturbation A%Z. As an upshot,
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the ghost action and the gauge fixing term (2.8) do not contain A% and the generating
functional is the same of eq. (2.12):

Z17] = /DAq DeDe el =T [ @ 2vE[1F? (A)+ 3 F2(A)+9.2DH (AN e+ T AL]} (5.12)
g .

apart from the replacement: F),,(A4) = F,,, (A% + A9).

In this way, however, the invariance of the amplitudes under gauge transformations of
Aff is lost. To remedy, one can apply the techniques of refs. [16], choosing the background
gauge fixing:

1 .
£(A%, 4% = L 0,(/54) + e A are = 0
]

Since this gauge fixing is not affecting the free part of the action (when « = 0 it coincides
with the covariant gauge (2.9)), the free propagators of the theory can be computed as
before and are given again by egs. (5.1)-(5.5).

6 Conclusions

The main result of this paper is the calculation of the relevant propagators entering in
Yang—Mills field theories defined on a Riemann surface of any genus. In particular, we have
shown that the requirements a)-c) of Section 3 determine the propagator of the gauge fields
uniquely. As a proof of the physicality of our propagators, the Slavnov-Taylor identity
(4.7) has been verified. We would like to notice that on a Riemann surface only ezact
and coezact forms propagate, while the notion of particles is lost. From our investigations
two unexpected results emerge. First of all, in complex coordinates not only the Feynman
gauge, but also the gauge A = —1 is very suitable for calculations. Moreover, we have used
here a covariant gauge fixing, but the analysis of Section 2 indicates that there is also the
interesting possibility of quantizing the Yang—Mills theories on a compact two dimensional
manifold in a noncovariant gauge. As a matter of fact, starting from a metric which is not
conformally flat, we are still allowed to impose the gauge fixing (2.11). The reason is that
eq. (2.11) is compatible with the holomorphic transition functions on the Riemann surface
and can be globally extended over the entire manifold. Involving only the component g, :
of the metric, this gauge fixing destroys the covariance of the pure Yang—Mills functional
under global diffeomorphisms. We remark that this procedure of choosing gauge has no
analogous in the flat space. In particular, more classical noncovariant gauges, like for
instance the axial gauge [28], the Coulomb gauge or the light cone gauge [29], are not
suitable in our case because they cannot be globally imposed on M.

With the expressions given here for the propagators it is possible to start the computa-
tion of the other correlation functions and of their radiative corrections. The contributions
coming from the flat connections can be evaluated by means of the explicit formulas (5.7).
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Many simplifications are expected to occur in the amplitudes because, due to requirement
a), it is easy to see that the gauge propagator (5.1)-(5.4) is orthogonal with respect to the
flat connections. Moreover, most of the physically relevant two dimensional models, like
Quantum chromodynamics, are superrenormalizable. For instance, in the pure Yang—Mills
case, there is only one logarithmically divergent Feynman diagram, corresponding to the
one-loop correction of the two point function. Using the fact that on a compact manifold
all the possible singularities are ultraviolet, so that they occur at short distances where
the topology does not play any particular role, it should not be difficult to subtract suit-
able counterterms in the Lagrangian in order to achieve a finite theory. This would be
an important result, proving the renormalizability of gauge field theories on every closed
and orientable Riemann surface in an explicit and direct way. However, the computability
of the divergent Feynman integrals should still be improved. This is not a simple prob-
lem. Even in the case of string theory, explicit calculations have been performed only
representing the Riemann surface as an algebraic curve, i.e. as an n sheeted covering of
the complex plane [26], [30], [31], [32]. An important step in this direction would be the
construction of the biharmonic Green function on any algebraic curve, which is currently
under investigation [33]. Recently the Schwinger model quantized in the Lorentz gauge has
been successfully solved on any Riemann surface within our explicit formalism, computing
the correlation functions of the fermionic currents in a nonperturbative way [18], [20]. We
hope therefore that, with the material presented here, it will be possible to extend these
results also to the Yang—Mills field theories.

Appendix A

In this appendix the explicit form of the tensor G..(z, 2) of eq. (4.14) will be computed.
We start from the following formula [34], which generalizes eq. (4.17) to any Riemann
surface:

[0.K(z, t)]2 = 02K (z,t) + 20, K(2,t) fM d*yg,50. K (z, y)Rg(y)—

2 f d2y0, K (2,4)0,K (8,y)Pog + Ton (2, )+
M

1 ~
7 [ @0tk [ Pygys0 K o) RG) (A1)
M M
where
- .. .
Role) = Ry() + 20 3 wi(2) [Im 97 5(2)
1,7=1
and

1 h
Py =3 ) le)lm U5 )
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Moreover the Green function G£+)U(z,v) satisfies the equation (see also [35]):
A§+)Gg+)”(z, w) = 63 (z,v)

and finally ¥,.(z,t) is a linear combination of the 3h—3 holomorphic quadratic differentials
with coefficients depending on t. We notice also that our formula is slightly different to
that of [34] in order to take into account of the different normalization of the scalar Green
function K (z,w) given in eqgs. (3.18) and (3.19). Substituting eq. (A.1) in eq. (4.14), and
exploiting the property (3.20), one easily proves that

Gz2(2,2) = U.2(2) +f

Pvg.58, KH*(2,0) f Pyg, 0K )RY)  (A2)
M M

An analogous formula can be found for G;;(z,%). As anticipated in section 3, the lack of
translational invariance yields a form of G, (2, 2) and G3;:(z, 2) which is dependent on the
space-time variables.
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