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Abstract. In this paper we present the transmission and tunneling coefficients computed on the
basis of a relativistic transfer matrix approach (1-dimensional Dirac equation) for a structured
potential barrier, built of (N, + N, + 2) potential scatterers: two rectangular potential steps and
two kinds of §-like wells. In the particular case of a rectangular barrier the reflectionless condition
is solved and the expressions of admissible energies are given explicitly.

1 Introduction

In 1956 Callaway and in 1957 Callaway and Woods [1, 2] introduced relativistic consider-
ations into condensed matter physics. After the works of Glasser and Davison [3, 4] the
interest towards relativistic studies in solvable one-dimensional models based on the Dirac
equation increased strongly [5—10). In result the bases of a new field of research in the solid
state physics called “relativistic condensed matter physics” were laid down [9]. We note
that this new field naturally comprises the processes of relativistic tunneling [11] and above
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barrier transmission [12]. The non-relativistic tunneling through barriers in which the
structure of the tunneling region is taken into account [13, 14] is of definite interest for
the explanation of the electron tunneling paths in certain biological molecules [15, 16].
These considerations naturally bring us to the idea to carry out the corresponding
relativistic study for the same kind of barriers. So this paper presents some results of the
relativistic above-barrier transmission and tunneling through one-dimensional time-inde-
pendent structured barriers, being combinations of rectangular and é-like potentials. In
order to compute the corresponding relativistic coefficients of transmission and tunneling
we are going to use the transfer-matrix approach adapted to the relativistic considerations
based on the Dirac equation by Glasser and Davison [3, 4] and Subramanian and
Bhagwat [5].

2 Transfer matrix approach to relativistic coefficients of
transmission and reflection

First we shall define the relatistic coefficients of transmission 7" and reflection R in terms
of the relativistic transfer-matrix M.

The time-independent one-dimensional Dirac equation for an electron with proper
mass m, and energy E in the potential field V(x) reads [3, 4, 17]:

[iﬁcax dii —myclo, + V(x):|‘l’(x) = E¥(x), (1)

where W(x) is a 2-component spinor wave function

o 0 1 1 0
{5 w2 oo )

For a localized potential having constant values ¥, in the region (— 0, x,) and V; in the
region (x,, c0), where x, < x,, the solutions

(L
J

of equation (1) in these regions are [3, 4]
W(x) = A’ exp(ix;x) + B’ exp(—ix;x), j=1,3.

For the amplitudes we have

_ AR -y, _ 1%
A= (aj(_z)) = ( 1 1)“}2), B = (ﬁj@

)ﬁ,‘-z’, (2)

V)
1
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where k7 = (hc) (e — V;)(e — V; + 2myc?), € = E — 2myc?,
Y =& — V;)hex,) ™!

and E is the relativistic energy of the electron.

In the same way as in the non-relativistic considerations [18, 19] the transfer-matrix
M(E), depending on the localized potential ¥(x), and connecting the spinor amplitudes 4°
and B® with 4' and B' on the two sides of the potential is defined by the matrix equation

(52)-(50)

In analogy with the nonrelativistic considerations in [20, 21] we introduce the relativistic
reflection coefficient R and the relativistic transmission coefficient T by the following
expressions

R=\j|lil="s T=lilil™"

where j,, j; and j, are the probability current densities of the incident, reflected and
transmitted waves denoted by A'exp(ix,x), B! exp(—ix,x) and 4> exp(ix,x) respectively.
For the Dirac equation (1) j = —c¢¥*0,¥ [17], and we have

ji=2en PR, J= 20 |BPF and j,=2ena@P

which implies
R = [BPPla?| (4)
T =51 lu§at®]™>. (5)

Now from (3), (4) and (5) if f¥ =0 (there are only transmitted waves in the region
(x,, 00)) it follows that

|My,|2det M at V,#V,

= 6

T {IMzzluz at V] = V3 ( )

R— TIM P (det M)~' atV, #V, %
TIMQ_] |2 at V] = V3

and the condition for transmission without reflection (R = 0) is
|M21|2=0 or |M22|2:det M.

Clearly in order to compute the relativistic coefficients R and T it is necessary to know the
components of M as functions of the system’s parameters. Further we shall deal only with
the coefficient T (6), which in case of above barrier transmission will be denoted by D and
in case of tunneling it will be denoted by J. In the next section D and J will be worked out
as functions of the system’s parameters.
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3 The model and its total transfer matrix

We consider 1-dimensional structured barrier V(x) with length L built of (N, + N, + 2)
individual potential scatterers (two rectangular potential steps and two kinds (N; + N,) of
o-like potential wells) located at the points Z

-~

0 Pr=10
Z$1)=2b1+2a1(v_1), V=1""3Nl
Z=14Zd=2p +2N,—Da;+2a+2v—Da,, v=1,...,N,
2

L=2)5 [b+(N,—Da.] +2a, v=N,+ N, +2,
- 1

k=

where 25, is the distance between the potential step at Z = 0 and the first scatterer of the
1-dimensional chain of N, scatterers with lattice constant 2a,; 2a is the distance between
the last scatterer of the first chain and the first one of the second 1-dimensional chain of
N, scatterers with lattice constant 2a,; 2b, is the distance between the last scatterer of the
second chain and the potential step at Z = L. For the potential energy FV(x) in the
1-dimensional Dirac equation (1) we can write

(v, xeQ'=(—w,0)
N Nz
Vy—2a,& ) 0[x —2b, —2(v — Da,] —2a,&, Y 8[x —2b, — (N, — 1)2a,
V(x) =<« ! !
—2a—(v—12a)], xeQ*=(0,L)
Vs, x e Q= (L, o), (8)

“

where 2a, &, = (2m,) 'h*2a,n,, n, > 0 are the strengths of the é-potential wells (k =1, 2)
and having dimension (length) 2, the constants of normalization 2a, being introduced for
reasons of convenience [22], and V,> V|, V, > V;. The d-like scatterers at the points Z%®
divide Q? = (0, L) additionally into (N, + N, + 1) subregions with constant potential V.
Then v takes the following values:

0 for x e Q'
v=<1,...,N,+N,+1 forxeQ?
N, +N,+2 for x e Q°.
So, for every v the constant potential solutions

W, = A exp(ir;x) + B exp(—ix;x), j=1,2,3
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of the Dirac equation (1) have amplitudes

Al = (_lyj)a?)’ B = ('}’J)ﬂ(z)

where «; and y; are given in (2).

In order to compute the coefficients D and J according to (6) for the above introduced
barrier ¥(x) we need the corresponding transfer matrix M. From (3) and from the known
group properties of the relativistic transfer matrices [12, 23, 24] it immediately follows that

the total transfer matrix M
(aﬁ{ N aa”)
BR i npa2 i1

is given as a matgix-product of the transfer matrices M for the two potential steps at
Z =0, L and the transfer matrices M®, k = 1, 2, for the §-like wells at the points Z¥, i.e.

N 1 '
M =MD ﬁ MO H MO MO, (9)
v=Nj+ N> v=Nj

Now from the well known continuity conditions [3, 4, 5] on the spinor wave solutions
¥/ (x) at every point Z of finite or infinite discontinuity of the potential (8) we compute the
matrix elements of the corresponding relativistic matrices in the above matrix product.

For the above-barrier relativistic transmission coefficient D, which means that k, in (6)
is real, we are going to use the general expression obtained in [12].

Passing to the tunneling coefficient J we note first that this consideration is a
generalization of the non-relativistic consideration for the same potential given in [14]. As
in the non-relativistic case a tunneling process takes place if ik, =x in (6) is real (in
accordance with [11]), which leads to y, =iy and y is real. From the continuity condition
of Glasser and Davison [3, 4], imposed at the points Z = 0, L, we obtain for M‘® and M©®
the following expression:

M® =7 Yk, DRPIT (—ik, L), M©® =7 "'(—ik, ORPT (k, 0),
where the translational matrices 7 (k, z) are of the form
_ (exp(ikz) 0
Tk 2) = ( 0 exp( —ikz) )’
the relativistic R-matrices R®’ are
RO =(2))" ( Lot ‘?’1), R® = (2iy, )*‘( ) ’?3“’),
Yty y—iy iy3+y iy;—9y

and k* = (hc) ~X(V,—&)(e — Vo + 2myc?), y = (& — V,)(hek) ~!
The infinite discontinuities, represented by the two kinds of dé-like wells, we take into
account through an equivalent boundary condition [5], imposed at Z® and for M®
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we obtain
M® =T~ (—ix, ZOROT (=i, Z®), k=1,2 v=1,...,N,+N,.
The relativistic R-matrices R%® for the two kinds of §-like wells are

R® — COS ¢ + 300, sin ¢ 3@_sin ¢
—iw_sin @, cos ¢, — 1w, sin ¢, )’

where ¢, = 2 arctg(a, &, hc), o, = (=" F1).
We substitute the expressions obtained for M@ and M® into (9). After some

appropriate transformations and making use of the Hamilton-Cayley theorem [12] for the
transfer-matrix M we obtain

M =3 ~\(k;, )RPT (—ix, 2(b, — a,))[CRT (—ix, 2a,)R® — CR _ 1]
x T (—ix, 2(a — a)))[CR T (—ix, 2a,)RV — C{ _ 11T (—ix, 2b,)R, (9a)
where I is the unit 2 x 2 matrix and the real quantities C{) look as follows

sin(N,®,)/sin ®,, @, =arccos(y,/2) xp<2
ng‘i = <N, s Xk=2

and y, = Tr(J (—ik, 2a,)R®) = 2(cos ¢, ch 2a,k + Jw, sin ¢, sh 2a,k).

From (6) and (9a) for the tunneling coefficient J with respect to our potential V(x) we

get
J=4m3“{[i F,~]2+[ﬁ‘, Gf]z}_l’ (10)

F,=CQCR{T  [cos ¢, cos ¢, ch 2k(b, + b, + a) + 30, sin(¢, + ¢,)sh 2x(b, + b, + a)
— w2 sin ¢, sin @, ch 2k(b, + b, — a)] —3I _w_[sin ¢, g5 (b, — b, — a)
+sin ¢,g (b, — by, + a)] + i, w? sin ¢, sin ¢, ch 2x(b, + b, + a)}
F=—-CQCQ_{T,fr(b;+by+a—a,) —3_w_sin ¢, sh2k(b, —b,—a +a,)}
F=—-C{_ CR{T, f5 (b, +by,+a—a)—3T_w_sin ¢,sh2k(b, —b,+a —a,)}
F,=CQ_,CQ_ T ch2kb,+b,+a—a —a,)
G, = CRCR{V, [cos ¢, cos ¢, sh 2k(b, + b, + a) + 30, siﬁ(q‘l’)1 + ¢,)ch 2k(b, + b, + a)
—1w? sin ¢, sin ¢, sh 2k(b, + b, — a)] — 3V _w_[sin ¢,f7 (b, — b, + a)
+ sin ¢, f5 (b, — b, — a)] + 3V, @2 sin @, sin ¢, sh 2k(b, + b, + a) }

where



Tashkova and Donev 697

G,=—CRCR_{V, gl (b, +b,+a—a,) —5V_w_sin ¢, ch2kb, —b,—a+a,)}
Gy=—-CQ_CQ{V, g7 (b, +b,+a—a)—3iV_w_sind,ch2k(b, — b, +a —a,)}
G,=CQ_,CQ_V_ sh2k(b,+b,+a—a,—a,)
and the following abbreviations are used
Fe=12T,00 To=n@)"" Tu=iysh
Vi=0y 7' Fws); 0.=0""F;
fi£ () =cos ¢, ch 2kz F 30 sin ¢, sh 2kz;
git (z) =cos ¢ sh 2z + 30, sin ¢, ch 2kz.

The expressions obtained are general enough and their further specialization is deter-
mined by the exactified structure and parameters of the barrier. Here are some interesting
examples from our point of view:

1. 26, =0, N, #N,#0, 2a,#2a,#0, 2a#0, 2b,#0, & #&#0, V#V;=0,
L=2b4+(N,—1D2a, +2a+ (N,—1)2a,.

The special feature of this example is that the (N, + N)-th é-well and the potential step
are placed at the same point Z = L. (The case 2b, =0, 2b, # 0 can be studied in a similar
way.) Here D and J are obtained immediately from the corresponding expressions in [12]
and the above expressions (10) with 2b, = 0(2b, = 0).

2. For an asymmetric barrier, homogeneous (i.e. with N d-like potential wells of the
same kind) in Q*= (0, L),

N,+N,=N, 2a=2a,=2a,=2d, & =E=¢& 2b,#2b,#0
V£V, L=2Ab+b,+(N—1d], ¢=2arctg(éd/he),

using the general expression for D in [12] we obtain the following for D} :
2 2 2 23 —1
Do =4m3“‘{[2 Q?"’“] + [ & Si-‘°‘“] } ,
i=1 i=1

Qhom = @[T, g~ (b, + b,) —iT' _y_ sin ¢ cos 2x,(b, — b,)]
hom — @ _ I, cos 2k,(b, + b, — d)

Shom — @ [A*+s*(b, + b)) — 1A~y _ sin ¢ cos 2x,(b, — b,)]

Shom — @\ _ AT sin 2x,(b, + b, — d)

where

q ~(2) =cos ¢ cos 2k,z — 3y, sin ¢ sin 2K,z

$7(z) =cos ¢ sin 2x,z + 1y, sin ¢ cos 2k,z
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I, = 1+, AT =9/r17/7s, Y+ zyzi'yz_l

sin(N ¢@)/sin ¢, ¢ =arccos(4/2), A<2
En=<N, A=2
sh(N ¢)/sh ¢, ¢ =arcch(4/2), A>2

A =Tr(7 (k,, 2d)R) = 2(cos ¢ cos 2k,d —Hy; "' + y,)sin ¢ sin 2k, d).

Now for J, making use of (10) we get
2 2 2 2y —1
J§Zm=4m§'{[2 F?"’“] +[Z GE“’“‘] } ;
i=1 i=1

Flllom — CN[F+f_(bl + b2) — %l_',w_ sin (i) sh ZK(bg — bz)]s
Fl;om = —CN~ |F+ Ch ZK(bl + bz _d)a

where

G = C(V, g * (b, + by) —WV_w_ sin ¢ ch 2k(b, — by)),
Ghom = —Cy_ V., sh2k(b, + b, — d),
g+ =cos ¢ sh2k(b, + b,) + 2y ' —y)sin ¢ ch 2x(b, + b,),
f~ =cos ¢ ch 2k(b, + b,) + 3(y ~' — y)sin ¢ sh 2k(b, + b,)

and y = 2(cos ¢ ch 2dx + 3w, sin ¢ sh 2dx).
3. For asymmetric (symmetric) rectangular barriers

N,=0, £ =0, 2a,=2a=0 2b,=0
V£V, (V,=V,), L=2b,
the coefficients are:
D* =4y p5'[(1 +y,75")*cos’ ki, L + (3,75 " + 7275 ") sin’ ki, L]
Ds=4[4 cos’ kK, L + (y,7; ' + 7,71 D)2 sin? k, L] !
Jo =4y y3 (1 +y,75 )2 ch® kL + (yy5° — 9,9 ")? sh® kL] '
Js=4[4ch* kL + (y,7y ' —yy; )?sh? kL] .
If kL > 1 for J°, J* and J&_ we have
J*=16y*p3ly* + 1] 2 exp(—2kL).
T = 167,737 [0} + )0 + v3)] " exp( —2kL)

2

2 2 2711
Joo = lém;‘[(z F) +(Z G’,.)] exp(4xNd)exp( —2kL),
i=1 j

- f=i]
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where

~

F = Cyexp(2kd)[T, f— I _w_ sin ¢ exp(—dxb,)]

Fz =—Cyv 'y
G, = Cy exp(2kd)[V, f—V_w_ sin ¢ exp( —4xb,)]
Gz = _CN—1V+

f=cos ¢ +1Lsin ¢.

~
S

We note that the last expressions for J2_, J* and J* are close to the corresponding
nonrelativistic expressions of Kane [20] with respect to their structure, therefore we call
“exp( —2kL)” relativistic barrier penetration factor. It is seen that the relativistic corrections
appear in the before-exponential factors as well as in the relativistic barrier penetration
factors.

From the obvious relations

T =97 9,03+ 902 +93) U,

2 2 2 2711
%Zm=v‘2v;2(?f+?2)(v2+ﬁ)[(2 F) +(Z Gi)] exp(4xNd)J*

i=1 i=1

2 2 2 27]-1
=y '3y 0+ vz)z[( 3 F‘.-) + ( 2 67,-) ] exp(4xNd)J*
i=1 i=1
we see that the barrier structure demonstrates itself through some multiplication factors
that are uniquely determined by the structure; clearly these factors tend to 1 if the structure
vanishes.

Now we give some examples of transmission without reflection. In the case of an
asymmetric (¥, # V) rectangular barrier the condition for transmission without reflection
D* =1 (or equivalently |M3|* = 7,75 ") leads to transcendental equations for the energy E,
from which we get

(1—-y,y59)? s > 2 2 .4 v
E — + il + 2p27 — V,,
" “{[amsm(“(l+vlv3“)2—(m;‘+vzvs“)2) +nn] ¢ +m°c} e
n=0,1,2,...

for the above-barrier case and

E= +{m3c4— i arcsh(+ (I =yv7")? )1/2 }1/2 v
N T4y @y = )?

for tunneling.
For the symmetric case (V, = V;) we have |[M5| =1 and respectively

E,=+(h*c*n*n’L=+ micH)'*+V, and E=V,+ myc>
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3 Conclusion

In conclusion we can say that for an important (for condensed matter physics) class of
structured barriers the relativistic one-dimensional scattering problem can be fully de-
scribed in transfer-matrix terms and the corresponding tunneling and above barrier
coefficients can be explicitly obtained.

In the non-relativistic limit v?/c? < 1, the corresponding non-relativistic expressions for
the tunneling coefficients for the Kronig—Penney model of a thin film [13], for asymmetric
and symmetric barriers [11, 20, 25] and for the structured barrier with (N, + N,) 6-wells
[14] can be easily obtained from our relativistic ones. Because of the complicated depen-
dence of the coefficients D and J on the barrier’s parameters an immediate analysis of the
influence of these parameters on D and J is difficult to be made. It seems more appropriate

to carry out a numerical analysis in every special case as it was done e.g. in [16] for the case
of non-relativistic tunneling.
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