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Normalization of scattering states and Levinson’s
theorem: reply to a comment by R. G. Newton
[Helv. Phys. Acta 67, 20 (1994)]

By Nathan Poliatzky

Institut fiir Theoretische Physik, ETH-Honggerberg, CH-8093 Ziirich, Switzerland?

(4.VII.1994)

Abstract. Normalization of scattering states, Levinson’s theorem and the high energy behavior of
scattering phase shifts are discussed in the light of R. G. Newton’s recent criticism.

1 Introduction

Recently R. G. Newton published a comment [1] criticizing the methods and the results of a
paper published in this journal [2]. His criticism touches on a few key points of the subject
and hence deserves a detailed reply. Here is the reply, point by point, to his criticism.

2 Normalization of scattering states

Let us first consider the case without a threshold resonance (i. e. either a finite solution
with k& = 0 does not exist or it is a bound state). We will return below to the (rather
exceptional) case with a threshold resonance (sometimes called a half-bound state or a zero-
energy solution). In this section we consider the case of a Schrodinger equation; the case of
a Dirac equation is completely analogous and the relevant formulae can be found in [2].
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The usual statement on the normalization of scattering states for a central potential is
f dr ui (r) wen (r) = 276 (k — k') (2.1)
0

The question then arises of what happens in the limit & — k’. Of course the right-hand
side becomes infinite, but it is easy to see that the difference, between this equation and its
free-particle counterpart, is finite. In [2] it was proven that

| dr [k () = ok ()] =20 (8) (22
where vy () are the free-particle wave functions and 7; (k) is the phase shift.

Equations (2.1) and (2.2) can be put together as one compact equation
fo dr g (r) wpr (r) = 276 (k — k') + 217} (k) 6w (2.3)

where Oxy = 1 if k = k' and 83 = 0 otherwise.

Equation (2.3) is what R. G. Newton criticizes. As he put it: “He arrives at a modifi-
cation of the usual quasi-orthogonality of the scattering wave functions in which the Dirac
distribution is supplemented by a bounded function that differs from zero at only one point.
In any context in which the Dirac distribution is meaningful, such a function is of course
equal to zero, and its addition is of no consequence.”

Admittedly, if the delta function on the right-hand side of (2.3) is interpreted strictly
as a distribution, the addition of the second term is of no consequence and equations (2.3)
and (2.1) are identical. However, the above criticism misses several points. One is that (2.3)
is merely a short-hand description of the two equations (2.1) and (2.2), the validity of which
is beyond any doubt. So that, if needed, any reference to (2.3) can be avoided.

A deeper point is that the Dirac delta function and a distribution are not exactly identical
concepts, e. g. the delta function on the right-hand side of (2.1) or (2.3) cannot be interpreted
as a distribution in the usual mathematical sense. The proof of this statement is as follows.
Assume that this delta function is a distribution. However, for the left-hand side of (2.1)
it perfectly makes sense to subtract its free-particle counterpart and then put k = &’. The
result is finite and given in (2.2). On the other hand, for the right-hand side of (2.1) such
an operation does not make sense (or its outcome is ambiguous), if the delta function is
interpreted as a distribution. Hence the left- and the right-hand side of (2.1) cannot be the
same object and the conclusion is: the right-hand side of equation (2.3) is a modification of
the usual notion of a distribution.

The mathematical notion of a distribution is based on a class of all possible limiting
processes, whereas in quantum theory the Dirac delta function is always either a particular
limiting process or a particular class of limiting processes with a fixed physical interpretation
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of the parameters involved.? Having this in mind there is no danger of ambiguities for the
use of equation (2.3).

3 Levinson’s theorem

Consider the completeness relation

Z ’LLE![ ’U,el,g + / — ukg "u.kg (T’) =g (T‘ — T") (3.1)

<0
where the sum runs over the bound and the integral over the scattering states.

If the right-hand side of (3.1) is interpreted as a Dirac delta function (i. e. as a class of
limiting processes which are independent of the potential) and not as a usual distribution,
we can subtract from (3.1) its free particle counterpart and put 7 = /. The delta functions
cancel and we obtain

Z uql +f oo ukl Ui%l (7")} =0 (3.2)

€<0
Integrating (3.2) over r and substituting (2.2), we obtain the Levinson theorem
m (0) = mm (3.3)

for the case of a Schrodinger equation, where n; is the number of bound states. If the same
is carried out for the case of a Dirac equation (see ref. [2] for the details), the result is

Mo (0) + N (0) = (N + NT)m (34)
where N is the number of positive and N is the number of negative energy bound states.®

Looking at (3.4) it is natural to ask whether a stronger statement of Levinson’s theorem
is possible, valid for the positive and negative energy phase shifts separately. It turns out
to be the case [3]. The clue to derive such a stronger statement of Levinson’s theorem is
simple: consider the second order (iterated) Dirac equation and take the limit & — 0. In this

2For instance, in the usual calculation of a differential cross section in quantum field theory one has to
square a Dirac delta function, which is done unambiguously using a particular physically motivated limiting
process. From the point of view of a distribution this does not make sense.

3More precisely we obtain

m (0) = my (00) + mym
for the case of a Schrédinger equation, and

Nk (O) + Nk (0) = Nook (OO) + Mo,k (00) + (N:- + Nr:._) s

for the case of a Dirac equation. However, we are free to put n; (c0) = 0 and 7)ok (00) + 7—co,x (00) = 0.
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nonrelativistic limit* the second order Dirac equation becomes identical to a Schrodinger
equation, so that at £ = 0 one can relate the phase shifts of a Dirac equation to the
phase shifts of a corresponding Schrodinger equation. The stronger statement of Levinson’s
theorem obtained in this way is:

Thn (O) = TL:W (35)

N-mx (0) = my (3.6)

where n} is the number of positive and n_ the number of negative energy nodes of the & = 0
solution of the Dirac equation. Unlike the case of a Schrodinger equation, there is a subtlety
here: for a given energy sign the number of bound states may not equal the number of nodes
of a k = 0 solution, i. e. in general N} # n} and N # n_. The equality holds only for the
total numbers:

NI+ N-=nt+n_ (3.7)

The generality and simplicity of the above proof of Levinson'’s theorem speaks for itself,
and can be viewed as a confirmation of the validity and usefulness of the above discussion
on the normalization of scattering states. Notice that we did not have to assume anything
explicit about the potential. The only implicit assumption is that the potential decays faster
than 1/r? at large distances, which is sufficient for the validity of (2.2).

However, when in ref. [2] this proof was extended to the case with a threshold resonance,
a surprising result was obtained:

m0)=(m+qm (3.8)

in the case of a Schrodinger equation, and
N (0) = (nif +q) 7 (3.9)

in the case of a Dirac equation, where either ¢ =0, or ¢ = i, or q = % For the case with a
threshold resonance ¢ = 0 can be ruled out and q = 3 is what one would have expected. The
surprise is in the possibility of allowing for ¢ = i, which is the subject of R. G. Newton’s
criticism. From the point of view of a conventional proof of Levinson’s theorem, where
there is always a certain restriction on the potential, the case g = i cannot be ruled out
completely. However while the paper [2] was in press it was found that the derivation of the
normalization integral actually implies a certain constraint which was overlooked in [2] and
which rules out the case ¢ = ;. This is the reason why in a subsequent paper [3] the case
q= i was not mentioned. Meanwhile M. Sassoli de Bianchi [5] investigated the problem
within the framework of one spatial dimension and came to the same conclusion. In the
following section these matters are considered in more detail.

It is an interesting fact that such a non-relativistic limit which, from the physical point of view, is a most
natural one, does not coincide with the usual expansion based on the Foldy-Wouthuysen scheme (see [4]).
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4 The case with a threshold resonance

Assume that the coupling constant is tuned such that a finite, k¥ = 0 solution (threshold
resonance) exists. By examining its asymptotic behavior at large distances, it is easily seen
that such a solution is normalizable (i.e. a bound state), unless { = 0, in the case of a
Schrodinger equation, and Kk = —1, ¢ = m or Kk = 1, ¢ = —m, in the case of a Dirac
equation.® Hence in this section [ = 0, in the case of a Schrodinger equation, and k = +1,
in the case of a Dirac equation.

According to [2] in the presence of a threshold resonance (2.2) becomes modified according
to

[ dr [udo (r) = vk ()] =20 (k) + 276 (k) sin® v (k) (4.1)

As in section 3, integrating (3.2) over r and substituting (4. 1) we obtain Levinson’s
theorem for the case with a threshold resonance

mo (0) = nom + gsin2 1o (0) (4.2)

Equations (4.1) and (4.2) are valid for a Schrodinger equation. In the case of a Dirac
equation, as was mentioned in the preceding section, one can rewrite the Dirac equation at
k = 0 as an ordinary Schrédinger equation and use (4.2) to obtain the stronger statement of
Levinson’s theorem for a Dirac equation:

Tl+mx (O) = ni:ﬂ' + Z;"Sinz Tl+me (0) (43)

where n} is the number of positive and n_ the number of negative energy nodes of the k = 0
solution.

Equation (4.2) was first derived in ref. [6]. The authors did not check for all solutions

of this equation but instead were content by verifying that (3.8) for ¢ =0 and ¢ = 3 is a

solution of (4.2). Equations (4.2) and (4.3) were derived independently in ref. [2] and it was

pointed out that there is a third solution with ¢ = %. However it was not noticed that the
derivation of (4.1) also implies

sin [2m, (0)] =0 (4.4)

This constraint rules out the case ¢ =  in (3.8).°

To understand how this constraint comes about, we now consider the derivation of (4.1)
in more detail (section 2.1 of ref. [2]). We start with the exact identity

[ ar w () = o by () B (R) — e () By ()] (4.5)

SNotice that, for a given angular momentum, at most one threshold resonance is possible, either
with € = m or with e = —m.
6The situation for a Dirac equation is completely analogous and the constraint is

SIn 274k (0)] =0

This constraint rules out the case ¢ = % in (3.9).
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and assume that the potential V (r) vanishes for r > R. Then the right-hand side of (4.5)
depends only on the asymptotic wave functions and thus can be calculated. The result is

| ® dr w2, (r) = 2R + 2] (k) — (<1) - sin[2R + 2, (K)] (4.6)

Subtracting from (4.6) its free-particle counterpart and expanding the sinus, we obtain

sin (2kR)  sin [2 (k)]
k k

cos (2kR)
(47)

The second term in curly parenthesis possesses a k! singularity unless sin [27; (0)] = 0. In
the case with a threshold resonance, where the & = 0 state is part of scattering states, such a
singularity is intolerable (for instance, the integral over & in (3.2) includes the point k¥ = 0 in
this case). Hence the constraint (4.4) must be satisfied. The derivation of (4.1) is complete
now, if one sends R — oo.

R
[ ar [u ) — vy ()] = 20 k) + (-1 {zsm2 m (k)

5 High energy limit

In [2] it was shown that the high energy behavior of the scattering phase shifts is

— kf dr[ 1—?1/() ,’ (5.1)

in the case of a Schrodinger equation, and

k.2

in the case of a Dirac equation. Obviously, if the potential V' is less singular than 1/r at the
origin, then (5.1) and (5.2) lead to the well known results

in the case of a Schroédinger equation, and
Mew (k) —> = __/ dr V (r (5.4)

in the case of a Dirac equation.

R. G. Newton doubts the validity of (5.1) and (5.2): “His change of variables leads,
without comment, to a highly singular equation on a complex contour, and it is not clear
whether his manipulations are valid.”

This criticism is without foundation, since the equations, which were used to derive (5.1)
and (5.2), become singular only at certain finite values of k. Taking into account the fact
that these equations are local in k, such singular behavior is irrelevant to the high energy
limit k& — oo.
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