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A New Paradigm for the Fermion Generations

By George Triantaphyllou

Department of Physics, University of Toronto
Toronto, ON M5S 1A7, Canada

(12.IX.1994)

Abstract. A new mechanism is proposed to explain the appearance of the three known fermion

generations in a natural way. The underlying idea is based on the discreteness of the spectrum
of solutions of the gap equation appearing in models of dynamical chiral symmetry breaking.
Within such a framework, the number of parameters needed to describe the experimentally observed

fermion spectrum is drastically reduced. The phenomenological consequences of such a mechanism

are carefully discussed, in order to explore its viability.

1 Introduction

After many years of theoretical investigations focused on possible mechanisms responsible
for the electroweak symmetry breaking and the generation of fermion masses, the puzzle still
remains unsolved. Even though the minimal Higgs mechanism seems to be consistent with
current experimental data [1], it remains conceptually unsatisfactory, due to the excessive

fine tuning that must be applied to the Higgs coupling in order to keep the renormalized
Higgs mass reasonably close to the weak scale.

The two presently most prominent alternatives to the Higgs mechanism are supersymmetry

and technicolor, even though they could be far from providing the correct mechanism
hidden behind the Higgs sector. They tackle the problem of weak SU(2)i breaking in quite
different ways. Nevertheless, they have a common feature: they associate each fermion
mass with a different coupling, a Higgs coupling when it comes to supersymmetry, and an
extended-technicolor coupling when it comes to technicolor. This loads these two theories
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with too many parameters, making them unnatural in that respect. Model-builders for both
theories typically hide this problem "under the rug", placing the natural origins of these

couplings, and their effects to the fermion family replication, to unknown physics at much
higher energies.

There have been attempts to reduce the number of free parameters by predicting the
number of fermion generations within the framework of grand-unified theories (supersymmetric

or not) [2], compositeness models [3], string theory [4], as well as many other ideas [5].
In most of these cases, however, what is naturally derived is the number of generations, and
not the particular scale of the fermion masses in these generations. Moreover, in the case

of GUT, the number of generations is presented as a constraint imposed by phenomenology,
with no fundamental explanation. In supersymmetry, there has been a recent attempt to
reduce considerably the number of free parameters entering the fermion spectrum of the theory
[6]. Although such an attempt seems to be headed towards the correct direction, it is still
plagued with a draw-back: the number of fermion generations, and the hierarchy between

them, is again introduced ad hoc, with no underlying mechanism presented as responsible
for it.

Moreover, recent extended-technicolor models, in their attempt to decrease the technicolor

contribution to the Ap parameter, introduce even more parameters, associating with
each ordinary fermion not only each own extended-technicolor coupling, but also each own
extended-technicolor scale [7]. The idea of multiple scales appeared in the early days of
technicolor theories, in the context of "tumbling" [8], which still remains a popular idea
[9]. In all these studies, however, the hierarchy of the fermion generation scales is put in
by hand, without being presented within a theoretical framework that would justify their
magnitude or multiplicity. General model building considerations might give one an idea of
what these scales should be, but it is our feeling that they do not tackle the problem in the
most fundamental way.

Such a situation is obviously far from desirable for a natural theory. Especially for
technicolor, since one introduces additional degrees of freedom, in the form of a new non-
abelian gauge group and families of new, presently unobserved, fermions, one would expect
a much smaller number of parameters needed to explain the ordinary fermion spectrum,
without having to resort to fermion compositeness or "barock" models.

The present paper proposes a mechanism that could potentially explain how the known
fermions acquire their masses and they are at the same time placed in distinct generations.
The analysis is done within the framework of technicolor theories, since it is not presently
clear-to the author how a mechanism based on similar principles could be at works in
supersymmetric theories. The method relies heavily on the Schwinger-Dyson gap equations,
solved by using the typical assumptions and approximations that are used in technicolor
models [10]. The idea central to the development of the paper is that the new physics,
introduced by the extended-technicolor interactions at a scale Aetc, the scale at which the
extended-technicolor group breaks, act as an effective cut-off to the integral gap equations
which give the self-energies of the fermions. This provides the theory with a discrete spectrum
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of solutions.

An attempt is then made to associate the first three solutions of this discrete spectrum
with the three fermion generations, and to find physical arguments that would allow the
truncation of this spectrum beyond the third solution, since present electroweak-experiment
data [1] constrain the fermion generations to three. The method gives results that are directly
testable, since it produces explicit values for the order of magnitude of masses and scales

that can be easily discarded if they grossly contradict phenomenology. At first sight, it is

not apparent to us how such a mechanism could tell us something precise about the CKM
matrix, so we are not going to address that problem here. Moreover, it should be noted

that, because the equations that appear in this analysis are very difficult to solve exactly,
the results presented here try to sketch the qualitative features of the mechanism, with no
ambition for providing quantitatively reliable results.

This is how this work is organized: At first, the general setting of technicolor theories
is overviewed, including extended-technicolor interactions. Then, the role that the integral

Schwinger-Dyson equations play in the dynamical symmetry breaking is analysed in
a somewhat novel way, and it is made clear how their properties could help us solve the
fermion-spectrum puzzle. The results of this analysis show that a certain combination of the
physical parameters of some models obey a quantization condition. The next section tries to
motivate such a quantization condition physically in various ways, and to check whether the
predictions of this mechanism are consistent with current phenomenology. The final section
summarizes the conclusions drawn by this analysis, and attempts to test the naturalness and

viability of the proposed mechanism.

2 Mass generation in technicolor

As was mentioned in the previous section, the Higgs mechanism, in trying to explain the

breaking of the SU(2)L gauge group and the origin of fermion masses, seems to describe
these phenomena correctly, but it has a naturalness problem, since too much fine tuning
of the Higgs coupling is required in order to keep the renormalized Higgs mass acceptably
small. One of the alternatives proposed in order to circumvent this problem is provided by
supersymmetry, a "weak coupling" alternative, which introduces additional Higgs fields, but
at the same time solves the naturalness problem. The other one is technicolor, a "strong
coupling" alternative, which postulates the existence of new fermions, called technifermions,
which interact strongly with each other via a technicolor gauge interaction. In such a framework,

the role of the Higgs fields is played by condensates of technifermion pairs. The subject
of the present paper is centered on this second alternative.

Technicolor theory is based on the ad hoc introduction of Nf new fermions, initially mass-
less, not experimentally detected yet, and having a new quantum number called technicolor
[10]. The gauge group responsible for their mutual interactions, traditionally called
technicolor group, leads to confinement and to the dynamical break-down of the initial global



Triantaphyllou 663

chiral SU(Nf)L x SU(Nf)R symmetry down to SU(Nf)v. Due to Goldstone's theorem, this
leads to the appearance of N2 — 1 massless Goldstone bosons. In such a scenario, three of
them are "eaten" by the electroweak gauge bosons W±,Z°, and the rest Nj - 4 become
pseudo-Goldstone bosons (PGBs), after acquiring masses due to the explicit chiral symmetry
breaking by the conventional Standard-Model interactions SU(3) x SU(2)L x U(l). These
PGBs are composite particles, consisting of 2 technifermions, and they are singlets under
the technicolor group. If this mechanism causes the breaking of the electroweak symmetry,
the order of magnitude of the scale Ktc of the technicolor group, where confinement of the
technifermions occurs, should be on the order of 1 TeV.

Even though the above mechanism can explain the masses of the gauge bosons of weak

interactions, it does not explain the masses of ordinary fermions. This problem is solved

by postulating the existence of a new interaction, called extended technicolor (ETC), that
is associated with a gauge group that is broken at an energy scale Aetc, usually much

larger than Atc- Both ordinary fermions and technifermions feel this interaction, which, at
scales close to 1 TeV, manifests itself in the form of effective (non-renormalizable) 4-fermion
interactions among fermions and technifermions. Thus, a condensate of two technifermions
(T) can "feed down" its mass to ordinary fermions (f via an interaction of the form

§^hTLfRfR, (2.1)
AETC

where Xetc is the effective ETC coupling. The fermion masses are then given by

mf «^ < fT > (2.2)
A.ETC

However, one should also expect effective ETC interactions of the form

1

A2 /l/l/h/ä, (2.3)

which could potentially lead to problems with too large flavor-changing neutral currents
(FCNC). In order to avoid that, the ETC scale Aetc must be taken very large, on the
order of about 1000 TeV. This leads to very small fermion masses, according to Eq.2.2, and

it certainly cannot account for the masses of the heavier quarks, unless an excessive fine

tuning of the effective ETC coupling is used. This would unfortunately lead us back to the
naturalness problem, a problem that technicolor was created in order to avoid. A solution
to this problem was proposed some years ago [11], in the form of "walking" technicolor
models, in which the technicolor gauge coupling runs slowly due to the screening of the
technicolor charge by the technifermions. This mechanism allows for large fermion masses,
while adequately suppressing FCNC.
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During the last decade, the testing of the phenomenological consequences of technicolor
models made it very important to study very carefully the momentum dependence of the
self-energy of the technifermions, i.e. the transition from the "constituent" technifermion

masses, at low energies, to the "current" technifermion masses, at high energies. A way
of performing such a study is provided by the CJT formalism [12], which was originally
developed in the QCD context, but can in principle be applied to any strongly interacting
theory. In this formalism, one starts from a Lagrangian describing the strongly interacting
fermions, and after using effective action techniques one writes down a Schwinger-Dyson
equation for the self-energies of these fermions. The analysis here below follows closely
Ref. [10].

For a Lagrangian density of the form

L ^y„(tö" - gA")rb - -F^F^, (2.4)

where FM„ d^Av — dvAß — [Aß, A„] is the curvature of the technicolor gauge group, and by
ip we denote the technifermion fields, this formalism gives us the following Schwinger-Dyson
equation, in the ladder approximation, and neglecting the running of the gauge coupling g:

t d"k tv - (1 - fl^rEfe^
S"1 jfJß + lg2C2(R) j ^S(k)lv9- \p_k)2ip-k) (2-5)

where S is the fermion propagator, £ allows for different gauge choices, and C2(R) is the

quadratic Casimir invariant of the fundamental representation of the technicolor group. For

SU(NTc), C2(R) *%£.

By making now the ansatz S"1 A(p2)^ßpß — S(p2), where £(p2) is the fermion self-

energy, and in Euclidean space, after angular integration, we get a set of equations:

& /-A2 „ fc4 A(k2
1 dkl«* ^iL 2\o M4A2(fc2)fc2 + £2(fc:

w,2) _
(3 + 0"/A2i/;2fc2 s(fc2)

(26)HP> - 3 io dk
M^2(fc2)fc2 + E2(P)'

[2-b)

where M max(p, k), a= -^-, with a g2/Air and ac ty/3C2(R). We have placed a UV
cut-off to our theory. In technicolor theories, A is the typical ETC scale. In the Landau

gauge, where Ç 0, we have A 1. If we want to have a gauge coupling strong enough to
break dynamically the chiral symmetry of the theory, and at the same time small enough to
justify the use of perturbation theory in the CJT formalism, the relation 1/4 < a < 1

must hold.
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In what is called the "dressed" ladder approximation, we have a more physical situation,
by allowing the gauge coupling to run, so that a a((p — k)2). In a certain approximation
then, we get the same equations as above, but now the coupling a appears inside the integrals
over k.

Now, for an effective, non-renormalizable Lagrangian that contains 4-fermi interactions,
like ETC interactions, of the form

L fcdrf$ + yfa^){frf1>), (2-7)

the CJT formalism gives an inverse fermion propagator of the form

r d4k
S'1 p% + ig j —7„S(*)y, (2-8)

so we can write S~l(p2) pßjß — E, where E is independent of p. We then get an equation
for the fermion self-energy E:

/¦A2 k2 E

with A ä-j i and A is a UV cut-off in the theory, necessary in order to avoid the logarithmic
divergence of E.

Combining the results obtained above, we can study a technicolor theory that contains
both 4-fermi and gauge interactions. In the Landau gauge and in Euclidean space, we get

(^ 2
k2 E(fc2) r»

TT Jo M2 k2 + E2(fc2)
+ Tf Jo "" A2 k2 + m2

mf A// r^Srr^ + V r dk2~,2 ^l],.., (2.10)1 IJ Jo A2k2 + m2f
J Jo M2k2 + T,2(k2)

where E(p2) is the the technifermion self-energy, and m/ is the mass of an ordinary fermion
coupled to the technifermion via 4-fermi ETC interactions. E(p2) receives contributions
from the technicolor gauge interactions, as well as from ETC 4-fermi interactions of the
technifermion with other technifermions (see term proportional to Xtt), and with ordinary
fermions (see term proportional to \t/)- The mass of the fermion receives contributions only
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by 4-fermi interactions of the fermion with other ordinary fermions (see term proportional
to Xff), and with technifermions (see term proportional to X/t)-

After making the approximation

i"*,£ìr?b--v(i-!a'"1Érìl-"/. <«">
*/ v "" \mf

which is valid for scales A large compared to the fermion mass, we get the gap equations

gg) ,_ f^g s(tJ)

with A / ^ and Ay Xtt+ ,r/x /r
• We note that the second term of the right-hand side

of the equation giving E(p2) is momentum independent, so it enters in the problem through
the boundary conditions of the differential equation corresponding to Eq.2.12. Having arrived
at this result, we are ready to proceed in a careful analysis of the behavior of these integral
equations. In the next section, we try to analyse analogous integral equations, which can be

viewed as simplifications of the above relations, and which permit us to study their behavior
in a simple way.

3 The role of integral equations in technicolor models

3.1 Analytical study

In the following, we try to describe the problem of dynamical mass generation in an order
of growing sophistication. The simplest way that an integral gap equation enters in the
problem of mass generation is through the Nambu-Jona-Lasinio model [13]. There, we are
confronted with an equation of the form

_a_ /-a2

~ A2 io
mp2dp2

p2 + rni

where m is the mass of the fermion, which is taken to be momentum-independent, A is the
UV cut-off of the theory, and a is a coupling associated with 4-fermion interactions. This is

essentially the same as Eq.2.9. Apart from the trivial solution m 0, the above equation
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possesses a solution given by the equation

1
_

i

X
~~ 1 ~

A2

1 m2 (A2

Such an equation exhibits a critical behavior, since, for A < 1, it does not possess a non-trivial
solution.

If we want to account for momentum-dependent masses, things get more complicated.
One has to resort to the Schwinger-Dyson-equations formalism, and the resulting equations
are quite intractable. As we saw in the previous section, one usually has to make the ladder

approximation and go to Euclidean space and to the Landau gauge in order to simplify the

equations, which are still analytically solvable only in the high- and low-energy limits.

Even though all these manipulations make us view the final results with scepticism, it is

possible that they describe the qualitative behavior of the theory correctly. However, since

their precise form is questionable, we will try to analyse a different, but very similar, integral
gap equation, that could be relevant to our problem 1. Namely, we are going to follow
the reverse procedure from the usual one, by making a particular ansatz for the functional
form of the fermion self-energy, because we feel that it sheds light on some other aspects of

dynamical mass generation. In that way, we will be able to concentrate on the quantization
condition, instead of being lost in complicated gap equations, which are of questionable
validity anyway.

First, we make an ansatz for the momentum-dependent fermion self-energy, £(p2), by
assuming that, for p » E0, where E0 is the value of E(p2) near the chiral symmetry breaking
scale, it takes the form E(p2) « E0(p2/E2)-7. We can then try to find what kind of integral
equation a function like E(p2) satisfies, and then try to motivate it physically.

We first give two useful identities

/^e-stÇ-ldt r(7)s-7 (3.3)

/¦oo

/ e-stt-<dt r(l-7)s7_1,
Jo

where T is the usual T-function, and 0 < Re(7) < 1. Combining the above equations, we

get an eigenvalue integral equation of the form

G(s) X / e~stG(t)dt, (3.4)
Jo

1It is worth noting that a very similar analysis can be done by using the differential form of the gap
equations, which yields the same results.
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with eigenfunction G(s) (wT(7)s~7 - JT(1 - 7)s7_1), and eigenvalue

Â=(Vr(7)r(i-7))
Sin (7T7)

So, even though the functions s-7 and s7""1 are not separately eigenfunctions of the integral
operator /0°° e"s'[...](ft, their specific linear combination given above is an eigenfunction.
Unfortunately, it is not clear how one could interpret physically the integration measure
e~stdt in Eq.3.4.

By applying the same integral operator twice, however, we end-up with the following
equation:

G(t)
G(s) A fJo s + t

dt, (3.5)

where G(t) is the same as above, again with 0 < Re(7) < 1, and A sm t71"7'. In purely
mathematical terms, we are dealing now with a function G(s) which, up to a numerical coefficient,
which is the eigenvalue of the equation, is its own simple Stieltjes transform. This time, the

integration measure ^ is much easier to interpret physically. Making the correspondence
of G(s) with the fermion self-energy, we can also make the correspondence of the s and t
variables with squares of 4-momenta, say s p2 and t k2. Then, this integration measure
is very close to the one appearing in the Schwinger-Dyson (S-D) equations in Eq.2.12.

More precisely, the integration measure before performing the angular integration that
gives Eq.2.12 is of the form (see, for instance, Ref.[10]) ^—mi^+^Wj- After angular

integration, where spherical symmetry of the self-energy is assumed, the term (p— k)2 is replaced
by the quantity M max(p2,k2) (see Eq.2.12) 2 The integration measure appearing in
Eq.3.5 is equivalent to approximating M with the quantity p2 + k2, and, in addition, neglecting

the self-energy E(fc2) appearing in the denominator. Therefore, Eq.3.5 is a linearized
version of the usual S-D equations, and it is expected to give trustworthy results only in the
limit p2 ^ Eq. In that limit, our integration measure is a special case of a more general
form that has appeared in the literature, giving similar results [14]. In such a context, one
should not worry about the small-s behavior of the eigenfunction G(s), which possesses a

singularity in that region; a singularity which is integrable but nevertheless unphysical.

In all that discussion, we also neglect the extended technicolor contributions to the
technifermion self-energy, since their effect can be usually absorbed in the UV boundary
conditions.

An interesting feature of Eq. 3.5 is that, in general, the two terms t~7 and F~l are

separately eigenfunctions of the same integral operator and the same eigenvalue. It is not

necessary to take the specific linear combination used in Eq.3.4 any more. However, if we
take the exponent 7 to be complex, a situation that will appear in the next sections of this

2Even though this replacement is exact in the case of a non-running gauge coupling, it is just an
approximation in the running case.
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paper, and we insist on having a real eigenfunction, the situation changes: we then require 7
to be of the form 7 1/2 + i6, with S a real number. In addition, we have to keep the linear
combination that we have used so far, since (r(7))* T(l — 7), or, for this matter, any
linear combination of the two terms, where one of the coefficients is the complex conjugate
of the other.

It is also interesting to note that the form of the eigenfunction G(s) given above is not
the most general one corresponding to the Stieltjes kernel in the special case where 7 1/2.
In that case, a more general form is CiS~1/2+c2s~1/2 In (s), where cij2 are arbitrary constants.
The eigenvalue associated with this solution is exactly the same as the one for general 7.
We are not going to occupy ourselves with this special case any further.

We can try to recover now the form of the solutions that the S-D equations give in
Ref. [10]. In that analysis, the coupling A satisfies the relation A -^-, where the couplings
are taken to be momentum independent for the moment. That means that, since in our
case the coupling and the exponent 7 of the eigenfunction are related by the equation A

sin(7T7)/7r cosh(Ó7r)/7T, in the regime <5w < 1 we get 6 « f \/A7r — 1 |Jf*f — Ï. The

quantity corresponding to 6 in the exponent of the eigenfunctions used in Ref. [10] is equal

to Ja/ac — 1/2, which is reasonably close to our expression, given the different integration
measure used in the two cases, and the fact that we expanded our expression for the coupling
for small 6, i.e. for A « 1/-7T. Moreover, for the proposed form of the quantity 7, the above

eigenvalue equation exhibits a critical behavior 3, since, for real values of 6, it possesses
non-trivial solutions only for A > 1/n « 0.32.

Finally, by taking the factor multiplying one of the two solutions to be equal to T^e1259,

and taking care of the correct dimensionality of the quantities used, the resulting expression
for the self-energy is

E(p2) M sin [2ó(ln(p/E0) + 6)], (3.6)
P

a well-known functional form in the technicolor literature [10]. Here E0 is the characteristic

energy of the theory, which is on the order of the chiral symmetry breaking scale.

Unfortunately, such a solution in general possesses nodes, and momentum regions at
which the self-energy becomes negative. It is unclear how one could interpret such solutions
physically. We will encounter particular examples of the behavior of such a solution later in
the paper.

3.2 The running coupling case

3Note that cosh(z:) > 1, for all real numbers x.
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In technicolor theories, one typically has a technicolor non-abelian group, with a coupling
a(p2) that is renormalized, and an extended technicolor group that is broken at very high
energies (on the order of the ETC scale), with an ETC coupling that is taken to be constant.
We assume that the ETC coupling is below the critical value that would allow it to break
chiral symmetry without the need of technicolor gauge interactions. Then, chiral symmetry
will be broken at a scale where the running coupling a(p2) gets strong enough, so that it,
together with the ETC-coupling, can bring the system to criticality. For energies above that
scale though, the gauge coupling is below its critical value. In that case, we expect the form
of the solutions of the Schwinger-Dyson equations to change. First of all, we should insert
the coupling A inside the integral sign. Then, we can expect that, in a crude approximation,
the relation between the coupling and the exponent of the function G(t) will remain the

same as for the constant coupling case.

In other words, we expect the quantity S defined above to become purely imaginary, so

that the form of the solution for the fermion self-energy becomes

E(p2) ^(P/Eo)2*, (3.7)
P

where 5 iS — Jl -*(p2)

Such a naive analysis, however, neglects the complications arising from the fact that the

coupling is running. There have been more careful analyses of the form of the self-energy
and the way it evolves up to the ETC scale (see, for instance, [10]), and they have shown

that, in general, the self energy at the ETC scale has approximately the form

S(A|rc) « -ßr, (3.8)
1XETC

where the power oj can be anywhere between 3 - the case of running coupling - and 2 - the

limiting case of walking coupling, where we have an non-trivial UV fixed point in the theory.
The parameter uj can also approach 1 in theories where the high-momentum enhancement
is coming from 4-fermion interactions [10], which, as we have already seen, influence the

boundary conditions of Eq.2.12.

The parameter uj is related in a very complicated way to 8, or, in other words, to the

coupling A. The reason for this complexity is the running of the gauge coupling, and the
introduction of ETC 4-fermi couplings can make the situation even worse. The thing we

can say here for sure is that we expect uj and 6-to be negatively correlated, i.e. a larger
coupling, over a large momentum region, should correspond to a smaller u>. This is intuitively
reasonable, since usually E0 is much smaller than Aetc, and a larger coupling at large
momenta should be able to produce larger self-energies E0(A|;TC). When studying the full
non-linear Schwinger-Dyson equation, we also expect the parameter 9 to be a function of 6,

which is nevertheless too complicated to be computed analytically. The relation in Eq.3.8 is

going to be frequently used in the next section.



Triantaphyllou 671

3.3 The quantization condition

The previous subsection dealt extensively with Eq.3.5 and its close connection to Eq.2.12.
Eq.3.5 is a homogeneous Fredholm equation of the second kind. Unfortunately, as it stands,
its kernel does not belong to L2, since the double integral

rea i-o

/ dt
Jo Jo

ds
IsTW2

(3-9)

diverges. Therefore, it is not possible to apply the usual Fredholm theorems in this case

[15]. An example of the singular behavior of Eq.3.5 is that, as we saw, the eigenvalues
associated with it belong to a continuous spectrum of eigenvalues. The divergence of this
double integral is logarithmic, and it comes from both the ultra-violet (UV) and infra-red
(IR) regions. In both these cases, however, there are physical cut-offs that render the kernel

square-integrable.

First of all, there is a UV-cut-off A associated with the new physics coming in at that
scale. In technicolor models, for instance, the infinite upper bound of integrations of this
kind is usually replaced by a finite cut-off AEtc, where new physics in the form of extended-
technicolor interactions come into play. Moreover, the role of the IR cut-off is played by the
fermion self-energy E(i) that should appear in the denominator of our kernel if we had not
linearized our integral equation, i.e. if the kernel were of the more physical form .,~E2it\\ ¦

The linearization of our equation, as we shall see, while simplifying our analysis considerably,
is not going to affect our final results in a qualitative way.

From the moment the kernel belongs to L2, we should expect Fredholm's theorems to
apply, and the spectrum of the eigenvalues of Eq.3.5 to become discrete. Let's see how this
mechanism works in our case.

Taking care of the correct dimensionality of the quantities used, we can rewrite Eq. 3.5

as

V2^o

7-1

XL

Jo

dt

x7-l «•w
t+s t+s

N7-l

dt
t+s t+s

(3.10)

+ I(s),

where I(s) X f£ dt 4*TZHJ.

t+s
and E0 is the typical energy scale of the

model, i.e. the value of the fermion self-energy at low energies, which is on the order of
magnitude of the chiral symmetry breaking scale. We are now going to impose the condition
I(s) 0, and we are going to investigate what constrains such a condition imposes on the
solutions.
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By performing the above integrals, we have

I(s)=0=^ (3.11)

-f^ F(l, 1 - 7; 2 - 7; - sIAire) +
1 -7

A \-2T

+
C

V S° ; F(l,7;l+7;-s/A|TC)=0,
7

where F(a, b; c; z) is the usual hypergeometric function. Note that, had we included a

momentum-independent self-energy term E2, in the denominator of our kernel, in order to
formally maintain the kernel in L2, the only change would be in the argument z of the
hypergeometric function, which would go from —s/A2ETC to — (s + T,q)/A2etc. It is therefore
seen that the inclusion of such a term cannot alter our results substantially in the region
of interest, which is s 3> E2,, and this is expected to remain true even if we insert in the
denominator a more realistic momentum-dependent self-energy E(i) 4

The quantization condition that should derive from our equations should be of course
momentum independent. In order to simplify our problem, we are going to make two different
approximations that will enable us to derive such a condition in two different momentum
regimes. First, we restrict the momentum regime to E, C s < ^-etc which of course

implies also that E2, <§C A2ETC. Then, we can keep only the zeroth-order term of the series

expansion of the hypergeometric function, and, setting c Hcjle*2159, with 0 < 286 < 2n, we
have the momentum-independent equation

A266 /a V2* „-Ì266 /a \ -»26
e Aetç\ e Aetç\

1/2 -i6 \ Eq J I/2 + 18 V E0 J ' y '

which is equivalent to the relation

289 + arctan (28) + 251n(AETC/E0) nn, (3.13)

where n is an integer.

This quantization condition has been derived previously, using different techniques (see,

for instance, Ref.[10]). If now, instead of taking the limit s <C A2BTC, we take the limit
s —» Aetc, we Set a similar quantization condition, but with the term arctan (26) replaced
by the constant 7r/2. This difference is considered to be an artifact of our derivation and
the approximations involved in it. Moreover, it is not a significant change, and it is not

4This would lead us to the full, non-linear equation, where any discussion on eigenvalues and their
spectrum is meaningless. We may apply our analysis, however, to the case of large momenta.
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expected to alter the qualitative aspects of our results below, which rely mostly on the
term \n(AErc/^o)¦ Since our quantization condition is going to be mostly used at energies
s « AETc, we are going t° use the form with the 7r/2 factor in it.

One could object that these results are not reliable, since in I(s) we assume that the
self-energies retain the same functional forms for p > Aetc as for momenta below Aetc-
However, a similar, more physical but more complicated analysis, using Heavyside functions
which truncate the eigenfunctions at momenta above the cut-off, yields exactly the same
results. Such an analysis was used recently on a completely different physical context [16],

in order to derive a discrete eigenvalue spectrum out of an integral equation.

In the full non-linear theory, 6 is in principle a function of 8. In our linearized equations,
however, 9 can be arbitrary. Since we have assumed that E2, <C A2ETC and that 6 > 0, from
Eq.3.13 we see that n has to be a positive integer larger than or equal to 1, i.e. n > 1.

The relation appearing in Eq.3.13 provides us with a quantization condition, which is going
to be central to the development of this paper. It has been previously derived using other
methods, but solutions for n > 1 have not been really exploited.

Since, in the most general case, we are dealing with a non-abelian gauge group with a

gauge coupling that is renormalized, the use of a constant gauge coupling as above is not

very realistic. Therefore, in the discussion that follows, we are going to study the running
coupling case.

As soon as we have to cope with a running gauge coupling, however, the situation changes

dramatically. For the parameter 8 is real at low momenta, but as we go to larger momenta
it becomes imaginary. The problem is that the quantization condition that we derived
previously is based on the assumption that 8 is real (and constant). In addition, in the running
coupling case, 8 is real in the momentum region where non-linearities become important,
and the notion of the eigenvalue spectrum becomes problematic. The equation becomes so

difficult for running 8 that we were not able to compute analytically a quantization condition.

Nevertheless, we know that, since the kernel of the linearized equation still belongs to
L2 5, a quantization condition must exist, since the spectrum of eigenvalues must be discrete.
To make a very crude approximation, we are going to assume that the same quantization
condition as above is also valid for the running case, where in the place of 8, a real parameter
8 is used in some "average" sense.

The use of such a parameter is based on the argument that, since there is chiral symmetry
breaking and our equation possesses non-trivial solutions even in the running-coupling case,
in a certain "average" sense we may consider 8 to be real, i.e. the gauge coupling is above

its critical value. This does not stop the actual 8 parameter to reach imaginary values at
large momenta. Actually, in the integral of Eq.3.12, the actual 8 parameter is imaginary
throughout the whole integration region. However, as we said previously, there are
alternative ways for deriving exactly the same quantization condition, while staying inside the

5we assume here that the gauge coupling does not possess a non-integrable singularity, but stays at finite
values instead.
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physical momentum region 0 < p < Aetc- The crudeness of such an analysis should not
obscure the fact that the very nature of our equations, in the high-momentum, linear regime,
makes them obey a certain quantization condition, even though it proves non-trivial, if not
impossible, to find its exact analytical form. For instance, it is conceivable that, in the
running coupling case, the ratio Aetc/^o has a dependence on the integer n that is closer to
a power law, instead of an exponential law, as implied by Eq.3.13. We do not try to analyse
this, or other similar possibilities, here, as it would further complicate our analysis.

In the next section, we are going to analyse carefully the effects of the quantization
condition, manipulated in the way described above, on the self-energy S(j>2).

4 Physical interpretation

In this section, an attempt is made to find what physical consequences Eq.3.13 can have.

In particular, we would like to see if the above quantization condition is in any way related
to the appearance of the known fermions in three different generations. We cannot help
remarking that the boundedness of operators similar to the one studied here is the source of

quantization in ordinary quantum mechanics, like the energy levels of an electron confined

in a finite box, or the energy levels of the hydrogen atom. In order to see if a mechanism
of this sort could be qualitatively realistic in our case, we are going to neglect isospin mass

splitting within the SU(2)L doublets, assuming that another mechanism is responsible for

it, and we are going to consider only the up, charm and top for the quarks, and the electron,

muon and tau for the leptons.

A very crude, order of magnitude inspection of their current masses reveals a hierarchy
of a factor of about 200 among each subsequent generation, since, for the quarks, mv « 5

MeV, mc « 1.5 GeV, and we expect the top to have a mass of about mt « 170 GeV. The top
mass seems to be smaller than 200rac, but we should not forget that we are making an order-

of-magnitude, qualitative discussion. This picture would correspond to linear trajectories on
what is sometimes called the "Bjorken plot". One could argue that, since the mass difference
of the top and bottom quarks is so large, it is quite arbitrary to chose the upper partners of
the quark doublets, and one could just as well consider the lower partners of the doublets

instead, which would lead us to very different results. However, even though we do not have

any rigourous argument towards that, we feel that, in a theory that contains a minimum
number of adjustable parameters, the top quark is the one that has the most "natural" mass,
being the closest to the weak scale, where we believe that the fermion-mass origins lay. This
leads us then to compare the top quark mass with the other two quarks having charge +2/3.

For the leptons, we have something similar happening, since me « 0.5 MeV, mß « 0.1

GeV, and mT « 1.8 GeV. We assume that the mechanism that makes mT considerably
smaller than 200771,,, is similar to the one making the expected value for mt smaller than
200mc. Here, we neglect the upper partners of the lepton doublets, the neutrinos, leaving
again to another mechanism the explanation for the smallness, or the vanishing, of their
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masses. In the following, we are going to assume that QCD or other effects can account for
the quark-lepton mass difference, since the proposed mechanism cannot account for it.

Having this in mind for the ordinary fermions, it will be also useful to remind the reader
that in technicolor theories, it is generally expected that E0, the maximum self-energy of
the technifermions, is on the order of the chiral symmetry breaking scale Ax « 1 TeV.
Moreover, since one expects the technifermions and the ordinary fermions to lie in the same
representation of the extended technicolor group, before this breaks at scale Aetc, the value
of the technifermion self-energy at the extended technicolor scale Aetc is expected to be

on the order of the current mass of the corresponding ordinary fermion, i.e. Ejy(A|;TC) «
my. The above physical constrains are going to facilitate considerably the analysis of the
quantization condition appearing in the previous section, and its possible connection to the
fermion-generation puzzle.

Such a connection is inspired from the fact that the linear trajectories in the "Bjorken
plot" could be attributed to some exponential dependence of the ratio of the two fundamental
scales in the theory, AETC/E0, on a quantization integer index, as in Eq.3.13. The fact
that the top mass seems to be smaller than what expected for linear trajectories could be

an indication that the dependence of the ratio Aetc/^o on the quantization index does

not follow an exponential law, but a power law or something similar instead, because of a

possible modification of Eq.3.13 due to the fact that the gauge coupling is not constant. In
the following, we do not try to modify the quantization condition, but describe an analysis
that could be based, in principle, on other similar conditions.

It is essential to notice that the fact that the dependence of Aetc/^o on the coupling
8, as in Eq.3.13, is non-analytic is a consequence of the non-perturbative nature of the
Schwinger-Dyson approach that we chose to follow. Therefore, the results of any analysis
based on this equation cannot be replicated by any perturbative considerations. Moreover,
we should stress the fact that in what follows, we are going to refer to the ETC scales Aetc
in a very broad sense, and they should rather be viewed as new physical thresholds, since
the discussion is not within the framework of conventional extended technicolor scenarios.

In Eq.3.13, three main physical parameters are involved: the extended technicolor scale

Aetc, the value of the fermion self-energy at zero momentum E0, and 8, which is related to
the coupling A. Another parameter which in the full, non-linear theory is a function of 8, the
phase 9, is also entering the picture, and its value might have interesting consequences, as we
will see later. Therefore, it seems as if our theory contains only two fundamental parameters,
since the third can be determined by means of the quantization equation. One can further
note that 6 is mainly determined by the scale at which the former becomes strong, i.e. the
confinement scale, and by the type of the non-abelian gauge group and the technifermion
content of the theory. Therefore, if one assumes that the technicolor confinement scale is

directly related to E0 and the chiral symmetry breaking scale, or, in other words, the weak
scale, one is essentially left with a single parameter, along with a choice of the technicolor
group and technifermion content, which renders this picture quite elegant. One should not
forget, nevertheless, that our mechanism requires an additional parameter, which is the ETC
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effective 4-fermion coupling, which we take to be the same for all the fermions, and which
influences, along with 8, the value of the power u in Eq.3.8.

In the following, we consider 8 as a free parameter that is not related to Arc, since in our
formalism 8 is used in an "average" sense, and the connection between the two parameters
seems non-trivial. A prion, we can fix a value for any two of these three parameters, and
find a discrete set of values for the third one. Let us investigate all possible combinations.
First, we can fix a value for 8 and AEtc, and find a discrete spectrum for E0. In this case, if
we still want to pursue the argument of having to deal with essentially only one fundamental
parameter in the theory, we have to assume that it is only the first member of the Eq

spectrum that is directly, and in a non-trivial way, associated with 8. E0 is given by the
expression

E0n) AETCe8+%e-^26. (4.1)

We then assume that some of the solutions of this equation are related to the self-energies,
at small momenta, of the technifermions corresponding to the three different generations of
ordinary fermions. Then, inserting the above relation into Eq.3.8, we find

EM(AW)=AErCe*S>e-^. (4.2)

Since we do not find any physical reason not to take consecutive solutions of the above

equation, we consider the first three of them, for n 1, 2, 3, and we take them to correspond
to the technifermions associated with the top, charm, and up quarks respectively.

First of all, that would mean that we have to choose 8 in such a way that e~"w « 1/200,
which is the approximate hierarchy between consecutive fermion generations of characteristic
mass scale mf' « E(n'(ABTC)6. This would imply, with the use of Eq.4.2 and with a choice

of a negligibly small phase 9, that the mass of the top quark is equal to mt « S(^(A|;TC) «
Aetc/14, For mt « 170 GeV, this gives an ETC scale AETc ~ 2.4 TeV. If we choose the
values uj 2 and 0 0, this implies, from Eq.4.1, that E0 ' « 640 GeV, and 8 « 0.59.

The choice of this value for u> has nothing in particular and is purely indicative. Ideally, one
should be able to derive u> from 8 and from the common ETC coupling of the fermions and
technifermions.

Unfortunately, there are numerous phenomenological and theoretical problems with such

a picture. First of all, it is not clear why we do not observe in nature lighter fermion
generations associated with the solutions of the above equations for n > 3. Moreover, the
solution for n 2 or 3 implies the existence of technifermions having small self-energies
at low momenta, which should make them observable in present experiments. However, we
have not observed signs of their existence. This is a serious phenomenological draw-back of

6By n we index the fermion generations, and the spectrum of solutions deduced by the quantization
condition.



Triantaphyllou 677

the mechanism described above. Furthermore, in this picture all the fermions are associated
with the same ETC scale. A scale of about 2 TeV is unfortunately too low to adequately
suppress flavor changing neutral currents in the light quark sector.

Another difficulty associated with this interpretation is the stability of such solutions.
From effective-potential considerations (see Ref.[10], for example), it is clear that the effective
potential is minimized for the maximum value of the self-energy This makes stable only
the solution for n 1, and the solutions corresponding to higher n are unstable. This was
the original reason for discarding solutions corresponding to higher n. We are now going
to continue our discussion with some other possibilities that do not seem to possess these
naturalness problems.

The next possibility we can think of is to fix the value of E0 and 8, and find a quantization
condition for the extended-technicolor scales. The relation resulting from that is

AWc Eoe-e-Äe"^. (4.3)

Inserting this expression into Eq.3.8, we get

EW(A|tc) Eoe^-^+^e-11^. (4.4)

If we want to reproduce the fermion hierarchy observed in nature, we must require that
e~ 26 « 1/200. From Eq.4.4, setting uj 2 and 9 0, this would mean that mt « E0/14,
so, for mt « 170 GeV, this gives E0 « 2.4 TeV.

In such a scenario, however, we have to be careful not to produce an unwanted hierarchy
between the weak scale (or E0) and the top quark mass (or E'^(A|;TC)), since our goal
is to explain the maximum number of physical scales, using a minimum number of input
parameters and mass hierarchies. In order to do that, we will have to use the phase 9, which

up to now has not been really exploited. Taking 9 to be close to 7r/2, and fixing to 2, we
find E0 « 500 GeV. Quite interestingly, such a choice almost eliminates another hierarchy,
the one between E0 and AErC, suggesting that the ETC scale associated with the top quark
is actually very close to 1 TeV. According to Eq.4.3, the ETC scales are then AEtc ~ 1-4

TeV, A{eTC « 290 TeV, and A^TC « 58 x 103 TeV. Furthermore, we find S « 0.3. The ETC
scale associated with the lightest generation, AEj.c, is much larger than the ones usually
used in the literature, but we do not find any physical reason that would prevent it from
getting such a high value.

Moreover, we should caution the reader one more time that our results are purely indicative.

Namely, we showed how a non-zero value of 9 could fix various scales at reasonable
values, but we should keep in mind that, in the full, non-linear equation, 9 is determined by
8, and therefore it is not a free adjustable parameter. We may add as a speculation, that
this dependence, which in a more careful study can be determined by the numerical solution
of the integral equation, could be responsible for the fact that mt is expected to be less than
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about 200mc. It should be noted that there are numerical indications that 9 is non-zero [10].
This is an alternative way of getting around the problem of the deviation of the top quark
mass from the linear "Bjorken trajectories", other than the one in which we modify the form
of the quantization condition.

A remark along the same lines can be written about the power lo; the fact that we took
lo 2 and 8 « 0.59 in our previous example, should have made us choose a larger value for
lo in this example, instead of using w 2 again, since in the present example 8 is smaller,
i.e. 8 « 0.3. A larger lo would also bring AETC down to a smaller, more acceptable value.

However, since we do not know the exact dependence of lo on 8, we do not feel that we
should further complicate the picture with changes in parameters that do not add anything
crucial to the qualitative behavior of the mechanism.

This second way of looking at the quantization condition does not seem to have the

stability problem that the previous solutions had, nor does it predict any new particles at
low scales. Furthermore, it is conceptually very close to the idea proposed [7] and used [17]

recently, according to which each fermion is associated with different extended-technicolor
(ETC) scales, instead of having a single technicolor scale for all of them, as more conventional
technicolor models suggest. The difference here, of course, is that the hierarchy of ETC
scales is not introduced arbitrarily, but is produced by a specific underlying mechanism.
Such a mechanism would bring the chiral symmetry breaking scale in the picture naturally,
as associated with the (common) technifermion self-energy at low momenta. Then, it would
automatically associate the lighter generations to the higher extended-technicolor scales.

We also see that it is not necessary to assign a different ETC coupling to each fermion

any more, as conventional technicolor models do, since this burdens the model with too
many parameters. The change of the ETC-scales is enough to account for the change of the
fermion masses from generation to generation. In addition, on can argue that we only have

three generations, or equivalently that the solutions for n > 3 do not make sense, because

there are some new physics, above the scale Aetc, making our analysis not applicable any
more. This would give more predictive power to the proposed mechanism, since by using
the known fermion spectrum we could have a feel of the order of magnitude where new
physics, beyond extended technicolor, enter into the picture. Note that such large energy
scales > 10B TeV) have been observed in highly-energetic cosmic rays [18]. These energies

are still very far below a possible grand-unification scale or the Planck scale.

A great advantage of such a mechanism is that it can avoid large flavor-changing neutral
currents, since the ETC scale associated with the light quarks is high, while at the same time
it can generate large bottom and top quark masses, since their are associated with a much
smaller ETC scale. Of course, this also implies the existence of large FCNC associated with
the third fermion generation, as well as non-negligible corrections to the Z° —» 66 vertex,
effects that should be detectable in precision experiments. The smallness of the ETC scale

associated with the top quark has been shown to serve two more phenomenological purposes:
it can keep small not only the S parameter, since a "walking" mechanism requiring many
technifermions is no longer needed to generate large heavy quark masses, but also the Ap



Triantaphyllou 679

parameter [17].

The problem with this mechanism is that it is theoretically unclear how each fermion
generation is associated with each scale. Unlike the usual tumbling mechanism, where the
scales introduced are the energies where the gauge interactions become so strong that they
break the gauge group to a smaller one, the mechanism proposed here does not possess,
at first sight at least, such a straightforward interpretation. It would seem that it is only
for specific ETC scales that the Schwinger-Dyson equation can have non-trivial solutions
and break chiral symmetry. Then, it is this very dynamical symmetry breaking that causes
the ETC group to break successively at these scales down to smaller groups, reproducing a
mechanism similar to "tumbling". The correct physical interpretation of this phenomenon
is a very challenging model-building problem that we can hardly address here, and we will
return to it, along with a more general physical discussion, in the next section.

We next go to the last remaining possibility, which is to fix Aetc and E0, and to derive

a quantization condition for 8. The physical interpretation for such a picture could be

more straightforward than the previous one, since it would signal that we have all the
technifermion self-energies starting-off at low momenta from their common initial value E0,
and then drop up to their common ETC scale according to different anomalous dimensions,
i.e. with different couplings. This could be very interesting from the point of view of
model-building, since such a behavior could be attributed to having technifermions sitting
in different representations of the same technicolor group, or having them interact with
different technicolor groups altogether. Unfortunately, since the relation between lo and 8

is non-trivial, especially in theories where one employs 4-fermion-induced high-momentum
enhancement, we do not pursue this analysis further, but merely contend ourselves to stating
this interesting possibility.

Conclusions

In this work, we have attempted to construct a mechanism that would explain the mass
hierarchy of the three fermion generations, in a context of dynamical electroweak and chiral
symmetry breaking models. We have tried to achieve this by using a minimum number of
input parameters, which makes these models more natural.

The explanation of the mass hierarchies in Nature is however a highly non-trivial problem,
and attempts to solve it usually give rise to serious complications. In our case, the solution
that is both solvable, after using several approximations, and phenomenologically acceptable,
is the one in which we fix the weak scale, which is closely related to E0, and then the ETC
scales follow from a quantization condition. Unfortunately, such an interpretation is not
along the lines of conventional wisdom in present-day particle physics. Let us see why this

At first, we have to understand what the three fermion generations correspond to in this
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picture. They appear as the same reality that replicates itself, and manifests itself into three
different ways. In the everyday world, we can observe only the lowest-energy manifestations
of that reality, by means of the lightest fermion generation. It is only when we go to higher
energies that we can see its higher-energy manifestations. The role of ETC scales, however,
and the exact way in which they enter in this process, is still unclear. They appear as the
scales which can lead, when chiral symmetry breaking sets in, to a technifermion self-energy
that is very close to the weak scale at low momenta.

Moreover, what is usually expected in model building is for high-energy physics to "feed-
down" their effects to lower energies. The picture as presented here, on the contrary, seems

to do the opposite; we first fix the weak scale and the coupling, and then we find the
corresponding spectrum of ETC scales. It is as if lower-energy physics determine the behavior
of higher-energy physics.

This, however, is not a completely new phenomenon in the physical world. As a very
naive and simplistic example, we take the harmonic oscillator. One can completely define
this quantum-mechanical system by specifying its fundamental frequency lo0. After solving
the equations, however, we predict a whole spectrum of frequencies that are arbitrarily larger
than the fundamental one, in a similar way that our equations predict a spectrum of ETC
scales much higher than the weak scale. Moreover, the reason for the appearance of a discrete

spectrum in quantum mechanics is not always the existence of a bound state of two particles,
but can also be the confinement of a particle in a finite space region.

We are very much aware of the fact that analogies like the one above can lead to serious

misconceptions. For instance, in our case the ETC scales are supposed to be physical cut-offs,
and not the energy levels of a system of particles. The message that we want to convey should
be clear nevertheless: we want to consider the weak scale, or equivalently the scale where

new, strongly-interacting physics come into the picture at around 1 TeV, as a fundamental
physical parameter which, by its inverse, sets a certain spatial scale. Within that finite space,
the behavior of the Schwinger-Dyson equations generate a discrete spectrum of energy scales

(cut-offs), which could possibly be identified with the ETC scales of technicolor theories.

In addition, we should not forget that the fermion masses are much closer to the weak

scale, rather than the Planck scale, so it does not seem to us too unnatural trying to explain
them in terms of physics coming in at the weak scale, rather than expecting "Planck-" or
higher-scale physics to "feed down" their effect directly to the fermion masses. Of course, the
weak scale itself could still be determined by some unknown high-energy physics, appearing
at the "Planck", or even at the highest ETC, scale. Therefore, the proposed mechanism,
when seen from this point of view, does not completely violate the way high-energy physics
determine low-energy physics. It just gives the weak scale a more active and direct role in
the fermion mass generation, while leaving for the Planck-scale, or for any other scale that
determines the weak scale, only an indirect role.

Such a picture still gives a very limited explanation of the mass hierarchies observed

in nature. The huge hierarchy between the Planck scale and the weak scale still remains
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a mystery. Furthermore, the QCD scale is another scale that is not accounted for in this
picture. Even though it is conceivable that these scales can be explained by a similar
paradigm, trying to incorporate them in the present discussion would be over-ambitious.

To conclude, we would like to add the following comments. The physical interpretation
of the proposed picture may still seem elusive. In such a case, it would still be interesting, as

well as useful, to consider the formulas given here as purely phenomenological, that merely
describe, which they seem to do indeed, instead of explaining, the true situation. We should
then await for a better understanding of the whole process. Within the same framework,
it would be also very useful to perform a more detailed and careful mathematical analysis
of the quantization condition, and a more thorough investigation of possible models and

physical processes that could explain the inner works of this mechanism.
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