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Local Perturbations and Limiting Gibbs States
of Quantum Lattice Mean—Field Systems

By Thomas Gerisch

Institut fiir Theoretische Physik, Universitat Tiibingen, Auf der Morgenstelle 14,
D-72076 Tibingen, FRG

(21.1.1994, revised 15.VIII.1994)

Abstract: In the frame of operator algebraic quantum statistical mechanics, the limiting Gibbs states
for quantum lattice mean—field systems under the influence of weak perturbations are analyzed.
For a certain model class it is proved that all homogeneous states which minimize the functional
of the free energy density, can be calculated as the thermodynamic limit of perturbed local Gibbs
states. For uniformly bounded nets of (not necessarily homogeneous) local perturbations with a well
defined asymptotical behaviour in the thermodynamic limit (approximately symmetric, resp. quasi—
symmetric nets) the existence of a unique limiting Gibbs state is proved for the considered model
class. An inhomogeneous BCS-model and the Josephson junction of coupled superconductors
are examples for the applicability of the results. Finally, the relation of the considered local
perturbations to extended-valued lower-bounded operators affiliated with a von Neumann algebra
as relative Hamiltonians of two normal states is discussed.

1 Introduction

We analyze the set of equilibrium states for a class of quantum lattice mean-field models.
The lattice is assumed to consist of finite quantum systems on each site of the lattice with
the matrix algebra B of observables. A model can be characterized in terms of all local
Hamiltonians Hj, which are assumed to be in the algebra A, := ®;coB of observables of a
finite region A of the lattice. The treatment of the model requires the analysis of the non-
equilibrium dynamics, equilibrium states or thermodynamical functionals of the infinitely
extended macroscopic system by calculating the thermodynamic limit. Often it is necessary
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to choose a certain state which represents the preparation of the system. In an equilibrium
situation this can be a certain KMS-state [1, 2]. But in general there exist a lot of KMS-
states, especially if there is a phase transition. Therefore one needs additional criteria for
a certain choice. Here, the limiting Gibbs states, i.e. the limits of the Gibbs states of the
local subsystems, play an important role. They take into account all microscopical aspects
of the model in the thermodynamic limit and represent its quantum statistical features as
an optimal approximation of all finite size properties, e.g. its symmetries.

For a certain class of mean—field models we will discuss exemplary some methods to
determine limiting Gibbs states, resp. their properties. Let us consider the so—called poly-
nomial mean—field models with local Hamiltonian densities Hy/|A|, being the same poly-
nomial in mean-field operators (i.e. averages of an element in B over the region A) for each
region A. The existence of the thermodynamical density functionals for internal energy,
entropy and free energy were proved, and a minimum principle of the free energy density
for limiting Gibbs states was established [3, 4, 5]. This induces a selfconsistency—condition
for pure phase states (factor states) in the support of the central measure of the limiting
Gibbs state. If a system is prepared in a state, its central decomposition determines the
classical distribution of pure phases that may be present in an experimental situation.
Concerning the dynamical aspects in the thermodynamic limit, there appear difficulties,
because the algebra of the lattice system is not invariant under a limiting dynamics. There-
fore, an enlargement of the algebra is required [6, 7]. This has been worked out in refs.
(8, 9, 10, 11]. Finally, the KMS—condition for equilibrium states of the limiting dynamics
has been proved and the extremal KMS-states have been identified as all solutions of the
selfconsistency equations mentioned above [12].

Besides the question whether there exists a unique limiting Gibbs state at all, it turns
out that such states show a very sensitive dependence on what we call here a local per-
turbation: Adding to the local Hamiltonians Hy a “small” perturbation hy for each finite
region A, the limiting Gibbs state may change drastically (“small” means that the density
||hall /|A| tends to zero for large regions A). Such perturbations are of real physical signifi-
cance, e.g. as interaction between weakly coupled superconductors in a Josephson junction,
inhomogeneities of the interaction on a lattice or boundary effects after symmetrization
of short range interactions. Since the limiting Gibbs states of the unperturbed and the
perturbed mean—field models both minimize the same functional of the free energy density
(5], the sole analysis of this variational principle generally is a too rough a method to find
such states. Thus it can only be applied in some special situations; for a counterexample
see ref. [13]. This is our motivation to look in more detail on the quantum statistical
properties of such models arising in the thermodynamic limit.

There are two ways to attack the arising problems: at first one can refine the method
of calculating quasi-averages, originally developed to identify symmetry breaking in the
case of phase transitions [14]. In our setting for two given states, resp. distributions of
pure phase states, one analyzes local perturbations which allow to go over from one state
to the other in the thermodynamic limit. First steps in this direction have been performed
in refs. [5, 15] where pure phase states, resp. extremal states with a given symmetry are
constructed as limiting Gibbs states. This aspect touches the fundamental question of
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the richness of classical structures that are accessible in terms of a microscopical defined
model. In sharp contrast to this procedure there is the necessity to calculate the limiting
Gibbs state if a perturbation is given explicitly by physical reasons. The only available
result for our model class can be found in ref. [16], where the given local perturbations
lead to states with strictly positive Radon-Nikodym derivative of the central measures
of the unperturbed and the perturbed state. Here we will use the two points of view
simultaneously to generalize the results of the above stated references and find criteria
such that each homogeneous state, satisfying the variational principle of the free energy
density is a limiting Gibbs state of a locally perturbed model. Especially, this means that
all KMS-states with minimal free energy density can be calculated as limiting Gibbs states
of these perturbed models.

In Sec. 2 we introduce the quasi-local algebra A of a quantum lattice system and the
relevant part of its state space S(A) for mean—field systems, the so—called homogeneous or
permutation invariant states S¥(.4). Then we define the model class, specify what we call
a “local perturbation”, and refer the most important results on limiting Gibbs states. As
far as possible, the terminology of (approximately—)symmetric nets is used [5, 11}, comp.
Definitions 2.1, 2.3.

In Sec. 3 the main results on local perturbations of mean—field systems are worked
out. The permutation invariant limiting Gibbs states are discussed in terms of their
central measures. We construct local perturbations in such a way that a given permutation
invariant state with minimal free energy density is the limiting Gibbs state of the locally
perturbed model (Theorem 3.1). The local perturbation can be specified to show a well
defined asymptotic behaviour for large local regions (Proposition 3.3). Moreover this
includes a constructive result that allows to infer the corresponding limiting Gibbs state
from the local perturbations. Finally a sufficient condition for the stability of the limiting
Gibbs state under local perturbations is given (Proposition 3.2).

The constructive results in Sec. 3 may also be formulated for perturbations which
are not locally permutation invariant. In order to do this, in Sec. 4 the notion of quasi-
symmetric nets [11] is introduced, and the limiting Gibbs state of an inhomogeneous mean-
field system locally perturbed with a quasi-symmetric net is determined.

In Sec. 5 some applications of the foregoing results are presented. We calculate the
limiting Gibbs state of an inhomogeneous BCS-model with a nontrivial momentum de-
pendence of its kinetic energies and coupling constants. Furthermore, the influence of a
scaling function for the interaction in a Josephson junction of weakly coupled supercon-
ductors is now discussed in the thermodynamic limit. We close with some remarks on the
connection between local perturbations and relative Hamiltonians [17]. In our context it is
necessary to use the so—called extended-valued lower-bounded operators affiliated with a
von Neumann algebra [18]. They are affine, weakly lower semicontinuous (possibly infinite)
functionals on the normal states of a von Neumann algebra, which generalize the concept
of a relative Hamiltonian. In the case of permutation invariant states it is demonstrated
that their finite part can be approximated in the sense of strong resolvent convergence by
the local perturbations.
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2 Algebraic Framework, the Model Class and Prelim-
inary Results

As quasi-local algebra of the quantum lattice system we choose the C*-algebra

A= ®B;, with B; =B M,(C),VieN,
ieN
with some fixed n € IN. The quasi-local structure of A is defined as follows: Let £ :=
{Ac N ||A| < oo} be the family of all finite subsets in IN, and |A| denotes the cardinality

of such a local region A c IN. Consider each algebra A, := ®;c0B; as C*—subalgebra of A,
embedded into A by Ap 3 Ay — Ap @ I € A

The states S(A) of A are the positive and normalized linear functionals on A. Since
we are interested in the so—called mean—field models, it is appropriate to consider only the
set of permutation invariant (homogeneous) states S¥(A), defined by

SP(A)={weS(4)|wo®, =w,Yo e P}.

Here we use the following notation: P(A) is the set of all permutations of A, i.e. the set of
all bijections ¢ on IN with o(i) =1, Vi ¢ A, P := [Js. P(A) and for o € P we denote by
O, the automorphism, satisfying O, (®ienz;i) := ®iene,(i) for elements Q;enz; € A. We see
that the usage of the special lattice IN is adequate for our purposes since the permutation
invariant states ignore any further lattice structure.

The set of permutation invariant states has the following well known properties [19]:
SP(A) is a Bauer-simplez with respect to the weak topology on S(A) with extremal
boundary

0.57(A) = {®v|vesSB)}, (2.1)

where ®¢ is the product state on .4, defined by linear continuation of (R¢; ®ienz:i) =
ien (¢ i), V ®ien z; € A. The extremal decomposition of w € §¥(A) into elements of
8.SP(A) coincides with the central decomposition of w in SF(A), i.e. a decomposition into
factor states (pure phases). The central measure is denoted by p,; due to the parameteri-
zation of 8,87 (A) by states in S(B) (2.1), we regard u, as a measure on S(B) and write

b = fg(g) R dl"'w((P)‘

Now let us have a look at the algebra of observables A and the definition of the model
class. The restriction to permutation invariant states as made above is closely related to
the definition of mean—field models on A by means of local Hamiltonians. We will use here
the notion of (approximately) symmetric nets, introduced in ref. [5] (comp. Definition 4.1,
where further extensions of this definition are given):

Definition 2.1 ((Approximately) Symmetric Nets) Let Q,A € £ with Q C A and
s = QA'!%II,QEZ@G, where the summation runs over all injective maps o : 8 — A

(especially 3%, is the symmetrization operator in Ay ).
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Let x := (zp)rec be a family of local operators with zp € Ay and zp = jRAa:A for all
A e L. zp and zp satisfy O,zp = zp for A, A' € L with |A| = |A'| and Yo € P with
oA =A'. z is called

(i) asymmetric net (z € ), if there exists a k € IN, such that for all A € £ with |A| > k,
there is an Q € £, Q C A with |Q| = k and zp = j%,2q.

(ii) an approximately symmetric net (z € y ), tf for all € > 0, there exists ay € ) and a
n € N, such that for all A € £ with |A| > n it holds: ||za — ya|| < €.

In ref. [5] the algebraical structure of ) and Y is elaborated. Especially, they are vector
spaces and ||z := limpez ||z4l| (limaec denotes the limit of a net with index set £) defines
a seminorm on Y. The function

it Y—C(8(B),C), z — [i(2)l(p) = lim (®¢; za), Yy € S(B) (2.2)

maps ) isometrically onto C (S8(B), C), the continuous functions on S(B). The seminorm

defines an equivalence relation on )’ and the corresponding quotient space is isomorphic
to C(S(B), C).

The set of symmetric nets can also be characterized in terms of this map j. An element
z € Y equals a polynomial Q in the mean—field operators mp(e) := 1/|A[ Y ;cp € ® Laygsy €
Ajp, e € B up to a term vanishing in norm for large A. If we choose the arguments of the
polynomial as mean—field operators corresponding to elements of a fixed basis ey, ..., e, of
B, the coeflicients of @ are uniquely determined and ¢ = (Q(ma(e1),...,ma(en2-1)))rec de-
fines an approximately symmetric net with j(g) = j(z), being a polynomial in C(8(B), C).

Proposition 2.2 Let h = (hp)per be an approzimately symmetric net. Denote by Ilp
the partially universal representation of A corresponding to the folium' Fp of permutation
invariant states in the Hilbert space Hp := ®uerpHo (Ho, ., Q) denoting the GNS-
representation to a state w). The limit s—limpey I p(hy) exists in B(Hp). Moreover there
is a subalgebra of Mp :=IIp(A)" which is isomorphic to C(S(B),C) @ Ilp(A). Its center
C(S(B),C) ® 1 is isomorphic to a subalgebra of the center Zp := MpnMp in Mp. Then
we have

sj—\leién Ip(hy) 2 j(h)®1LeC(S(B),C) QIp(A),
i.e. S—limAeg HP(hA) € Zp.
PRrROOF: Concerning the isomorphisms between the various subalgebras of M p we refer to

refs. [9] and [10]. The strong convergence s—limpes Ilp(mp(z)) =: mp(z) € Zp for x € B is
well known and thus the strong convergence of all polynomials in m(z) follows (they are

1A folium F of a C*-algebra A is a norm-closed, convex subset of the state space S(A) of A, such that
w € F implies wp € F, where {(wp;.) = (w; B*. B)/ (w; B*B), for each B € A with (p; B*B) #0 (i.e. F
is closed under perturbations from .4) [20].



590 Gerisch

uniformly norm bounded). It is easy to see that a symmetric net differs from a polynomial
in mean—field operators only up to a part with norm limit zero. Thus we have the strong
convergence of symmetric nets with the same limit as the one of the associated polynomials
in the mean—field operators.

According to isomorphy we regard j(h) € C(S(B), C) as an element of Zp and calculate
for arbitrary £ € Hp:

(e (ha) = 3 (R)) Il < I(TLp(ha — ga)) €Il + [[(TTp(gn) — 5(h)) &Il

with a symmetric net ¢ = (ga)acc, satisfying ||ha — gal| < € for large A. j is an isometry
and thus we have ||j(g) — j(h)|| < . Consequently:

I(Tp(ha) — 3(R)) €]

ITLp (R — ga)€ll + I(TLp(ga) — 5(9)) €Il + Nl (G (g) — 5(R)) €]l
1ha — gall €]l + 1(TLp(ga) — 5(9)) &Il + ll7(g) — 3 (R)II II€]]
2¢ ||l + 1(1p(ga) — 7(g)) €I -

Using the strong convergence of a symmetric net, Proposition 2.2 is proved. a

IA A A

Definition 2.3 (The Model Class) The model class is specified by families (Hy+ha)aec
of locally permutation invariant selfadjoint operators Hp, hy € Apx, YA € L with

(1) ( %\‘T Jaec 5 @ polynomial in mean—field operators.

(i) ( %\A' Jacr 5 @ net with limpeg ||hal| /|A] = 0.

The operators Hy, resp. Hy+hp are considered as the Hamiltonians, defining the dynamics
of the unperturbed, resp. the perturbed mean—field model in the local region A of the lattice.

The part (hp)pec in the Hamiltonians is a non—extensive (but in general unbounded
in the limit of large regions A) perturbation of the mean-field model, locally defined
by (Hp)aez, and we will study the limiting Gibbs state under the influence of these lo-
cal perturbations (hp)aez. A limiting Gibbs states of a mean—field model (Hp + ha)aec
(according to Definition 2.3) at inverse temperature 8 > 0 is a w*-accumulation
point of the net (wP#a*ha)y., c S(A), with the local Gibbs states (wPHatha; A} :=
7 (exp(—B(Ha + ha))A) /7 (exp(—B(Hp + hp))), VA € A. 7 is the trace state on 4. A
necessary condition for a permutation invariant state to be a limiting Gibbs states is given
by a variational principle for the free energy density functional on permutation invariant
states [5] (concerning the thermodynamical density functionals, comp. [4]):

Proposition 2.4 (Limiting Gibbs States) FEach limiting Gibbs state w® at 8 > 0 of
a model according to Definition 2.3 is an element of S¥(A) and a minimizer of the free



Gerisch 591

energy density functional, defined on ST(A) by

sP)ze— f6,0) = [ (1T ), o) - ale) ) it

= [ (65,00 - 5569)) dinti),

with the entropy of a state in S(B), given by S(B) 3 p — s(yp) := —tr(p,In(o,)). Here g,
is the density matriz which represents the state ¢ as element in M, (C).

In some situations the variational principle allows to calculate the limiting Gibbs state
of a given mean-field model. But if there occurs a phase transition a lot of permutation
invariant states minimizing the free energy density are possible and one needs further
information to find the unigue limiting Gibbs state (if it exists at all). In general only the
detailed analysis of the symmetries of the model allows to determine this state. Especially
if there is an internal symmetry group and the set of all pure phases minimizing the free
energy density consists of exactly one orbit to the internal symmetry, the limiting state is
uniquely determined; for an example see e.g. [13]. In order to develop a general theory of
limiting Gibbs states for quantum lattice mean—field models according to Definition 2.3, we
need an additional assumption on the limiting Gibbs state of the unperturbed mean-field
model with local Hamiltonians (Hp)aec:

General Assumption 2.5 Use the notation of Definition 2.8. Throughout this paper
assume that the unperturbed mean—field model with local Hamiltonians (Hp)rer possesses
an unique limiting Gibbs state w® at inverse temperature 3 > 0 with central measure pg
and support Kz = supp(ug).

Finally we state a fundamental result on local perturbations and limiting Gibbs states
[16].

Theorem 2.6 Let (Hp)aer be the local Hamiltonians of an unperturbed mean—field
model according to 2.8 and 2.5. If hy is a polynomial in the mean—field operators
map(e1),...,ma(ex) to a fized basis {ey,...,ex} of B and in the elements of Aq for some
Qe L, we have

; 8
w¥-lim wPHatha = (LP)R"
AeLl

h? € My = TI4(A)" is the limit of hy in the strong topology induced by the Hilbert space
Hp of the GNS-representation (Hg,Ilg, Q) of wP. (wP)* is the perturbation of w® with
h? in terms of perturbation theory for KMS-states on the von Neumann algebra Mg, i.e.

<(wﬁ)hﬁ; A) is given for all A € A by ((wﬁ)"ﬁ : A) = <wﬂ; AI‘S}’;)/(wﬁ; I‘f‘;), with
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F?ff = Y oneol— fo dsy ... fo ds, 'i'“1 hA) . ;s"(hﬂ), where 75 is the limiting KMS-

dynamics [21]. If hP € Zz = Mgn Mﬁ, the perturbed limiting Gibbs state 1s given by

B. A.—Bh? ) g
(@) a) = (w5 4e) _ Jsu (®p; A) DO dug ().
’ <w‘3; e—ﬁhﬁ) fS(B) e=PUMRN) dug(ip)

PrOOF: This Theorem was proved in [16, Theorem 2.3] for Hy = |A|Q4, with a quadratic
polynomial @, in mean—field operators. Therefore, we have to consider here the general-
ization to arbitrary polynomials. Since all techniques used in ref. [16] remain unchanged,
we only sketch the main steps of the proof.

The limiting dynamics for the unperturbed model, i.e. the strong limit

sl T (74 (A)) = s-lim TIa(*s Ae™#)) = 78(TT5(4)) € M,

exists for all t € R, A € A and 73 is a o—weak—contiuous W*-automorphism group of Mg.
This is established directly by following the argumentation in [8], [21], where the case of a
quadratic polynomial @4 in the mean—field operators is treated, in combination with [9].
Another way to determine the limiting dynamics is to use the techniques as performed in
ref. [11] by working in the context of mean—field dynamical semigroups and application of
Theorem 4.2 below. Since w?#4 is a 3~KMS-state for the dynamics 'rf one can calculate
the S—~KMS-condition for w? as state on My and the dynamics 77,

The essential part of the proof is now to show for all A € Ag = J,.. Ax
: BHA+hy . — 1 BH, ha \ _ 8. hB\ EAV I
lim (/s +he 5 4) _k&l(w A,AI‘mA> - <w ,AI‘1;5> - ((w ) ,A) , (2.3)

with

o B 82
I ::Z(—m/a dsn.../o dsy 7 (hy) ... Tion (hy) . (2.4)

n=0

This follows from:

(i) Forall n € N, z € Dj = {z€ C"| > Im(z,) > --- > Im(z) >0}, and A € A we

have

kélﬁl (wﬁHA s AT (hp) - - T,ﬁ“(hA))
= lim (" Arp (k)i () = (w75 ATH () 73 ()
= (Qg |Tg(A)3* (F7) - 75 (7)) .

These limits are obtained from the expansion

Ti(ha) =D (_::)n (Ha, [+ [Has ha] -]
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for 2 D% ={2€C"||Z;|] <1/C fori=1,...,n}. C > 0is a constant appearing
in the following estimation of the n—fold commutators

”[HA’ [ e [HA’ hA] o ]]” < MnlC™, (2'5)

for all A € £ and some constants M, C > 0, see e.g. [9, Lemma 3.2], resp. [22, Chapter
6.2]. For z € Df the result is estalished with the help of the identity Theorem of
holomorphic functions.

(ii) The limits in Eq. (2.3) resp. the summation and integration in Eq. (2.4) can be
interchanged due to

B 82 _ - .
1 [; dsn"'] ds; (w'eH"; A"'Rsl(hA)---Tf"(hA» ‘ < ||A]l (ﬁn')
0 .

and the uniform convergence of (wPHa ; A7) (hp) -+ - 73" (ha)). a

3 Local Perturbations and Limiting Gibbs States

After having established the general frame of our model class, we formulate the main re-
sult. All possible permutation invariant limiting Gibbs states w € SP(.A) will be discussed
in terms of their central measures p,. As a reference, the limiting Gibbs state w? of the
unperturbed model (comp. Assumption 2.5), resp. its central measure pus with support g,
are used. The analysis is done by constructing local perturbations according to Definition
2.3 such that a given permutation invariant state w becomes a limiting Gibbs state (The-
orem 3.1). This is an extreme generalization of the method of calculating the so—called
quasi—-averages, because it allows to find pure phase states as well as classical statistical
mixtures of them as limiting Gibbs states. The proof is divided into several steps. In
certain cases one finds that it is possible to obtain constructive results, i.e. to conclude
from the local structure of the model to the limiting Gibbs state. This variation in the
point of view allows to determine in Proposition 3.2 the stability of such states under local
perturbations. In Proposition 3.3 (i) the limiting Gibbs state is calculated explicitly for
approximately symmetric nets as local perturbations (comp. also Sec. 4 for a generalization
to the case where the perturbations are no longer permutation invariant). These results
are used for the rest of the section to construct more and more general perturbations with
uniquely determined limiting Gibbs state until Theorem 3.1 is proved.

Theorem 3.1 Given a model with local Hamiltonians (Hp)per and unique limiting Gibbs
state wg it holds:

For every permutation invariant state w with central measure y, and support supp(u,) C
KC, there exists a family of locally permutation invariant selfadjoint operators (hp)per
according to Definition 2.3 such that w s the limiting Gibbs state of the locally perturbed
mean-field model (Hp + hp)pec:

w*—lim wPHaths —
Ael
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Before proving Theorem 3.1 we start with a result on the stability of limiting Gibbs states
under perturbations. The difficulty lies in the fact that the considered limiting Gibbs
states are w*-limits of the local Gibbs states, whereas the known continuity properties
of perturbed states consider either a fixed unperturbed state w or a norm convergent net
w, with limit w, e.g. [1, Theorem 5.4.4], [23, Theorem 12.3], [24, Theorem 1.9]. Here we
need a modification of a result in Proposition 3.5 of ref. [24]. In this reference the case
of a w*-convergent net of normal states on a von Neumann algebra is treated which is
perturbed by a norm convergent net of selfadjoint operators. Unfortunately the limiting
Gibbs states can only be formulated via w*-convergence on the C*-algebra A. Thus we
have to reformulate the stated convergence properties in a weakened form for the case of

C*-algebras.

Since we use the relative entropy of states on a C*-algebra we specify the following
notations (for an overview on relative entropy, see [23]):
For states wy,w; on a C*-algebra A, S(w;|w;) is the relative entropy between the unique
normal extensions of wy,ws in the universal enveloping von Neumann algebra 4** [25] (we
use the notation and choice of sign as in [1]).
For a state w on a C*-algebra A and h = h* € A, we denote by w” the state obtained from
w by perturbation with a selfadjoint element h € A. This state w” is uniquely determined
by the condition that it maximizes the functional S(A) 3 ¢ — S(o|w) — (0; h) and the
maximum is denoted by c(w, ) := S(wh|w) — (wh; k), cf. ref. [18].

Proposition 3.2 Let A be a C*-algebra with identity, (wa)aez C S(A) be a net with
w¥-lim,ezwa = w, and (ky)acz C Ase with limyer||ka|| = 0. Then it follows that
w*-lim o7 whe = w,

PROOF: The following estimation of the relative entropy is valid:

0

v

1 e — e 2 S(he |wn) = eluwasha) + (e B

>~ (wai ha) (@05 ha) 2 —2[hall

For the second inequality, see e.g. [23, Theorem 5.23]. The estimation of c(w,, ko) is
a generalization of the Peierls-Bogoliubov inequality, same reference, Chapter 12. The
w*—convergence of w”* then follows immediately. a

Proposition 3.2 gives a criterion for the robustness of a limiting Gibbs state if the
microscopically defined model is perturbed locally. We have to remark that the above
condition is not at all necessary. A nontrivial situation is given for example if the limiting
Gibbs state is an extremal state, which is invariant with respect to a given group of internal
symmetries. Then all perturbations according to the Assumption 2.3 which are invariant
under these symmetry transformations do not affect the limiting Gibbs state of the model
[15]! Now we use the above stability condition for the further analysis of the interplay
between local perturbations and limiting Gibbs states. This includes constructive as well
as pure existence results (quasi-averages):
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Proposition 3.3 (i) Let h := (hp)nec be an approzimately symmetric net of selfadjoint
operators. Then the limiting Gibbs state of the perturbed system is given by:
w¥-limpep w?Haths = (WA with B? = s-limper Mg(ha) € Mg n My and (WP
being the state arising from w® by perturbation with hP. My is the von Neumann
algebra TI5(A)" and (Mg, I, Q) is the GNS-representation of wP.

(i) Ifw= fS(B) Ry o(v) dus(p) with a positive continuous function p, satisfying ||o||, :=
fS(B) lo(¢)| dus(p) = 1, then the net of local perturbations in Theorem 3.1 can be
chosen in such a way that for oy : S(B) — R, p — op(p) := e~P®&ha) it holds:

Il - lim os = o

(For f € C(S(B),C) it is ||f]| := sup{|f(¢)| | v € S(B)}.)

(i) Ifw = fs Ry o(p) dus(p) with a positive lower semicontinuous integrable function,
satisfying ||Q||1 =1, then the net of local perturbations in Theorem 3.1 can be chosen
such that:

lim or(¢) = e(v), Ve eS(B).

PROOF: (i) The proof runs as follows: Construct with the help of Theorem 2.6 an ap-
proximately symmetric net h' with j(h) = j(h') such that w*limpe, WPHARY — (wﬁ)hﬁ
Then use Proposition 3.2 because h and A’ only differ in terms vanishing in norm for large
A. The details of the proof can be found in the one of Theorem 4.3 below, where a more
general situation is treated, including non permutation invariant perturbations.

(ii) There exists a sequence of strictly positive functions g, € C(S(B),R) with
|| - || -limp—o 0 = ¢ and consequently

" d
|- i S B POV o) o date) = (3.1)

n—e fs(s) on (@) dus(p) 5(B)
Without loss of generality, the p, can be chosen such that

[[—1n(en)]| < In(n). (3:2)

for n large enough.

For each n € IN there exists a h, € Y with e~#i(*s) = o, The approximately symmetric
nets h, satisfy limpec ||hnal|l = ||[~1/81n(pn)|| and thus there is an increasing sequence
(Nyp)new € IN with

[Bnal

IA

[-tn(ea)l + (33)

o~ P(® ihna)

IA

— On ) (3.4)

S|+
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for all A e L, |A| 2 N,.

According to (i), the limiting Gibbs states of the models locally defined by (Hj +
hna)nec exist and are given by wf := fS(B) ® onlp) dpg((p)/fS(B) on () dus(p).

Using the metric d(-,-) of the w*~topology in §(.A) ([26, Chapter 3.4, A is separable),
there exists a family of regions A, € £, n € N with |A,| > Ny, Ay € Any1, Upew An = NN,
and d (wf, wfHs+hns) < 1/2n for all A, C A € L. Now set

hp:=hna, VAeL with |[A;] <|A| < |Ans1]. (B:5)
The convergence of w?Hatha follows immediatelly.

It remains to prove limpeg ||hal| /|A] = 0 and the norm convergence of the g5. Take a
A€ £ with N, < |An| < [A] < [Ansal:

Iaall _ lhaall 1 2 1Y
AL~ Al STA ( 3 I=In(en)[| + E) , with (3.3),
1,1 1 1,1 1 .
< S(Fl-mei+) < (M + ) with (32)

— 0 for large A.

To show the convergence of g;, take an arbitrary ¢ € S(B):

|e—ﬂ(®v;hA) _ 9(90)|

IA

‘e“’(g’?;"""‘) — gn(qo)l + len(p) — o(e)]

1 ;
- + |lon — o|| with (3.4),
— 0 for large A,

IA

(iii) Any positive lower semicontinuous function p is the pointwise limit of a monotone
increasing sequence of continuous functions (g, ),en Which may be assumed to be positive
(27, §4]. Using the monotone convergence theorem, we have lim,_.. |0 — ¢all; = 0 (con-
sider g, on, n € IN as elements in L'(S(B), pg)) and lim,_« ||@x|l; = |lel|; = 1. So we can
replace g, by 0n/|@nll;, still being positive continuous functions with pointwise limit .
Then we have for wf := [ 5 ®¢ 0a(p) dus(p):

|- | Hlimw? = w.
n—oo
Just as above take a family h, := (hpa)aez of local perturbations according to (ii) to

approximate the states w? as limiting Gibbs states. Then construct the family of operators
(ha)Aec, we are looking for, from h,, n € N as in Eqgs. (3.3) — (3.5) with the help of the
metric d(-,-) in S(.A). a

In the situations described in the Propositions 3.2 and 3.3 we have a maximum of
information about the asymptotic behaviour of the constructed families of local pertur-
bations. In the general case of Theorem 3.1 this information is almost completely lost.
Before starting the proof of Theorem 3.1, we give the following



Gerisch 597

Lemma 3.4 Let w € S¥(A) and v a regular probability measure on S(A) with supp(v) C
supp(pw) =: K. Then there exists a sequence (0,)nenw of positive and normalized elements
in LYK, p,), such that

n—oo

wilim [ @ ¢ oa(p) duu(p) = f R pdv(y).
K. : K.

PROOF: Look at the C*-algebra of continuous functions C(K,,C) with the state space
M1(K,), the set of all positive normalized regular Borel measures on K,. Thus each
positive and normalized ¢ € L}(K,, u.) defines a state w® on this algebra by (w?; f) :=
Ji. f(p)elp) dpw(p). The set N := {w? | p € L}(K,, p,) positive and normalized} is a full
set of states, cf. [1, Definition 3.2.9], because we have {w?; f) > 0, Vw¢ e N = f > 0.
This follows from [28, page 231] by decomposing an arbitrary continuous f into its positive
and negative part.

Using [1, Proposition 3.2.10] it follows that A is w*—dense in the state space of C(K,,, C).
Lemma 3.4 then follows from the separability and the continuity of S(B) 3 ¢ — (Q¢p; A)
for all A e A. a

PrROOF OF THEOREM 3.1: Let p, be absolutely continuous with respect to ug, i.e. the
Radon—Nikodym derivative exists and is an element in L'(S(B), us). Using Proposition
3.3 (ii) we can construct a family of local perturbations (hj)aec such that w is the limit-
ing Gibbs state of the locally perturbed system and ||h,|| has the asymptotic behaviour
according to Definition 2.3. The proof runs exactly in the same way as in Proposition 3.3,
using the fact that the continuous functions on S(B) are ||-||,~dense in L'(S8(B), ug). We
omit this step. Finally Theorem 3.1 follows with Lemma 3.4 and the above constructions,
which serve to find the local perturbations. d

Corollary 3.5 If the support of the central measure of the limiting Gibbs state of the
unperturbed system (Hp)pec 15 equal to the set of all product states with minimal free
energy density, then for each permutation invariant state w, minimizing the free energy
density, there erists a family of local perturbations according to Definition 2.3 such that w
is the limiting Gibbs state of the locally perturbed system.

We see that a large set of limiting Gibbs states can be calculated by means of a
sub—extensive family of local perturbations not influencing the thermodynamical density
functionals. But, except for the situation of local perturbations arising from approximately
symmetric nets, there is no concrete information on the perturbations available, besides the
asymptotic behaviour of some expectation values. Especially in the case where a limiting
Gibbs state should be perturbed in such a way that the central measure becomes singular
relative to the unperturbed one, there is hardly any information on the local perturbations
accessible. Therefore, we will give another scheme to construct local perturbations leading
to limiting Gibbs states with a singular central measure. The interesting point is that this
can be done in terms of a scaling function, i.e. only the strength of a local perturbation is
varied, but each local operator itself remains the same. We will replace an approximately
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symmetric net A = (hp)pec by another family of local perturbations h' := (nphp)aec,
where np € Rt and n, tends to infinity for large regions A € £ (but k' still fulfills the
conditions of Definition 2.3).

Proposition 3.6 Let h := (hp)aec be an approzimately symmetric net such that either
j(h)|x, attains a unique minimum m in @o € Kg or the set N := {p € Kg | [j(R)](¢) = m}
fulfills pg(N) > 0. Then, there exists a net A 5 L — ny € R* such that for all € > 0:

. A
and Qgo, resp. [y ®pdus(p)/ps(N) is the limiting Gibbs state of the system (Hp +
naha)nec-

Note that this condition allows a nearly arbitrary slow growing of the ﬁerturba-
tion hs but nevertheless ||nphal| in general tends to infinity while limpec I2ahal =

limA€£ I%,ﬁ limAeC HhA” = 0.

Al T

PROOF: The main part of the proof consists of the construction of a convenient se-
quence of permutation invariant states with limit ®g resp. [, ®pdps(p)/us(N). Then
we can repeat the tricks in the construction of families of local perturbations as before.
Without loss of generality we assume that exp(—8m) = 1 and set p := exp(—Sj(h)). With

IS(B) @ v " () dus ()
Js) @"(#) ds(p)

(WP = , VneN,

it is w*—lim,_,.(w?)™ = @y resp. W*-lim, o, (W)™ = [, ®pdus()/us(N). To show
this, analyze the convergence of p"(¢)/ fxﬁ o™ (p)dpg(yp) for p € Kg. Since o(yp) <1 for all
@ € Kg it follows

/’CB 0" (p)dus(p) > /’;ﬁ " (p)dua(ep),
(/ 9”(90)61#3(90))% = |lell.

Ks

IN

||9||n+1 ) [28, Page 106]1

lim |lg|l, = llollo, [28, Page 105].

n—oo

From these estimates we obtain

lim [ o"(p)dus(p) = pa(NV)

and () "
gn 2 n—oo oo @ € p
f N)=0,
Je, @ (@)dus(e) { 0 peks\N k()



Gerisch 599

resp.

o"(v) n—soo { “ﬁ%N) peN
Jic, " (#)dus(p) 0  peks\N

Since S(B) 3 ¢ — (®y; A) is continuous for all A € A, we have to look at the convergence

of f,cﬁ f(p)o™(p)dpgs(p /flc "(p)dus(p) for continuous f € C(S(B),C). If psg(N) > 0,
the convergence lS an 1mmed1ate consequence of [28, Proposition 3.1.5] and we have

W¥—lim, oo (W)™ = [\ ®pdus(p)/us(N).

In the case of ug(N) =0 and N = {ypo}, after some elementary estimates we find that

) Jic . f(@)e™ (p)dus(ep) ) . P
limp—co fxﬁ o (@)dusly) f(po), i-e. w*-limg oo (w?)™™ = ®po.

lfyﬁ(N) > 0 .

Concerning the construction of the net (ns)sez We can repeat all estimates as previ-
ously done in the proofs of Proposition 3.3 to find the local perturbations. All estimates,
occurring there are of the form d(wP#a+"ha W) < ¢ for some state w and all A with |A]
greater than some N,, € N. Thus they remain valid, even if A become arbitrarily large. In
this way the net A — n, may be constructed such that it shows the asymptotics according
to Eq. (3.6). a

We will finish this section with a remark on lattice systems consisting of a finite number
of coupled quantum systems. Such a system may be described by using a quasi-local alge-
bra A;®---®.A,, each of the A; being the infinite tensor product of finite quantum systems
B;. Since an equivalent formulation of Theorem 2.6 is still valid for mean—field models of
such systems, all foregoing results can be obtained as well in this case. Then the local per-
turbations may be considered as Hamiltonians of the interaction between these systems.
An example of such a model is the Josephson—junction of two BCS—superconductors below
a critical temperature, see Sect. 5.

4 Local Perturbations with Quasi—Symmetric Nets

In the previous sections we discussed local perturbations (hj)aec with each hp being in-
variant with respect to all permutations of A. There, of course, each limiting Gibbs state of
a mean-field model with local Hamiltonians (Hj + hp)aec is a permutation invariant state
on the quasi-local algebra 4. We will generalize now some of the convergence properties to
the case of not necessarily permutation invariant perturbations. We will not treat in detail
the question of the calculation of arbitrary quasi—averages, but will restrict our attention
to the case, where the connection between perturbation and limiting Gibbs state can be
made explicit, i.e. we consider a generalization of Proposition 3.3 (i). The extension of ap-
proximately symmetric nets as local perturbations from the permutation invariant to the
general case is performed by the introduction of the so—called gquasi-symmetric nets [11].
This terminology is also based on the definition of a well defined asymptotic behaviour for
large regions. We show, that for each quasi-symmetric net (hj)aec the analogue to Propo-
sition 3.3 (i) is valid, i.e. the limiting Gibbs state of the model, locally perturbed with
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a quasi-symmetric net exists and is the perturbation of the original limiting Gibbs state
with the strong limit of the local perturbations. Then this state is no longer permutation
invariant.

To define the nets of local perturbations over the set £ of finite regions A we need more
structure, than given by the ordering on £ in terms of set-inclusion. Therefore a tagging
of a finite region A is introduced to mark regions where the permutation invariance is not
satisfied. From now on we regard pairs (A,AT) € £ x £ with AT ¢ A. AT is called the
tagging of A € £. Now choose a tagging on the lattice, i.e. specify forall Ae £La AT C A
in such a way that |[A7|/|A| tends to zero in the limit of large A , AT ¢ A7 for all A; C A,,
and UpecAT = IN. This tagging of the lattice is assumed to be fixed for the rest of the
section.

Now consider A; € A; € A3z € £ and define the operator jﬁ;Az : Ap, — Ap, which
symmetrizes elements of A, in A,,, but excludes the region A; from the symmetrization:

A [As\Ao! 41
JAaAz 5 |A3\A1|!Zea‘ ( . )

The sum runs over all injective mappings ¢ : Ay — Az, leaving A; pointwise invariant.
If Ay is chosen to be equal to Aj, the resulting operator is the canonical embedding of
Ap, into Ap,: Ap, 3 Ay, — jk:Az(AAz) = Ap, ® Ip\a,. If Ay = 0, an element of
Ay, € Ap, becomes completely symmetrized, i.e. jﬁa A, (Aa,) is invariant with respect to all
permutations in A3 (we see that this notation agrees with the one introduced in Definition
2.1). Finally, for a tagged set (A;,AT) € £ x £ and A; € £ with A; C A, we write

. AT
JA2A1 = JA;AI :'AAl = ‘Af\z . (4‘2)

The limit properties of the operators jj,s, for large tagged regions are the main tool for
working with quasi-symmetric nets. Let us collect the basic definitions and properties
[29, 11]:

Definition and Proposition 4.1 Let £L3> A — hy, be a net with hy € Ay for all A € L.
(i) h = (hp)aec is called Q-symmetric (h € Y(Aq)) with Q € L, if
limp,eg limsupy, . Hh/‘-z — j/?zAl(hAl)” =0.
(ii) b= (hp)aec is called quasi-symmetric (h € Y(A)) if

limp,ec imsupy, ez [|ha, = Jaon, (ha,)]| = 0.

The following criteria are valid [11, Lemma 2.3]:
h = (ha)Aec s a quasi-symmetric net iff for all € > 0 there exists a tagged set Q (depending
on €) and a go € Agq, such that

limsup ||ha — jan(ga)l| < €. (4.3)
Ael
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h is Qo-symmetric, iff for all € > 0 there exists a Q € L (depending on €) and a gq € Ag,

such that
limsup [[hs — 33(90)]| <& (4.4)

Note that Y(Aq) c Y(A), due to Proposition 2.4 in [11] and that a permutation invariant
Q-symmetric net for Q = () is an approximately symmetric net as introduced in Section 2.

In analogy to the relations for approximately symmetric nets ||k|| := limaeg ||ha]| exists
for all quasi-symmetric nets h and defines a C*-seminorm on Y(Agq), resp. Y(A). If we
equip the nets with the pointwise algebraic operations and factorize by the subspace of zero
seminorm nets, we get a C*—algebra which is isomorphic to C(S(B), A) = C(S(B),C) ® A
(the continuous functions on §(B) with values in A). The isomorphism is a generalization
of the map j from Eq. (2.2):

32 V(A) = C(S(B),A) b — [i(R)](¢) = im B, 1z (hn), Ve eS(B).  (45)

Ef\ar : Ax — Apr is defined by means of the expectation values for all o € §(Axr):
Ar3 A - (o} IEK\AT(A) ) := (0 ® (@iea\ar®); A). The map j is surjective and the limit
in Eq. (4.5) is uniform in ¢ € §(B). j is an isometry in the sense that ||h|| = limpez ||hal| =
17(R)II = sup {lIli(R)I()l | ¢ € S(B)}.

The surjective mapping j leads to the strong convergence of a quasi-symmetric net in
the partially universal representation to the folium generated by the permutation invariant
states. This is exactly the same property as the strong convergence of approximately
symmetric nets as stated in Proposition 2.2:

Proposition 4.2 For all quasi-symmetric nets (hp)pec, the limit szlién Op(hy) exists in
€

Mp and is an element of a subalgebra isomorphic to C(S(B), A). Conversely every element
of C(S(B),.A) considered as element of Mp is the strong limit of the net Ilp(hy) for some

(ha)rec € Y(A)

SKETCH OF THE PROOF: First we show the convergence of special {2-symmetric nets
ha. Let Ag € £ with AgnQ = @ and A 2 Qu Ag. Then define hy := ji g, (Ao ® ya,) =
Ag ® jﬂ\g K (yA,). This means, that h, is separated into the tagged part Ag € Ag and a

symmetric net jg\ﬂ A, (UAs) 0N ®jenor Bi; thus it is convergent (use Prop. 2.2).

An arbitrary Q2-symmetric net can be approximated by nets (jjt“nqu (YauAo ) aec With
fixed youp, € Aqua, up to an arbitrarily small norm difference in the limit of large A,
comp. Eq. (4.4). Using this fact and [11, Theorem 2.5 (ii)], the convergence of an arbitrary
Q-symmetric net is proved. The limit is an element of a subalgebra of M p, isomorphic to
C(S(B), Aq). The convergence of a quasi-symmetric net in C(S(B),.A) finally results from
Eq. (4.3). a



602 Gerisch

Now we can generalize Proposition 3.3 (i) to local perturbations, which no longer have
to be permutation invariant. The limiting Gibbs state of the locally perturbed mean-
field model is expressed in terms of the perturbation of the limiting Gibbs state of the
unperturbed model by the strong limit of the local perturbations:

Theorem 4.3 Let (Hp)pec be the local Hamiltonians of an unperturbed mean—field model
according to the Assumption 2.5 and let h = (hp)aec be a quasi-symmetric net with
han = h}, YA € L. Then there is an unique limiting Gibbs state of the model with lo-
cal Hamiltonians (Hp + ha)aec, given by

. 8
w*-lim wPHrAthA = (LHP)P"
AeLl

with h? = s—limpep Hﬁ(hA) € Mg.

PROOF: The idea of the proof is, to construct some k' € Y(A) with j(k') = j(h) and
w*-limper wPEA+) = (wP)*. Then, the w*—convergence of wPHa+hs follows from Propo-
sition 3.2. The construction of A’ runs stepwise, by considering perturbations h € Y(Aq),
a special subset of 5}(.,49), then turning towards arbitrary elements in 5(./49) and finally -
reaching J(A).

(i) Let © € £. Y(Aq) is defined to be the set of all h € Y(Aq) for which a A, € £,
Q c Ay exists with:
1.) ha = jia,(9a,) for some gp, € Ay, and all A 2 A,.
2.) If A e £ with |Ao| < |A| and Ay € A, then hy shall satisfy hy = jRG(AO)ea(ng) with an
permutation o € P(A U Ag) with o(Ag) C A.

The second condition in the definition of Y(Agq) is only of technical relevance. The
character of nets h € Y(Aq) can be found in the following example: For @ c Ay C
A, hyp is the linear combination of j,‘fAO(AQ ® ga,\e) With Ag € Ag and gan\a € Aag\e-
With j (Ae ® ga\a) = Ae ® jg\n Ao\ (9ho\@) We see that these nets are the analogue to
symmetric nets in the permutation invariant case.

Obviously for each element h € Y(Agq), there exists a net (h))aec, each hj being the
same polynomial in mean—field operators my(z) and elements of Ag, with

. i e
lim [|hy — B | = 0.
Application of Theorem 2.6 and Proposition 3.2 for h € Y(Aq) gives:

wH-lim wPIA+hs = (WP = w*lim WPHATRL (4.6)
AeL AeLl

(ii) With Eq. (4.4) in Proposition 4.1 it follows that for all h € Y(Aq) and all € > 0,
there is a g € Y(Agq) and Aj € £ such that

”hA_gA” <e, forall ADAy.
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Now, let h be an arbitrary element in y(Ag) Then there exists a sequence (An)nen C

Y(Aq), such that
1

I3(h) = i(ha)l < =, (4.7)
ie. ||+ ||-limpooo j(hn) = j(h) and || - || -lim,—o A = AP with the strong limits h®, h? in
Mp. From [24, Theorem 1.1] it follows that || - || —hmn%m(wﬁ)"" = (w?)**. By the help

of the techniques as used in the proof of Theorem 3.3, one can construct now a net h' €
y(Ag) with the required convergence properties, i.e. j(h) = j(h') and w*-limpe, wPHa+ks =
w¥*-limpep wPHrAtha = (WP)hs

(iii) Since all elements j(h) € C(S(B),.A), h € Y(A) are approximated uniformly by
j(hn), each h, € Y(Ay4,) for some A, € L, the steps in (ii) can be repeated with replacing
elements in Y(Agq) by elements in Y(Ax,) for variable A, € £ (they can be chosen increas-
ingly). Again a new family of local perturbations A’ = (hj)aec is constructed as above
The model, locally perturbed with (k) )ae. leads to the unique hmltlng Gibbs state (w? )
After having proved the quasi-symmetry of A’ and j(h) = j(h'), the w*—convergence of the
local Gibbs states w?#a+ha follows with Proposition 3.2 . O

5 Applications

5.1 The Inhomogeneous BCS—Model

Using the above introduced methods, it is possible to treat a certain kind of inhomogeneous
BCS-model with local Hamiltonians

KA = 2 Ek (CZTCICT + C*—klc_kl) | | Z Gkk' ckTC_.le_kllck,T § (5‘1)
keA kk'eA

where the summation runs over a region in momentum space near the Fermi—surface and
ci, is the creation operator of the corresponding Bloch wave function. There exists a
variety of results on the thermodynamical properties of this model, which determine for
suitable chosen parameters ¢;, grw a phase transition at some critical inverse temperature
B: [30, 31]. But in contrast to the homogeneous strong coupling situation with ¢, = ¢ and
grw = g > 0 [32, 33] the limiting Gibbs state is not calculated explicitly.

The Hamiltonians in Eq. (5.1) can be transformed into our frame by averaging e, resp.
gri over the lattice, i.e.

|
g = ileC‘A|2ZQkk’>0 and E—kgzlmgek'

Making explicit the Jordan—-Wigner-representation of the CAR-algebra on the lattice IN
with B = Mj(C), resp. B = My(C) if we combine electrons with opposite momenta and
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spin, we find that the model with the averaged Hamiltonian
Hy = Zs (CZTCkT + Ciklc—kl) | | Z gckTC k| C—k'|CkiT
keA kk'€A

satisfies the condition in our Assumption 2.5, i.e. is a mean—field model with a unique
limiting Gibbs state w?, which is given below the critical temperature by

F o f PE
[0,27] 2 om’

with the permutation invariant product states wg on A. The density matrix g3 of its local

restriction to A, becomes
exp{ - B ( 55 (ckrert + clyycort) = Z( e ciiclyy +eVcrar) ) }
€

keA
tr(exp{ —8( g (ckrcrt + €y k) — Z (e7cietyy +eferiarr) ) })
€ keA

QK = ] (5'2)

where A is the positive solution of the well known gap equation.
The inhomogeneities will be specified by the requirement of quasi-symmetry of the net
A —_—F hA = Z(E;k = E) (CkTCkT + C klc—kl z k' — CkTC*_le_lekT . (5.3)
keA k k'eA

This includes especially hp with
R = s-lim IT5(ha)

= (lim kzg(ek — &)TLg(chyeat + cLyyo-nt) )
€

S (g Doomen) «he ).

In general dg; are complex numbers, since we have not demanded that gy € R. By
use of Theorem 4.3 we calculate the limiting Gibbs state of the inhomogeneous model
as perturbation of the homogeneous limiting Gibbs state w? with A?. Evaluation of the
perturbational expansion gives for the density matrix of the restriction of (w?)" to As

‘ﬁ( E €k (C;TCkT"'C‘_le—kL)“ E Ag(e™"?% C;;TC*_H'*'CW"‘ C—lekT))
9 e
or = - ,. 5.4
A ( Esk (c“ckT-i'-c_klc kL) E Ag(e 'ﬂkcch K te gkc_klcn)) L ( )

tr(e )

=9 + arg(dgr)-

with A = ’1 + &

This way of determining a limiting Gibbs state is remarkable due to the following point:
The representation Il induced by the homogeneous model fixes the collective features, such
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as symmetry breaking resp. condensed particles in the macroscopical system, whereas
the microscopical details of the model are incorporated via perturbation theory in this
representation. Such a state is the key to discuss macroscopical (classical) effects against
the background of nontrivial microscopical features of the model. The corresponding
KMS-automorphsim group is accessible and via unitary implementation the spectrum and
eigenstates of the corresponding generator can be discussed as quasiparticle excitations.
The detailed analysis of these questions is in preparation [34].

5.2 Josephson—Junctions

The calculation of the limiting Gibbs state of weakly coupled superconductors allows to
determine a representation and an interaction of two superconductors, where the Josephson
relations for tunneling current and the phase difference become operator valued expressions
in the center of the corresponding von Neumann algebra [35]. If the tunneling interaction
of the finite system is determined by the Hamiltonian

g
hai= i 2 (Chiclnickitht + Cohithrch i)
ki€l ka€lo

(A = (A1, Az), with finite regions A;, A, in the momentum spaces of the two superconduc-
tors) and the single superconductors are described as in the above example, we find for
the limiting Gibbs state of the coupled system:

Ay A
wﬁ = / wwe_f_zﬂg-’?f?zz‘ cos(d9) dod :
[0,27) 2

with the normalization e~¢ and
dd
Wey = f w,lg ® UJ,29+5,9 '2— € S(A1 ® Ag) :
[0,27] m

w}, w3 are states as in Eqs. (5.2), resp. (5.4) for the two sides of the junction. The deriva-
tion of the Josephson relations principally requires the variability of the phase difference
69 between the two superconductors, which is guaranteed in this representation. But if we
consider the special internal symmetries of such a model (i.e. the invariance under simul-
taneous gauge transformations in the two subsystems, comp. [15]) it is possible to find the
analogue result as in Proposition 3.6 to approximate the state w,, i.e. 8% = 7 as limiting
Gibbs state, i.e. there exists a net A — ny with limy_nxn m =0 foralle >0 and w,
is the limiting Gibbs state of the model with local tunneling interaction nphy. Obviously
in the corresponding representation the free variability of the phase difference is lost and
the Josephson current is destroyed. This demonstrates the very sensitive reaction of the
effect on the microscopical properties of the finite systems and suggests that for another
ansatz of the interaction a completely different treatment and physical interpretation is
necessary. Such effects have been discussed up to now only in the case of an extensive
tunneling interaction [36].
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5.3 A Remark on Relative Hamiltonians

Within the frame of the Tomita—Takesaki theory and perturbation theory it can be shown
that under certain conditions for two given normal states w;, w; on a von Neumann algebra
M there exists a selfadjoint element h € M, such that w? = w,, where w’ is the state arising
from w; by perturbation with h in terms of the perturbation series [17]. The operator h is
called a relative Hamiltonian. The main criterion for the (normal, faithful) states w;, w;
is that there exist 0 < l; < I; such that ljw; > wy > lhwy. Having in mind a situation as in
Section 3 with permutation invariant states, this requires supp(p.,) = supp(fw,), which
in general is not fulfilled.

To find relative Hamiltonians for a more general class of states, there exists a general-
ization of this concept, using perturbations with so—called extended-valued lower—bounded
operators affiliated with M [18], see also [23]. These are affine, weakly lower semicontinu-
ous functionals on the normal states M}! of M which can formally be written as h,+ocoP,
where P is a projection in M and h, is a lower bounded, selfadjoint operator affiliated
with M. The perturbation of a state w with such an extended—valued lower-bounded
operator h affiliated with M is defined in terms of a variational principle [18, Theorem
3.1]: If w € M}, his an extended—valued lower-bounded operator affiliated with M, and
there exists a state o € M}! with S(o|w) — k(o) > —oo, then there exists a unique state
wh € M1 which maximizes the functional 0 — S(o|w) — k(o) (we assume 3 = 1 and S
denotes as in Sec. 3 the relative entropy). This state coincides (up to the choice of sign)
with the one defined in terms of perturbation theory, if h is defined by h(o) := (o; h') with
some selfadjoint A’ € M. Moreover in [18] it is shown that for two normal states w;,w;
with a ¢ € R and cw; > wy, there exists an extended—valued lower-bounded operator h
affiliated with M, such that w} = wy and S(o|w;) — h(c) = S(o|ws) for all ¢ € M.

It should be remarked that the use of extended—valued lower—bounded operators affil-
1ated with a von Neumann algebra in the theory of quantum lattice mean—field systems
is also possible on the microscopical level, i.e. one can work with such affine functionals
as local Hamiltonians, see [37]. Again, this leads to a variational principle for limiting
Gibbs states like the one, given in Proposition 2.4 (the contiuous function j(( %T )aee) for
the internal energy density is then replaced by a lower semicontiuous one). Although this
leads to a rather large class of models with a rich reservoir of possible phase structures
in the thermodynamic equilibrium, it still remains an unsolved problem to determine the
limiting Gibbs state. Therefore we will not follow these ideas, but will have a look on the
concept of such kinds of relative Hamiltonians as perturbations on the macroscopical level,
i.e. as operators affiliated with My in the representation of some unperturbed limiting
Gibbs state w?:

We have seen in Proposition 3.3 (i) that the system, locally perturbed with an ap-
proximately symmetric net h € ﬁ, possesses the limiting Gibbs state (w” )hﬁ, with 8 =
s—limpes IIg(hy). Moreover, the strong limit of the local perturbations is exactly the rela-
tive Hamiltonian in Mg (up to an additive constant for normalization).
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For w = fS(B) Qv o(p) dus(p) € ST(A) with a positive normalized p € C(S(B),R), in
general there exists no relative Hamiltonian h € My such that (w?)* = w, but it is an
easy calculation to find an extended-valued lower-bounded operator h, affiliated with Mg
and (w”)* = w. In Proposition 3.3 (ii) there was constructed a net of local perturbations
(ha)Aec such that w is the limiting Gibbs state of the locally perturbed system. We have
seen that the norm of the h, tends to infinity for large regions A. This net (hj)aes can be
chosen in a way such that it approximates the extended-valued lower-bounded operator
h with (w?)* = w. It can be shown that there exists a net (hp)aer of local perturbations
with the same properties as the one in Proposition 3.3 (ii), but additionally for all ¢ > 0:

1 [®

s.res.—lim [Ig(hp) P = R, P. = —= In(o(¢))xm. (0) 1, dus(p), (5.5)
AeL ¢ S(B)

with M, := {p € Kg | o(¢) > €}, P. := fse?B) xum.(¢)1, dug(p), and the characteristic
function xu,.

We will omit the proof, because we stated this result only to demonstrate the close
connection between the local perturbations of a limiting Gibbs state w” and perturbations

performed with extended—valued lower—bounded operators, affiliated with the center Zg
of IT5(A)".
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