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Local Perturbations and Limiting Gibbs States
of Quantum Lattice Mean-Field Systems

By Thomas Gerisch
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D-72076 Tübingen, FRG
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Abstract: In the frame of operator algebraic quantum statistical mechanics, the limiting Gibbs states
for quantum lattice mean-field systems under the influence of weak perturbations are analyzed.
For a certain model class it is proved that all homogeneous states which minimize the functional
of the free energy density, can be calculated as the thermodynamic limit of perturbed local Gibbs
states. For uniformly bounded nets of (not necessarily homogeneous) local perturbations with a well
defined asymptotical behaviour in the thermodynamic limit (approximately symmetric, resp. quasi-
symmetric nets) the existence of a unique limiting Gibbs state is proved for the considered model
class. An inhomogeneous BCS-model and the Josephson junction of coupled superconductors
are examples for the applicability of the results. Finally, the relation of the considered local

perturbations to extended-valued lower-bounded operators affiliated with a von Neumann algebra
as relative Hamiltonians of two normal states is discussed.

1 Introduction

We analyze the set of equilibrium states for a class of quantum lattice mean-field models.
The lattice is assumed to consist of finite quantum systems on each site of the lattice with
the matrix algebra B of observables. A model can be characterized in terms of all local
Hamiltonians H\, which are assumed to be in the algebra Ak := ®ìsaB of observables of a

finite region A of the lattice. The treatment of the model requires the analysis of the non-
equilibrium dynamics, equilibrium states or thermodynamical functionals of the infinitely
extended macroscopic system by calculating the thermodynamic limit. Often it is necessary
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to choose a certain state which represents the preparation of the system. In an equilibrium
situation this can be a certain KMS-state [1, 2]. But in general there exist a lot of KMS-
states, especially if there is a phase transition. Therefore one needs additional criteria for
a certain choice. Here, the limiting Gibbs states, i.e. the limits of the Gibbs states of the
local subsystems, play an important role. They take into account all microscopical aspects
of the model in the thermodynamic limit and represent its quantum statistical features as

an optimal approximation of all finite size properties, e.g. its symmetries.

For a certain class of mean-field models we will discuss exemplary some methods to
determine limiting Gibbs states, resp. their properties. Let us consider the so-called
polynomial mean-field models with local Hamiltonian densities H\/\A\, being the same
polynomial in mean-field operators (i.e. averages of an element in B over the region A) for each

region A. The existence of the thermodynamical density functionals for internal energy,
entropy and free energy were proved, and a minimum principle of the free energy density
for limiting Gibbs states was established [3, 4, 5]. This induces a selfconsistency-condition
for pure phase states (factor states) in the support of the central measure of the limiting
Gibbs state. If a system is prepared in a state, its central decomposition determines the
classical distribution of pure phases that may be present in an experimental situation.
Concerning the dynamical aspects in the thermodynamic limit, there appear difficulties,
because the algebra of the lattice system is not invariant under a limiting dynamics. Therefore,

an enlargement of the algebra is required [6, 7]. This has been worked out in refs.
[8, 9, 10, 11]. Finally, the KMS-condition for equilibrium states of the limiting dynamics
has been proved and the extremal KMS-states have been identified as all solutions of the
selfconsistency equations mentioned above [12].

Besides the question whether there exists a unique limiting Gibbs state at all, it turns
out that such states show a very sensitive dependence on what we call here a local
perturbation: Adding to the local Hamiltonians H& a "small" perturbation h^ for each finite
region A, the limiting Gibbs state may change drastically ("small" means that the density
H^aII /|A| tends to zero for large regions A). Such perturbations are of real physical significance,

e.g. as interaction between weakly coupled superconductors in a Josephson junction,
inhomogeneities of the interaction on a lattice or boundary effects after symmetrization
of short range interactions. Since the limiting Gibbs states of the unperturbed and the
perturbed mean-field models both minimize the same functional of the free energy density
[5], the sole analysis of this variational principle generally is a too rough a method to find
such states. Thus it can only be applied in some special situations; for a counterexample
see ref. [13]. This is our motivation to look in more detail on the quantum statistical
properties of such models arising in the thermodynamic limit.

There are two ways to attack the arising problems: at first one can refine the method
of calculating quasi-averages, originally developed to identify symmetry breaking in the
case of phase transitions [14]. In our setting for two given states, resp. distributions of
pure phase states, one analyzes local perturbations which allow to go over from one state
to the other in the thermodynamic limit. First steps in this direction have been performed
in refs. [5, 15] where pure phase states, resp. extremal states with a given symmetry are
constructed as limiting Gibbs states. This aspect touches the fundamental question of
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the richness of classical structures that are accessible in terms of a microscopical defined
model. In sharp contrast to this procedure there is the necessity to calculate the limiting
Gibbs state if a perturbation is given explicitly by physical reasons. The only available
result for our model class can be found in ref. [16], where the given local perturbations
lead to states with strictly positive Radon-Nikodym derivative of the central measures
of the unperturbed and the perturbed state. Here we will use the two points of view
simultaneously to generalize the results of the above stated references and find criteria
such that each homogeneous state, satisfying the variational principle of the free energy
density is a limiting Gibbs state of a locally perturbed model. Especially, this means that
all KMS-states with minimal free energy density can be calculated as limiting Gibbs states
of these perturbed models.

In Sec. 2 we introduce the quasi-local algebra A of a quantum lattice system and the
relevant part of its state space <S(-4) for mean-field systems, the so-called homogeneous or
permutation invariant states SP(A). Then we define the model class, specify what we call
a "local perturbation", and refer the most important results on limiting Gibbs states. As
far as possible, the terminology of (approximately-)symmetric nets is used [5, 11], comp.
Definitions 2.1, 2.3.

In Sec. 3 the main results on local perturbations of mean-field systems are worked
out. The permutation invariant limiting Gibbs states are discussed in terms of their
central measures. We construct local perturbations in such a way that a given permutation
invariant state with minimal free energy density is the limiting Gibbs state of the locally
perturbed model (Theorem 3.1). The local perturbation can be specified to show a well
defined asymptotic behaviour for large local regions (Proposition 3.3). Moreover this
includes a constructive result that allows to infer the corresponding limiting Gibbs state
from the local perturbations. Finally a sufficient condition for the stability of the limiting
Gibbs state under local perturbations is given (Proposition 3.2).

The constructive results in Sec. 3 may also be formulated for perturbations which
are not locally permutation invariant. In order to do this, in Sec. 4 the notion of quasi-
symmetric nets [11] is introduced, and the limiting Gibbs state of an inhomogeneous mean-
field system locally perturbed with a quasi-symmetric net is determined.

In Sec. 5 some applications of the foregoing results are presented. We calculate the
limiting Gibbs state of an inhomogeneous BCS-model with a nontrivial momentum
dependence of its kinetic energies and coupling constants. Furthermore, the influence of a

scaling function for the interaction in a Josephson junction of weakly coupled superconductors

is now discussed in the thermodynamic limit. We close with some remarks on the
connection between local perturbations and relative Hamiltonians [17]. In our context it is

necessary to use the so-called extended-valued lower-bounded operators affiliated with a

von Neumann algebra [18]. They are affine, weakly lower semicontinuous (possibly infinite)
functionals on the normal states of a von Neumann algebra, which generalize the concept
of a relative Hamiltonian. In the case of permutation invariant states it is demonstrated
that their finite part can be approximated in the sense of strong resolvent convergence by
the local perturbations.
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2 Algebraic Framework, the Model Class and Prelim¬
inary Results

As quasi-local algebra of the quantum lattice system we choose the C*-algebra

A := <g)#i with Bi =i B 2 M„(C) ,Vi 6 IN,

with some fixed n G IN. The quasi-local structure of A is defined as follows: Let C :=
{A c IN | |A| < oo} be the family of all finite subsets in IN, and |A| denotes the cardinality
of such a local region A C IN. Consider each algebra Aa '¦= ®;eA#; as C*-subalgebra of A,
embedded into A by Aa 9 Aa —? Aa ® 1n\a e A.

The states S(A) of A are the positive and normalized linear functionals on A. Since

we are interested in the so-called mean-field models, it is appropriate to consider only the
set of permutation invariant (homogeneous) states SP(A), defined by

SP(A) {w 6 S(A) | u o e„ u ,V<7 6 V)

Here we use the following notation: V(A) is the set of all permutations of A, i.e. the set of
all bijections a on IN with o(i) i, Vi tf A, V := Uae£^>(-^) an^ for c G 7> we denote by
Q„ the automorphism, satisfying 0CT(<8>;e]N£;) " ®imxo(ï) f°r elements ®ì^h^ì e A. We see

that the usage of the special lattice IN is adequate for our purposes since the permutation
invariant states ignore any further lattice structure.

The set of permutation invariant states has the following well known properties [19]:

SP(A) is a Bauer-simplex with respect to the weak topology on S(A) with extremal
boundary

deSp(A) {®<p\ipeS(B)} (2.1)

where ®ip is the product state on A, defined by linear continuation of (®ip ; ®,eiN^i)
n;eiN (<P ', %i), V ®ìen £» G A. The extremal decomposition of w G SP(A) into elements of
deSp(A) coincides with the central decomposition of ui in SP(A), i.e. a decomposition into
factor states (pure phases). The central measure is denoted by pu; due to the parameterization

of deSp(A) by states in S(B) (2.1), we regard uu as a measure on S(B) and write
W /s(B)®'r,<Wp)-

Now let us have a look at the algebra of observables A and the definition of the model
class. The restriction to permutation invariant states as made above is closely related to
the definition of mean-field models on A by means of local Hamiltonians. We will use here
the notion of (approximately) symmetric nets, introduced in ref. [5] (comp. Definition 4.1,
where further extensions of this definition are given):

Definition 2.1 ((Approximately) Symmetric Nets) Let fì,A g C with Q, ç A and

¦?Afi := Äm S Qg> where the summation runs over all infective maps a : ÇI t—» A

(especially j\K is the symmetrization operator in Aa)-
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Let x := (xa)aìC be a family of local operators with xa G Aa and xa Jaax^ for a"
A G C. xa and xa1 satisfy Q„xa xa1 for A, A' G £ with |A| |A'| and Ver e V with
oA A', x is called

(i) a symmetric net (x G y), if there exists a k G IN, such that for all A G C with |A| > k,
there is an Çl G C, fiç A with |fi| fc and xa Jaîî3^-

(ii) an approximately symmetric net (x G y), if for all e > 0, there exists ay ^y and a

nel, such that for all A g C with |A| > n it holds: \\xa — 2/a|| ^ £•

In ref. [5] the algebraical structure of y and y is elaborated. Especially, they are vector
spaces and ||x|| := limAe£ ||&a|| (hmAe£ denotes the limit of a net with index set C) defines

a seminorm on y. The function

j : y -+ c(S(B), C), x —, [?'(*) := Mm (®p ; *A), V^ g 5(B) (2.2)
Ae£

maps y isometrically onto C(S(B),<C), the continuous functions on S(B). The seminorm
defines an equivalence relation on y and the corresponding quotient space is isomorphic
to£(5(B),C).

The set of symmetric nets can also be characterized in terms of this map j. An element

x e y equals a polynomial Q in the mean-field operators m,A(e) := 1/|A| $^ieA e ® ^A\{i} £

Aa, e g B up to a term vanishing in norm for large A. If we choose the arguments of the
polynomial as mean-field operators corresponding to elements of a fixed basis ci,..., en2 of
B, the coefficients of Q are uniquely determined and q — (Q(m.A(e\),..., mA(enz-i)))Aec
defines an approximately symmetric net with j(q) j(x), being a polynomial in C(S(B), C).

Proposition 2.2 Let h (/ia)as£ be an approximately symmetric net. Denote by Tip
the partially universal representation of A corresponding to the folium1 Tp of permutation
invariant states in the Hilbert space Hp := ffiuefpWu ("(WuiILifl«) denoting the GNS-
representation to a state u;). The limit s-limAe£ Ylp(hA) exists in B(Hp). Moreover there
is a subalgebra of Mp := Tip(A)" which is isomorphic to C(S(B),G) ®np(.4). Its center
C(S(B), C) <2£) 1 is isomorphic to a subalgebra of the center Zp :— Mp n AAP in AAp. Then
we have

s-lim Up(hA) K j(h) <g> 1 g C(S(B), C) <g) Up(A),
Ae£

i.e. S-limAe£Hp(/lA) e -Zp-

PROOF: Concerning the isomorphisms between the various subalgebras ot Mp we refer to
refs. [9] and [10]. The strong convergence s-liniAe£ Hp(raA(x)) =: mp(x) G Zp for x G B is

well known and thus the strong convergence of all polynomials in m,A(x) follows (they are

*A folium T of a C*-algebra A is a norm-closed, convex subset of the state space S(A) of A, such that
w e T implies uB e .F, where {wB ; (w ; B*. B> / (w ; 5*5), for each B«i with (p ; 5*5) ^ 0 (i.e. .F
is closed under perturbations from .4) [20].
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uniformly norm bounded). It is easy to see that a symmetric net differs from a polynomial
in mean-field operators only up to a part with norm limit zero. Thus we have the strong
convergence of symmetric nets with the same limit as the one of the associated polynomials
in the mean-field operators.

According to isomorphy we regard j(h) G C(S(B), C) as an element of Zp and calculate
for arbitrary £ G Tip:

II(iMäa) - m) eil < IIOM/iA - pa)) eil + IKiMoO - m) en,

with a symmetric net g (<7a)ag,C) satisfying \\h\ — g\\\ < £ for large A. j is an isometry
and thus we have \\j(g) — j(h)\\ < s. Consequently:

||(iMftA)-j(ft)K||
< \\TLP(hA - 9a)(\\ + ||(Hp(ffA) - j(g)) e|| + \\(j(g) - j(h)) t\\
< iiÄA - pah lien + ikimoo - m) £ii + \\j(g) - mn mn

< 2eU\\ + \\(Up(gA)-j(g))î\\.

Using the strong convergence of a symmetric net, Proposition 2.2 is proved.

Definition 2.3 (The Model Class) The model class is specified by families (i?A+/iA)Ae£
of locally permutation invariant selfadjoint operators Ha, hA G Aa, VA G C with

(i) j^V )Ae£ is a polynomial in mean-field operators.

(ii) ^ )Ae£ is a net with limAe£ ||fcA|| /lAl °-

The operators Ha, resp. ì/a + ^a are considered as the Hamiltonians, defining the dynamics
of the unperturbed, resp. the perturbed mean-field model in the local region A of the lattice.

The part (/ia)Ae£ in the Hamiltonians is a non-extensive (but in general unbounded
in the limit of large regions A) perturbation of the mean-field model, locally defined
by (Ha)aç£, and we will study the limiting Gibbs state under the influence of these
local perturbations (A.a)ae£- A limiting Gibbs states of a mean-field model (Ha + /ia)Aé£
(according to Definition 2.3) at inverse temperature ß > 0 is a «/-accumulation
point of the net (ußHA+h*)AeC C S (A), with the local Gibbs states (wPH*+h* ; A) :=
r (exp(-ß(HA + hA))A) /r(exp(-ß(HA + hA))), VA 6 i. r is the trace state on A. A
necessary condition for a permutation invariant state to be a limiting Gibbs states is given
by a variational principle for the free energy density functional on permutation invariant
states [5] (concerning the thermodynamical density functionals, comp. [4]):

Proposition 2.4 (Limiting Gibbs States) Each limiting Gibbs state a/3 at ß > 0 of
a model according to Definition 2.3 is an element of SP(A) and a minimizer of the free



Gerisch 591

energy density functional, defined on SP(A) by

«vi *<— w.-) - lm («( n^r ),jm - >>) **>
¦ /„("<( w)«,Krt-rft")*'w'

with the entropy of a state in S(B), given by S(B) 3 tp —> s(ip) := —tr(gvln(gv)). Here gv
is the density matrix which represents the state <p as element in Mn(<D).

In some situations the variational principle allows to calculate the limiting Gibbs state
of a given mean-field model. But if there occurs a phase transition a lot of permutation
invariant states minimizing the free energy density are possible and one needs further
information to find the unique limiting Gibbs state (if it exists at all). In general only the
detailed analysis of the symmetries of the model allows to determine this state. Especially
if there is an internal symmetry group and the set of all pure phases minimizing the free

energy density consists of exactly one orbit to the internal symmetry, the limiting state is

uniquely determined; for an example see e.g. [13]. In order to develop a general theory of
limiting Gibbs states for quantum lattice mean-field models according to Definition 2.3, we
need an additional assumption on the limiting Gibbs state of the unperturbed mean-field
model with local Hamiltonians (Ha)açC-

General Assumption 2.5 Use the notation of Definition 2.3. Throughout this paper
assume that the unperturbed mean-field model with local Hamiltonians (Ha)aec possesses
an unique limiting Gibbs state u>ß at inverse temperature ß > 0 with central measure pß
and support Kß supp(^).

Finally we state a fundamental result on local perturbations and limiting Gibbs states
[16].

Theorem 2.6 Let (Ha)azC be the local Hamiltonians of an unperturbed mean-field
model according to 2.3 and 2.5. If ha is a polynomial in the mean-field operators
mA(ei),..., m,A(ek) to a fixed basis {ej,..., e^} of B and in the elements of Aq for some
Q, g C, we have

w*-limc/*A+',A (^)fe''.
Ae£ v '

h" G Mß Hß(A)" is the limit of hA in the strong topology induced by the Hilbert space

Hß of the GNS-representation (Hß,Tlß,Qß) of u/3. (w/3)fc is the perturbation of uß with
h13 in terms of perturbation theory for KMS-states on the von Neumann algebra Mß, i.e.

(K)^ ; Aj is given for all A € A by U^)hß ; a\ /a/ ; AT$\ / Uß ; T$), with
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riß := i72n=o(-1)n So dsn ¦ ¦ ¦ /o2 dsirp(hß).. .t£'"(/i"), where r\ is the limiting KMS-
dynamics [21]. If hß e Zß Mß <~\Mß, the perturbed limiting Gibbs state is given by

V ; ' / (wß ; e-P») Js{B)e-WWlMdpß(ip)

PROOF: This Theorem was proved in [16, Theorem 2.3] for Ha |A|QA, with a quadratic
polynomial Qa in mean-field operators. Therefore, we have to consider here the generalization

to arbitrary polynomials. Since all techniques used in ref. [16] remain unchanged,
we only sketch the main steps of the proof.

The limiting dynamics for the unperturbed model, i.e. the strong limit

s-Umn^(rA(A)) s-lim n^e^Me^)) r*,(Tl0(A)) G Mp

exists for all t G R, A G A and Tß is a cr-weak-contiuous VT'-automorphism group of Mß.
This is established directly by following the argumentation in [8], [21], where the case of a

quadratic polynomial Qa in the mean-field operators is treated, in combination with [9].
Another way to determine the limiting dynamics is to use the techniques as performed in
ref. [11] by working in the context of mean-field dynamical semigroups and application of
Theorem 4.2 below. Since upH*- is a /3-KMS-state for the dynamics rA one can calculate
the /3-KMS-condition for uj13 as state on Mß and the dynamics r13.

The essential part of the proof is now to show for all A G Ao \JAe£ Aa

Hm (c/^ ; A) lim (^ ; AI%\) (c/ ; AY%) (yf ; a) (2.3)

with
°° rß f»2

r& := E(-1)n / ds- • • / <^r(M .r*-(fcA). (2.4)
„=n -A) JO

This follows from:

(i) For all n G IN, z G Vnß {z G C" | ß > Im(zn) > • • • > Im(zi) > 0}, and A G A we
have

hm (c/ ; At? (hA) ¦ ¦ ¦ rA» (fcA)> (J> ; Arf (h?) - - ¦ t? (hß))

(Uß\nß(A)rf(hß)-..r^(hß)Üß).

These limits are obtained from the expansion

(-iz)n
Ti((hA) ^y-^rL[HA,l--[HA,hA}---]}

*—i n\
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for z G Vç {z G C™ | \Z{\ < 1/C for i 1,..., n}. C > 0 is a constant appearing
in the following estimation of the n-fold commutators

\\[HA,[---[HA,hA]---}}\\<Mn[Cn, (2.5)

for all A g £ and some constants M, C > 0, see e.g. [9, Lemma 3.2], resp. [22, Chapter
6.2]. For z e Vp the result is estalished with the help of the identity Theorem of
holomorphic functions.

(ii) The limits in Eq. (2.3) resp. the summation and integration in Eq. (2.4) can be

interchanged due to

I / dsn ¦ ¦ ¦ H dsx (J"**- ; At^ (hA) ¦ ¦ ¦ rAs» (hA))
I < \\A\

1 Jo Jo '

and the uniform convergence of (wßHf- ; At'^^a) ¦ ¦ -^"(^a)}-

(ßM)n

3 Local Perturbations and Limiting Gibbs States

After having established the general frame of our model class, we formulate the main
result. All possible permutation invariant limiting Gibbs states w G SP(A) will be discussed
in terms of their central measures p^. As a reference, the limiting Gibbs state uß of the
unperturbed model (comp. Assumption 2.5), resp. its central measure pß with support Kß,
are used. The analysis is done by constructing local perturbations according to Definition
2.3 such that a given permutation invariant state u> becomes a limiting Gibbs state (Theorem

3.1). This is an extreme generalization of the method of calculating the so-called
quasi-averages, because it allows to find pure phase states as well as classical statistical
mixtures of them as limiting Gibbs states. The proof is divided into several steps. In
certain cases one finds that it is possible to obtain constructive results, i.e. to conclude
from the local structure of the model to the limiting Gibbs state. This variation in the
point of view allows to determine in Proposition 3.2 the stability of such states under local
perturbations. In Proposition 3.3 (i) the limiting Gibbs state is calculated explicitly for
approximately symmetric nets as local perturbations (comp, also Sec. 4 for a generalization
to the case where the perturbations are no longer permutation invariant). These results
are used for the rest of the section to construct more and more general perturbations with
uniquely determined limiting Gibbs state until Theorem 3.1 is proved.

Theorem 3.1 Given a model with local Hamiltonians (Ha)aìC ond unique limiting Gibbs
state Wß it holds:
For every permutation invariant state w with central measure pu and support supp(^w) ç
Kß, there exists a family of locally permutation invariant selfadjoint operators (/iA)A6£

according to Definition 2.3 such that u) is the limiting Gibbs state of the locally perturbed
mean-field model (Ha + /iA)Ae£-

w*-limu^A+',A w.
A.É.C



594 Gerisch

Before proving Theorem 3.1 we start with a result on the stability of limiting Gibbs states
under perturbations. The difficulty lies in the fact that the considered limiting Gibbs
states are «/-limits of the local Gibbs states, whereas the known continuity properties
of perturbed states consider either a fixed unperturbed state w or a norm convergent net
ua with limit u, e.g. [1, Theorem 5.4.4], [23, Theorem 12.3], [24, Theorem 1.9]. Here we
need a modification of a result in Proposition 3.5 of ref. [24]. In this reference the case
of a «/-convergent net of normal states on a von Neumann algebra is treated which is

perturbed by a norm convergent net of selfadjoint operators. Unfortunately the limiting
Gibbs states can only be formulated via «/-convergence on the C*-algebra A. Thus we
have to reformulate the stated convergence properties in a weakened form for the case of
C*-algebras.

Since we use the relative entropy of states on a C*-algebra we specify the following
notations (for an overview on relative entropy, see [23]):
For states u>i,W2 on a C*-algebra A, 5'(wi|w2) is the relative entropy between the unique
normal extensions of wi,W2 in the universal enveloping von Neumann algebra A** [25] (we
use the notation and choice of sign as in [1]).
For a state w on a C'-algebra A and h h* e A, we denote by wh the state obtained from
u) by perturbation with a selfadjoint element h £ A. This state u>h is uniquely determined
by the condition that it maximizes the functional S(A) 3 a —? S(cr\ui) — (o ; h) and the
maximum is denoted by c(u),h) := S(wh\ui) — (wh ; h), cf. ref. [18].

Proposition 3.2 Let A be a C-algebra with identity, (ua)a.ei C S(A) be a net with
w*-lima6jwa iv, and (ka)aex c Asa with limaei||&a|| 0. Then it follows that
w*-limaeiw„° u.

PROOF: The following estimation of the relative entropy is valid:

0 > _i ||Wo _ wk. ||2 > s{u%> | u)a) c(u)a, K) + («*• ; K)
> -(wa; K) + (w£° ; ha) > -2 \\ha\\

For the second inequality, see e.g. [23, Theorem 5.23]. The estimation of c(ua,ha) is

a generalization of the Peierls-Bogoliubov inequality, same reference, Chapter 12. The
«/-convergence of w£Q then follows immediately.

Proposition 3.2 gives a criterion for the robustness of a limiting Gibbs state if the
microscopically defined model is perturbed locally. We have to remark that the above
condition is not at all necessary. A nontrivial situation is given for example if the limiting
Gibbs state is an extremal state, which is invariant with respect to a given group of internal
symmetries. Then all perturbations according to the Assumption 2.3 which are invariant
under these symmetry transformations do not affect the limiting Gibbs state of the model
[15]! Now we use the above stability condition for the further analysis of the interplay
between local perturbations and limiting Gibbs states. This includes constructive as well
as pure existence results (quasi-averages):
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Proposition 3.3 (i) Let h := (/ia)ae£ be an approximately symmetric net of selfadjoint
operators. Then the limiting Gibbs state of the perturbed system is given by:
w*-limA6cw"flA+fcA (u)ß)hß, with hß s-limAe£n/3(^A) g Mß n M'ß and (uß)hß

being the state arising from wß by perturbation with hß. Mß is the von Neumann
algebra Hß(A)" and (Hß,Ylß,iiß) is the GNS-representation of u>ß.

(ii) If u> /5(e) <8><p ç(if) dßß(ip) with a positive continuous function g, satisfying \\g\\i '¦=

Is(B) l^(v)l dp.ß(<p) 1, then the net of local perturbations in Theorem 3.1 can be

chosen in such a way that for qa : S(B) 1—? R, ip —* Qa(iç) '¦= e~ßl-®'p',h^ it holds:

INI -Mm pa Q-

(For f G C(S(B), C) it is \\f\\ := suo{\f(ip)\ | ip g 5(B)}.;

(iii) Ifw /5(B) ®*p g(ip) dpß(ip) with a positive lower semicontinuous integrable function,
satisfying \\g\\i 1, then the net of local perturbations in Theorem 3.1 can be chosen
such that:

hmgA(ip) g(ip), VipeS(B).
Ae£

PROOF: (i) The proof runs as follows: Construct with the help of Theorem 2.6 an

approximately symmetric net h' with j(h) — j(h') such that w*-limA€£u)/3Ha+h* (wß)h
Then use Proposition 3.2 because h and h! only differ in terms vanishing in norm for large
A. The details of the proof can be found in the one of Theorem 4.3 below, where a more
general situation is treated, including non permutation invariant perturbations.

(ii) There exists a sequence of strictly positive functions g„ G C(5(B),R) with
|| • || -limrl_>0O gn g and consequently

!s(B) ® V Qn(v) dpß(ip)
-hm—y ——_—_=/ (&ipQ(ip)dp,ß(ip)=u>. (3.1)

be chosen such that

ln(ft,)||<ln(n). (3.2)

>S{B)

Without loss of generality, the ft, can be chosen such that

for n large enough.

For each n G IN there exists & hn e y with e~/3]<-h^ gn. The approximately symmetric
nets hn satisfy HmAe£ ||/i„,a|| || — l//31n(pn)|| and thus there is an increasing sequence
(Nn)nm IN with

IIVaII < ^||-In(ft.)|| + ^, (3-3)

|e-"(8-'M-ft.il < 1, (3.4)
Il II n
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for all A G C, |A| > Nn.

According to (i), the limiting Gibbs states of the models locally defined by (HA +
hn,A)AeC exist and are given by wßn := JS{B) ®ip gn(ip) dpß(tp)/ /5(ß) gH(ip) dpß(ip).

Using the metric d(-, ¦) of the «/-topology in S(A) ([26, Chapter 3.4], A is separable),
there exists a family of regions A„ g C, n G IN with |A„| > Nn, An c An+i, U„eN An IN,
and d (u>ß,u>ßHA+h"-A) < l/2n for all An ç A g C. Now set

hA--=hnA, VA g C with |A„| < |A| < |An+1|. (3.5)

The convergence of u)ßH/L+h'1- follows immediatelly.

It remains to prove limAE£ ||foA|| /|A| 0 and the norm convergence of the gA. Take a
A g £ with Nn < |An| < |A| < |A„+1|:

I^aII 11 An,All
- W(^lhln(pn)ll + n) >with(3'3)'

|A| |A| - |A| V ß

* ^ ^ H-l-(^)ll + è ^ ^ èln("} + ^ ' WÌth (3"2)'

—> 0 for large A

To show the convergence of qa, take an arbitrary ip G S(B):

|e-««*s*A>_g(„)| < \e-ß(^h^)-gn(ip)\ + \gn(ip)-g(^)\

< - + Un - q\\ with (3.4),
n

—> 0 for large A,

(iii) Any positive lower semicontinuous function g is the pointwise limit of a monotone
increasing sequence of continuous functions (gn)nm which may be assumed to be positive
[27, §4]. Using the monotone convergence theorem, we have limn_>00 \\g— Qn\\i 0 (consider

ft ft,, n G IN as elements in Ll(S(B),pß)) and lim„_>co llft,^ \\g\\i 1. So we can
replace ft, by £>ra/ 11 £>ra 11

x, still being positive continuous functions with pointwise limit g.
Then we have for u)ß := /5,ß, ®ip gn(<p) dp,ß(ip):

\\-\\-hmu)ß u).
n—*co

Just as above take a family hn := (hniA)AeC of local perturbations according to (ii) to
approximate the states uß as limiting Gibbs states. Then construct the family of operators
(hA)A£C, we are looking for, from hn, n G IN as in Eqs. (3.3) - (3.5) with the help of the
metric d(-, ¦) in S(A).

In the situations described in the Propositions 3.2 and 3.3 we have a maximum of
information about the asymptotic behaviour of the constructed families of local
perturbations. In the general case of Theorem 3.1 this information is almost completely lost.
Before starting the proof of Theorem 3.1, we give the following
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Lemma 3.4 Let u) g Sp(A) and v a regular probability measure on S(A) with supp(^) ç
supp(/iw) =: /Co,. Then there exists a sequence (gn)n€tf of positive and normalized elements

in L1(aCw,/ìw), such that

w*-lim / (g) ip gn(ip) dpu(ip) (g)ipdv(tp).
n^°° JKu JK«

PROOF: Look at the C*-algebra of continuous functions C(K^,G) with the state space
M\(Ku), the set of all positive normalized regular Borei measures on /C„. Thus each

positive and normalized g G Z/1(/Cu),/i„) defines a state u>e on this algebra by (u>e ; f) :=
Jk fi^ßif) dpw(ip). The set A/" := {u)e \ g G X^/C^,/^) positive and normalized} is a full
set" of states, cf. [1, Definition 3.2.9], because we have (u>e ; /) > 0, Vu>e G M ==> / > 0.

This follows from [28, page 231] by decomposing an arbitrary continuous / into its positive
and negative part.

Using [1, Proposition 3.2.10] it follows that A/" is «/-dense in the state space of C(K,^, C).
Lemma 3.4 then follows from the separability and the continuity of S(B) 3 ip —+ (<g)y ; A)
for all A G A.

PROOF OF THEOREM 3.1: Let pw be absolutely continuous with respect to pß, i.e. the
Radon-Nikodym derivative exists and is an element in Ll(S(B),pß). Using Proposition
3.3 (ii) we can construct a family of local perturbations (/ia)ae£ such that u> is the limiting

Gibbs state of the locally perturbed system and ||/iA|| has the asymptotic behaviour
according to Definition 2.3. The proof runs exactly in the same way as in Proposition 3.3,
using the fact that the continuous functions on S(B) are H'l^-dense in Ll(S(B),ßß). We
omit this step. Finally Theorem 3.1 follows with Lemma 3.4 and the above constructions,
which serve to find the local perturbations.

Corollary 3.5 // the support of the central measure of the limiting Gibbs state of the

unperturbed system (Ha)azC is equal to the set of all product states with minimal free

energy density, then for each permutation invariant state u>, minimizing the free energy
density, there exists a family of local perturbations according to Definition 2.3 such that u)

is the limiting Gibbs state of the locally perturbed system.

We see that a large set of limiting Gibbs states can be calculated by means of a
sub-extensive family of local perturbations not influencing the thermodynamical density
functionals. But, except for the situation of local perturbations arising from approximately
symmetric nets, there is no concrete information on the perturbations available, besides the
asymptotic behaviour of some expectation values. Especially in the case where a limiting
Gibbs state should be perturbed in such a way that the central measure becomes singular
relative to the unperturbed one, there is hardly any information on the local perturbations
accessible. Therefore, we will give another scheme to construct local perturbations leading
to limiting Gibbs states with a singular central measure. The interesting point is that this
can be done in terms of a scaling function, i.e. only the strength of a local perturbation is

varied, but each local operator itself remains the same. We will replace an approximately
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symmetric net h — (/ì.a)A6£ by another family of local perturbations h! := (nAfc.A)Ae£,
where nA G R+ and nA tends to infinity for large regions A G £ (but h' still fulfills the
conditions of Definition 2.3).

Proposition 3.6 Let h := (/iA)AE£ be an approximately symmetric net such that either
j(h)\icß attains a unique minimum m in ipo G Kß or the set N := {ip G Kß \ \j(hy\(ip) m}
fulfills ßß(N) > 0. Then, there exists a net A 9 £ —? «a G R+ such that for all e > 0:

lim £±- 0 (3.6)
Ae£ |A|£

V '

and (8x^0; resp. JN ®ipdpß(ip)/pß(N) is the limiting Gibbs state of the system (Ha +
"a^a)a€£-

Note that this condition allows a nearly arbitrary slow growing of the perturbation

ft.A but nevertheless ||7^a^a|| in general tends to infinity while limA6£ m
liniAe£^| UmAe£||/iA|| 0.

PROOF: The main part of the proof consists of the construction of a convenient
sequence of permutation invariant states with limit ®ip0 resp. fN®ipdpß(ip)/pß(N). Then
we can repeat the tricks in the construction of families of local perturbations as before.
Without loss of generality we assume that exp(—ßm) 1 and set g := exp(—ßj(h)). With

ßr fs{B)®VO^)dpßM
vn

Js(B) 9n{f) dßß(<p)

it is w*-hmn^00(u;ß)nhß ®<p0 resp. w*-lim„_0O(u)^)n^ JN®<pduß(tp)/pß(N). To show

this, analyze the convergence of gn(ip)f JK gn(ip)dpß(<p) for tp G Kß. Since g(ip) < 1 for all

ip G Kß it follows

a
f gn(ip)dpß(ip) > f gn+1(ip)dpß(ip),

ßn(ip)dpß(ip)Y =: \\e\\n < \\g\\n+1, [28, Page 106],

i™ IMI. Hell« [28, Page 105].
n—»oo

From these estimates we obtain

lim / gn(ip)dpß(ip) p0(N)
n^°° JKß

and
gn(<P) n-*oo f CO ip G N (AT\_n

L Q»W)dpß(ip)
~~* \ 0 ip G Kß\N lt ^iV ' - '
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J?"M -*/j5to ^ i{p0(N)>o
jKßQ-(ip)dpß(ip) {0 ipeKß\N

Since S(B) 9 ip —> (igxp ; A) is continuous for all A G .4, we have to look at the convergence
of !Kßf('fi)en(<fi)dpß(<p)/JICßgn(<p)dpß(ip) for continuous / G C(5(B),C). If p0(N) > 0,

the convergence is an immediate consequence of [28, Proposition 3.1.5] and we have
w*-limn^x(ujß)nhß fN®<pdii0(<p)/p0(N).

In the case of ßß(N) 0 and A?' {^>o}> after some elementary estimates we find that

llm«-°° fc f(»)<Mg) -^0)' 1,e- W -llm"-°°K) ®Vo-

Concerning the construction of the net (nA)Ae£ we can repeat all estimates as previously

done in the proofs of Proposition 3.3 to find the local perturbations. All estimates,
occurring there are of the form d(u)ßHK+nhA,u)) < e for some state u> and all A with |A|

greater than some Nn g IN. Thus they remain valid, even if A become arbitrarily large. In
this way the net A —> nA may be constructed such that it shows the asymptotics according
to Eq. (3.6).

We will finish this section with a remark on lattice systems consisting of a finite number
of coupled quantum systems. Such a system may be described by using a quasi-local algebra

Ai®- ¦ -®An, each of the Ai being the infinite tensor product of finite quantum systems
Bi. Since an equivalent formulation of Theorem 2.6 is still valid for mean-field models of
such systems, all foregoing results can be obtained as well in this case. Then the local
perturbations may be considered as Hamiltonians of the interaction between these systems.
An example of such a model is the Josephson-junction of two BCS-superconductors below
a critical temperature, see Sect. 5.

4 Local Perturbations with Quasi—Symmetric Nets

In the previous sections we discussed local perturbations (/iA)Ae£ with each /iA being
invariant with respect to all permutations of A. There, of course, each limiting Gibbs state of
a mean-field model with local Hamiltonians (H\ + /iA)Ae£ is a permutation invariant state
on the quasi-local algebra A. We will generalize now some of the convergence properties to
the case of not necessarily permutation invariant perturbations. We will not treat in detail
the question of the calculation of arbitrary quasi-averages, but will restrict our attention
to the case, where the connection between perturbation and limiting Gibbs state can be
made explicit, i.e. we consider a generalization of Proposition 3.3 (i). The extension of
approximately symmetric nets as local perturbations from the permutation invariant to the
general case is performed by the introduction of the so-called quasi-symmetric nets [11].
This terminology is also based on the definition of a well defined asymptotic behaviour for
large regions. We show, that for each quasi-symmetric net (/iA)A€£ the analogue to Proposition

3.3 (i) is valid, i.e. the limiting Gibbs state of the model, locally perturbed with
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a quasi-symmetric net exists and is the perturbation of the original limiting Gibbs state
with the strong limit of the local perturbations. Then this state is no longer permutation
invariant.

To define the nets of local perturbations over the set £ of finite regions A we need more
structure, than given by the ordering on £ in terms of set-inclusion. Therefore a tagging
of a finite region A is introduced to mark regions where the permutation invariance is not
satisfied. From now on we regard pairs (A, Ar) G £ x £ with AT ç A. AT is called the
tagging of A G £. Now choose a tagging on the lattice, i.e. specify for all A G £ a AT ç A
in such a way that |AT|/|A| tends to zero in the limit of large A Aj ç A\ for all Ai c A2,
and uAe,cAT IN. This tagging of the lattice is assumed to be fixed for the rest of the
section.

Now consider Ai ç A2 ç A3 g £ and define the operator jj^A2 : Aa2 h^ Aa3 which
symmetrizes elements of Aa2 in -4a3 but excludes the region Ai from the symmetrization:

3^ - lAaVM!^0" { >

The sum runs over all injective mappings a : A2 1—* A3, leaving Ai pointwise invariant.
If Ai is chosen to be equal to A2, the resulting operator is the canonical embedding of
Aa2 into Aa3- Aa2 9 AA2 —? JaIa2(A^) AAz <g> lAa\A2. If Ai 0, an element of
AA2 G Aa2 becomes completely symmetrized, i.e. iA,A2(AA2) is invariant with respect to all
permutations in A3 (we see that this notation agrees with the one introduced in Definition
2.1). Finally, for a tagged set (Ai, Aj) G £ x £ and A2 G £ with Ai ç A2 we write

.7-
Ìa2Ai := JA2Ai : "4a, >-> Aa2 ¦ (4.2)

The limit properties of the operators Ja2Ai for large tagged regions are the main tool for
working with quasi-symmetric nets. Let us collect the basic definitions and properties
[29, 11]:

Definition and Proposition 4.1 Let £ 9 A —> /ia be a net with hA g ,4a for all A g £.

(i) h (/ìa)a.e£ is called 0,-symmetric (h G y(Açi)) with fi G £, if
limAie£limsupA2e£ \\hx2 -j&Al(/iAl)|| 0.

(ii) h (/iA)A6£ is called quasi-symmetric (h G y(A)) if
limA1e£limsupA2e£ \\hA2 - JAsAi^aJH 0.

The following criteria are valid [11, Lemma 2.3]:
h CmJa^ is a quasi-symmetric net iff for all e > 0 there exists a tagged set fi (depending
on e) and a gn G An, such that

lim sup ||/iA - JAsi(gn)\\ <£• (4.3)
Ae£



Gerisch 601

h is fio-symmetric, iff for all e > 0 there exists a fi G £ (depending on e) and a gn € An,
such that

lim sup || fcA- j* (to) || <e. (4.4)
Ae£

Note that y(An) c ^(.4.), d«e fo Proposition 2-4 in [11] and that a permutation invariant
0,-symmetric net for fi 0 is an approximately symmetric net as introduced in Section 2.

In analogy to the relations for approximately symmetric nets ||ft.|| :— limAe£ ||/iA|| exists
for all quasi-symmetric nets h and defines a C*-seminorm on y(An), resp. y(A). If we
equip the nets with the pointwise algebraic operations and factorize by the subspace of zero
seminorm nets, we get a C*-algebra which is isomorphic to C(S(B),A) C(S(B),€) <g> A
(the continuous functions on S(B) with values in A). The isomorphism is a generalization
of the map j from Eq. (2.2):

3 : y(A) - C(S(B), A),h-* \j(h)](ip) := lim E* (hA), W> G S(B). (4.5)
Ae£

EA, AT : Aa —» Aat is defined by means of the expectation values for all a G S(Aa?)'-

Aa 9 A —» o ; EA, Ar(A) := (o <g> (®ì€A\At^) ; A). The map j is surjective and the limit
in Eq. (4.5) is uniform in ip G S(B). j is an isometry in the sense that \\h\\ liniAe£ ||hA||

\\j(h)\\ sup {\\[j(h)}(<p)\\\v e S(B)}.

The surjective mapping j leads to the strong convergence of a quasi-symmetric net in
the partially universal representation to the folium generated by the permutation invariant
states. This is exactly the same property as the strong convergence of approximately
symmetric nets as stated in Proposition 2.2:

Proposition 4.2 For all quasi-symmetric nets (/ia)ae£> the limit s-lim Hp(/iA) exists in
Ae£

Mp and is an element of a subalgebra isomorphic to C(S(B), A). Conversely every element

ofC(S(B),A) considered as element of Mp is the strong limit of the net Hp(/ia) for some

(MaE£ e y(A)

Sketch OF the PROOF: First we show the convergence of special fi-symmetric nets
hA. Let A0 g £ with A0 n fi 0 and A 2 fi u A0. Then define /iA := ÌAnuA0(^u ® 2/a0)

An ® JA\nAo(^Ao)- This means, that hA is separated into the tagged part An G An and a

symmetric net .?A\nA0(2/A°) on ®jeiN\fiTB;; thus it is convergent (use Prop. 2.2).

An arbitrary fi-symmetric net can be approximated by nets (ÌAfjUA0(2/nuA0))Ae£ with
fixed 2/o.uAo e .4nuAo UP to an arbitrarily small norm difference in the limit of large A,
comp. Eq. (4.4). Using this fact and [11, Theorem 2.5 (ii)], the convergence of an arbitrary
fi-symmetric net is proved. The limit is an element of a subalgebra of Mp, isomorphic to
C(S(B),An)- The convergence of a quasi-symmetric net in C(S(B),A) finally results from
Eq. (4.3).
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Now we can generalize Proposition 3.3 (i) to local perturbations, which no longer have

to be permutation invariant. The limiting Gibbs state of the locally perturbed mean-
field model is expressed in terms of the perturbation of the limiting Gibbs state of the
unperturbed model by the strong limit of the local perturbations:

Theorem 4.3 Let (Ha)azC be the local Hamiltonians of an unperturbed mean-field model

according to the Assumption 2.5 and let h (/iA)AE£ be a quasi-symmetric net with
hA h\, VA G £. Then there is an unique limiting Gibbs state of the model with
local Hamiltonians (Ha + /ia)Ae£> given by

w*-hmujßHA+hA (u)ß)hß
A.e£

v '

with hß := s-limAe£ Ilß(hA) g Mß.

PROOF: The idea of the proof is, to construct some h' G y(A) with j(h') j(h) and
w*-liniAe£ u>ßHA+h'* (wß)h Then, the «/-convergence of uißHA+hA follows from Proposition

3.2. The construction of h! runs stepwise, by considering perturbations h g y(An),
a special subset of y(An), then turning towards arbitrary elements in y(An) and finally
reaching y (A).

(i) Let fi G £. y(An) is defined to be the set of all h G y(An) for which a A0 G £,
fi C Ao exists with:
1-) hK- Jaa0(9Ao) f°r some ftv, e AAo and all A 2 A0.

2.) If A G £ with |Ao| < |A| and A0 £ A, then /iA shall satisfy /iA iAff(Ao)0<7(<»Ao) w^tn an

permutation o g V(A u Ao) with a-(Ao) ç A.

The second condition in the definition of y(An) is only of technical relevance. The
character of nets h G y(An) can be found in the following example: For fi c Ao c
A, hA is the linear combination of Jaa0(A$, ® g\0\n) with An G An and gAo\n e -4Ao\n-

With 3AA0(An ® ffAoV«) An <g> JA\nAo\n(fi,A0\n) we see that these nets are the analogue to
symmetric nets in the permutation invariant case.

Obviously for each element h G y(An), there exists a net (h'/^Aec, each h'A being the
same polynomial in mean-field operators mjv(i) and elements of ,4n, with

Urn \\hA-tiA\\ 0.
A.e£

Application of Theorem 2.6 and Proposition 3.2 for h G y(An) gives:

w*-hmujßHA+hA (uß)hß Vf*-limu;ßHA+h'A (4.6)
Ae£ Ae£

(ii) With Eq. (4.4) in Proposition 4.1 it follows that for all h G y(An) and all e > 0,
there is a g G y(An) and Ao G £ such that

||/ì-a — 5a|| < £ j for all A 2 Aq
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Now, let h be an arbitrary element in y(An)- Then there exists a sequence (hn)ne^ c
y(An), such that

\\j(h)-j(hn)\\<±, (4.7)

i.e. || • H-limji-.oo j(hn) j(h) and || • || -lim,,-,,» h^ hß with the strong limits hß, hßn in

Mß. From [24, Theorem 1.1] it follows that || • ||-lim„_0O(^)''» (wß)hß. By the help
of the techniques as used in the proof of Theorem 3.3, one can construct now a net h' G

y(An) with the required convergence properties, i.e. j(h) j(h') and w*-limA6£ u)ßHA+hA

w*-hm.Ae£U>ßHA+hA (uiß)hß

(iii) Since all elements j(h) g C(S(B),A), h G y(A) are approximated uniformly by
j(hn), each hn G y(AA„) for some An G £, the steps in (ii) can be repeated with replacing
elements in y(An) by elements in y(AA„) for variable An G £ (they can be chosen increasingly).

Again a new family of local perturbations h' (/iÂ)Ae£ ls constructed as above.
The model, locally perturbed with (^Â)ae£ leads to the unique limiting Gibbs state (uiß)h
After having proved the quasi-symmetry of h' and j(h) j(h'), the «/-convergence of the
local Gibbs states wßHA+hA follows with Proposition 3.2

5 Applications

5.1 The Inhomogeneous BCS-Model

Using the above introduced methods, it is possible to treat a certain kind of inhomogeneous
BCS-model with local Hamiltonians

Ka ¦= 52 £k (cfcTCfcT + c-nc-ki) - -nn ^2 9kk> 4îclitic-*'ic*'î > (5-1)
ifceA

I I

fc,*'6A

where the summation runs over a region in momentum space near the Fermi-surface and
c*ka is the creation operator of the corresponding Bloch wave function. There exists a
variety of results on the thermodynamical properties of this model, which determine for
suitable chosen parameters Sk, gkw a phase transition at some critical inverse temperature
ßc [30, 31]. But in contrast to the homogeneous strong coupling situation with e*. e and

gkv g > 0 [32, 33] the limiting Gibbs state is not calculated explicitly.

The Hamiltonians in Eq. (5.1) can be transformed into our frame by averaging £k, resp.
gjck> over the lattice, i.e.

8 ì&\KpE»">0> and e feiXfEe»-
1 ' Jfc,Jb'eA

' ' ibeA

Making explicit the Jordan-Wigner-representation of the CAR-algebra on the lattice IN

with B M2(C), resp. B M4(C) if we combine electrons with opposite momenta and
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spin, we find that the model with the averaged Hamiltonian

#A := 52 £ (cfctcfcT + c*_Hc-kl) - j— 52 ff cjjcijuc-tucjbiî
*eA

I
'

fc.fc'eA

satisfies the condition in our Assumption 2.5, i.e. is a mean-field model with a unique
limiting Gibbs state u)ß, which is given below the critical temperature by

./[0,2*1[0,2ir]
27r

with the permutation invariant product states u)ß on A. The density matrix pA of its local
restriction to Aa becomes

exp { - ß E £ (c£îc*î + c*-fcic-*a) - A E (e"wcJTc* fci + ewc_tlctî) }
tf _ *eA fceA (^21SA tr exp { - ß E £ teTc4T + c*_fclc_fc, - A E («-*%<.*. + e«c_4ictî) } ' l ' j

ifceA fceA

where A is the positive solution of the well known gap equation.

The inhomogeneities will be specified by the requirement of quasi-symmetry of the net

A —» hA := 52(£* - £) (4îc*î + c-hc-h) - rrr 52 (gkk> ~ gS> c*îc-it|c-Hcfcî • (5-3)
JfceA ' ' /fc,ifc'eA

This includes especially /iA with

hß := s-lim IIfl(/iA)
Ae£

Üg 52(£* - £)n£(cfcTc*T + c-kic-n)
/fceA

In general ^j. are complex numbers, since we have not demanded that g^w e K- By
use of Theorem 4.3 we calculate the limiting Gibbs state of the inhomogeneous model
as perturbation of the homogeneous limiting Gibbs state u>ß with hP. Evaluation of the
perturbational expansion gives for the density matrix of the restriction of (uß)h to AA

-/»( E e»KTc*T-K»tc-*l)-E ^(«-"»ci^l^+e^c./nctt))
i a e *€A fceA

^A ~ "
-0(Y.^(c'kìckì+ctHc_n)-Y,Ak(e-'^clrc'_kl+e^>:c_nck,)) '

tr e *eA *eA

with A* |l + ^*-| A and #fc # + arg(5flfc).

This way of determining a limiting Gibbs state is remarkable due to the following point:
The representation n^ induced by the homogeneous model fixes the collective features, such
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as symmetry breaking resp. condensed particles in the macroscopical system, whereas
the microscopical details of the model are incorporated via perturbation theory in this
representation. Such a state is the key to discuss macroscopical (classical) effects against
the background of nontrivial microscopical features of the model. The corresponding
KMS-automorphsim group is accessible and via unitary implementation the spectrum and

eigenstates of the corresponding generator can be discussed as quasiparticle excitations.
The detailed analysis of these questions is in preparation [34].

5.2 Josephson-Junctions

The calculation of the limiting Gibbs state of weakly coupled superconductors allows to
determine a representation and an interaction of two superconductors, where the Josephson
relations for tunneling current and the phase difference become operator valued expressions
in the center of the corresponding von Neumann algebra [35]. If the tunneling interaction
of the finite system is determined by the Hamiltonian

Ha ''~
|A PIA I2 ^ (Ctiîc-*UC-Mc*aî + c-MCMcifc2îc-*2i)
1 x| ' 2| MAX,MA2

(A (Ai, A2), with finite regions Ai, A2 in the momentum spaces of the two superconductors)

and the single superconductors are described as in the above example, we find for
the limiting Gibbs state of the coupled system:

-/Jo[0,2*] i7r

with the normalization e f and

/ wi®w|+M— zS(Ai®A2).
./[0,2*1 27r/[0,2*]

ui\, u>l are states as in Eqs. (5.2), resp. (5.4) for the two sides of the junction. The derivation

of the Josephson relations principally requires the variability of the phase difference
S'a between the two superconductors, which is guaranteed in this representation. But if we
consider the special internal symmetries of such a model (i.e. the invariance under
simultaneous gauge transformations in the two subsystems, comp. [15]) it is possible to find the
analogue result as in Proposition 3.6 to approximate the state wx, i.e. Sd tt as limiting
Gibbs state, i.e. there exists a net A —» nA with limA_wxiN u i"fA g 0 for all e > 0 and w„
is the limiting Gibbs state of the model with local tunneling interaction «a/ia- Obviously
in the corresponding representation the free variability of the phase difference is lost and
the Josephson current is destroyed. This demonstrates the very sensitive reaction of the
effect on the microscopical properties of the finite systems and suggests that for another
ansatz of the interaction a completely different treatment and physical interpretation is

necessary. Such effects have been discussed up to now only in the case of an extensive

tunneling interaction [36].
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5.3 A Remark on Relative Hamiltonians

Within the frame of the Tomita-Takesaki theory and perturbation theory it can be shown
that under certain conditions for two given normal states ui\, u>2 on a von Neumann algebra
M there exists a selfadjoint element h G M, such that wf W2, where wf is the state arising
from Wi by perturbation with h in terms of the perturbation series [17]. The operator h is

called a relative Hamiltonian. The main criterion for the (normal, faithful) states u>\, u>2

is that there exist 0 < I2 < h such that liWi > 0*2 > h^i- Having in mind a situation as in
Section 3 with permutation invariant states, this requires supp(/iwi) supp(/xU2), which
in general is not fulfilled.

To find relative Hamiltonians for a more general class of states, there exists a generalization

of this concept, using perturbations with so-called extended-valued lower-bounded
operators affiliated with M [18], see also [23]. These are affine, weakly lower semicontinu-
ous functionals on the normal states M*1 of M which can formally be written as hs + ooP,
where P is a projection in M and h3 is a lower bounded, selfadjoint operator affiliated
with M. The perturbation of a state u> with such an extended-valued lower-bounded
operator h affiliated with M is defined in terms of a variational principle [18, Theorem
3.1]: If u g Mt1, h is an extended-valued lower-bounded operator affiliated with M, and
there exists a state o G Mf1 with S(cr\w) — h(o) > —00, then there exists a unique state
u>h G Mt1 which maximizes the functional <r —? S(o-\u) — h(cr) (we assume /3 1 and S
denotes as in Sec. 3 the relative entropy). This state coincides (up to the choice of sign)
with the one defined in terms of perturbation theory, if h is defined by h(o) :— (0 ; h') with
some selfadjoint h' G M. Moreover in [18] it is shown that for two normal states wi,o>2
with a c G R and cai] > wi, there exists an extended-valued lower-bounded operator h
affiliated with M, such that ixi\ w<i and S(o\w\) — h(o) S(o\u)2) for all a G Mf1.

It should be remarked that the use of extended-valued lower-bounded operators
affiliated with a von Neumann algebra in the theory of quantum lattice mean-field systems
is also possible on the microscopical level, i.e. one can work with such affine functionals
as local Hamiltonians, see [37]. Again, this leads to a variational principle for limiting
Gibbs states like the one, given in Proposition 2.4 (the contiuous function j(( fjA )Ae,c) for
the internal energy density is then replaced by a lower semicontiuous one). Although this
leads to a rather large class of models with a rich reservoir of possible phase structures
in the thermodynamic equilibrium, it still remains an unsolved problem to determine the
limiting Gibbs state. Therefore we will not follow these ideas, but will have a look on the
concept of such kinds of relative Hamiltonians as perturbations on the macroscopical level,
i.e. as operators affiliated with Mß in the representation of some unperturbed limiting
Gibbs state u>ß:

We have seen in Proposition 3.3 (i) that the system, locally perturbed with an
approximately symmetric net hey, possesses the limiting Gibbs state (ujß)hß, with hß

s-limAtcHß(hA)- Moreover, the strong limit of the local perturbations is exactly the relative

Hamiltonian in Mß (up to an additive constant for normalization).
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For w Js(B)®ip g(ip) dpß(tp) G SP(A) with a positive normalized g G C(5(B),IR), in

general there exists no relative Hamiltonian h G Mß such that (u)ß)h w, but it is an
easy calculation to find an extended-valued lower-bounded operator h, affiliated with Mß
and (u)ß)h u>. In Proposition 3.3 (ii) there was constructed a net of local perturbations
('lA)Ae£ such that u! is the limiting Gibbs state of the locally perturbed system. We have

seen that the norm of the /ia tends to infinity for large regions A. This net (/ia)ae£ can be
chosen in a way such that it approximates the extended-valued lower-bounded operator
h with (uiß)h a). It can be shown that there exists a net (/ia)a<=£ of local perturbations
with the same properties as the one in Proposition 3.3 (ii), but additionally for all e > 0:

1 /*®
s.res.-limn>(/iA)Pe haPe -- / ln(p(ip))xMe(<P)KdVß(<P) > (5'5)

A€C P Js(B)

with Me := {<p G Kß I g(ip) > e}, Pe := JS(B) XMs(<p)^-(p dpß(ip), and the characteristic
function Xm„-

We will omit the proof, because we stated this result only to demonstrate the close
connection between the local perturbations of a limiting Gibbs state u)ß and perturbations
performed with extended-valued lower-bounded operators, affiliated with the center Zß
of Uß(A)".
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