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Field Theory at Finite Temperature

and Phase Transitions!

By Mariano Quiros

Instituto de Estructura de la Materia (CSIC), Serrano 123
E-28006 Madrid, Spain

(9.VIT.1994)

Abstract. We review different aspects of field theory at zero and finite temperature, related to
the theory of phase transitions. We discuss different renormalization conditions for the effective
potential at zero temperature, emphasizing in particular the MS renormalization scheme. Finite
temperature field theory is discussed in the real and imaginary time formalisms, showing their
equivalence in simple examples. Bubble nucleation, by quantum and thermal tunnelling, and the
subsequent development of the phase transition are described in some detail. Some attention is
also devoted to the breakdown of the perturbative expansion and the infrared problem in the finite
temperature field theory. We have discussed how to improve the theory by including plasma effects
(Debye masses) using either a diagrammatic and a functional approach and showing explicitly their
equivalence to a given order. Finally the application to baryogenesis at the electroweak phase
transition is done in the Standard Model and several extensions thereof, as the case of the Minimal
Supersymmetric Standard Model. In all cases we have translated the condition of not washing out

any previously generated baryon asymmetry by upper bounds on the Higgs mass.

'Based on lectures given at the Troisieme Cycle de la Physique de la Suisse Romande, Lausanne
(Switzerland), June 1994.
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1 Introduction

Field theory at finite temperature is a classic (more than twenty-years old) subject, which has
become hot during the last couple of years. In fact the possibility of generating the required
baryon asymmetry of the universe at temperatures near the electroweak phase transition
critical temperature (~ 100 GeV) has triggered a lot of activity related to investigating the
nature of the phase transition in the Standard Model of strong and electroweak interactions
-and minimal extensions thereof- as well as computing the amount of C'P violation in these
models. On the other hand old problems, as the failure of perturbative expansion of field
theory at the phase transition critical temperature, needed to be resuscitated since the actual
generation of baryon asymmetry depends to a large extent on the fine details of the theory.

This degree of refinement has produced also a great deal of controversy inside the field.

Since the field is evolving very rapidly, any attempt to cover all the branching out of
the different subjects, or present the ultimate version of them, is damned to failure. For
the same reason, many results are open to controversy and it would be audacious to be
so bold as to draw firm conclusions on them. As an example we can anticipate here the
case of whether or not the Standard Model phase transition is strong enough first order for
the baryon violating interactions (mediated by sphalerons) to go out of equilibrium at the
bubble walls, thus preventing the erasure of any generated baryon asymmetry. The one-
loop result is negative in the sense of imposing an upper bound which is below the present
LEP bound. Introducing plasma effect to one-loop (leading order) the result is worsened
since temperature effects screen part (one third) of the first order phase transition. On the

other hand two-loop plasma effects seem to improve the previous result, and alleviate the
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bound on the Higgs mass, while non-perturbative effects also seem to go along the same
direction. However, to rely upon two-loop corrections to rescue our model can be in conflict
(as everybody can understand) with the validity of our perturbative expansion (whatever
this expansion could be), while our degree of mastery of non-perturbative effects in field
theory would make it hard to draw any final conclusion on the basis of the latter. Finally
it might be that one-loop corrections of fermionic fluctuations (in particular the top’s ones)
could be capable of suppressing the sphaleron transitions and increase the upper bound on
the Higgs mass beyond its experimental limit, as it has been recently suggested. Again it
would be premature and bold to draw a firm conclusion on this basis. For all those reasons
I have preferred to present here the tools which should enable the reader to go through the
technicalities of the different papers and raise his/her own judgement, which presumably

will not coincide with that of this author.

These notes are based on a twelve-hour Cours de Troisieme Cycle de Physique de la Suisse
Romande, held at Lausanne in June 1994. The aim of them is to provide a pedagogical and
self-contained description of the basic elements which are necessary to follow the most recent
evolution of the field. Completeness has been sacrificed to pedagogy and detail and, as a
consequence, many topics have not been touched upon. I have made what I have considered
a primary choice of topics, which I have described in some detail, while I have ignored others.
If my choice is not the most successful one I have to apologize in advance for that. However
I have tried to provide enough material for the reader to be able to follow all untouched

topics. The outline of these lecture notes is as follows:

Since the effective potential of a field theory inside a thermal bath contains, in particular,
the usual effective potential at zero temperature, the latter is reviewed in Section 2. We
describe the contribution of scalar, fermion and gauge fields to the one-loop, and higher-
loop, effective potential. We discuss the regularization of the one-loop effective potential
using a cut-off in integration momenta and also using dimensional regularization. As an
example we present the case of the Standard Model using both, a cut-off regularization and
renormalization conditions such that the location of the minimum of the potential and its
second derivative (the Higgs mass) do not change with respect to their tree level values,
and also using the most useful MS renormalization scheme. Finally the relationship between
the effective potential and the renormalization group, giving rise to the so-called improved

effective potential, is described in some detail.

The general elements of field theory at finite temperature are described in Section 3.
The different thermodynamical ensembles (microcanonical, canonical and grand canonical)

are briefly presented, and the statistical average on the grand canonical ensemble is defined.
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The generating functional for bosonic and fermionic fields are defined over an arbitrary path
in complex time. Convergence of the two-point Green function is shown to constrain the
possible paths along the complex time. We present explicit expressions for two-point Green
functions of scalar and fermion fields, as well as periodicity properties of them, known as
Kubo-Martin-Schwinger relations. Two particularly interesting paths are studied in some
detail: they are known as imaginary and real time formalisms. In both cases we present the
propagators and Feynman rules. For the case of the imaginary time formalism we sumima-
rize some standard tricks to perform infinite summations over all Matsubara frequencies in

Feynman integrals, both for bosonic and fermionic fields.

In Section 4 the contribution of scalar fields, fermion fields and gauge bosons to the
one-loop effective potential at finite temperature is computed. In all cases, and for the
imaginary time formalism, we use two different methods: the usual procedure of evaluating
the diagrams contributing to the one-loop potential using the Feynman rules for the unshifted
theory deduced in section 3, and a simpler procedure, which can be called tadpole method,
which consists in computing the tadpole in the shifted theory, using the standard tricks of
infinite summations over the thermal modes described in section 3, and integrating over the
external leg. Both methods are explicitly shown to lead to the same results. In the real time
formalism we have also computed the one-loop effective potential for scalar and fermion fields
using the corresponding Feynman rules deduced in section 3 and the tadpole method, and
shown to agree with that computed in the imaginary time formalism. Finally the Standard

Model case is presented as an example.

Some essential elements of the theory of phase transitions at finite temperature are pre-
sented in Section 5. The phenomenon of symmetry restoration is described in the two
important cases of first and second order phase transitions. In fact, the main features of first
and second order phase transitions are outlined with the simple (and realistic) example of
a temperature dependent potential which can be approximated by a renormalizable polyno-
mial in the classical field. In first order phase transitions, bubble nucleation from the false
to the true vacuum proceeds via quantum penetration of the barrier. At zero temperature
this phenomenon is known as quantum tunnelling, and at finite temperature as thermal
tunnelling. Both quantum and thermal tunnelling are described in some detail. In both
cases the semiclassical description of the decay is provided by the bounce solution and the
decay rate by the euclidean action. For quantum tunnelling (appropriate for the case of
supercooled systems) explicit expressions are provided for the case of the thin wall approxi-
mation, where analytic formulae can be given for the euclidean action and the critical radius

of the bubble. For thermal tunnelling (appropriate for the case of the electroweak phase
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transition) a discussion on the evolution with temperature of the bounce solution is given:
it is shown that just after the critical temperature thin wall bubbles are first formed. Only
if the end of the phase transition is postponed, thick wall bubbles will be formed. Analytic
formulae are given for the case of the thin wall approximation (as e.g. for the radius of
the critical bubble) and also (without assuming the thin wall approximation) for the case
of the renormalizable potential which served to exemplify the first and second order phase
transitions. The beginning of the phase transition (one bubble per horizon nucleated) and
the end of phase transition (all the space filled with bubbles) are dictated by comparison
of the bubble nucleation rate with the expansion rate of the universe. This comparison is
also done in this section with the result that the end of the phase transition should happen
when the euclidean action is ~ 100. In particular cases this evaluation should serve to know

whether the formed bubbles have thin or thick walls.

The problem of the breakdown of perturbative expansion at the critical temperature is
treated in Section 6. Using the simplest theory of one self-interacting real scalar field we
have first exhibited the appearance of infra-red divergences from higher-loop diagrams at
finite temperature and heuristically shown that the one-loop approximation is not valid at the
critical temperature. A new temperature-dependent expansion parameter is defined, which
enables to prove, up to a certain order, the dominance of daisy over non-daisy diagrams.
Resumming an infinite number of Feynman diagrams at finite temperature we obtain an
improved theory, whose expansion parameter is the newly obtained temperature-dependent
expansion parameter. We have constructed the improved theory to leading order, using
functional and diagrammatic methods, and shown the role of the Debye mass on it. We
have explicitly shown that both methods yield the same result. We have also made some
comments about how to go to the next-to-leading order in the improved theory. The latter
being a very controversial point we did not want to draw any final conclusion on it. Finally
we have explicitly computed the case of the Standard Model, which will be useful in the next
sections, to leading order in the improved theory, and given the expressions of the Debye

masses for Higgs and Goldstone bosons, and the longitudinal components of gauge bosons.

Section 7 is devoted to a review of baryon asymmetry generation at the critical tempera-
ture of various phase transitions and the restrictions it imposes on them. We first summarize
the problem of baryon asymmetry generation in the standard cosmological model and the
classical Sakharov’s conditions for baryogenesis. We then explore two different scenarios for
baryogenesis: the standard out-of-equilibrium decay scenario and baryogenesis at the elec-
troweak phase transition. The former (the standard out-of-equilibrium decay scenario) is

based on the decay, out of equilibrium, of a particle whose decays products violate baryon
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number and C'P. The decaying particle can be either a gauge or Higgs boson of a grand uni-
fied theory or a gauge singlet coupled to the observable matter by gravitational interactions.
In both cases we have deduced the necessary constraints in the corresponding theory. The
latter scenario (baryogenesis at the electroweak phase transition) is more appealing since it
is related to the physics which is being explored nowadays at present colliders. It is based on
the fact that baryon and lepton numbers are anomalous global symmetries in the Standard
Model that are violated by non-perturbative effects. At zero temperature these effects are
negligible, but at finite temperature they are strong, mediated by sphalerons, and can trigger,
in principle, enough baryon asymmetry as it is required by the nucleosynthesis constraints.
We study the baryon violation rate beyond and below the critical temperature. The latter
being controlled by the sphaleron barrier, we present the result of the calculation of the
sphaleron energy at finite temperature in the context of the Standard Model 2s a function
of the Higgs mass. Below the critical temperature the sphaleron mediated baryon violation
rate should be out of equilibrium to avoid wash out of baryon asymmetry. This condition is
performed by comparison of the actual baryon violation rate at the critical temperature of
the electroweak phase transition with the expansion rate of the universe at that temperature,
and provides an upper bound on the Higgs mass (which is one of the parameters controlling
the strength of the first order phase transition). The case of the Standard Model is analyzed
in some detail, including plasma effects to leading order. The result translates into an upper

bound on the Higgs mass which is definitively below the LEP experimental lower bound.

Motivated by the previous, negative, result we have analyzed in Section 8 two partic-
ularly interesting and motivated extensions of the Standard Model. First, the case of the
Standard Model with a complex singlet with zero vacuum expectation value. It is almost the
simplest extension of the Standard Model one can think of. In this case we have shown that
the out of equilibrium condition for the sphaleron mediated baryon asymmetry rate trans-
lates into an upper bound which is still beyond the present experimental limit. In particular
we have shown that the previous condition can be fulfilled for Higgs masses below the W
mass, which is also the range of validity we expect for our perturbative results to be reli-
able. Secondly, we have analyzed the case of the minimal supersymmetric standard model.
It is the minimal extension of the Standard Model where the gauge hierarchy problem is
resolved. In this case, and imposing the most favorable conditions on the supersymmetric
parameters, we have found a little window for pseudoscalar masses greater than ~ 400 GeV
and tan 3 ~ 2. Since a modest improvement in the present experimental bound on the Higgs
mass would make this window to disappear, our results do not lead to optimism, though we
do not want to draw a final negative conclusion for the case of the minimal supersymmetric

standard model.
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2 The effective potential at zero temperature

The effective potential for quantum field theories was originally introduced by Euler, Heisen-
berg and Schwinger [1], and applied to studies of spontaneous symmetry breaking by Gold-
stone, Salam, Weinberg and Jona-Lasinio [2]. Calculations of the effective potential were
initially performed at one-loop by Coleman and E. Weinberg [3] and at higher-loop by Jackiw
[4] and Iliopoulos, Itzykson and Martin [5]. More recently the effective potential has been
the subject of a vivid investigation, especially related to its invariance under the renormal-
ization group. I will try to review, in this section, the main ideas and update the latest

developments on the effective potential.

2.1 Generating functionals

To fix the ideas, let us consider the theory described by a scalar field ¢ with a lagrangian
density L{#(z)} and an action

Sigl = [ d'zL{4()) (2.)

The generating functional (vacuum-to-vacuum amplitude) is given by the path-integral rep-

resentation,
Z[j] = (Ocu | O} = [ ddexp{i(S[d] + ¢9)} (2:2)
where we are using the notation
¢ = [ d's(x)j(=) (2.3)
Using (2.2) one can obtain the connected generating functional Wj] defined as,
2[5 = expliW 4]} (24)

and the effective action I'[@] as the Legendre transform of (2.4)

- . Wil .
= — g il 2.5
rfF) = Wl - [ dlogr i) (25)
where W)
= J
In particular, from (2.5) and (2.6), the following equality can be easily proven,
§T[p]  SWI[j 65 . =637 :
— = —_— — — = e 2'7
5 5 53 ) %= (2.7)
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where we have made use of the notation (2.3). Eq.(2.7) implies in particular that,

=0 (2.8)

8¢
which defines de vacuum of the theory in the absence of external sources.

We can now expand Z[j] (W[j]) in a power series of j, to obtain its representation in

terms of Green functions G, (connected Green functions G ;) as

Zlj) = /d4a~1 i) oo JlEa) G (®1s <« - 5%n) (2.9)

and
’LW[J] fd4T1 d Tn]('Tl) (T'n)G(fL)(Tli ol 1mﬂ) (210)
n—O

Similarly the effective action can be expanded in powers of ¢ as

(0= 3, o [ o dofen) . B o ) 1)

where '™ are the one-particle irreducible (1PI) Green functions.

We can Fourier transform I'™ and ¢ as,

™ (z,,...,2 fﬂ[

exp{zpla",}l (27()46(4) (pl +- pn)r‘(n) (ph wem ,p‘n.) (212)

= [ dtze7(a) (2.13)
and obtain for (2.5) the expression,
o = 35 [ 11| 3250|069+ 4 2T p) 229
n=0
In a translationally invariant theory,
é(z) = ¢ (2.15)

the field ¢ is constant. Removing an overall factor of space-time volume, we define the -

effective potential Veg(¢p.) as
Plgd = - [ d*aVea(se) (2.16)

Using now the definition of Dirac 4-function,

§9(p) = f (;;“;4e—*'m (2.17)
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and (2.15) in (2.13) we obtain,

de(p) = (27m)*$.6“ (p). (2.18)

Replacing (2.18) in (2.14) we can write the effective action for constant field configurations

as,

D(¢e) = 3 =gt (@m) 6@ OF(p; = 0) = 3 —#TP(p = 0) [ d's (2.19)
n=0 """ n=0 """
and comparing it with (2.16) we obtain the final expression,
Ver(g) = = 3 ~T(p: = 0) (220)
n=0 """

which will be used for explicit calculations of the effective potential.

Let us finally mention that there is an alternative way of expanding the effective action:
it can also be expanded in powers of momentum, about the point where all external momenta
vanish. In configuration space that expansion reads as:

MF = [ ' [~Vrl®) + 5 (0,3)2F) + -+ (2.21)

2.2 The one-loop effective potential

We are now ready to compute the effective potential. In particular the zero-loop contribution
is simply the classical (tree-level) potential. The one-loop contribution is readily computed
using the previous techniques and can be written in closed form for any field theory con-
taining spinless particles, spin-% fermions and gauge bosons. Here we will follow closely the

calculation of ref. [3].

2.2.1 Scalar fields

We consider the simplest model of one self-interacting real scalar field, described by the
lagrangian

1
£ = 5090, — Vo(4) (2.2
with a tree-level potential

1 242 A 4
%z§m¢ +Zilf) (2.23)
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Figure 1: 1PI diagrams contributing to the one-loop effective potential of (2.22)

The one-loop correction to the tree-level potential should be computed as the sum of all
1PI diagrams with a single loop and zero external momenta. Diagrammatically they are

displayed in fig. 1, where each vertex has 2 external legs.

The nth diagram has n propagators, n vertices and 2n external legs. The n propagators
will contribute a factor of i"(p? —m?+ie) ™™ !. The external lines contribute a factor of ¢2* and
each vertex a factor of —iA/2, where the factor 1/2 comes from the fact that interchanging
the 2 external lines of the vertex does not change the diagram. There is a global symmetry
factor %, where % comes from the symmetry of the diagram under the discrete group of
rotations Z,, and 3 from the symmetry of the diagram under reflection. Finally there is an

integration over the loop momentum and an extra global factor of 7 from the definition of

the generating functional.
Using the previous rules the one-loop effective potential can be computed as,

1Ve)‘f(qbc) = %(¢C) -t %(¢c),

with

V1(<,15c)=??§:/(d4p 1 [ Ap2/2 ] :—if——(ﬁp—log [1_1;@_)@15_/;?._] (2.24)

2m)4 2n | p? — m? + ie 2J (2m)* — m?2 + ie

After a Wick rotation

P’ =ipg, pe = (~ip%F), p* = (0°)* —p'* = —pk, (2.25)
eq. (2.24) can be cast as,
1 rd'pg Ag2/2
V(o) = -[ log |1+ 22eL2 2.26
1(¢ ) 9 (27{.)4 og [ + p% + m2 ( )

1We are using the Bjorken and Drell’s [6] notation and conventions.
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Finally, using the shifted mass

@*Vo(4e)
de?

and dropping the subindex E from the euclidean momenta, we can write the final expression

m($) = m? + A = (2.27)

of the one-loop contribution to the effective potential as,

Vi(de) = 2/

where a field independent term has been neglected.

- log [p? +m?(¢c)] (2.28)

The result of eq. (2.28) can be trivially generalized to the case of Ny complex scalar
fields described by the lagrangian,

L= auqﬁaa,uquz - Vb(qsaa qs:fz) (229)

The one-loop contribution to the effective potential in the theory described by the lagrangian
(2.29) is given by

Vi = 1Trf @ log [p2 + M2(¢° q’5;r,)] (2.30)
2 (2m)4 s
where o
(M) =V = — (2.31)
Opad®

and Tr M? = 2 V?, where the factor of 2 comes from the fact that each complex field

contains two degrees of freedom. Similarly Tr 1=2 N;.

2.2.2 Fermion fields

We consider now a theory with fermion fields described by the lagrangian,
= 1,7 - 0P — B, (Mp)py’ (2.32)
where the mass matrix (M;)¢(¢L) is a function of the scalar fields linear in ¢%: (My)f = It

The diagrams contributing to the one-loop effective potential are depicted in fig. 2.
Diagrams with an odd number of vertices are zero because of the y-matrices property:
tr(f}/ﬂl %2 7u2n+l) — 0'

Tlie diagram with 2n vertices has 2n fermionic propagators. The propagators yield a
factor
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4— (RN

[ETS———
-

Figure 2: 1PI diagrams contributing to the one-loop effective potential of (2.32)
Tr[i™ (v - p)™(p* +i€)™]
where T'r, refers to spinor indices. The vertices contribute as
Tr[—i*"My(¢c)*"]

where T'r runs over the different fermionic fields. There is also a combinatorial factor ﬁ
(from the cyclic and anticyclic symmetry of diagrams) and an overall —1 coming from the
fermions loop. One finally obtains the total factor

21n —TT;Z? ") Tr.l.
The factor Tr,1 just counts the number of degrees of freedom of the fermions. It is equal
to 4 if Dirac fermions are used, and 2 if Weyl fermions (and o-matrices) are present. So we

will write,
Trsl =2\ (2.33)

where A = 1 (A = 2) for Weyl (Dirac) fermions. On the other hand we have grouped terms

pairwise in the matrix product and used,
ﬁ? - p2

where p stands either for p-~ or p- o, depending on the kind of fermions we are using.

Collecting everything together we can write the one-loop contribution to the effective

potential from fermion fields as,

d'p 1 [M} i d*p M?
(¢c = QAZTT'Z] o 427’), [ :| = 2)\'§TT‘/ (27’(’)4 log 1- ? (234)

As in the case of the scalar theory, after making a Wick rotation to the Euclidean mo-

menta space, and neglecting an irrelevant field independent term, we can cast (2.34) as

1 i
Wi = —2)\§T7‘/ (27:;4 log [p2 + M?(qbc)] (2.35)
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2.2.3 Gauge bosons

Consider now a theory described by the lagrangian,

1 1
ﬁ:—ZTﬂﬂJWﬂ+§ﬂﬂ%%ﬁD%”%~ (2.36)
In the Landau gauge, which does not require ghost-compensating terms, the free gauge-boson

propagator is
1

F = AH 2.37
with
P'p.
A¥, =g, - 2 (2.38)
satisfying the property p,A¥, =0and A=A, n=1,2,....
The only vertex which contributes to one-loop is
1 o ]
L= 5(My)2Aza¥ + ... (2:39)
where
. t )
(Mp)2s(6) = 08T |(Tiat)' Thso/| (2.40)

In this way the diagrams contributing to the one-loop effective potential are depicted in fig.
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Figure 3: 1PI diagrams contributing to the one-loop effective potential of (2.36)

A few comments about eq. (2.40): (i) g, is the gauge coupling constant associated to
the gauge field A%; if the gauge group is simple, e.g. SU(5), SO(10), E, . . ., then all gauge
couplings are equal; otherwise there is a distinct gauge coupling per group factor. (ii) 7,
are the generators of the Lie algebra of the gauge group in the representation of the ¢-fields

and the trace in (2.40) is over indices of that representation.
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Taking into account the combinatorial factors, the graph with n propagators and n

vertices yields a total factor

where
Tr(A) =3 (2.41)

which is the number of degrees of freedom of a massive gauge boson. Collecting together
all factors, and making the Wick rotation to the euclidean momenta space, we can cast the

effective potential from gauge bosons as,

4

Vi = TT(A)%TT / (‘21;;4 log [p? + (Myp)?(¢)] (2.42)

2.3 The higher-loop effective potential

Calculating the effective potential by summing infinite series of Feynman graphs at zero
external momentum is an extremely onerous task beyond the one-loop approximation. How-
ever, as has been shown in ref. [4], this task is trivial for the case of one-loop, and affordable

for the case of higher-loop. Here we will just summarize the result of ref. [4] 2.

We will start considering the theory described by a real scalar field, with a lagrangian £
given in (2.22-2.23), and an action as in (2.1). We will define another lagrangian L by the

following procedure:

[ ok id 6@} = Slbe+ o) - Sl6d - p o0 (2.43)

where we have used in the last term the notation (2.3). In (2.43), ¢, is an z-independent
shifting field. The second term in (2.43) makes the vacuum energy equal to zero, and the

third term is there to cancel the tadpole part of the shifted action.

If we denote by D{¢.;x — y} the propagator of the shifted theory,

8%S(¢]

5¢(2)66(y) | 4y, 244

iD_1{¢6;$ - y} =

and
D! {¢c; P}

2The interested reader can find in [4] all calculational details.
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its Fourier transform, the effective potential is found to be given by [4]:

Vest(de) = Vo(de) — %j (;i:r}))‘: logdet iD™*{¢.; p} + 4 <exp [ifd“mﬁ;{q&c; qb(:c)}]) (2.45)

The first term in (2.45) is just the classical tree-level potential. The second term is
the one-loop potential, where the determinant operates on any possible internal indices
defining the propagator. The third term summarizes the following operation: Compute all
1PI vacuum diagrams, with conventional Feynman rules, using the propagator of the shifted
theory D{¢.; p} and the interaction provided by the interaction lagrangian i 1{¢c; ¢(x)}, and
delete the overall factor of space-time volume [ d*z from the effective action (2.16). It can
be shown that the last term in (2.45) starts at two-loop. Every term in (2.45) resums an

infinite number of Feynman diagrams of the unshifted theory.

In the simple example of the lagrangian (2.22-2.23) it can be easily seen that the shifted

potential is given by

% 1 A A

V{QSC; ¢} = §m2(¢c)¢2 + §¢C¢3 -+ ?4_'¢4 (246)
where the shifted mass is defined in (2.27). The shifted propagator is found to be

D¢ p} = p* — m*(¢e) (2.47)

and the second term of (2.45) easily computed to be

V() = = | s loelp* — m*(60) (248)

which is easily seen to coincide with (2.24), up to field independent terms, so that after the

Wick rotation we recover the result (2.28).

The two-loop effective potential is harder than the one-loop term, but affordable. The
result can be found in ref. [4]. Diagrammatically, the one- and two-loop effective potentials

are given in fig. 4, where it is understood that we are using the Feynman rules of the shifted

-3 e

Figure 4: One and two-loop diagrams contributing to the effective potential of
(2.45)

theory, as stated above.
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Of course, the previous rules apply also to theories containing fermions and gauge bosons.
The Feynman rules of the shifted theory applied to all 1PI diagrams provide the total effective
potential according to (2.45). In particular it is trivial to obtain the one-loop effective
potential for fermions and gauge bosons, as given by eqs. (2.35) and (2.42), respectively.
Notice that the masses M7(¢.), in (2.35), and M7 (¢.), in (2.42) are the masses in the
corresponding shifted theories. Diagrammatically (2.35) and (2.42) can be represented in the

shifted theory as vacuum diagrams with one fermion and one gauge boson loop, respectively.

2.4 Renormalizations conditions

The final expression of the effective potential we have deduced in the previous section,
eqs.(2.28), (2.35) and (2.42), is ultraviolet-divergent. To make sense out of it we have to
follow the renormalization procedure of quantum field theories. First of all, to give a sense to
the ultraviolet behaviour of the theory we have to make it finite: i.e. we have to regularize
the theory. Second of all, all infinities have to be absorbed by appropriate counterterms,
which were not explicitly written in our previous expressions. The way these infinities are
absorbed by the counterterms depend on the definition of the renormalized parameters,
7.e. on the choice of the renormalization conditions. Finally the theory, written as a

function of the renormalized parameters, is finite.

In this way, the first step towards renormalizing the theory is choosing the regularization

scheme. We will first present the straightforward regularization using a cut-off of momenta.

2.4.1 Cut-off regularization

We will illustrate this scheme with the simplest theory: a massless real scalar field, with a

lagrangian
A+ 0A

4!
where §Z, ém? and é) are the usual wave-function, mass and coupling constant renormal-

£ = 5(1+52)(@,8)" — 56ms" - 4 (2.49)

ization counterterms. They have to be defined self-consistently order by order in the loop

expansion. Here we will compute everything to one-loop order.

The conventional definition of the renormalized mass of the scalar field is the negative
inverse propagator at zero momentum. In view of (2.20) we can write it as:
d*V
dd)g ¢e=0

m% = -T®(p=0) = (2.50)
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We can also define the renormalized coupling as the four-point function at zero external
momentum,

av
and the standard condition for the field renormalization is,
Z0)=1 (2.52)

Now we will compute the effective potential (2.28) cutting off the integral at p* = A2

First of all we can integrate over angular variables. For that we can use,

n/2
| #210) = 55 [ 10) (253)
where p = |p|?, and we can cast (2.28) as
Vilde) = 53 j ploglp + m?(¢.)]dp (2.54)

This indefinite integral can be solved with the help of (7]

f 1, , 1 {o?
a:log(a+a:)"—"§(:c —a)log(a+:r)-~2~ 5 —ox

Neglecting now in (2.54) field independent terms, and terms which vanish in the limit

A — o0, we finally obtain,

Va(e) = mogm?($IA? + =gm*(4e)log

mjffc) (2.55)

Using now (2.55) we can write the one-loop effective potential of the theory (2.49) as

A+ 68X A2 A2t Af? 1
_ 242 4 c A2 4 c 1 - 2.56
Vi=gtmige+ ——de+ g+ o s o8 — 5 {1:30)

We will impose now a variant of the renormalization conditions (2.50), (2.51) and (2.52).
For the renormalized mass we can impose it to vanish, 7.e.,

d*v

dep?

~0 (2.57)

For the renormalized gauge coupling A, we cannot use eq. (2.51) at a value of the field equal
to zero. There is nothing wrong with using a different renormalization prescription and using
a different subtraction point. We can use,

a*v

% i
de;

(2.58)

qsc:f"‘
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where p is some mass scale. Different choices of the scale lead to different definitions of the
coupling constant, ¢.e. to different parametrizations of the same theory, but in principle any
value of p is as good as any other.

Imposing now the conditions (2.57) and (2.58) to (2.56) we can write the counterterms

as,

A
L e 2.5
dm = 27r2A (2.59)
— 11X2 3X2 . A2
S\ = — _ 1 2.60
3972 3272 8 pA? (250}

Using now (2.59) and (2.60) in (2.56) we can write the one-loop effective potential in the

previous renormalization scheme as,
A A2g8 #2 25

Vg = —ds + —<log | = — = 2.61
= 1% o5en2 %8\ 2 T (R.61)
A similar renormalization scheme can be defined also for theories with fermions and/or
gauge bosons. However for gauge theories the regularization provided by the cut-off explicitly
break gauge invariance so that the dimensional regularization is better suited for them. In
the next section we will review the calculation of the effective potential in the dimensional

regularization and define the so-called MS scheme.

2.4.2 Dimensional regularization

This regularization scheme was introduced by t'Hooft and Veltman [8]. It consists in making
an analytic continuation of Feynman integrals to the complex plane in the number of space-
time dimensions n. The integrals have singularities which arise as poles in 1/(n — 4) and
have to be subtracted out. The particular prescription for subtraction is called a renormal-
ization scheme. In working with the effective potential it is customary to use the so-called

MS renormalization scheme [10].

We will compute now the one-loop effective potential (2.28) using dimensional regular-
ization, i.e.
— 1 2\2—-2 dnp 2 2
V(6o = 5% [ oo o+ mi(40) (2.62)

where p is a scale with mass dimension which needs to be introduced to balance the dimension

of the integration measure. It is simpler to compute the tadpole
V;=1(M2)2—g/ a'p 1
2 (2m)" p? + m?(de)

(2.63)
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where the meaning of V"’ is the derivative with respect to m?(¢.), using the basic formula of

dimensional regularization,

f p (p? + M 4y
and integrating the resulting integral with respect to m?(#.). One can then write the regu-

=2 (Mg)%“""ﬁ

larized potential (2.62) as,
1 1 m2(¢.)\ 2" ( n
o) = 2—-— 2.65
(o) = ~rae g () T(2-5) (265)
We can expand (2.65) in powers of 2 — n/2 and use the expansion
(2.66)

D) = - 75+ O()

is the Euler-Masccheroni constant [7]. We obtain for (2.65)

where v = 0.5772. ..
4
m(¢c) {— [2 L VE +10g47rl +10g (d)c) - g “**O(g' - 2)} (2.67)
2

Vilde) = 64m?

Now the MS renormalization scheme consists in subtracting the term proportional to
(2.68)

— v + log 47rJ

CM,E[ N
2-3

in the regularized potential (2.67). Therefore the divergent piece,

4
n’;4(:»;) {[2E2 —’yE+log47r}}

Therefore the final expression for the one-loop

has to be absorbed by the counterterms

potential, written in terms of the renormalized parameters, is
1 m2(p, 3
Vi(oe) = 7 2m4(c/)c) {10 # - 5} (2.69)

For instance, in the theory described by lagrangian (2.49), the counterterms are given

(2.70)

by,
om° =

32 1
oA =
3272 [2 -2
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and the effective potential is,

A A (g2 3
Vit = =0, <1 < - 2.71
7= 1% T gz 8 (2;3 2) (271)

The scale p along this section is related to the renormalization group behaviour of the

renormalized couplings and masses.

For a theory with fermion fields, one needs a trace operation in dimensional regularization,
as Trl = f(n). For instance, for an even dimension one could choose, f(n) = 2*2 for
Dirac fermions, and f(n) = 2"/2~! for Weyl fermions. However the difference f(n) — f(4) is
only relevant for divergent graphs and can therefore be absorbed by a renormalization-group
transformation. It is usually convenient to choose f(n) = f(4) = 2 for all values of n [11].
The effective potential (2.35) can be computed as in (2.62), leading to,

M} () 1 M%) 3 5
3)’27?2 {_ [2 _ 32_5 - Y+ log47r] + log J:J,Z - 5 + O(E — 2)} (2.72)

Vl((f)c) =-A

In the MS renormalization scheme, after subtracting the term proportional to (2.68) we
obtain,
1

ilde) = —A3 5

M3 (¢.) 3} (2.73)

M) {1 - =
Similarly, in a theory with gauge bosons as in (2.36), the effective potential (2.42) is

computed as,

4 2
Vi) = Tra) e {- [ L - vp + ogan] +1og 2 - 2 1 0% )|
(2.74)
where
Tr(A) =n -1 (2.75)

In the MS renormalization scheme, subtracting as usual the term proportional to (2.68)

one obtains the effective potential,

il

Vi(ge) = 3o

Mgb(qbc) 5} (2.76)

M;b(éc) {log _—.UT_ 5

A variant of the MS renormalization scheme is the DR renormalization scheme [9], where
the dimensional regularization is applied only to the scalar part of the integrals, while all

fermion and tensor indices are considered in four dimensions. In this case Tr(A) is taken



Quirés 473

equal to 3, as in (2.41), and subtracting from (2.74) the term proportional to (2.68) one
obtains,

1
6472

M%) {logM—gff;@ - §} (2.77)

Vi(ée) =3 5

2.5 One-loop effective potential for the Standard Model

In this subsection we will apply the above ideas to compute the one loop effective potential
for the Standard Model of electroweak interactions. The spin-zero fields of the Standard
Model are described by the SU(2) doublet,

b= [ Xt (2.78)
ﬁ gbc + h -+ X3

where ¢, is the real constant background, h the Higgs field, and x, (a=1,2,3) are the three

Goldstone bosons. The tree level potential reads, in terms of the background field, as

m? A
Valde) = — g2 + 24t (2:79)
2 4
with positive A and m?2, and the tree level minimum corresponding to
2
="
A
The spin-zero field dependent masses are

mi(p) = 3Ap —m?
ma(¢.) = APl —m’ (2.80)

so that mj (v) = 2\v? = 2m? and m2(v) = 0. The gauge bosons contributing to the one-loop

effective potential are W* and Z, with tree level field dependent masses,

miy(¢e) = %cﬁi | (2.81)
2 2
mig) = L

Finally, the only fermion which can give a significant contribution to the one loop effective

potential is the top quark, with a field-dependent mass

2 h’? 2
m}(ge) = 6 (2.82)

where h; is the top quark Yukawa coupling.
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The one-loop effective potential Vi(¢.) can be computed using egs. (2.28), (2.35) and
(2.42). As we have said in the previous subsection, these integrals are ultraviolet divergent.

They have to be regularized and the divergent contributions cancelled by the counterterms

&m? A
Vit = 60+ gl + 4t (2.83)
where we have introduced a counterterm 62 for the vacuum energy or cosmological constant

(see next section).

The final expression for the effective potential is finite and depends on the used regular-
ization and, correspondingly, on the renormalization conditions. Next we will describe the

two most commonly used renormalization conditions for the Standard Model.

2.5.1 MS renormalization

In this case we can use egs. (2.67), (2.72) and (2.74) for the contribution to Vi(¢.) of the
scalars, fermions and gauge bosons, respectively. In the MS renormalization scheme we sub-
tract the terms proportional to C,,, see eq. (2.68), which are cancelled by the counterterms

in (2.83). One easily arrives to the finite effective potential provided by

v 1 4 mzz((»bc)
(Cbc) = VO(@C) + 6472 Z nim, (‘;bc) log 9 - Cw‘. (284)
T =W,z hxt P
where C; aré constants given by,
5
Cwyp=Cs = & (2.85)
Ch=0,=0 = 3
h = Wy — g 9
and n; are the degrees of freedom
nw=86, ng=3 m=1, n, =3, n, =12 (2.86)
The counterterms which cancel the infinities are provided by,
mA
5 = i (nh + ny) Cuo
3Am? 1
2 _
b = ——1—6—1;2— (nh + gnx) Cuv (287)
3 [2¢*+(*+97)?® 4 ( 1 ) 2
A = —h 3 = A Cu
1672 [ 16 B S
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where C,, is defined in (2.68). We have explicitly written in (2.87) the contribution to the
counterterms from the Higgs sector, n, and n,. The latter give rise entirely to the mass
counterterms ém? and 692. For Higgs masses lighter than W masses, the Higgs sector can
be ignored in the one loop radiative corrections (as it is usually done) and the massive

counterterms are not generated.

2.5.2 Cut-off regularization

A very useful scheme [12] is obtained by regularizing the theory with a cut-off and imposing
that the minimum, at v = 246.22 GeV, and the Higgs mass does not change with respect to

their tree level values, i.e.,

c.t.
d(Vi + Vi*") - 0 (2.88)
de o=
d2(v'1 - ‘/1c.t.) _ 0
d(bg ¢c='v
Now we can use (2.55) to write
1 2 2, mi(¢e) mZ(¢e)
V’l(¢c) = 321["2 ._WEZ:th n; lmi (d)c)A + 9 108 A2 (289)
1= ) vy 1x

Imposing now the conditions (2.88) the infinities in (2.89) cancel against those in V£,

and the resulting ¢.-dependent potential is finite, and given by,

1 4 mf(¢c) 3 2 2
TP {mf(‘f’c) (l"g () 5) + 2m} (v)m} (¢c)} (2.90)

The counterterms 60, dm? and 6 in (2.83) turn out to be given by

V(¢c) = %(¢c) +

1 mi(v) — b\ mi(v) 3
_ ((miv) - milv) | 9 2.91
6 1672 ;"‘ ( v? ) log =5~ + 3 2
1 m?2 — b, m2(v) 3
2 _ _ e A2 2 ) bl 3 Sl At
m? = — ;n, — [A m2(v) + b; (log ot
m’ 2 2 1 mi(v) , 3
6N = 97 ,;;x n; [A - mi(v) + §bi log A2 + 5
where by = bz = b, =0 and b, = b, = —m?.

We can see again in (2.91) that ignoring the contribution to the one loop effective potential

from the Higgs sector results in the non appearance of a cosmological constant. However,
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unlike the MS scheme, §m? is also generated by the contribution of the gauge boson and top
quark loops. Of course the one loop counterterms we are computing along this section are

only useful for two loop calculations.

2.6 Improved effective potential and renormalization group

As we have seen in the previous section, the calculation of the effective action involves a
mass g which is not physical in the sense that all the theory should be independent of
the chosen value of x. In fact a change in u should be accompanied by a change in the
renormalized parameters (couplings and masses) such that all the theory remains unchanged.

This statement for the effective action can be expressed as an equation [3]

s, 0

ﬂa & 181 s 'Y(ﬁc e [(bc] =0 (2'92)

for an appropriate choice of the coefficients 3; and ~y, where A; denotes collectively all cou-
plings and masses of the theory. In the last term of (2.92) we have made use of the notation
(23

We define the effective potential V as in eq. (2.20),
. o |
V=V ¢) = V(g A, 0) - Z ;qﬁ”I‘(“) pi = 0) (2.93)
The role of the vacuum energy €,
Q = V(,u, Ai, 0)

has been recently stressed in ref. [13]. Using now the renormalization group equation (RGE)
satisfied by the effective action (2.92), we obtain the RGE satisfied by V as

l8+@

6
+ ﬁl ~ Bl

% aqscl } (2.94)

If we make a ¢.-independent shift to V such that,

V =V +AQ(u, \i)
0=0+A0 (2.95)

with the condition,

8 o
[“a_ + B } =0 (2.96)
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then the potential V satisfies the well known RGE,

0 e, a
#5; +ﬁibx = 7¢CB¢C

V=0 (2.97)

The formal solutions to egs. (2.96) and (2.97) can be written as,

V= V(A de) = V() A1), 6(2))
Q= Q(u, A) = Qult), M(t) (2.98)

where

p(t) = pexp(l)

o(t) = ¢:L(t) (2.99)
£0) = ew{- [ v0n(@)dt|
s = L
with the boundary conditions,

p(0) = p
b0) = 6. (2.100)
£0) = 1
Ai(0) = N (2.101)

In fact egs. (2.96) and (2.97) can be simply written as,

d

ik 2.102
altQ 0 ( )
d

d_tv = 0

which state that 2 and V are scale-independent. Of course the same happens to all deriva-

tives of V,
anv(“: /\ia ¢c)

(n) . = 2.103
V (IJ"I A'l) ¢C) 8¢? ( )
which by virtue of (2.99) satisfies
a'n.
v =g V(u(t), Mi(t), 6(2)) (2.104)

Op(t)"
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The RGE satisfied by V(™ can be obtained from (2.97) and the property,

aon l_,yqs_i]_[_(f)i:l an—n o
gz | "0p.] | *00.) 09z ~ " ogr
It is given by,
0 0 o]
s e B == Vi = pyv® 2.105
g+ B =10 | Vo= (2.105)
which implies that V(" is scale independent. .
In particular the scale independence of V™, n = 0,1, ..., means that we can fix the scale

t at any value, even ¢.-dependent. Suppose we fix ¢t by the arbitrary conditions,

,U,(t) = f(¢c)
t=1t(p) = log{f(dc)/u} (2.106)
p(t) = &(t(de))¢e

Using (2.106) we can write the effective potential and its derivatives (2.103) as ¢.-

functions,
Vi) =V [f(#e), Ai(t(de)), ¢(t(de))] (2.107)

and

1

VI (ge) = E(t(ge))" V(u(t), Ai(t), #()) (2.108)

ad)(t)n t=t(¢c)
Using eq. (2.105) one can easily prove that [14],

i) - £118 1o

Fixing the scale is a matter of convention. Fixing the scale, as we have just described, as
a function of ¢, (z.e. giving different scales for different values of the field) is usually done
to optimize the validity of the perturbative expansion, i.e. minimizing the value of radiative
corrections to the effective potential around the minimum of the field. A very interesting
result obtained in ref. [13] is: The RGE improved effective potential exact up to (next-to-
leading)* log order ® is obtained using the L-loop effective potential and the (L+1)-loop RGE

B-functions.

3The convention is (next-to-leading)® =leading, i.e. L = 0. For L = 1 the potential is exact to next-to-
leading log.
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3 Field Theory at Finite Temperature

The formalism used in conventional quantum field theory is suitable to describe observables
(e.g. cross-sections) measured in empty space-time, as particle interactions in an accelerator.
However, in the early stages of the universe, at high temperature, the environment had a non-
negligible matter and radiation density, making the hypotheses of conventional field theories
impracticable. For that reason, under those circumstances, the methods of conventional field
theories are no longer in use, and should be replaced by others, closer to thermodynamics,
where the background state is a thermal bath. This field has been called field theory at finite
temperature and it is extremely useful to study all phenomena which happened in the early
~universe: phase transitions, inflationary cosmology, ... Excellent articles [15, 16|, review
articles [17, 18] and textbooks [26] exist which discuss different aspects of these issues. In
this section we will review the main methods which will be useful for the theory of phase

transitions at finite temperature.

3.1 Grand-canonical ensemble

In this section we shall give some definitions borrowed from thermodynamics and statistical
mechanics. The microcanonical ensemble is used to describe an isolated system with
fixed energy E, particle number N and volume V. The canonical ensemble describes a
system in contact with a heat reservoir at temperature T the energy can be exchanged
between them and T, N and V are fixed. Finally, in the grand canonical ensemble
the system can exchange energy and particles with the reservoir: 7', V' and the chemical
potentials are fixed.

Consider now a dynamical system characterized by a hamiltonian * H and a set of
conserved (mutually commuting) charges @ 4. The equilibrium state of the system at rest in

the large volume V' is described by the grand-canonical density operator

p = exp(—®) exp{—zAjaAQA uﬁH} (3.1)

where

‘I’ElogTTexp{—ZaAQA—-ﬁH} (3.2)
A

is called the Massieu function (Legendre transform of the entropy), a4 and [ are Lagrange

4All operators will be considered in the Heisenberg picture.
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multipliers given by,
B = T (3.3)
aa = —Ppa
T is the temperature and p4 are the chemical potentials.
Using (3.1) one defines the grand canonical average of an arbitrary operator O, as
(0) =Tr(0p) (3.4)

satisfying the property (1) = 1. For instance, charge densities g4 and energy density F are
defined as,

1 1 09
— Oy i 3.5
s = @)=y (35)
1 109
F = —(H)=-—=—
V( ) V op
while pressure, P, and entropy, S, densities are
1 1
P = —(®)=—
1
§ = - (logp) (3.6)
leading to the relation
E=-P+TS+Y qaua (3.7)
A

In the following of this section we will always consider the case of zero chemical potential.

It will be re-introduced when necessary.

3.2 Generating functionals

As in the previous section, we will start considering the case of a real scalar field ¢(z),

carrying no charges (us = 0), with hamiltonian H, i.e.
P(z) = e p(0, T)e H (3.8)
where the time z° = t is analytically continued to the complex plane.

We define the thermal Green function as the grand canonical average of the ordered

product of the n field operators

GOz, ...,x,) = (Tedp(x1),. .., d(Tn)) (3.9)
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where the T ordering means that fields should be ordered along the path C in the complex

t-plane. For instance the product of two fields is defined as,

Tod(z)$(y) = Oc(® — y°)p(2)d(y) + Oc(y” — 2°)8(y)$(x) (3.10)

If we parameterize C ast = z(7), where 7 is a real parameter, T¢ ordering means standard

ordering along 7. Therefore the step and delta functions can be given as,
6c(t) = 6(7) (3.11)
o) = (2) o)
© or

The rules of the functional formalism can be applied as usual, with the prescription,

63(y)
6j(z)

and the generating functional Z”[j] for the full Green functions, defined as in the case of

Il

= 5o(2° - )5 (@ - §) (3.12)

field theory at zero temperature (eq. 2.9),

ZPj] = Z f d*zy ... d*nj(z1) ... §(2,)GO(z1,. .., T0) (3.13)
can also be written as,

2] = (Teexp {i [ dtoj@)o(@)}) (3.14)

which is normalized to Z°[0] = (1) = 1, as in (3.4), and where the integral along ¢ is supposed

to follow the path C in the complex plane.
Similarly, the generating functional for connected Green functions %% [7] is defined as in
(2.4)
ZP15) = exp{iW*[j]} (3.15)

and the generating functional for 1PI Green functions I'*[¢], as in (2.5), by the Legendre

transformation,

- 6W
D@ = Wl - [ da [5’ Lja) (3.16)
where the current j(zx) is eliminated in favor of the classical field ¢(z) as in (2.6)

_ B[4
#la) = 6;[(5]

(3.17)
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In (3.17) it is understood that the rule (3.12) for the functional derivative is to be used.

It follows from (3.16) and (3.17) that (see eq. (2.7))
STP[g] _
5¢(z)

—j(a) (3.18)

and that
é(x)

is the grand canonical average of the field ¢(z).

I
—_
. =
L

(3.19)

As in eq. (2.8) symmetry violation is signaled by
-
Sl (3.20)
66 |-

for a value of the field different from zero.

Again, as in field theory at zero temperature, in a translationally invariant theory ¢(z) =
¢. is a constant. In this case, by removing the overall factor of space-time volume arising in

each term of I'?[¢.|, we can define the effective potential at finite temperature as in (2.16),

Dl = - [ d'aVia(eo) (3:21)
and symmetry breaking occurs when

OV (de) —0 (3.22)

0,
for ¢, # 0.

3.3 Green functions

3.3.1 Scalar fields
Not all the contours are allowed if we require Green functions to be analytic with respect to
t. Using (3.10) we can write the two-point Green function as,

GOz - ) = I(a® — )G+ (& — y) + Bc(y” — 2°)C-(z — ) (3.23)
where

Gi(z —y) = (¢(z)o(y))
G_(z-y)=Gi(y—7) (3.24)
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Now, take the complete set of states |n) with eigenvalues E,,
H|n) = E,|n).
One can readily compute (3.24) at the point £ = ¢ = 0 as

Gi(z® —4°) = e [(m|g(0)[n)[? e~ En =8 giFin (" —s"438) (3.25)

m.n

so that the convergence of the sum implies that
-8 < Im(z® —¢°) <0

which requires Oc(z° — y°) = 0 for Im(z® — y°) > 0. From (3.24) it follows that the similar
property for the convergence of G_(z° —'¢°) is that,

0< Im(z-4°) <8

which requires 6¢(y°—z°) = 0 for Im(z°—4°) < 0, and the final condition for the convergence

of the complete Green function on the strip
-B<Im(z®—4") < (3.26)
is that we define the function 6c(t) such that
fc(t) =0 for Imf(t) > 0.

The latter condition implies that C' must be such that a point moving along it has a

monotonously decreasing or constant imaginary part.

A very important periodicity relation affecting Green functions can be easily deduced
from the very definition of G, (z) and G_(x), eq. (3.24). By using the definition of the
grand canonical average and the cyclic permutation property of the trace of a product of

operators, it can be easily deduced,
G.(t —1i6,7) = G_(t, ) (3.27)
which is known as the Kubo-Martin-Schwinger relation [20].
We can now compute the two-point Green function (3.23) for a free scalar field,

. I

where

wp = 4/P' 2+ m?, (3.29)
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which satisfies the equation

0“0, + m?] GO(z - y) = ~ibe(z — y) = —ibo(a® — 3°)6@ (7 — ) (3.30)

From (3.28), and using (3.23) we can write the two-point Green function as,

Ak d3p
GOz — f - .
(-T y) (2”)3/2(20)[‘;)]/2 (27r)3/2(2wp)1/2 (3 31)
{0c(z° = 4°) [e*+7v(a(k)al (p)) + e** 7 (at (K)a(p))] -
bo(y® - 2°) [e*== " (a(p)al (k) + e~ =+ (at (p)a(k))] }
Using the time derivative of (3.28),
bo) =i [ 722 () [l (p)e™ — alp)e] (3:32)
(2m)3/2* 2
and the equal time commutation relation,
[#(6,), (2. 9)] = 6@ - ) (333)
one easily obtains the commutation relation for creation and annihilation operators,
la(p), @l (k)] = 6@ (5 - k) (3.34)
and defining the Hamiltonian of the field as,
d®p '
H = [ et ()a(0) (3.35)
one can obtain, using (3.34) the thermodynamical averages,
(' (p)a(k)) = np(w,)8® (5 — k) (3.36)
(a(p)al (k) = [1 + np(w,)]6® (5 - )
where ng(w) is the Bose distribution function,
= L 3.37
nB(w)-—eBw_l (3.37)

We will give here a simplified derivation of expression (3.36). Consider the simpler
example of a quantum mechanical state occupied by bosons of the same energy w. There
may be any number of bosons in that state and no interaction between the particles: we will

denote that state by |n). The set {|n)} is complete. Creation and annihilation operators are
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denoted by a' and a, respectively. They act on the states |n) as, a'|n) = v/n+ 1|n+ 1) and

a|n) = y/n|n — 1), and satisfy the commutation relation,
[a, aT] e ] (3.38)

The hamiltonian and number operators are defined as H = wN and N = a'a, with eigen-

values wn and n, respectively.

It is very easy to compute now (a'a) and (aa') as in (3.36) using the completeness of
{|n)}. In particular,

(s o) co 1
—BHY _ —-BH — —Pun _ __ —
TF(eF%) = nzz:o(n|e |n) = Ee =T
and —y
o—BH gt —Bum _
Tr( @) = E ne 1= e P
from where,
(a'a) = np(w) (3.39)
and, using (3.38),
(aa') =1+ np(w) (3.40)

as we wanted to prove.

Using now (3.36) we can cast the two-point Green function (3.31) as,

d3 —ip(z— ip(z—
GOz -y) = f(_zw_);;_w_. [GC(IEO — %) @Y 4 go(y? — 20)ePlEY)
D

where ng(w,) is defined in (3.37). Making use now of the properties,

np(—w) = —e™ng(w) = —[1 + np(w)]
and .
6(p* —m®) = 5— [6(6° +wp) + 6(p° — wp)] (3.42)
one can write (3.41) as
G a—3) = [ B Zepp)e e [fela® =) + o) (343

where the function p(p) is defined by,

p(p) = 2x[08(p°) — 6(—p°)|6(p* —m?) (3.44)
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Now the particular value of the Green function (3.43) depends on the chosen contour C.
We will show later on two particular contours giving rise to the so-called imaginary and real
time formalisms. Before coming to them we will describe how the previous formulae apply

to the case of fermion fields.

3.3.2 Fermion fields

We will replace here (3.23) and (3.24) by,

SQ@-y) = (Teval@)Psy)) (3.45)
= fc(z° - yO)S;;S +0c(y° — xO)S;B

where « and [ are spinor indices, and
Sap(@ = y) = (Yal(@)1p(y)) (3.46)
are the reduced Green function, which satisfy the Kubo-Martin-Schwinger relation,

Sts(t — 6, %) = —S4(t, %) (3.47)

The calculation of the two-Green function for a free fermion field, satisfying the equation
(i 8 —m) g Sog (z — y) = ibc(z — ¥)bas (3.48)

follows lines similar to eqs. (3.28) to (3.44). In particular, one can define a Green function
S©) a5

i3 (@ —y) = (iv- 0+ m)asSO(z — y) (3.49)
where S(©)(z —y) satisfies the Klein-Gordon propagator equation (3.30). One can obtain for
S(©) the expression,

d® . :
SOa—y) = [ B [fe(a® - 1)) ") + 0oy - 2°)er=)

(2m)32w,
—np(wp) (ei:v(:r—y) + e~ip(m-y))] (3.50)
which can be cast as,
dip ;
(C) _ _ —ip(z—y) o __ .0y __ 0
SNz —y) = / (zﬂ)4p(p)e "9 [9o(z° — 4°) — nr(p”)] (3.51)

where ng(w) is the Fermi distribution function

i
efw +1

np(w) = (3.52)
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which satisfies the equation,

np(-w) = enpw) =1 - npWw)

Eq. (3.52 can be derived similarly to (3.39) as the mean number of fermions for a Fermi
gas. This time the Pauli exclusion principle forbids more than one fermion occupying a
single state, so that only the states |0) and |1) exist. They are acted on by creation and

annihilation operators b' and b, respectively as:

b'10) = [1),
bi|1) =0,
b|0) =0,
b|1) = |0),
and satisfy anticommutation rules,
{b, b’r} =1 (3.53)

Defining the hamiltonian and number operators as H = wN and N = b'h, we can

compute now the statistical averages of (b'b) and (bb') using the completeness of {|n)}.

1 1
Tr(e ) = 3 (nle™|n) = 3" e™™m =1+ 78

n=0 n=0
and

Tr(e™PHb'b) = Zne_ﬁ"‘m—e v
n=0

from where,
(bTb) = np(w) (3.54)

and, using (3.53),
() = 1 — np(w) (3.55)

as we wanted to prove.
3.4 Imaginary time formalism
The calculation of the propagators in the previous sections depends on the chosen path C

going from an initial arbitrary time ¢ to ¢ — i3, provided by the Kubo-Martin-Schwinger
periodicity properties (3.27) and (3.47) of Green functions. The simplest path is to take
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a straight line along the imaginary axis t = —i7. It is called Matsubara contour, since
Matsubara [21] was the first to set up a perturbation theory based upon this contour. In
that case eq. (3.11) reads as,

Oc(t) = 16(7) (3.56)

The two-point Green functions for scalar (3.43) and fermion (3.51) fields can be written

as,

G(r) = [ o) ™e ™™ [0(r) + mnc) (3.57)

where the symbol 1 stands for

ng =1  for bosons (3.58)

nr = —1  for fermions

Analogously, n(p°) stands either for ng(p®), as given by (3.37) for bosons, or nr(p°), as given

by (3.52) for fermions. It can be defined as a function of 7 as,

1
nw) = g (3.59)
The Green function (3.57) can be decomposed as in (3.23)
G(7,%) = G4 (7,%)0(1) + G_(1,Z)8(—7) (3.60)

Using now the Kubo-Martin-Schwinger relations, egs. (3.27) and (3.47), we can write,

G(t+8) = nG(t)for —<7<0 (3.61)
G(r—08) = nG(r)for 0<T7LP (3.62)

which means that the propagator for bosons (fermions) is periodic (antiperiodic) in the time

variable 7, with period .
It follows that the Fourier transform of (3.57)
Glwn, P) = :iﬁ dT/dB:cei“""_ﬁﬁG(T, &) (3.63)
(where 0 < a < f3) is independent of a and the discrete frequencies satisfy the relation,
ne*f =1 (3.64)

1.€.
wy, = 2n7f! (3.65)
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for bosons, and
= (2n+ 1)7p™" (3.66)
for fermions.

Inserting now (3.57) into (3.63) we can obtain the propagator in momentum space G.
The integral over T can be easily done with the result,

f“ drelion=rO)r [0(7)—!— L ]: : (3.67)

a-p efr’ —n| PP —dw,
where we have made use of eq. (3.64). We see that the integral (3.67) is independent of o,

as anticipated, and does not depend on 7. Inserting now (3.67) into (3.63) and making use

of the property,

1
[‘5(170 +wp) — 8(p° - wp)] (3.68)
2wy
we can write the propagator in momentum space as,

1

[B(p°) — 6(—p°))6(p* — m?) =

G(wn, P) = 3.69
(@, P) P2+ m?+w? (3:69)
where w,, is given by (3.65) for bosons and by (3.66) for fermions.
We can now define the euclidean propagator, A(—i7, Z), by
G(1,%) = iA(—i7, T) (3.70)

where G(7, Z) is the propagator defined in (3.57). Therefore, using (3.69), we can write the

inverse Fourier transformation,

~—1wn1+iﬁi —1 3.71
S am

n=—oco

where the Matsubara frequencies w, are defined in (3.65) for bosons and in (3.66) for

fermions.

From (3.71) one can deduce the Feynman rules for the different fields in the imaginary

time formalism. We can summarize them in the following way:

Boson propagator = P = [2nimB~, 7]

p*—m
Fermion propagator : —————L——~; p* =[(2n+ irp™ 1, 5]
v-p—m
Loop integral : s i f Lyl (3.72)
g, J (2m)3

Vertex function : —i6(27r)352 wi‘S(B)(Z i)

i
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There is a standard trick to perform infinite summations as in (3.72). For the case of

bosons we can have frequency sums as,

= _Z_: f(@° = iwn) (3.73)
with w, = 2nmB~!. Since the function
% I¢] coth(—; (z)
has poles at z = iw,, and is analytic and bounded everywhere else, we can write (3.73) as
ol Ldzf(z)g cot‘h(%ﬁz)

where the contour «y encircles anticlockwise all the previous poles of the imaginary axis. We
are assuming that f(z) does not have singularities along the imaginary axis (otherwise the
previous expression is obviously not correct). The contour v can be deformed to a new
contour consisting in two straight lines: the first one starting at —ico+ € and going to t00+¢,
and the second one starting at ico — € and ending at —ico — €. Rearranging the exponentials
in the hyperbolic cotangent one can write the previous expression as,

1 —i00—¢ 1 1
AR d o s —
2me ]ioo—e Zf(Z) 2 6_62 = 1] =

1 i00+€ 1 1
g L 1@ [+ 7
271 ./:-ioo-{—e Zf(Z) 2 T eﬁz -1

Now changing the variable z — —z in the first integral, the previous expression can be

written as,

1 s 1

100+-€
— mdz J) + (=) + 5= Zf_m de|f(2) + f(~2 ]ﬁz_

and the contour of the second integral can be deformed to a contour C' which encircles

clockwise all singularities of the functions f(z) and f(—z) in the right half plane. Therefore
we can write (3.73) as
Z f@° = iw,) —/__mm[f(z) + f(=2)] +/ o)+ f(=2)]  (3.74)

where nB(z) is the Bose distribution function (3.37).

Eq. (3.74) can be generalized for both bosons and fermions as,

53 f68 i) = [ EIE) + H=a 4+ [ I + f-a] (6T
where the symbol 7 is defined in (3.58) and the distribution functions n(z) in (3.59). Eq.
(3.75) shows that the frequency sum naturally separates into a T independent piece, which
should coincide with the similar quantity computed in the field theory at zero temperature,

and a 7' dependent piece which vanishes in the limit T'— 0, 7.e. 8 — oo.
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3.5 Real time formalism

The obvious disadvantage of the imaginary time formalism is to compute Green functions
along imaginary time, so that going to the real time has to be done through a process of
analytic continuation. However, a direct evaluation of Green function in the real time is
possible by a judicious choice of the contour C in (3.9). The family of such real time contours
is depicted in fig. 5 where the contour C is

Imt
@ > e
ti-io " Y C3
fi—iﬁ

Figure 5. Contour used in the real time formalism

c=cJcJcsJC

where C goes from the initial time ¢; to the final time tf, Cs from t; to t; — 0, with
0 <o < B, C, from ty —io to t; — 0, and Cy from t; — io to t; — i8. Different choices
of o lead to an equivalence class of quantum field theories at finite temperature [22]. For

instance the choice 0 = 0 leads to the Keldish perturbation expansion [23], while the choice
o=03/2 (3.76)
is the preferred one to compute Green function.

Computing the Green function for scalar (3.43) and fermion (3.51) fields taking the path
depicted in fig. 5 is a matter of calculation, as we did for the imaginary time formalism
in (3.57)-(3.69). One can prove that the contribution from the contours C5 and C4 can be
neglected [18, 24]. Therefore, for the propagator between x% and y® there are four possibilities
depending on whether they are on C; or C,. Correspondingly, there are four propagators
which are labelled by (11), (12), (21) and (22).
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Making the choice (3.76), the propagators for scalar fields (3.43) can be written, in

momentum space, as

G (p) GUA(p) Afp) 0
G(p) = = Mpg(f, Mg (0,
where A(p) is the boson propagator at zero temperature,
1
Alp) = —
(p) p? —m? + ie
and the matrix Mg(3,p) is given by,

coshf(p) sinh6(p) )

Mpg(B,p) = ( sinh@(p) coshf(p)

where

~1/2
sinhf(p) = e Pwr/? (1 - e_ﬁ"’”) /

coshf(p) = (1 - e_’g"”’)wlll2

Using now (3.77), (3.79), (3.80), and the property

1
T + 1€

1
= 'P; ok 7!’6(3‘)

(3.77)

(3.78)

(3.79)

(3.80)

where P means the principal part, one can easily write the expression for the four bosonic

propagators, as

GM(p) = Alp) + 2mnp(w,)é(p* — m?)
G(22) (p) — G(ll)*
G2 —  ggePur/2y B(wp)é(p2 - m?)
a?) — (2

Similarly, the propagators for fermion fields can be written as

( S5 GLP(v) )

S(p)a,['} =
G&(p) G2 (p)

= Mp(B,p) ( (7P masAlp) 0 ) Mr(6,p)

0 (7 p+m)apA*(p)

(3.81)

(3.82)
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where Ap(p) is given by (3.78), and the matrix Mz(8,p) by,

Me(8,9) = ( et Si“"g(p)) (389
sinh @(p) cosh 8(p)
with
sinh0(p) = e/ (1-1-6_’6“’1’)—1/ ’
coshf(p) = [6(p°) — 6(=p")] (14 ) (3.84)

In the same way, using now (3.82), (3.83), and (3.84) one can easily write the expression

for the four fermionic propagators, as

SW(p) = (y-p+m) (A(p) — 2mnp(wp)d(p® — mi’))

S@(p) = sUlb= (3.85)
S = —dn(y-p+m)°) — 0(—p")le™*np(w,)b(p* — m?)
G(Zl) — _G(12)

As one can see from (3.81) and (3.85), the main feature of the real time formalism is
that the propagators come in two terms: one which is the same as in the zero temperature
field theory, and a second one where all the temperature dependence is contained. This is
welcome. However the propagators (12), (21) and (22) are unphysical since one of their time
arguments has an imaginary component. They are required for the consistency of the theory.

The only physical propagator is the (11) component in (3.81) and (3.85).

Now the Feynman rules in the real time formalism are very similar to those in the
zero temperature field theory. In fact all diagrams have the same topology as in the zero
temperature field theory and the same symmetry factors. However, associated to every field
there are two possible vertices, 1 and 2, and four possible propagators, (11), (12), (21) and
(22) connecting them. All of them have to be considered for the consistency of the theory. In
the Feynman rules, type 2 vertices are hermitian conjugate with respect to type 1 vertices.
The golden rule is that: Physical legs must always be attached to type 1 vertices. Apart from
the previous prescription, one must sum over all the configurations of type 1 and type 2

vertices, and use the propagator G(* or S to connect vertex a with vertex b.

There is now a general agreement in the sense that the imaginary time formalism and
the real time formalism should give the same physical answer [25]. Using one or the other
is sometimes a matter of taste, though in some cases the choice is dictated by calculational

simplicity depending on the physical problem one is dealing with.
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4 The effective potential at finite temperature

In this section we will construct the (one-loop) effective potential at finite temperature,
using all the tools provided in the previous sections. As we will see, in particular, the
effective potential at finite temperature contains the effective potential at zero temperature
computed in section 2. The usefulness of this construction is addressed to the theory of
phase transitions at finite temperature. The latter being essential for the understanding of
phenomena as: inflation, baryon asymmetry generation, quark-gluon plasma transition in
QCD,... We will compare different methods leading to the same result, including the use of
both the imaginary and the real time formalisms. This exercise can be useful mainly to face

more complicated problems than those which will be developed in this course.

4.1 Scalar fields

We will consider here the simplest model of one self-interacting scalar fields described by the
lagrangian (2.22) and (2.23). We have to compute the diagrams contained in fig. 1 using
the Feynman rules described in (3.72), for the imaginary time formalism, or in (3.81) for the

real time formalism. We will write the result as,

Vii(e) = Vo(de) + V() (4.1)

where Vp(¢.) is the tree level potential.

4.1.1 Imaginary time formalism

We will compute the diagrams in fig.1. Using the Feynman rules in eq. (3.72), eq. (2.28)
translates into,
VE(¢,) = L i f dp log(w? + w?) (4.2)
P T g (2m)®

n=-—00

where w,, are the bosonic Matsubara frequencies defined in eq. (3.65) and
w? = 2+ m?(¢c) (4.3)
m? being defined in (2.27).

The sum over n in (4.2) diverges, but the infinite part does not depend on ¢.. The finite

part, which contains the ¢. dependence, can be computed by the following method [15].
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Define,
v(w)= Y log(w?+ w?) (4.4)
then,
dv a 2w
i _Z_: R (4.5)
Using the identity,
= Y 1 1
= = —— th 4.6
W= 3 e = —g groothmy (46)
1 LTy e 2y
= —— r—
2y 2 1—e2m
with y = fw/2m we obtain,
v 1 g
- S T — 4.7
Ow 26 [2+l—e"ﬂ“’] (4.7)
and
w 1 —fw .
v(w) = 20 3 + B log (1 —e ) + w — independent terms (4.8)
Substituting finally (4.8) into (4.2) one gets,
dp [w 1
Bl ) — A o _ P

One can easily prove that the first integral in (4.9) is the one-loop effective potential at

zero temperature. For that we have to prove the identity,

o dx

2 5 —log{—2* + w? — ie) = 5 + constant (4.10)
he d 1 1
o dr
= = 4.11
Y oo oM~ +w? —ie 2 (Ll

Integral (4.11) can be performed closing the integration interval (—oco,00) in the complex

z plane along a contour going anticlockwise and picking the pole of the integrand at = =
—vw? — ie with a residue 1/2w. Using the residues theorem eq.(4.11) can be easily checked.
Now we can use identity (4.10) to write the temperature independent part of (4.9) as

4

2 27r)3 2 (2 )4

log(—p2 + w® — ie) (4.12)

and, after making the Wick rotation p° = ipg in (4.12) we obtain,

L d3p 1 d'p
2 (21r)3 T2 (2m)4

log[p? + m?(¢.)) (4.13)
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which is the same result we obtained in the zero temperature field theory, see eq. (2.28).

Now the temperature dependent part in (4.9) can be easily written as,

o og (1- ) -

5/
BJ (2
where the thermal bosonic function Jg is defined as,

Jp[m?3? = /0 ” dz 2 log [1 —e Vv f”ﬁzmz] (4.15)

2ﬁ4 Jp[m*(4.)5? (4.14)

The integral (4.15) and therefore the thermal bosonic effective potential admits a high-

temperature expansion which will be very useful for practical applications. It is given by

4 2, 2 2\ 3/2 4 2
2 2y T T m T {m 1m m
JB(m /T) = —E,)'ﬂ-ﬁﬁ——(,rz) —é—iﬁlogasz (416)
i 20+ 1) 1\ [ m2 \*?
_on12 31yt D (e —)
" Z;( S ern T\ 3) \aer

where a, = 167% exp(3/2 — 2vg) (loga, = 5.4076) and ( is the Riemann C—funcﬁon.

There is a very simple way of computing the effective potential: it consists in computing
its derivative in the shifted theory and then integrating! In fact the derivative of the
effective potential

dvy
doe
is described diagrammatically by the tadpole diagram of fig. 6. In fact using the Feynman

rules in (3.72) one can easily write for the tadpole of fig. 6 the expression,

Figure 6: Tadpole diagram for scalar loop

dvy’ g, 1
=23 5 / w2+w2 (4.17)

n=—0oo
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or, using the expression (2.27) for m?(¢,),

avf 1 & #p 1
() = 25 = / ErPal 4 R (4:28)

n=—oo

Now we can perform the infinite sum in (4.18) using the result in eq. (3.74) with a
function f defined as,

1
f2) = ———F (4.19)
and obtain for the tadpole (4.18) the result
B 3 100
dvy =_/dp l/ﬁl "‘fdz-l 1 (4.20)
dm?(¢.) (2m)3 | 2 J-ico 2miw? — 22 Jo 2mieP? — 1w? — 22

The first term in (4.20) gives the §-independent part of the tadpole contribution as,

Py . (4.21)

2 Joioo 2miw? — 22
We can now close the integration contour of (4.21) anticlockwise and pick the pole of (4.19)

at z = —w with a residue 1/2w. The result of (4.21) is

i (4.22)

The second term in (4.20) gives the S-dependent part of the tadpole contribution. Here the

integration contour encircles the pole at z = w with a residue

1 1
il 4.23
2w efw — 1 (428)
Adding (4.22) and (4.23) we obtain for the tadpole the final expression,
3
dVi(¢.) _ 1 dp [i 1 1 (4.24)
dm?(¢.) 2/ (27)3 2w wefr -1

Now, integration of (4.24) with respect to m?(¢,) leads to the expression (4.9) for the thermal
effective potential and, therefore, to the final expression given by (4.13) and (4.14).

4.1.2 Real time formalism

As we will see in this section, the final result for the effective potential (4.9) can be also
obtained using the real time formalism. Let us compute the tadpole diagram of fig. 6. Since
physical legs must be attached to type 1 vertices, the vertex in fig. 6 must be considered

of type 1, and the propagator circulating around the loop has to be considered as a (11)
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propagator. Application of the Feynman rules (3.81) to the tadpole diagram of fig. 6 leads

to the expression °

dVf M. [ d'p i
d¢, 2 /(2#)4 p? — m2(¢.) + i€

+ 2mnp(w)s(p® — m2(q5c))} (4.25)

or, using as before the expression (2.27) for m?(¢.),

dvy 1 d4p[ f

dm?(¢.) 2J (2m) — + 2mnp(w)é(p” — m (d>c))] (4.26)

_p2 + m2(¢c) — 1€

Now the (-independent part of (4.26), after integration on m?(¢.) contributes to the

effective potential as

i [ d

2 2 :
~32J @ log(—p® + m*(¢.) — te) (4.27)
Finally using eq. (4.10) to perform the p° integral, we can cast eq. (4.27) as
d’p w
= 4.28
(27)3 2 (4:28)

which coincides with the first term in (4.9).

Integration over p° in the S-dependent part of (4.26) can be easily performed with the
help of the identity (3.42) leading to,

] (g%—gﬁlu—}ng(w) (4.29)

which, upon integration over m?(¢.) leads to the second term of eq. (4.9).

We have checked that trivially the real time and imaginary time formalisms lead to the

same expression of the thermal effective potential, in the one loop approximation.

4.2 Fermion fields

We will consider here a theory with fermion fields described by the lagrangian (2.32). As in
the scalar case, we have to compute the diagrams contained in fig. 2, using the Feynman
rules either for the imaginary or for the real time formalism, and decompose the thermal

effective potential as in (4.1).

SWe are replacing in (3.81) the value of w, given by (3.29) by the corresponding value w given by (4.3)
in the shifted theory. '
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4.2.1 Imaginary time formalism

The calculation of the diagrams in fig. 2, using the Feynman rules (3.72), yields,

be) = i f P = log(w? + w?) (4.30)

n=—oo

where w,, are the fermionic Matsubara frequencies defined in eq. (3.66) and

w?=p%+ M;. ' (4.31)

The sum over n is done with the help of the same trick employed in (4.4)-(4.8). Let f(y)
be given by (4.6), then,

#e - kbl
o P T AP 2\
Y 1 (y)
— )~ Le(Y 4.32
and using (4.6) we get,
s Y 2:E_Ew1 (4.33)
m=1,3,... ¥y +m 4 2 gVt
The function v(w) in this case can be written as,
=2 Z log [ 2] (4.34)
n=1,3,.
and its derivative,
2Ly (4.35)
Ow w57 y? + n?
where y = fw/m. Then using (4.33) we get
ov 1 1
— e B S e 4.36
Ow b [2 1+ eﬂ“’] (4.36)
and, after integration with respect to w,
w 1 _fw .
v(w) =208 5 + 3 log (1 +e ) + w — independent terms (4.37)

Replacing finally (4.37) into (4.30) one gets,

VE(¢,) = —2X ] (;’%))3 [% + % log (1 + e_ﬁ“’)} (4.38)
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The first integral in (4.38) can be proven, as in (4.10)-(4.13), to lead to the one-loop effective
potential at zero temperature (2.35). The second integral, which contains all the temperature

dependent part, can be written as,

—2)\6[

where the thermal fermionic function Jr is defined as,

;log (1+e7) = ~2\ ﬁ4JF[Mf(¢C)ﬁ2] (4.39)

i1 [ . »

As in the scalar field, the integral (4.40) and therefore the thermal fermionic effective
potential admits a high-temperature expansion which will be very useful for practical appli-

cations. It is given by

Tt wm?2 1 m? m2

2 2 T s M
Tr(m’/T°) = 355~ e 32T41ga.T2

'/ i(_ )£C (2¢ +)1) ( 2—25—1) r (£+ 1) ( T;Z)E+2

where a; = 7% exp(3/2 — 2vg) (loga; = 2.6351) and ( is the Riemann ¢-function.

(4.41)

As we did in the case of the scalar field, there is a very simple way of obtaining the

effective potential, computing the tadpole of fig. 7 in the shifted theory, and integrating over

Figure 7: Tadpole diagram for fermion loop

¢.. Using for the fermion propagator (3.72)

y-p+ M
p* — M}

and the trace formula,
Tr ("y-p—l— Mf) = QAMf
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we can write for the tadpole the expression,

WY _oarm T f (4.42)
do. fﬁ . 271')3 w? + w2 '
or, using the expression My(¢p.) = I'¢., where I' is the Yukawa coupling,
dvyf
W 4.43
dM]%(qbc) 2ﬁ n;mj (2m)3 w2 + w2 b8)

Now the infinite sum in (4.43) can be done with the help of (3.75), with f(z) given by
(4.19), as

A 3 100
Y emf it L pE 11 (4.4
dM7(¢.) (2m)% | 2 J-ico 2miw? — 22 Jo 2miefr + 1w? — 22

The first term of (4.44) reproduces the zero temperature result (2.35), after M} inte-

gration, by closing the integration contour of (4.21) anticlockwise and picking the pole at
z = —w with a residue 1/2w. The second term in (4.44) gives the 5-dependent part of the

tadpole contribution. Here the integration contour C' encircles the pole at z = w with a

residue y
4.45
(= 2)\) 2wefv + 1 445)
Adding all of them together, we obtain for the tadpole the final expression
3
Al __, [ d P [L _ l_/_jw_l__ (4.46)
dM3 () 2m)} 12w wefr+1

and, upon integration with respect to Mf we obtain the result previously presented in eq.
(4.38).

4.2.2 Real time formalism

As for the case of scalar fields, the thermal effective potential for fermions (4.38) can also be
very easily obtained using the real time formalism. We compute again the tadpole diagram of
fig. 7, where the vertex between the two fermions and the scalar is of type 1 and the fermion
propagator circulating along the loop is a (11) propagator. Application of the Feynman rules
(3.85) leads to the expression

i

) — 2mnp(w)8(p* — M7) (4.47)

dm -
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or, using as before the expression for M)?,

avf  Trl g d% —i
dM3(¢) 2 (2m)* | —p® + M} —ie

= 2mnp(w)é(p® — M}) (4.48)

Now the B-independent part of (4.48), after integration on M?_, contributes to the effective

potential,

3
- Trlf d p =z (4.49)
which coincides with the first term in (4.38).

Integration over p° in the 3-dependent part of (4.48) can be easily performed with the
help of the identity (3.42) leading to,

11 [ L —10; i)  (450)

which, upon integration over M} leads to the second term of eq. (4.38).
4.3 Gauge bosons
The thermal effective potential for gauge bosons in a theory described by the lagrangian

(2.36) is computed in the same way as for previous fields. The simplest thing is to compute

the tadpole diagram of fig 8 using the shifted mass for the gauge boson. In the Landau

Figure 8: Tadpole diagram for gauge-boson loop

gauge, the gauge boson propagator reads as,
i
" (p) = —————A“ 4.51
,(p) T (4.51)

where A is the projector defined in (2.38) with a trace equal to 3 (see eq. (2.41)). Therefore

the final expression for the thermal effective potential is computed as,

1 d'p 2 2 2
‘/lﬁ(qsc) = TT(A) {5 (271')4 log[p £ Mgb(‘;bc)] 2ﬂ4 JB[ ¢c)}6 ]} (452)
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where the thermal bosonic function Jp in (4.15). The first term of (4.52) agrees with the
zero temperature effective potential computed in (2.42), and the second one just counts that
of a scalar field theory a number of times equal to the number of degrees of freedom (3) of

the gauge boson.

4.4 The Standard Model case

The Standard Model of electroweak interactions was previously defined through egs. (2.78)-
(2.82), and the corresponding one loop effective potential at zero temperature computed
through egs. (2.83)-(2.91) using various renormalization schemes and the contribution of
gauge and Higgs bosons and the top quark fermion to radiative corrections. Here we will
compute the corresponding one loop effective potential at finite temperature. We will use
the renormalization scheme of eq. (2.88), so that the renormalized effective potential at
zero temperature is given by eq. (2.90), and consider only the contribution of W and Z
bosons, and the top quark to radiative corrections. This is expected to be a good enough

approximation for Higgs masses lighter than the W mass.

Using eqs (4.39) and (4.52) one can easily see that the finite-temperature part of the

one-loop effective potential can be written as,

T4

2m?

AV (¢, T) = > mip[mi(¢e)/T?] + nuJr(mi(¢c) /T (4.53)

i=W,Z

where the function Jp and Jr where defined in eqgs. (4.15) and (4.40), respectively.

Using now the high temperature expansions (4.16) and (4.41), and the one loop effective

potential at zero temperature, eq. (2.90), one can write the total potential as,

AT
V(¢pe, T) = D(T? — T?)¢? — ET¢® + %qﬁg (4.54)
where the coefficients are given by
2 2 2
D:2mw+mz+2mt (4.55)
8u?
3 3
E = M (4.56)
473
2 _ 8Bv?
¢ S L 4.57
B= m (2mf,v -+ m} - 4mf) (4.58)
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3 4 my 4 my 4 m;
AT)=A— T (me log AT + mjy log ATE 4m; log AT (4.59)

where log Ag = loga, — 3/2 and log Ar = logar — 3/2, and ap, ar are given in (4.16) and
(4.41). All the masses which appear in the definition of the coefficients, eqs. (4.55) to (4.59),
are the physical masses, 7.e. the masses at the zero temperature minimum. The peculiar
form of the potential, as given by eq. (4.54), will be useful to study the associated phase

transition, as we will see in subsequent sections.

5 Finite temperature phase transitions in field

theories

All cosmological applications of field theories are based on the theory of phase transitions
at finite temperature, that we will briefly describe throughout this section. The main point
here is that at finite temperature, the equilibrium value of the scalar field ¢, (¢(T')), does not
correspond to the minimum of the effective potential VE=0(¢), but to the minimum of the
finite temperature effective potential Vé‘%(q{)), as given by (4.1). Thus, even if the minimum of
VI=0(4) occurs at (¢p) = o # 0, very often, for sufficiently large temperatures, the minimum
of V& (#) occurs at (¢(T)) = 0: this phenomenon is known as symmetry restoration at
high temperature, and gives rise to the phase transition from ¢(T) = 0 to ¢ = 0. It was
discovered by Kirzhnits [26] in the context of the electroweak theory (symmetry breaking
between weak and electromagnetic interactions occurs when the universe cools down to a
critical temperature T, ~ 10? GeV) and subsequently confirmed and developed by other
authors [27, 15, 16, 28].

The cosmological scenario can be drawn as follows: In the theory of the hot big bang,
the universe is initially at very high temperature and, depending on the function V;%(qb),
it can be in the symmetric phase (¢(T)) = 0, i.e. ¢ = 0 can be the stable absolute
minimum. At some critical temperature 7, the minimum at ¢ = 0 becomes metastable
and the phase transition may proceed. The first transition may be first or second order.
First-order phase transitions have supercooled (out of equilibrium) symmetric states when
the temperature decreases and are of use for baryogenesis purposes. Second-order phase
transitions are used in the so-called new inflationary models [29]. We will illustrate these

kinds of phase transitions with very simple examples.
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5.1 First and second order phase transitions

We will illustrate the difference between first and second order phase transitions by con-
sidering first the simple example of a potential ® described by the function,

L)

V(g,T) = D(T* - T2)¢* + =

¢* (5.1)

where D and T are constant terms and ) is a slowly varying function of 7 7. A quick
glance at (4.16) and (4.41) shows that the potential (5.1) can be part of the one-loop finite

temperature effective potential in field theories. More explicit applications will be done later

on.
At zero temperature, the potential
A
V($,0) = ~T2Dg? + 34" (5.2)

(where A = A(0)) has a negative mass-squared term, which indicates that the state ¢ = 0
is unstable, and the energetically favored state corresponds to the minimum of (5.2) at
#(0) = :I:\/@To, as shown in fig. 9, where the symmetry ¢ «— —¢ of the original theory is
spontaneously broken.

V (¢)
i

-\/%\QTO \/%:DTO

Figure 9: Typical shape of the zero temperature potential (5.2) with spontaneous
symmetry breaking

5The ¢ independent terms in (5.1), i.e. V(0,T), are not explicitly considered.
"The T dependence of A will often be neglected in this section.
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The curvature of the finite temperature potential (5.1) is now T-dependent,
m?(¢, T) = 3A¢® + 2D(T? - T?) (5.3)

and its stationary points, .e. solutions to dV (¢, T)/d¢ = 0, given by,

HT) = 0
and (5.4)
¢(T) = \}_QD(??T_) =

Therefore the critical temperature is given by T,. At T > T,, m2(0,7) > 0 and the origin
¢ = 0 is a minimum. At the same time only the solution ¢ = 0 in (5.4) does exist. At
T =T,, m*(0,T,) = 0 and both solutions in (5.4) collapse at ¢ = 0. The potential (5.1)

becomes,

V($,T.) = i%@l& (5.5)

At T < T,, m*0,T) < 0 and the origin becomes a maximum. Simultaneously, the solution
#(T) # 0 does appear in (5.4). This phase transition is called of second order, because
there is no barrier between the symmetric and broken phases. Actually, when the broken
phase is formed, the origin (symmetric phase) becomes a maximum. The typical potential

(5.1) which describes a second order phase transition is illustrated in fig. 10. The phase

Vio,T)
| T>T,

T=T°

< - T<To T/=0

P

o

Figure 10: The potential of eq. (5.1) describing a second order phase transition.

The potential is normalized at ¢ = 0 for all values of T

transition may be achieved by a thermal fluctuation for a field located at the origin.
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However, in many interesting theories there is a barrier between the symmetric and
broken phases. This is characteristic of first order phase transitions. A typical example is
provided by the potential 8,

\T)

V($,T) = D(I* ~ T2)¢* ~ BT¢* + =

¢* (5.6)

where, as before, D, Ty and F are T independent coefficients, and A is a slowly varying
T-dependent function. Notice that the difference between (5.6) and (5.1) is the cubic term
with coefficient . This term can be provided by the contribution to the effective potential
of bosonic fields (4.16). The behaviour of (5.6) for the different temperatures is displayed

in fig. 11, and its behaviour reviewed in refs. [12, 30]. At 7" > T} the only minimum is at

V(o,T)

T>T1 T=T1

Figure 11: A typical first order phase transition. The potential has been normal-
ized at ¢ = 0 for all values of T

d=0 AT =T,
T2 — 8A(T,)DT?
7 8A(Th)D - 9E?
a local minimum at @¢(T) # 0 appears as an inflection point. The value of the field ¢ at
T = T1 iS,

(5.7)

(OT) = g (59)

8See, e.g. the one-loop effective potential for the Standard Model, eq. (4.54).
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A barrier between the latter and the minimum at ¢ = 0 starts to develop at lower tempera-

tures. Then the point (5.8) splits into a maximum

du(T) = Qifg) -3 AET) \/OE2T? — 8\(T)D(T? — T2) (5.9)
and a local minimum
bun(T) = ;E(;) - AET) VJOET? — 8A(T)D(T? — T2) (5.10)
At a given temperature T' = T,
72 = AT)DT, (5.11)

© XNT.)D - E?
the origin and the minimum (5.10) become degenerate,
V(0,T.) = V(¢(Te), Te) (5.12)

From (5.9) and (5.10) we find that

om(Te) = T, (5.13)
and s
Pun(Te) = A(Tc; (5.14)

For T' < T, the minimum at ¢ = 0 becomes metastable and the minimum at ¢,,(T) # 0

becomes the global one. At T' = T, the barrier disappears, the origin becomes a maximum
plTy) =1 (5.15)

and the second minimum becomes equal to

_ 3ET,
Y

P (To) (5.16)

The phase transition starts at 7' = T, by tunnelling. However, if the barrier is high enough
the tunnelling effect is very small and the phase transition does effectively start at a tem-
perature T, > T; > T,. In some models T, can be equal to zero. The details of the phase
transition depend therefore on the process of tunnelling from the false to the global minimum.

These details will be studied in the rest of this section.
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5.2 Bubble nucleation

The transition from the false to the true vacuum proceeds via quantum penetration of
the barrier. We will use the term quantum tunnelling to refer to tunnelling at zero
temperature, and thermal tunnelling to refer to tunnelling at finite temperature. It can
be understood, in both cases, in terms of formation of bubbles of the broken phase in the
sea of the symmetric phase. Once this has happened, the bubble spreads throughout the

universe converting false vacuum into true one.

5.2.1 Quantum tunnelling

The dynamics of bubble nucleation at zero temperature has been studied by Coleman et al.
[31, 32, 33]. It is found that the probability of decay of the false vacuum per unit time per
unit volume has the form

r

— = Ae" % [1+ O(h)] (5.17)
v

where the coefficients A [32] and B [31] depend on the theory under study. In this section

we will study the value of B (which is the most relevant quantity in (5.17) in field theories)

following closely the work of Coleman in ref. [31].

Consider first a particle of unit mass moving in one dimension with a lagrangian,

L=3¢ V(g (5.18)

and a potential as the one in fig. 12. In semiclassical language, the particle penetrates the
potential barrier and materializes at the escape point ¢ with zero kinetic energy, after which

it propagates classically.

Just to simplify the analysis, take now the square potential shown in fig. 13. The wave

function satisfies the Schrodinger equation,

h2 82 i
-+ V)| e = Eue) (5.19)

so that inside the region 0 < z < L the wave function is given (in natural units) by,
P(z) ~ e VBB (5.20)
for E < V4. The density probability for barrier penetration is thus, for E = 0,

2 —202Vo)/2L __ L 1/2
P~ (L))" ~e =e—2 [ [2V(z)]/“dx (5.21)
0
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Vi(q)

—q
q0 U\‘\

Figure 12: Potential used in (5.18) to study the probability of quantum jump to

overcome the barrier
For an arbitrary potential V(q) the coefficient B in (5.17) is given by

B=2 [ dg2V(q)" (5.22)

q0

We can generalize this description to a particle moving in N dimensions: ¢(t). The
lagrangian is,
1

L=§7-V(@ (5.23)

and then, according to Banks, Bender and Wu [34],

B=2 [ ds(2v)" (5.24)

Jo

where ds? = dg'- dg, go is a local minimum with V(g) = 0 and & € %, the surface of zeroes.
The integral (5.24) is over the path for which B is a minimum, ¢.e. the path which satisfies

5fa ds(2V)/2 = 0 (5.25)
q

-

0

This means that the particle penetrates the barrier along the path of least resis-

tance.
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V(X])

-X

0 L.

Figure 13: Square potential

We just have to determine now the paths satisfying (5.25). To do that Coleman [31] uses

the fact that the solutions to the variational problem

6 f? ds[2(E - V)"? =0 (5.26)

g0

with fixed end points, are the paths in configuration space given by the Euler-Lagrange

equations
2 =
&7 _ v (5.27)
dt? aq
with R
1 [dq
E==|= V 5.28
. [dt] " (5.28)
The differences between (5.25) and (5.26) are:
e £ =0in (5.25).
e The sign of V is reversed in (5.25).
e 7 is not a fixed point in (5.25), but & € .
Ignoring the last point, the solutions to (5.25) are given by,
&q_av (5.29)
dr?  9q
with R
1|dq
1M _v_g 5.30
2 [d'r] (5.30)
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Notice that (5.29) is the imaginary time version 7 = it of eq. (5.27), 7.e. the Euler-Lagrange
equation of the euclidean lagrangian,

1 [d7]?
Lp=3 Li'r] +V (5.31)

We will take the classical equilibrium as a boundary condition,

lim §(7) = g (5.32)
T——00
and the imaginary time at which the particle reaches & to be 7 = 0, 7.e. from eq. (5.30),

§o) = & (5.33)
dq

0
dr

=0

so that the variation of (5.25) with respect to changes in the end point & vanishes. On the
other hand the motion of the particle for 7 > 0 is just the time reversal of its motion for

T < 0. The particle bounces off ¥ at 7 = 0 and returns to g, at 7 = +o00.

Using (5.30) and (5.31) we obtain,
Lg =2V

and
ds(2V)/? = dr 2V =dr Lg

and so the coefficient B in (5.24)
Be= f°° dr Lp=Sg (5.34)
—0Q

is the total euclidean action for the bounce, i.e. for the solution to the imaginary time
equations of motion (5.29) satisfying the boundary conditions (5.32) and (5.33).

It is straightforward to generalize the above ideas to a field theory described by the
lagrangian,

L= 5099, ~ V() (5.35)

where the potential V' (¢) has a false vacuum at ¢, and a true vacuum at ¢_, as shown in

fig. 14. The euclidean action is defined as,

Sp= [drd’a [% (%) +5(99) +V(9) (5.36)
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lV(tfb)

<e

Figure 14: Typical potential in (5.35) with two vacua: the true vacuum and the
unstable (false) one

and the bounce is a solution of the euclidean equation of motion
(02 +V2)=V"(9) (5.37)

with boundary conditions (finiteness of the action)

lim_ $(r, ) = ¢y (5.38)
and 96
51—_(0,3:) =] (5.39)
Then the coefficient B in the vacuum decay amplitude is
B = Sg(¢) — Se(é+) (5.40)

Coleman, Glaser and Martin [35] have proven that the bounce is always O(4) symmetric.
This means that

¢ = ¢(p) (5.41)
with p = (72 + & 2)'/2. The euclidean action is then simplified to
Sp = 2n? fo ~ pPdp [-;—d)'z + V] (5.42)
where ¢/ = d¢/dp, and the euclidean equation of motion (5.37) simplifies to
¢+l = (5.43)

p. d¢
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The boundary conditions (5.38-5.39) read now as

lm 6(p) = 4 (5.4
d¢

- = 5.45
o, = (5.45)

If we interpret ¢ as a particle position and p as a time, eq. (5.43) is the mechanical
equation for a particle moving in the potential —V" and subject to a peculiar viscous damp-
ing force with a coefficient inversely proportional to the time. The corresponding physical

situation can be seen in fig. 15 If the initial position is properly chosen, the particle will

V(o)
[
INITIAL| (t=0)
/.,\\ c?+ ¢
o &, T
FINAL
(T=o0)

Figure 15: Picture of the mechanical problem of a particle moving in the potential

—V and subject to a viscous damping force

come to rest at time oo at ¢, on the top of the right hand hill. If the particle is released
to the right of ¢;, at some value of ¢ such that —V(¢) < —V (¢4 ), it will not have enough
energy (the damping force does not affect this argument) to climb the hill at ¢,: it will
undershoot and never rich ¢,. On the contrary, if the particle is released to the left of ¢,
and sufficiently close to ¢_ we can arrange for it to stay arbitrarily close to ¢_ for arbitrarily
large p: in that case the damping force (~ %) can be neglected, and the particle overshoots

and passes through ¢, at some finite time. By continuity there must be an intermediate
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initial position for which it just comes to rest at ¢,. This initial position is the bounce at
p= 07 ¢B (0)

In short, the semiclassical description of the decay of the false vacuum in field theory
is similar to that in particle mechanics. The classical field makes a quantum jump (say at
t = 0) to the state defined by ¢(t = 0, %), where ¢ is the bounce, which satisfies egs. (5.43),
(5.44) and (5.45). In other words, ¢(t = 0, Z) is the initial position of a function ¢(p) which
satisfies the equation of motion (5.43) and reaches the top of the hill in infinite time, at rest.
Afterwards it evolves according to the classical field equation,

52
o
Because the Minkowskian field equation (5.46) is simply the analytic continuation of the

¢+ V 2 =V"(p) (5.46)

euclidean field equation (5.37), the solution to the equation (5.46) is just the analytic con-
tinuation of the bounce

$(t,8)=¢ (p=Vi2-2) (5.47)
Therefore, O(4) invariance of the bounce becomes O(3, 1) invariance of the classical solution.

In other words, the growth of the bubble after its materialization looks the same to any

Lorentz observer.

It is possible to obtain an explicit approximation for the bounce in the limit of small ¢,
with

e=V(ps) - V(9.) (5.48)
We can write [31]
V($) = Vol#) + O(e) (5.49)
where Vj is a function chosen such that
Vo(d-) = Va(ds) (5.50)
Vo ~ 0 (5.51)
d¢ =+
The field ¢(p) obeys the approximate equation,
dVo
M g g 5.52
= (5:52)
where we have neglected the ¢’ term in (5.43) . Integration of (5.52) gives
/
[%qs'? - Vo] =0 (5.53)

9If € < 1 the initial bounce ¢g(0) is very close to ¢_ for large p. Then the viscosity damping force can
be very soon neglected.
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whose value is determined by the condition ¢(o0) = ¢4, ¢'(c0) =0

297~ Vo = ~Vo(p) (5.54)

Choosing as integration constant R such that

1

H(R) = 5(p+ + ) (5.55)

we can integrate (5.54) and obtain

/ s dé R (5.56)
§@to-) (/2(Vo — Vo(os))

If R is large, the bounce looks like a ball of true vacuum, ¢ = ¢_, embedded in a sea of

false vacuum ¢ = ¢, with a wall separating them, as in fig. 16. The thickness of the wall is

Figure 16: Picture of the bounce solution in the thin wall approximation

small compared to the radius R of the ball. In the thin wall approximation it is justified to

neglect ¢': it is zero outside the wall and negligible in the wall because R is large.

We determine the size of the critical bubble R, by computing B and demanding it to
be stationary under changes of R. Using (5.40)

Bow = Sp(¢+) — Se(64) =0 (5.57)
and
Bin = Sg(¢-) — Se(¢+) (5.58)
2 [T 3 T o
= 2n® [ Pdp[V(4) — V(gs)] = — 5 R
0
and within the wall, in the thin wall approximation,

Byai = 2n° _/ podp [‘12'9'5’2 + Vo(¢) — Vo(g+)
= 272R3S, (5.59)
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where, using (5.54), S is given by

S1=2 [ dp[Vo(9) - Vol9+)] (5.60)
or, using (from eq. (5.54))
d¢

dp =
SRNCAR AT

one obtains

Si= [ dby20%(8) — ol6,)) (5.61)
The coefficient B is thus given by
B= —%HR% + 2m’ R3S, (5.62)
which is stationary at
R =22 (5.63)

€
which is the radius of the critical bubble °. It can be easily checked that this extremum

is not a minimum of the action, but a maximum. This corresponds to the fact that critical
bubbles are unstable, either they expand or they contract. Using now (5.63) in (5.62), the
coefficient B for the critical bubble is given by,

_ 21n*St

B =—5 (5.64)
As a simple application we will compute the previous equations for the potential
A i 2
Vi S % = 5.65
=3 |- 4] (5.69)
The bounce solution is given by
8(6) = = tanh [ (o ) . (5.66)
VA 2
the euclidean action in the wall by
3
M
= L 5.67
s=L (5.67)
the radius of the critical bubble by
3
R =2 (5.68)
Ae

10Notice that, consistently with our approximation, = is large when ¢ is small.
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and the coefficient B of the critical bubble by

71.2“12

BC = @)\—4 (5.69)

Finally, the coefficient A in (5.17) can be computed following a scheme developed by
Callan and Coleman [32]|. The calculation is in general quite complicated and yields,

_ (SEe(9) 2 det'[-0g + V"(¢)] -1/2 ,.
A-( 2m ) [:det[wDE+VII(¢+)] (‘)70)

where prime indicates that zero eigenvalues of the operator are to be omitted when computing
the determinant. In fact the four zero modes associated with the translational invariance of

euclidean space give rise to the factor (Sg(¢)/27)* in (5.70).

5.2.2 Thermal tunnelling

The tunnelling rate at finite temperature is computed by following the same procedure as
above, but using the rules of field theory at finite temperature [36]. In the previous section
we defined the critical temperature T, as the temperature at which the two minima of the
potential V (¢4, T) have the same depth (5.12). However, tunnelling with formation of bub-
bles of the field ¢ corresponding to the second minimum starts somewhat later, and goes
sufficiently fast to fill the universe with bubbles of the new phase only at some lower tem-
perature T; when the corresponding euclidean action Sg = S3/T suppressing the tunnelling
becomes O(130-140) [37, 76, 12], as we will see in the next section.

We will use as prototype the potential of eq. (5.6) which can trigger, as we showed in
this section, a first order phase transition. In this case the false minimum is ¢, = 0, and
the value of the potential at the origin is zero, V(0,7T) = 0. The tunnelling probability per
unit time per unit volume is given by [36]

r
— ~ A(T)e™5/T (5.71)

v

which is the direct translation of (5.17) and (5.40). In (5.71) the prefactor A(T) is roughly
of O(T*) while S3 is the three-dimensional euclidean action defined as (see (5.36))

By = f &Pz [—é— (V)" + V(4 T)] (5.72)

where V (¢, T) is the finite temperature effective potential defined in the previous section
(see eq. (5.6)).
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At very high temperature the bounce solution has O(3) symmetry [36] and the euclidean
action is then simplified to (see (5.42)),

o |1 [(d¢\?
8y = 47r/ ridr |= =] +V(¢(r),T) (5.73)
0 2 \ dr
where 7% = Z 2, and the euclidean equation of motion (5.37) yields (see (5.43)),
¢ 2d¢ ,
—+—— = 5.74
Ly (5.74)
with the boundary conditions (see (5.44-5.45))
Lim ¢(r) = 0 (5.75)
dé 0 (5.76)
dr| _,

From here on we will follow the discussion in ref. [12]. Let us take ¢, = 0 outside a

bubble. Then (5.73), which is also the surplus free energy of a true vacuum bubble, can be
written as

Sy = 4m j(:erdr [% (%‘:i) + V(qb(’r),T)] (5.77)

where R is the bubble radius. There are two contributions to (5.77): a surface term Fg,
coming from the derivative term in (5.77), and a volume term Fy, coming from the second
term in (5.77). They scale like,

oo

2
Sa ~ 271'32 (E) OR +

arR3 (V)

; (5.78)

where 6 R is the thickness of the bubble wall, §¢ = ¢,,, and (V') is the average of the potential
inside the bubble.

For temperatures just below T, the height of the barrier V' (¢, T) is large compared to
the depth of the potential at the minimum, —V (¢,,, T"). In that case, the solution of minimal
action corresponds to minimizing the contribution to Fy coming from the region ¢ = ¢u.
This amounts to a very small bubble wall §R/R < 1 and so a very quick change of the field
from ¢ = 0 outside the bubble to ¢ = ¢,, inside the bubble. Therefore, the first formed
bubbles after T, are thin wall bubbles.

Subsequently, when the temperature drops towards T, the height of the barrier V(¢par, T')
becomes small as compared with the depth of the potential at the minimum —V (¢, T). In

that case the contribution to Fy from the region ¢ = ¢ is negligible, and the minimal action
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corresponds to minimizing the surface term Fg. This amounts to a configuration where §R is
as large as possible, i.e. §R/R = O(1): thick wall bubbles. So whether the phase transition
proceeds through thin or thick wall bubbles depends on how large the bubble nucleation rate
(5.71) is, or how small Sj is, before thick bubbles are energetically favoured.

For the case of thick bubbles, R ~ R and the free energy of the bubble can be written

as,

4 3
S3 ~ 2nR(6¢)* + ”%)— (5.79)
The critical radius of the bubble, obtained as the maximum of the action (5.79), is given by
A (5.80)
—2(V)
and the action at the critical radius (5.80)
3
5, ~ 82) (5.81)
~4y
In particular, for the potential (5.6) one can find [12]
ET 3/2
where T
e 0 5.83
(T) = 7= (583)

For the case of thin bubbles one can adapt Coleman’s procedure, as explained in the
previous subsection, and obtain analytic formulae in the limit of ¢(7T") < 1, where € is the
temperature ratio (5.83). In this limit we can neglect the term 22 in (5.74), as we did in
the zero temperature case (see eq. (5.52)), and integration of (5.74) yields,

‘;_f = J2V(6,T) (5.84)

where we have made use of boundary conditions (5.75) and (5.76). Using now (5.73) and

(5.84) we can write the euclidean action as,

¢(R+5R) R ' .
Sy ~ 47 R? / J2V (¢, T)do + dn fo dr 12V (¢, T) (5.85)

#(R—6R)
Application to the potential (5.6), a straightforward calculation gives [12]

8r (ET)3R?> 16me(T) (ET)*R3
3 ANT)PE2 3 MNT)®

S3(R) = v2 (5.86)
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The critical radius is obtained as usual maximizing the action (5.86). It yields,

V2AT) (5.87)

© = 3ETe(T)
while the action at the critical radius is given by
64m ET
S, = ( ) 5.88
2781 ) (2A(T))*2¢(T)? (e

After using the thin wall approximation it is convenient to check its validity in all cases.
For the potential (5.6) an analytic formula has been obtained in ref. [30] without assuming

the thin wall approximation. It is given by,

Sy 13.72 T2\1** [NT)D T2
=5 p(-3)] [F0-2) (589

where the function f(z) is equal to 1 at z = 0 and blows up when z approaches 1. It is
defined by

(5.90)

T 2.4 0.26
f($)=l+z[l+1 :I

—z T ap

A comparison of (5.88) with (5.89) will in general determine the validity of the thin wall
approximation for theories with a potential which can be approximated by eq. (5.6). On the
other hand the connection between zero temperature and finite temperature tunnelling is
manifest. In particular at temperatures much less than the inverse radius the O(4) solution
has the least action. This can happen for theories with a supercooled symmetric phase: for
instance in the presence of a barrier that does not disappear when the temperature drops to
zero. At temperatures much larger than the inverse radius, the O(3) solution has the least

action.

5.3 Development of the phase transition

In the previous subsection we have established the free energy and the critical radius of a
bubble large enough to grow after formation. The subsequent progress of the phase transition
depends on the ratio of the rate of production of bubbles of true vacuum, as given by (5.17)
and (5.71), over the expansion rate of the universe. For example if the former remains always

smaller than the latter, then the state will be trapped in the supercooled false vacuum *!.

1Tn practice this happens whenever the life time of false vacuum decay is greater than the present age
of the universe. Notice that for this to happen it is necessary that the barrier separating the false and true
vacua does not disappear at zero temperature. Of course, as we have discussed in the previous subsections,
this feature is not shared by the potentials described by (5.6). \
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Otherwise the phase transition will start at some temperature T; by bubble nucleation.
However this is not sufficient to claim that the phase transition really proceeds by bubble
nucleation. For that it is necessary that bubbles percolate before the barrier disappear at
the temperature T,. In other words it is necessary that all space will be filled by bubbles

before the barrier disappear. These issues will be briefly discussed in this subsection.

5.3.1 The beginning of the phase transition: bubble nucleation

The probability of bubble formation per unit time per unit volume is given by (5.71)

r
— = wTe BM (5.91)
v

where B(T') = S3(T)/T and the parameter w will be taken of O(1) 2.

Since the progress of the phase transition should depend on the expansion rate of the
universe, we have to describe the universe at temperatures close to the electroweak phase
transition. A homogeneous and isotropic (flat) universe is described by a Robertson-Walker

metric which, in comoving coordinates, is given by,
ds? = dt* — a(t)? (dr® + r?dQ?) (5.92)

where a(t) is the scale factor of the universe. The universe expansion is governed by the

equation
i = 8
-] = 5.93
(a) 3M2," (5:93)
where Mp, is the Planck mass,
Mpy = GyM* = 1.22 x 10" GeV (5.94)

and p is the energy density. For temperatures T ~ 10? GeV the universe is radiation

dominated, and its energy density is given by,

p= gag(T )T (5.95)
where .
9(T) = 95(T) + ggr(T) (5.96)

12The behaviour of (5.91) is dominated by the exponential and so the precise value of w does not affect

much the results of this section.
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and gp(T") (gr(T)) is the effective number of bosonic (fermionic) degrees of freedom at the
temperature 1T'. For the standard model we have
g2 = 2(polarizations) x 12(gauge bosons) + 2(complex) x 2(higgs bosons) = 28  (5.97)

g3M = 3(generations) x 2(helicities) [3(leptons) + 3(colors) x 4(quarks)] =90  (5.98)

and so
¢°M = 106.75 (5.99)

which can be considered as temperature independent.

The equation of motion (5.93) can be solved, and assuming an adiabatic expansion of

the universe, a(71)17 = a(T3)T5,, one obtains the following relationship,

t= % (5.100)
where
1 /4
(=— 4 o 8 x 1072
4\ mg
Using (5.100) the horizon length is given by
M
dy(t) = 2¢ T’z’” (5.101)
and the horizon volume
M,

The onset of nucleation happens at a temperature 7; such that the probability for a
single bubble to be nucleated within one horizon volume is ~ 1. Using (5.100),
(5.102) and (5.91), the probability for bubble nucleation in the temperature interval dT' is
given by

dP 2 Mpe\* 1 _pery
—_— | = 5.103
ar "~ ( T ) T* (5.103)

where, using (5.88) and (5.83), the exponent B can be written ** as

2
_64n E (TC—TO) (5.108

81 (2032 \T, - T

Therefore, from (5.104) we can easily see that when 1" approaches T¢ from below, then

B(T) — oo, which reflects the fact that no phase transition can take place for T > T..

13We will assume here the thin wall approximation is valid.
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Below T¢, B(T') decreases as T' decreases. Let us define T; as the temperature at which the
probability defined in (5.103) is P(7;) ~ 1 and we will assume that T; is reached before the
barrier disappears, T; > T,,. Then for T < T; we can effectively write Beg(T) — oo, and so
the corresponding probability goes to zero. So the euclidean effective action Beg(T") has a
minimum at T; * and we can integrate (5.103) using the steepest descent method around
the point B'(T;) = 0. This gives,

2(Mp, ! Tc"Tt) ™ —B(TY)
de w( T. ) ( T. )\ 12B(T)° (5.105)

We want now to evaluate (5.105) and impose the condition P ~ 1. To do that we can
approximate T, — Ty ~ T, — T, since they are expected to be of the same order of magnitude,
because the change in temperatures from T, to T, is a very small one. Then one can use the

relation between T, and T, as given by (5.11) to write,

T.-T.  E*
T. D

and finally we can write that P ~ 1 implies,

10°E° |, 100 GeV
D 8T,

B(T;) ~ 137 + log (5.106)

where we have normalized T, ~ 100 GeV and E?/(AD) ~ 10~2 which are typical values
which will be obtained in the standard model of electroweak interactions, as we will see later

on.

5.3.2 The end of the phase transition: bubble percolation

In order to guarantee that the phase transition really proceeds by bubble nucleation it is
necessary, but not sufficient, that at least one bubble of the true vacuum be formed per
horizon volume before the barrier of the potential disappear at the temperature 7,. The
sufficient condition is that at some temperature T* greater than T, all the space is filled with
bubbles, which then percolate. The fraction of space in the old phase in a first order phase

transition has been evaluated by Guth and E. Weinberg as [39]

Pad(t) = e~ (5.107)

14Notice that the physical origin of this minimum is different to the minimum obtained in ref. [39] which
is due to the decrease of thermal effects at temperatures ~ T./4. At the electroweak phase transition the

range in temperature from T, to T, is a tiny interval.
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where

IjEfl)a3(t1)$/(t1,t) (5.108)

t
h(t) = / dt,
te
and V(t,t) being the volume at time ¢ of a bubble nucleated at time ;.
Suppose now that the bubble is propagating at the speed of light 5. Then its radius R

satisfies the relation dt = a(t)dR, from (5.92) and, therefore, neglecting the bubble initial

size, the bubble radius at time ¢ of a bubble nucleated at time ¢; is

t dty
R(ty,t) = / 5.109
( 1 ) i a(tz) ( )
Using now (5.100) and the adiabaticity condition we can cast (5.109) as
2¢ 1 1
R(T,,T) = M (———) 5.110
( . ) CL(Tl)Tl P T 'T1 ( )
and the volume at the temperature T of a bubble nucleated at temperature 73,
32x ME, 11 13®
v, T =———(———) 5.111
(T3, T) 3 o(M)TE\T T, (5111}

Finally the function 2(T) in (5.108) can be written, using (5.91) and (5.111), as

64 Mp\* [T TdT: TyE
h(T) = 2 c4w( T‘f”) i lel (l_ﬁ) e—B(T1) (5.112)

When h — 0, the fraction of space in the new phase
pnew(t) =1 “pold(t) =1- C*h(t) (5113)

is — 0. On the other hand, when h — oo, the fraction of space in the new phase is — 1.
Of course, in practice this is realized when h = (O(1). Suppose that this happens at a
temperature 7™, where T, < T* < T.. The euclidean action goes to infinity when 7' — T,
from below, and decreases for decreasing values of the temperature. So for temperatures T’
in the range T* < T < T, the function B(T) reaches its minimum value at T = T*. For
temperatures T' < T* all the space has already turned to the new phase and the effective
transition probability is zero since there is no available space. In this way, the effective
action B(T') has a minimum at T = T*. Because B(T) is a very rapidly changing function

in the interval of temperatures between T, and T,, while the change of temperatures itself

151n fact assuming a velocity A < 1 is not changing significantly the results in this section. Only extremely
non relativistic bubbles could change it.
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is insignificant, we can make the integral in (5.112) using the steepest descent method. We

obtain,

KT 3( Tc )w - ) T (5.114)

where we have made use of the fact that T, ~ T* ~ T,. The condition A(T*) ~ 1 in (5.114)
translates into the condition on the euclidean action B(T*),

102E? 100 GeV
b +410g—9—T—e + logw (5.115)

where we have normalized, as in (5.106), T, and E*/AD to the typical values obtained in

B(T*) ~ 124 + 4log

the standard model of electroweak interactions. The phase transition completes between T}

and 7™ very quickly.

6 Improved effective potential at finite temperature

The approach of ref. [16] to the finite temperature effective potential relied on the observa-
tion that symmetry restoration implies that ordinary perturbation theory must
break down at high temperature. In fact, otherwise perturbation theory should hold
and, since the tree level potential is temperature independent, radiative corrections (which
are temperature dependent) should be unable to restore the symmetry. We will see that the
failure of perturbative expansion is intimately linked to the appearance of infrared diver-
gences for the zero Matsubara modes of bosonic degrees of freedom. This just means that
the usual perturbative expansion in powers of the coupling constant fails at temperatures
beyond the critical temperature. It has to be replaced by an improved perturbative expan-
sion where an infinite number of diagrams are resummed at each order in the new expansion.

We will review the actual situation in this section.

6.1 The breakdown of perturbative expansion

We will examine the simplest model of one self-interacting real scalar field, described by the
lagrangian (2.22) and (2.23). The one-loop effective potential was computed in section 4.1.
We will use now power counting arguments to investigate the high temperature behaviour
of higher loop diagrams contributing to the effective potential [16, 40, 41]. After rescaling
all loop momenta and energies by 7', a loop amplitude with superficial divergence D takes

the form,
TP ff— 6.1



Quirés 527

If there are no infrared divergences when m /T — 0, then the loop goes like TP. For instance

the diagram contributing to the self-energy of fig. 17 is quadratically divergent (D = 2),

Figure 17: One-loop contribution to the self-energy for the scalar theory

and so behaves like
XT? (6.2)

For D < 0, there are infrared divergences associated to the zero modes of bosonic propagators
in the imaginary time formalism [n = 0 in (3.72)] and the only T dependence comes from the
T in front of the loop integral in (3.72). Then every logarithmically divergent or convergent
loop contributes a factor of T'. For instance the diagram contributing to the self-energy in

fig. 18 contains two logarithmically divergent loops and so behaves like,

Figure 18: Two-loop contribution to the self-energy for the scalar theory

NT? = \(OT?) (6.3)

It is clear that to a fixed order in the loop expansion the largest graphs are those with the
maximum number of quadratically divergent loops. These diagrams are obtained from the
diagram in fig. 17 by adding n quadratically divergent loops on top of it, as shown in fig.
19. They behave as,

(6.4)

/\’n-i-l T2'n.+1 — AZT_a (E) "
M2n—1 M \ M2
where M is the mass scale of the theory, and has been introduced to rescale the powers of the

temperature '®. As was clear from eq. (6.4), adding a quadratically divergent bubble to a

161n fact, the mass M has a different meaning for the improved and the unimproved theories, as we shall
see. For the unimproved theory, M is the mass in the shifted lagrangian, M2 = m?(¢), while in the improved
theory, M is given by the Debye mass, see eq. (6.41).
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Figure 19: Daisy (n+1)-loop contribution to the self-energy for the scalar theory

propagator which is part of a logarithmically divergent or finite loop amounts to multiplying
the diagram by
T2
o= AW (6.5)
This means that for the one-loop approximation to be valid it is required that

2
)\m <1

along with the usual requirement for the ordinary perturbation expansion
Akl

However at the critical temperature we have that T, ~ M/ [see e.g. egs. (5.1)-(5.3)].
Therefore at the critical temperature the one-loop approximation is not valid and
higher loop diagrams where multiple quadratically divergent bubbles are inserted cannot be

neglected.

What about the diagrams which are not considered in the improved expansion? The
two-loop diagram of fig. 18 is suppressed with respect to the diagram of fig. 17 by A. On the
other hand the multiple loop diagram obtained from that of fig. 18 by adding n quadratically

divergent loops on top of it, see fig. 20, behaves as

N

Figure 20: Non-daisy (n+2)-loop contribution to the self-energy for the scalar
theory

n+2 _ yn+1
AT ——— = ) U

T2n+2 T2n+l T
M?2n - M2n—1 ()‘ ) (6'6)



Quirés 529

and it is suppressed with respect to the multiple loop diagram of eq. (6.4) by AXT/M 7.

Therefore the validity of the improved expansion is guaranteed provided that,

A1 (6.7)
T
b= AM_ <1

6.2 Improved theory: diagrammatic approach

We have seen that [16, 28] the perturbative expansion fails at temperatures close to the
critical temperature, because of infrared (IR) divergences, and it was proposed to solve the
IR problem by the resummation of an infinite set of the most IR divergent diagrams: i.e.
those belonging to the daisy and superdaisy classes [15]. Improving the effective potential
in different theories by the inclusion of daisy and superdaisy diagrams has produced a lot
of activity in the field during the last years [40]-[54]. Since there has been some controversy
about the correct resummation procedure concerning the leading infrared divergent graphs
[44, 45, 48, 49, 51, 52, 53, 47], I will develop in this section the formalism [55] which was
followed in [41, 50] as well as will compare it with different approaches recently used by other
authors,

We will consider again, and for simplicity, the theory of a real scalar field ®, described

by the lagrangian (2.22) and the tree level potential
m? A
vi(@) = @2 + 59 (6.8)

with positive A and m?. At the tree level, the field-dependent mass of the scalar field (after
shifting ® — ® + ¢) is m2(4) = 3A¢? — m?, and the minimum of V¥ corresponds to
v? = m?/ ), so that m?(v) = 2\v? = 2m?,

At finite temperature, the one-loop effective potential can be written diagrammatically

3.518,

=S =10 69

17Non-daisy contributions to the self-energy are suppressed, with respect to daisy contributions, by O(g),

where 3 is defined in (6.7). The corresponding contributions to the vacuum diagrams (i.e. effective potential)
are suppressed by O(4?) [41).

18There is an overall negative sign in front of all diagrams contrlbutmg to the effective potential and self-
energies that (for simplicity) will be dropped systematically from the figures, but will be taken into account
in the calculation.
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where n are the bosonic Matsubara frequencies and V[ | are the contributions to the one-
loop effective potential from the different frequencies. They can be written to lowest order
in m(¢)/T as (see eqs. (4.14) and (4.16))

{01)—20 _ET’” (4) (6.10)
Z VY =5 O =2—14,T2m2(¢)+--- (6.11)

where big bubbles denote the contribution from zero modes and small bubbles the one from

all non-zero modes. The contribution from all modes will be denoted by a big dotted bubble,

(=0 +o0 (6.12)

For the zero modes (n = 0) there is a severe infrared problem in the loop expansion for
values of ¢ such that m(¢) < AT at p'= 0. At one-loop the potential (6.10) is non-analytic
at m(¢) = 0, while the validity of the perturbative expansion breaks down at higher-loop

1.€e.

order, which contribute powers of « and 3 [16, 40]

i T
= Ry, [ die— (6.13)
m?(4) m(¢)
The usual way out is dressing the zero-modes with daisy and super-daisy diagrams [16]. This
can be done by solving the gap equations. For the theory defined by eq. (6.8), and neglecting
the terms represented by the ellipsis in (6.11), the gap equation can be diagrammatically

written as,

— = +_Q +©+O (6.14)

where a double line represents a dressed zero-mode propagator. Using the approximation in
eq. (6.11) the self-energies can be written as

) = %Tz + .- (615)

) _ v -
4

—O—=0(X¢?) (6.17)

= O(N2¢?) (6.18)
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and the gap equation (6.14), to O()\), as

AT _3ATM

M? = m?(¢) + 1 o

+ O(\%?) (6.19)

where M is the solution to (6.19). In the approximation of eq. (6.11) the small bubbles are
constant and proportional to T2 (6.15) or zero (6.17) (the ellipsis is neglected), and so they
do not have to be dressed. Going beyond this approximation, also small bubbles would need

to be dressed. We will comment on this possibility later on.

Now we will see how the daisy and superdaisy diagrams amount to a resummation in
the loop expansion of the effective potential which can therefore be written in terms of the
solution to the gap equation (6.19). In the order of approximation we are working only the
zero modes need to be dressed, and only V[(()]l) in eq. (6.10) is improved, while >, o V[f(é) in
eq. (6.11) does not have any IR problem and can be considered as a good estimate. We will
prove the resummation to four-loop order though also functional methods [56] can be used

[48] as we will see.
The loop expansion of the effective potential will be written as

co
Vg = VY + non — (super)daisies (6.20)

=0
where V;(é) indicates the contribution to the effective potential from ¢-loop daisy and super-
daisy diagrams. Non-(super)daisy diagrams contribute to the effective potential to O(3?)
[40, 41]. At least, to O(B) it is consistent to keep only diagrams of daisy and superdaisy

classes. Ve(é) was given in eq. (6.9), while V;%?) and V;(f?) can be written as

@ _ 1 A 6.21
@_ 1 1 1 6.22
Veff”la *3 +16@ (6.22)

where we are putting dots everywhere to remember that all modes (zero and non-zero modes)
are contributing in the loop propagators, and the numerical pre-factors in front of (6.21) and

(6.22) are the symmetry factors of the corresponding diagrams.

Using the approximation in (6.15), (6.17), we can rearrange the loop expansion in (6.9),
(6.21) and (6.22) as
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¢ ¢ I} 1 O |
‘/e(ff) = d(ai)sy + V;Exgerdaisy + A(g) —g — g (623)
where A(®)[- -] means the contribution to [- -] from ¢-loop diagrams and the double line is

given by eq. (6.14). This decomposition is well defined for £ > 2. Next we give the results

for two and three-loop diagrams.

Two-loop
1 1 1
Vd(:i)sy =1 + 1 + 1 @ _ (6.24)
2
V;gp)erda,isy =0 (6 .29 )

AR — _1

_ % - (6.26)

Three-loop

1 1 1 1 1 1
Vie=—=( )+=( )+— +—R+—§2+— (6.27)
16 8 16 8 I\, 8 P 16
(3) 1 1 § 1 é 3 1
‘/superda.isy 8 g_*_ ] “+ 4 i 8 =+ 4 @ (628)
1 1 1 3 1
@ _ _21 . - = e _
A 8 é 8 % 4 8 4 (6.29)

We can see from (6.21) and (6.24) that the symmetry factors for £ = 2 do not match

the combinatorics for daisy resummation. However including (6.26) the matching is accom-

plished as can be seen from the coefficients in (6.21) and the last two terms in (6.24) and
(6.26)

DI~ 00| =
Il
Sl»—*ool)—t

N

(6.30)
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On the other hand, we have seen from (6.28,6.29) that V;ﬁgerdaésy + A®) = 0. The reason
being that all the diagrams in (6.22) could be interpreted either as daisies or as superdaisies.
Therefore we have considered all of them as daisies, because their coefficients match the cor-
rect combinatorics for resummmation. This can be seen by comparison with the corresponding
coefficients in (6.27) and it is a general feature of daisy diagrams for ¢ > 3. However, for
£ > 4 there are diagrams that can never be considered as daisies. In that case the previous
cancellation does not hold, but still the equation (6.23) is satisfied. As an example we will

consider the theory at the origin (i.e. at ¢ = 0) to four-loop order.
Four-loop

The contributions to (6.20) and (6.23) can be written as

O
0] 38
V0= = (e D)+ 355 %) (6.31)

1 3 3 1
Vi (0) = 75 O@“ P O&OW@ 089+zg 080 (629

1 1 1 I} 3 2
superdalsy( ) 16 + 8 + 16 + 16 + 16 + 16 ( )
1 1 1 b | 3
A“”(O)m%OS%Qm%)m%Sé?ﬂ (634

The first diagram in (6.31) can be (and it is) considered as a daisy diagram in (6.32). For
that reason the coefficients of the first three terms in (6.33) and (6.34) are equal and opposite

in sign. The second diagram in (6.31) can never be considered as a daisy diagram. So it
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contributes to the last three terms of (6.33) and (6.34) in such a way that their coefficients

match to those of the second term of (6.31). In particular

1 tr_ 1

16 32 32

3 1 1

e, ims O e :
16 8 % 32 (635}
2_3_ 1

16 32 32

for the last three terms, respectively.
All-loop

Summarizing the above results, we can write the final equation:

1 1 1 1
Vi = 1 _ 2 __ 6.36
r=50 *3 8 6. 56

where the double line indicates the solution of the gap equation (6.14) and (6.19), in the

approximation of egs. (6.15) and (6.17). Using the explicit solution to (6.19) we can write
(6.36) as
m?2 A 1 i 3\
Vig=——@* + ¢t + =T*m%(¢) - —TM3 + .. — —T2M? + O(\2yT* 6.37
= =g+ 8+ I TP$) - T TM e SSTIMR + O(TY)  (63)
which agrees, as we will see later on, with the result of Amelino-Camelia and Pi [48], who

used functional methods [56] and computed (6.14) and (6.19) to zeroth order in «y

_ ¢4
=& (6.38)
In the improved theory of zero-modes defined by (6.19) and (6.37), the expansion param-

eters o and (3 in (6.13) become °

T2
which is summed to all orders, and
T 1
= A— ~ A2 6.40
B = A~ (6.40)

19We will keep for notational simplicity the same names o and 3 for the expansion parameters in the
improved (as in the unimproved) theory.
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which remains as the only expansion parameter, where M is the Debye mass

M? =m?(¢) + %TZ (6.41)

By expanding the solution of eq. (6.19) to different orders in 3 we can obtain the effective
potential (6.37) to the corresponding order of approximation. To illustrate the procedure we

will first obtain the solution to O(3°%). In that case we have

M? = M? (6.42)
and the effective potential is given by
2
moa Ag, 15 5 1 3
- _ 2 ool — T veace 6.43
Ve = ——-¢" + 76" + 5, T'm*(¢) — - TM* + (6.43)

This approximation has been worked out in [43]. The last two terms in (6.36) and (6.37) do
not contribute to this order? since they start to O(8).

The solution to O(f) is equally easy to be worked out. From (6.19) one can write
M? = M? — %MT + O(\*¢?) (6.44)

where the first term is the leading order result, eq. (6.42), and the second term is O(f).
Replacing (6.44) in (6.37) and expanding again to O(3) we can obtain the corresponding
approximation to the effective potential, given by

(6 —-3)

e AT2M? + O(X2¢°T?) (6.45)

m?2 A 1 1
Vig= ——d? + Z¢* + —T?m2(¢p) — — T M3+ ...
f 2¢+4¢5+24 m*(¢) 12”J\4+ +

This solution was presented in [50]. We can easily check that the last term in (6.45) is an
O(B) correction to the fourth term. It comes partly from the expansion (6.44) and partly

from the last two terms in (6.36).

There is another, recent, proposal by Arnold and O. Espinosa [52] who have advocated

a hybrid method using a partial resummation of the leading contribution of n # 0 bubbles

followed by an ordinary loop expansion [54]. One can define a partially dressed propagator
as

- = e 0 e Do By o OOCE e v s (6.46)

where the tiny bubble propagator is defined as,

o = 21’2 ; (6.47)

20In the language of ref. [50] there is no combinatorial term to this order.
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and a partially resummed loop expansion as

Vi =V + = ®+ = : (6.48)

It is easy to check that using the approximation of egs. (6.15)-(6.18), and ignoring overlap-

ping momenta, one recovers, to O((3), the same result as that of eq. (6.45).

Other authors [45, 47] have proposed computing tadpoles, instead of vacuum diagrams, to
exhibit some features of the improved theory, e.g. resummation properties and the absence
of a linear term in m(¢) in the final effective potential. Since the tadpole is nothing else
than the ¢-derivative of the effective potential, there can be no difference between both
formalisms. In fact, by comparison between the contents of this section and those in [47] one
can easily see that the resummation properties of the tadpole diagrams are inherited from
the corresponding ones in vacuum diagrams. However, in our opinion, the tadpole formalism
has two practical drawbacks: i) The classification of tadpole diagrams is much more involved
than the classification of vacuum diagrams; ii) To obtain the effective potential the tadpole
has to be integrated, which can be a non-trivial operation since it depends on the solution

of the gap equation. However, at the end, both methods should yield the same result.

In our approximation of eqs. (6.11), (6.15) and (6.17) we have been neglecting all log-
arithmic terms, which amounted to not dressing non-zero modes. Including them would

amount to write the previous equations as

m*(¢)

a O = Tz 2(¢) 6472

1 6.49
0g — T2+ (6.49)

where ( is the renormalization scale in the MS scheme and log(cp) = 3.9076,
A

A 3Am?(¢) 4 o

o
4 1672 B cpT?

SRS (6.50)

In that case the gap equation should be written as

= 4 @ + _‘ (6.52)

and other diagrams should be added to those in (6.24)-(6.34). In particular small bubbles
dressed by insertions of self-energies of the kind (6.18). But the latter are O(A\*¢?) and

depend on the external momentum. If we insist in keeping the logarithmic terms (which in

principle are expected to constitute small corrections to the leading contribution) we should
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give up resummation in the sense of the gap equation (6.52) since overlapping momenta

should be disentangled. A possibility is making a -y expansion for the gap equation, and

- 5 @ (6.53)

where the dotted double line means the solution of the truncated gap equation?!, 7.e.

defining an O(+°) gap equation as

AT? 3AM? 2
o r ] log % 4. (6.54)

M2 — 2 _
m(g) + 4 4 1672 cgT?

However, we should pay attention to the fact that the last term in the full gap equation
(6.19) is O(afv) and solving it, and giving the improved effective potential to some order in
B implies that we should consider the same order in y by adding loop diagrams. In this way

repeating the whole above procedure we would find that to O(3) one can write the effective

_1 21 1 2
Verr = 5 @ 8 0 @+ o) (6.55)

where the equation (6.54) is solved to O(3). This solution coincides at ¢ = 0 with that in
ref. [48] and for all values of ¢ with that in ref. [52]. One can check that the logarithmic
corrections which appear are both from the logarithms in (6.49), (6.50), (6.51), and from

potential as

the overlapping momenta whose integral is explicitly considered. To higher order in 3 more
terms should be added to (6.55) but care should be taken not to commit overcounting and

non-(super)daisy diagrams should be considered.

6.3 Improved theory: functional approach

In the previous subsection we have reviewed some of the existing resummations using dia-
grammatic methods. Here we will see that similar results can be obtained using functional
methods. Also for simplicity we will restrict ourselves to the simplest theory described by
the potential (6.8). We have seen that the improved theory consists in replacing the im-
proved propagator in (part of) the one loop effective potential. So one needs a self-consistent
loop expansion of the effective potential in terms of the full propagator. This technique was
developed by Cornwall, Jackiw and Tomboulis [56] and applied to the present problem by
Amelino-Camelia and Pi [48].

210f course the gap equation (6.53), and (6.54), is exact at the origin ¢ = 0, where v = 0.
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One considers a generalization of the effective action (3.16), I'*(¢,G), which depends

not only on the classical field ¢, but also on the propagator G(z,y). The physical solutions

satisfy
sr’[¢, 4]
—_——— =0 6.56
59(e) MR
and 5106, G]
I¢,G
e o = == G.F
5G(z, 1) 0 = Go = Go(¢) (6.57)
while the conventional effective action is related to the new one by
(4] = I’[¢, Go(4)] (6.58)

Eq. (6.57) determines the form of the propagator. It is known as the gap equation of the

theory.

For translationally invariant field configurations, the propagator is a function of x — y,

G = G(z — y), and the effective potential is related to the full propagator as in (2.16)
(6,0 = - [ d'aVfi(9,9) (6.59)

The method of ref. [56] consists in generalizing the thermal partition function (3.14) by

introducing sources k(z,y) on top of the usual ones j(x)

2°,K = (Toexp {i ([ d'2i(@)3(@) + 5 [ d'ady@@h(zow)})  (©60)

where C' means here the contour used in the imaginary time formalismn described in section
3.4.

The generating functional for connected Green functions is defined similarly to (3.15) as

ZP[j, k] = exp{iW"[j, k|} (6.61)

The effective action I'*[$, G] is obtained by a double Legendre transformation of W#[j, k]
similarly to (3.16)

w¥ [J:k] 4 34 6W'6Lj,k]
G 0 [ty

where the currents j(z) and k(z,y) are eliminated in favor of the classical fields ¢(x) and

I[$,G) = WP[j, k] — [ d4T5 k(z,y) (6.62)

propagator G(z,y), as in (3.17),
SWPLj, k]
6j(z)
SWPL5, k]
bk(z,y)

o(x) (6.63)
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Finally eq. (3.18) generalizes to

5TP[¢, G| _ ; 4
o - @ [ ke
§T%[¢, G 1

The stationary requirements (6.56) and (6.57) are obtained from (6.64) by switching the
sources j(z) and k(z,y) off. It is known that [*[¢, G| is the generating functional in ¢ for
2P1 Green functions expressed in terms of the propagator G.

Using the techniques of section 2.3, Cornwall, Jackiw and Tomboulis [56] find for the
effective potential (6.59) the expression,

Vi(#,0) = Vo($) + éTr logG™! + %Tr (D716 - 1] + V{(4,9) (6.65)

where D(¢; z—y) is the tree level propagator in the shifted theory, as in section 2.3. V(g) (¢,G)

is given by all two-particle irreducible vacuum-to-vacuum graphs with two or more loops,

in the shifted theory, with vertices given by the interaction part of the shifted Lagrangian

(® — @ + ¢) and propagators set equal to G(z,y). The gap equation (6.57) can be written
- s
-1 -1 6V(2)

G (=D (p) + 259,—(19—) (6.66)

where G(p) and D(p) are the Fourier transforms of G(z — y) and D(x — y), respectively.

The vertices of the shifted theory are given by the interaction Lagrangian

Line = AP + %I)“ (6.67)

and the two-loop diagrams contributing to V(g) are depicted in fig. 21 where each line

+
Figure 21: One and two-loop diagrams contributing to the effective potential of

(2.45)

represents the propagator G(z,y), and there are two kind of vertices, as provided by (6.67).
The figure eight diagram in (21) is O()), while the sunset diagram is O(\?).
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A first (naive) approximation is provided by neglecting all diagrams in fig. 21, which

amounts to an O(\°) approximation. The gap equation gives
G(z,y) = D(z,y) (6.68)

In that case the fourth term on the right hand side of eq. (6.65) is neglected, the third term
is identically zero and the second term reproduces the one-loop correction to the tree level

potential. In summary, this approximation leads to the one loop effective potential.

To be consistent with the approximation worked out in section 6.2 we will truncate V(g)
to O(A), i.e. we will consider only the figure eight diagram and disregard the sunset diagram
2 In this approximation, and after making the Wick rotation (2.25), the effective potential
(6.65) can be written as

Va(6.9) = %@ +3TY [10507(0)+ 3TY [ [P @ik)o0) - 1]
+ %AT;AQ(MT;]IJQ(I)) (6.69)
and the gap equation (6.66) as
G lp) =D (p) + AT Y fk G(k) (6.70)

In fact the gap equation (6.70) is represented diagrammatically by eq. (6.14) when the last

diagram is disregarded, as we are doing in our approximation.

We will use for Fourier transformed propagators the Ansatz

1

G(p) = p* + M? (6.71)
1
D(¢;p) = POy Vg

where the effective mass M is an unknown function of the momentum to be determined from

the gap equations.

Replacing the gap equation (6.70) into the effective potential (6.69) we obtain

Vo M) = Vo(6) + 5T [log(k? + %) - DTY [GT T [0() (672

22Methods leading to consider diagrams with overlapping momenta, in particular the sunset diagram of
fig. 21 can be found in [49].
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Notice that eq. (6.72) agrees to O()\) with the diagrammatic equation (6.36) obtained in
the section 6.2. Also the gap equation (6.70) can be written as

M? = 3\¢? —m? + 3AT'Y /p G(p) (6.73)

The last term in (6.72) and (6.73) can be computed using the rules of the imaginary time
formalism described in section 3.4. A high temperature expansion (in powers of M/T) of it

yields
Zn /p 2 [12 an T (T2 ] (6.74)

- Using now (6.74) in (6.72) we can write the field dependent part of the effective potential
A

M?T? M3T M?
V;%((ﬁ:M) = ‘/0(¢)+ - +O(M410gﬁ)

24 127
3A\[ MT® M?T? M?
- = |- O(M*log — 6.75
4[247r+167r2+( OgTzl (6.75)
On the other hand, we can replace eq. (6.74) into the gap equation (6.73) as
M? = M? — M (6.76)
4
where the Debye mass is defined in eq. (6.41). By iteratively solving eq. (6.76) we obtain,
M3 = M> — giw:r (6.77)
T

which, once replaced into eq. (6.75), gives for the effective potential the same result as that

obtained using diagrammatic methods in eq. (6.45).

6.4 The one-loop improved Standard Model

The one-loop effective potential for the Standard Model was described in section 2.5 (at
zero temperature) and in section 4.4 (at finite temperature). Higher loop corrections have
also an infrared problem for the zero Matsubara modes. In fact, while the masses of the
gauge bosons, eq. (2.81), vanish at ¢ = 0, the masses of the Higgs and Goldstone bosons,
eq. (2.80), vanish at ¢* = m?/3)X and ¢* = m?/), respectively. Higher loop corrections

contribute powers of

ai,p = '—2 (6.78)
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which generalize the parameters defined for the scalar theory, eq. (6.13). In eq. (6.78),
i = h, x, W, Z labels the different bosonic fields in the theory, and p = ¢2, g’%, X the different
couplings. The first approximation consists in keeping resummation to all orders in a;,
and O(/Bf” ,)- To this order only diagrams without overlapping momenta or the quadratically
divergent part (O(T?)) of diagrams with overlapping momenta contribute to the polarizations
in the corresponding gap equations.

Plasma effects in the leading approximation can be accounted by the one-loop effective
potential improved by the daisy diagrams [16, 15, 42]. Imposing renormalization conditions
preserving the tree level values of v2 = m?/), as in section 2.5.5, and working in the 't
Hooft-Landau gauge, the ¢-dependent part of the effective potential can be written in the

high-temperature expansion as

V'eﬂ"(q’)a T) —~ V;:ree + AVB + AVVF (679)
where
AVg = > gV, (6.80)
i=hx,Wr,ZL, L, Wr,ZT 7T
m2(¢)T? M2P)T mi(e) m2(v) m2(v) m2(v)
i = : - — - = -2 0iy 1 , (6.81
Ak { 24 127 aan? |8 o2~ 2ma(e) T 018 (6:50)

where the last term comes from the infinite running of the Higgs mass from p? = 0 to
p* = m? and cancels the logarithmic infinity from the massless Goldstone bosons at the zero

temperature minimum, and

mi()T?  mi(¢) [ mi() mi(v)
+ [log T ¢)]} (6.82)

AVp =
F gt{ 48 6472 cpI? ms

The number of degrees of freedom g; in (6.80,6.82) are given by

gn=1, gy =3, g: =12

1 1 (6.83)
§gWL = gZL = g”]‘L = 17 §gWT = gZT = qu =2

while the coefficients cg and ¢ in (6.81,6.82) are defined by: logcg = 3.9076, log cr = 1.1350.

The masses mZ(¢) in (6.81), (6.82) are defined in (2.80), (2.81) and (2.82), and the Debye
masses M? in (6.81) for i = h, x, Wr, Wr, Zp,yr are

M? = m2(¢) + (6, T) (6.84)

where the self-energies I1;(¢,T) are given by

16

2
+ -3— + 5) T? (6.85)

(8, T) = ( 4
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2 2 by hz
IL (¢, T) = (39—;5’— +5 j—) i (6.86)
Tw, (¢, T) = %ngz (6.87)
Oy, (¢, T) =z, (¢,T) = I, (¢,T) = 0 (6.88)

The Debye masses M? for i = Z;,;, are given by

M? 0 ; IT IT
( Zt \ — R(G{,‘l)) mZ(¢) + VARAR Z1YL ) R—l(g‘(;/)) (689)
0 M,yL H'yLZL H’YL’YL

with the rotation R(H‘(;,))
~ 9(1) —sin 9(1)
ROEWY = [ YL L 6.90
(Ow) sin 08) cosﬂg) ( )

and the self-energies

2
(1 — 2sin® Oy cos® y)

2 1
HZLZL (QS, T) = (592 COS2 GW + "é COS2 QW

2 ? (6.91)
+— ™ (1 — 2sin® By + 5 sin* HW)) 7
11 5
ILyn (6, T) = 3¢ T (6.92)
11 cos?fy — sin®6
IL,, 2, (¢, T) = —eg - o (6.93)

6 cos Oy

The angle 91(51) in (6.89) is the one-loop temperature dependent correction to the electroweak
angle. In fact the angle 67,(¢,T) defined by

026, T) = Ow + 07 (6.94)
maps (W3, B) into (Z,7).

Using (6.91-6.93) one obtains the eigenvalues and rotation angle in (8.6) as:

1 11 ¢ ]
MG, =3 M2+ 5 ooagn T +ABT) (6.95)
i 11 g2 ]
My =5 |20+ G oo T~ A T) (6.96)
211
sin 205 (¢, T) = ——22% (6.97)

A
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. mZ(4)
S 20 == 51 Z— .
sin 207(¢,T) = sin 29WA(¢, ) (6.98)
with s o \
11 g* cos” 20y 11 ¢
A*(p, T) = m} — " Im? — T?| T? 6.99

It is clear from (6.98,6.99) that at zero temperature the electroweak angle coincides with the
usual one: A(¢,0) = m%(), 0.(4,0) = Ow.

7 Baryogenesis at phase transitions

7.1 Introduction

There are two essential problems to be understood related with the baryon number of the

universe:

i) There is no evidence of antimatter in the universe. In fact, there is no antimatter
in the solar system, and only P in cosmic rays. However antiprotons can be produced as
secondaries in collisions (pp — 3p + P) at a rate similar to the observed one. Numerically,

" 3x10*
Tip

and

N4y, N 10_5

Nafre
We can conclude that ng > ng, so nap = np — ng ~ ng.

ii) The second problem is to understand the origin of

n=—=~(03—1.0)x107° (7.1)
Y

today. This parameter is essential for primordial nucleosynthesis [57].

n may not have changed since nucleosynthesis. At these energy scales (~ 1 MeV) baryon
number is conserved if there are no processes which would have produced entropy to change

the photon number. We can easily estimate 7.

The baryon number density is,

pe _ Ssp.
mp  mp

(7.2)

3

@
I
[
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where pp is the baryonic energy density and Q5 = pp/p.. Using the critical density,
pe = 3H? = 1.88 x 10~*°h%gr cm™3 (7.3)
where H, is the Hubble parameter today and
h = H,/100 km Mpc 'sec™!

is
<h<1

?

[N

one obtains,
ng = 1.1 x 107°A%Qgem ™ (7.4)

On the other hand, the energy density of photons is given by

oy = f dn., (7.5)

where

9y 1 2
Iy = g B 17 4 (76)

with g, = 2 (the number of degrees of freedom of photons), and E,, = ¢q. Using the integral
[7] |

oo xu—l .
fo ——dz = T()) (7.7)
where o 1
Clr)=) — (7.8)
n=1 n
we obtain 2(3)
_ 3
My == T (7.9)
where [7] ((3) = 1.20. Using now the equivalence,
(2.735 K)® = 1.71 x 10°ecm™
we can write
n :415{J§L}3mn4 (7.10)
v 2.735
where T, is the present temperature of the background radiation.
Putting (7.4) and (7.10) together we obtain
2.73571°
n==2ﬁ5x10—%hﬂﬁ[ 7 ] (7.11)
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However, the range of n consistent with D and 3He primordial abundances is [57]
4(3) < 10", < 7(10) (7.12)

where the most conservatives bounds are given in parenthesis. From (7.11) we obtain Q5 as

a function of 7

3
Qp = 3.77 x 10"nh? [2:’7135] (7.13)

Now, using the range (7.12) for  and for A we obtain,

0.015(0.011) < Qzh? < 0.026(0.038)
0.015(0.011) < Qp < 0.16(0.21) (7.14)

where, as in (7.12) the most conservatives bounds are in parenthesis %

Sometimes it is useful to describe baryon asymmetry in terms of ng/s instead of ng/n,.

Let us give the relationship between s and n,. From (7.9),

s = 2"'-Eigefr(T)fl“e' i ———gea(T)n, (7.15)
45 45((3)
/N 4 1
Jeff = Jefiy T [?j Gefiv = 2 + T X m % 3=2391 (7.16)
In this way,
45€: )3 91 = 7.04 ny (7.17)

and the range (7.12) translates into

5.7(4.3) < 2210" < 9.9(14) (7.18)
S

Can we explain the value of 7, eq. (7.12), in the standard cosmological model? Suppose
that initially nap = 0 exactly, so n = 0, and we can compute the final number density
of nucleons left over after annihilations have frozen out. For T' < 1 GeV the equilibrium

abundance of nucleons and antinucleons is [57]

3% _mp

LWL I e~ (7.19)

mp

T

Pl Wy

where mp ~ 1 GeV.

23If the idea of inflation is correct, then £ = 1 and other form of matter has to exist in large quantities
to close the universe. This matter (neutrinos, photinos, sneutrinos, axions, MACHOS,...) is called dark
matter.



Quirés 547

When the universe cooled, the number of nucleons and antinucleons decreased as long as

the annihilation rate I',,, was larger than H. At
Tf ~20 MeV

[ann =~ H and annihilations freeze out, nucleons and antinucleons being so rare that they
can no longer annihilate. Therefore, from (7.19) we obtain,

"B _,"B  q10-18 (7.20)
Wy e
which is much smaller than the value (7.12) required for nucleosynthesis, as well as one

obtains ng ~ ng.

In conclusion, in the standard cosmological model there is no explanation for the smallness
of the ratio (7.12) if we start from nag = 0. An initial asymmetry has to be imposed by hand
as an initial condition (which violates any naturalness principle) or dynamically generated

at phase transitions, which is the way we will explore all along this section.

7.2 Conditions for baryogenesis

As we have seen in the previous subsection the universe was initially baryon symmetric
(np ~ ng) although the matter-antimatter asymmetry appears to be large today (nap =~
np > ng). In the standard cosmological model there is no explanation for the value of 7
consistent with nucleosynthesis, eq. (7.12), and it has to be imposed by hand as an initial
condition. However, it was suggested by Sakharov long ago [58] that a tiny nap might have
been produced in the early universe leading, after pp annihilations, to (7.12). The three

ingredients necessary for baryogenesis are:

7.2.1 B-nonconserving interactions

This condition is obvious since we want to start with a baryon symmetric universe (AB = 0)
and evolve it to a universe where AB # 0. B-nonconserving interactions might mediate
proton decay; in that case the phenomenological constraints are provided by the proton

lifetime measurements [59] 7, 2 10%2yr.
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7.2.2 C and CP violation

The action of C (charge conjugation) and CP (combined action of charge conjugation and
parity) interchange particles with antiparticles, changing therefore the sign of B. For instance
if we describe spin-3 fermions by two-component fields of definite chirality (left-handed fields

91, and right-handed fields vr) the action of C' and C'P over them is given by

P Y — Yr, Yr— Y1 (7.21)
C : Y, — i,bf = 09¥p, YR — ¢§ = —agt

CP : o — 95, Yr— ¥§

If the universe is initially matter-antimatter symmetric, and without a preferred direction
of time as in the standard cosmological model, it is represented by a C and CP invariant
state, |@,), with B = 0. If C and CP were conserved, i.e.

[C,H]=[CP,H] =0 (7.22)
H being the hamiltonian, then the state of the universe at a later time ¢,

|B(t)) = €| (7.23)

would be C' and CP invariant and, therefore, baryon number conserving, AB = 0. The only

way to generate a net AB # 0 is to have C and CP violating interactions.

7.2.3 Departure from thermal equilibrium

If all particles in the universe remained in thermal equilibrium, then no direction for time
would be defined and C'PT invariance would prevent the appearance of any baryon excess,

rendering C' P violating interactions irrelevant [60].

A particle species is in thermal equilibrium if all its reaction rates, I', are much faster
than the expansion rate of the universe, H. On the other hand a departure from thermal
equilibrium is expected whenever a rate crucial for maintaining it is less than the expansion
rate (I' < H). Deviation from thermal equilibrium cannot occur in a homogeneous isotropic
universe containing only massless species: massive species are needed in general for such

deviations to occur.

The number density of a particle species p in thermal equilibrium, for T' > m,, is given
by,

Ny =~ Geg (mpT)*/* e THF (7.24)
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where p, is the chemical potential. In general, if the species A, B,C, D are in chemical

equilibrium through the reaction
A+B+~—C+D,

we have

HaA+ 1B = pc + 4D

In this way the number density in thermal equilibrium of the antiparticle p (mz = m,) is
N5 = go (MpT) 2 e T~ F (7.25)
where we have used that pyz = —p, by the presence of processes as
PR &y
and p, = 0. If p carries a baryon number B, then from (7.24) and (7.25),

nap = B(n, — n5) = 2Bgeg (m,,T)3/2 e~ T sinh [%J (7.26)

If p,p undergo the B-violating reactions

pp «— Pp

then p, = 0 and nap = 0. Only a departure from chemical equilibrium, 7.e. from distribu-

tions (7.24) and (7.25) can allow for a finite baryon excess, nap # 0.

7.3 The standard out-of-equilibrium decay scenario

The so-called standard scenario [61] is the out-of-equilibrium decay mechanism, which in-

corporates the three above requirements and that will be described in what follows.

Let X; be a superheavy boson (vector or scalar) coupled to light fermions with strength
a/? (where o'/? is either a gauge or a Yukawa coupling). Then from dimensional analysis
its decay rate is given by,

[y~ aM; (7.27)

where M, is the mass of X;. Notice that here we are assuming that X; is coupled by
renormalizable interactions (gauge or Yukawa interactions). However, it is also interesting

to study the case of a gauge singlet scalar boson X, coupled to light matter only through
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gravitational interactions. This is the case of a singlet in the hidden sector of supergravity

models [62]. In this case, the decay rate of X, is, from dimensional analysis,
Ty ~ M3/M2, (7.28)

where M, is the mass of X;. We will study in parallel both cases, just considering X;, I';
and M;, for i=1,2.

At the Planck time (T" ~ Mp,) we assume all particle species are in thermal equilibrium,
i.e. nx, = ng, =~ n, (up to statistical factors), and nap = 0. Since we are assuming

M; < Mp,, nothing interesting happens until 7" ~ M;.

At T' 5 M; the equilibrium abundance of X; and X; relative to photons is, see eq. (7.19),

oy T e T (7.29)

— 3/2
nx,  Nx [Mi] /
Ny Ny

where we have neglected the chemical potential ;. Then for X; and X; to maintain their
equilibrium abundances, they must be able to diminish their number rapidly (with respect
to H(T)). The most efficient way of doing it is by decay, their decay rates I'; in (7.27) and
(7.28) being the keystone for thermal equilibrium.

# First, if the decay rate is
T, > H(M;), (7.30)

then X; and X; will adjust their abundances by decay to their equilibrium abundance and
no baryogenesis can be induced by X; and X; decays. In that case, using (7.27) and (7.28)
and

H(T) ~ geg 77—

condition (7.30) is equivalent, for the strongly coupled X; and X, to
M, <« ge_ﬂ"l/zaMPE (7.31)
and for gravitationally (weakly) coupled X; and X, to
M, > g:*Mp, (7.32)
Obviously, condition (7.32) will never be satisfied for My < Mpy.

{ Second, if the decay rate
T, < H(M,) (7.33)
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then, X; and X; cannot decay on the expansion timescale H and so remain as abundant
as photons for T' S M,. This overabundance (with respect to their equilibrium abun-
dance) is the departure from the thermal equilibrium. In that case, condition (7.33)

is equivalent, for strongly coupled X; and X, to
M, > ge_ﬁl/zaMpg (734)
and, for gravitationally coupled X, and X5, to

Mz < g;f/szpg (7.35)

It is clear that condition (7.35) is always satisfied, while condition (7.34) is based on the

/

-1/2 . . . .
smallness of g4’ “a. In particular, if X; is a gauge boson, o can be in the range between

107! and 2.5 x 1072, while g.s can be in the range between 3 x 10?2 and 102. In this way we
obtain, from (7.34) that condition (7.33) can be satisfied for

M > (1073 — 1074 Mp, ~ (10'® — 10"°) GeV (7.36)

If X, is a scalar, its coupling ay is proportional to the squared mass of a fermion,
2
m
Qy ™~ (—"—f—> &,
my

typically in the range (1072 — 1077), from where
My > (1073 — 1078) Mp, ~ (106 — 10'%) GeV (7.37)

Obviously, condition (7.37) is more easily satisfied than condition (7.36). In general, baryo-
genesis is more easily produced by scalars than by bosons. On the other hand, as we have
said above, condition (7.35) for gravitationally interacting particles is automatically satisfied

for any mass M, below the Planck scale.

Later on, at Tp, when

Iy ~ H(Tp) (7.38)

1.e. at
Tp~ ge_fflMal/Z(MlMpe)m < M, (7.39)

the last inequality coming from (7.34), or,

1/2
Tp ~ g Mo (%) < My, (7.40)
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the last inequality coming from (7.35), X; and X; will start to decay and decrease their
number. If their decay violate baryon number, as we are assuming, they will generate a net

baryon number per decay.

Suppose, to fix the ideas, that X has two decay channels a and b, with baryon numbers
B, and B,, respectively. Correspondingly, the decay channels of X, @ and b, have baryon
numbers — B, and — By, respectively. Let r(7) be the branching ratio of X(X) in channel

a(@), and 1 — r(1 — 7) the branching ratio of X (X) in channel b(b),

X — a)
I'x
F o= X —a) (7.41)
I'x
(X —b)
I'x
I'x
where we are using equality between the total decay rates of X and X (CPT+unitarity).

1—r =

1-7 =

The mean net baryon number produced in X-decays is
By + (1 —1)By
and that produced in X-decays is
—TFBy — (1 — 7)B,.
Finally, the mean net baryon number produced in X and X-decays is
AB=(r—-7)B,+[(1=7r)— (1 =7)] By = (r —7)(Bs — Bs) (7.42)

Equation (7.42) can be generalized to the case when X (X) can decay to a set of final states

fn(f,.) with baryon number B, (—B,). In that case, the net baryon number per decay is

AB = Fl; ZBn [F(X — f) -T(X — Tn)} (7.43)

At the decay temperature Tp < M; the inverse decay processes are greatly suppressed

with respect to the direct decay,
Mi
F(fn — X,,) ~ e Tp 1—‘(){z s fn) (7.44)

and thus the net baryon number produced per decay AB is not destroyed by the net baryon

number produced per inverse decay —AB. At Tp,

Ny, = Nxg. =~ Ny

1



Quirds 553

and therefore the net baryon number density produced is
nap = AB nx, (745)
from where we see that AB coincides with the parameter n defined in (7.1) if nx, ~ n,,.

The three ingredients of baryogenesis can be easily traced back here:

e If B is not violated, then B, =0 and AB = 0.
e If C and CP are not violated, then I'(X — f,) =I'(X — f,)), and also AB = 0.
e In thermal equilibrium, the inverse decay processes are not suppressed and the net

baryon number generated per decay is cancelled by inverse decays.

We have assumed to obtain (7.45) that nx, ~ n. at the decay temperature Tp. However,
the entropy release in X;-decays can be very important (especially if the X; decay very late,
Tp < M;) and has to be taken into account. In that case, neglecting the initial entropy and

assuming that the energy density at Tp,
px, ~ Minx,

is converted into radiation at the reheating temperature Try

2
T
= _?EgeﬁTg_H
we obtain
’  Tiy
N — o g— 7.46
nx, 3093 M, ( )

and, using (7.9), (7.15) and (7.45) we can write the baryon-to-entropy ratio as,

nap _ 31ru
~ — AB 7.47
S 4 Mi ( )

We can now relate Try with the decay rate I'; using the decay condition

and so write (7.47) as

Ty 1/2
L (M) AB (7.48)
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where the coefficient 3 is
90 1/4
g = ( ) ~ 1T (7.49)

72
Now we can replace the values of I'; (i=1,2). For the case of strongly decaying (through

renormalizable interactions) bosons X, eq. (7.27) leads to

1/2

AB (7.50)

nAB .y g;f-fl/?aMPE
S M]

and for the case of weakly decaying (through gravitational interactions) bosons X5, eq. (7.28)
leads to

1/2
D25 _p [TM?—-l AB (7.51)
§ 9est Mpe

In both cases, egs. (7.50) and (7.51), the conditions (7.34) and (7.35), respectively, guarantee
that the numerical coefficients in front of AB are smaller (even much smaller) than unity
and the net baryon number per decay has to be larger than that initially thought to be
necessary to explain the condition (7.18).

The quantitative analysis of the out-of-equilibrium decay scenario, including the Boltz-
mann equations for the evolution of 7, has been performed in ref. [60, 63, 64]. The numerical
analysis essentially confirms the qualitative picture we have described, the only difference
being that the asymmetry does not fall off that rapidly with K =I';/H(M,) until K > 1.

7.4 Baryogenesis at the electroweak phase transitions

Baryogenesis can be generated at the GUT phase transition. This possibility suffers, however,

from two serious drawbacks:

e If there is a period of cosmological inflation of the universe, any pre-existing baryon
asymmetry would be washed out by the exponential expansion of the universe. In
many cases, the reheating temperature after inflation is not as high as the unification
scale (poor reheating) and so baryon asymmetry cannot be regenerated by the GUT

phase transition.

e There is no experimental evidence of any GUT, and so baryon asymmetry generation at

the GUT phase transition rely on parameters which cannot be experimentally tested.
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It has been recently realized [65, 66] that the three Sakharov’s conditions for baryogenesis,
sections 7.2.1, 7.2.2 and 7.2.3, can be fulfilled at the electroweak phase transition:

¢ Baryonic charge non-conservation was discovered by 't Hooft [67]. In fact baryon and
lepton number are conserved anomalous global symmetries in the Standard Model.

They are violated by non-perturbative effects.

e CP violation can be generated in the Standard Model from phases in the fermion
mass matrix, Cabibbo, Kobayashi, Maskawa (CKM) phases [68]. This effect is much
too small to explain the observed baryon to entropy ratio. However, in extensions of
the Standard Model, as the singlet majoron model or the minimal supersymmetric
standard model (MSSM), a sizeable CP violation can happen through an extended
Higgs sector.

e The out of equilibrium condition can be achieved, if the phase transition is strong
enough first order, in the bubble walls. In that case the B-violating interactions are
out of equilibrium in the bubble walls and a net B-number can be generated during

the phase transition.

7.4.1 Baryon and lepton number violation in the electroweak theory

Violation of baryon and lepton number in the electroweak theory is a very striking phe-
nomenon. Classically, baryonic and leptonic currents are conserved in the electroweak theory.
However, that conservation is spoiled by quantum corrections through the chiral anomaly

associated with triangle fermionic loop in external gauge fields. The calculation gives,

gz . grz _
8,5 = 8,5 = Ny (3%2 W = YY) (7.52)

where Ny is the number of fermion generations, W,, and Y, are the gauge field strength

tensors for SU(2) and U(1)y, respectively, and the tilde means the dual tensor,

W,:u/ — }_Ep,vaﬁwaﬁ'
2

A very important feature of (7.52) is that the difference B — L is strictly conserved, and so
only the sum B + L is anomalous and can be violated. Another feature is that fluctuations
of the gauge field strengths can lead to fluctuations of the corresponding value of B + L.
The product of gauge field strengths on the right hand side of eq. (7.52) can be written as
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four-divergences,

WW = kb (7.53)
YY = 8,kb
where
ki = **fY,. Yy (7.54)

o

H = el (We W — SeuWzwiws)

and W,,, Y, are the gauge fields of SU(2) and U(1)y, respectively. In general total derivatives
are unobservable because they can be integrated by parts and drop from the integrals. This
is true for the terms in the four-vectors (7.54) proportional to the field strengths W, and Y,,,
4. This means that for the abelian subgroup U(1)y the current non conservation induced by
quantum effects becomes non observable. However this is not mandatory for gauge fields, for
which the integral can be nonzero. Hence only for non-abelian groups can the current non

conservation induced by quantum effects become observable. In particular one can write,
AB = AL = N;yAN¢s (7.55)

where N¢gg is the so-called Chern-Simons number characterizing the topology of the gauge

field configuration,

Nes = / Bt (w;

3272 J

Note that though N¢g is not gauge invariant, its variation AN¢gg is.

a g a C
We — Lep W) (7.56)

We want to compute now AB between an initial and a final configuration of gauge fields.
As we have said we are considering (vacuum) field strength tensors W, which vanish. The
corresponding potentials are not necessarily zero but can be represented by purely gauge

fields, ‘
W, = —gU(m)B,,,U‘l(a:) (7.57)

There are two classes of gauge transformations keeping W, = 0:

e Continuous transformations of the potentials yielding ANgg = 0.

e If one tries to generate ANcgs # 0 by a continuous variation of the potentials, then one
has to enter a region where W, # 0. This means that vacuum states with different

topological charges are separated by potential barriers.

24We are generically interested in cases where initial and final average values of field strengths are zero.



Quirds 557

The probability of barrier penetration can be calculated using the quasi-classical ap-
proximation as in previous sections. In euclidean space time, the trajectory in field space
configuration which connects two vacua differing by a unit of topological charge is called
instanton. The euclidean action evaluated at this trajectory gives the probability for barrier

penetration as,

[~ exp (—4—7T) ~ 107162 (7.58)
aw

where aw = g?/4m. The number in (7.58) is so small that the calculation of the pre-

exponential is unnecessary and the probability for barrier penetration is essentially zero.

7.4.2 Baryon violation at finite temperature: sphalerons

Expression (7.58) gives the probability for barrier penetration at zero temperature. However,
in a system with non zero temperature a particle may classically go over the barrier with a

probability determined by the Boltzmann exponent, as we have seen in section 5.

What we have is a potential which depend on the gauge field configurations W,. This
potential has an infinite number of degenerate minima, labeled as €2,. These minima are
characterized by different values of the Chern-Simons number. The minimum €24 corresponds
to the configuration W), = 0 and we can take conventionally the value of the potential at this
point to be zero. Other minima have gauge fields given by (7.57). In the temporal gauge
Wy = 0, the gauge transformation U must be time independent (since we are considering

gauge configurations with W, = 0), i.e. U = U(Z), and so functions U define maps,
U:S*— SU(2)

All the minima with W,, = 0 have equally zero potential energy, but those defined by a map

U(Z) with nonzero Chern-Simons number

1

U] = 55

f LreFTrUBUUU- U8 U™) (7.59)

correspond to degenerate minima in the configuration space with non-zero baryon and lepton

number.

Degenerate minima are separated by a potential barrier. The field configuration at the
top of the barrier is called sphaleron, which is a static unstable solution to the classic
equations of motion [69]. The sphaleron solution has been explicitly computed in ref. [69]
for the case of zero Weinberg angle, (.e. neglecting terms O(¢')), and for an arbitrary value
of sin” Ay in ref. [70].
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An ansatz for the sphaleron solution for the case of zero Weinberg angle was given (for
the zero temperature potential) in ref. [69], for the Standard Model with a single Higgs
doublet, as,

Weotdat = — 2 f(¢)dU U (7.60)
g

for the gauge field, and

v 0
d = ﬁh(g)(]( ) ) (7.61)

for the Higgs field, where the gauge transformation U is taken to be,

Uzl( z ‘““y) (7.62)

T\ —xz+y z
and we have introduced the dimensionless radial distance & = guvr.

Using the ansatz (7.60), (7.61) and (7.62) the field equations reduce to,

B &0y
€% = 20 NU-2H) - TR0 ) (7.63)

5(62 5) = 2h(1—f)2+-;552(h2—1)h

with the boundary conditions, f(0) = h(0) = 0 and f(co) = h(oco) = 1. The energy

functional becomes then,

P = () v ore e (2)

v =P+ (5) €0 - 17 ) (764

The solution to egs. (7.63) has to be found numerically. The solutions depend on the
gauge and quartic couplings, g and A. Once replaced into the energy functional (7.64) they
give the sphaleron energy which is the height of the barrier between different degenerate

minima. It is customary to write the solution as,

Eun = 2% B\ /g% (7.65)
aw
where B is the constant which requires numerical evaluation. For the standard model with
a single Higgs doublet this parameter ranges from B(0) = 1.5 to B(oo) = 2.7. A fit valid for
values of the Higgs mass, '
25 GeV < my <250 GeV



Quir6s 559

can be written as,

B(zx) = 1.58 + 0.32z — 0.05z> (7.66)
where = = my/my.

The previous calculation of the sphaleron energy was performed at zero temperature. The

sphaleron at finite temperature was computed in ref. [71]. Its energy follows the approximate

scaling law,

Esph(T) = Esph'(('(i—;g(%:)%)' (767)
which, using (7.65), can be written as,
Eu(T) = 220 (/g7 (7.68)

where mw (T) = 2g(6(T))

7.4.3 Baryon violation rate at T > T,

The calculation of the baryon violation rate at T > T, 7.e. in the symmetric phase, is
very different from that in the broken phase, that will be reviewed in the next section. In
the symmetric phase, at ¢ = 0, the perturbation theory is spoiled by infrared divergences,
as we saw in section 6, and so we cannot rely upon perturbative calculations to compute
the baryon violation rate in this phase. In fact, the infrared divergences are cut off by the

non-perturbative generation of a magnetic mass,
muy ~ oaw T (7.69)

i.e. a magnetic screening length, £y ~ (awT)™'. The rate of baryon violation per
unit time and unit volume I' does not contain any exponential Boltzmann factor #. The

pre-exponential can be computed from dimensional grounds, [72] as
I' = k(awT)* (7.70)
where the coefficient k£ has been evaluated numerically in ref. [73] with the result
015k510

Now the rate of baryon number non-conserving processes Vg(t) is related to the rate I’

per unit time and unit volume of fluctuations with changing of the topological number by

251t would disappear from (5.71) in the limit T — oo
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(74) .
Vilt) = =Ny (7.71)

We have to compare now the rate (7.71) with the expansion rate of the universe, given

by,

H(t) = % _ %t‘l (7.72)

where the last equality holds in the radiation dominated era. Using now eq. (5.100) and
(7.72) we can write the Hubble constant as, A

T2
H{t) = 17.2}‘—4;; (7.73)
and the condition for baryon number violation,
Ve(t) > H(t) (7.74)
translates into the condition,
T < 0.377 Nykag, Mpy ~ 10" GeV (7.75)

where we have taken the most conservative value for &, k = 0.1, and

aw = 0.0336 (7.76)

7.4.4 Baryon violation rate at T' < T,

After the phase transition, the calculation of baryon violation rate can be done using the
semiclassical approximations of section 5, as given by eq. (5.71). The rate per unit time and
unit volume for fluctuations between neighboring minima contains a Boltzmann suppression
factor exp (—Ewn(T")/T), where Eg,(T) is given by (7.68), and a pre-factor containing the
determinant of all zero and non-zero modes, eq. (5.70). The prefactor was computed in ref.
[75] as

4 7
I ~ 2.8 x 10°T* (j—:) m%e_c (7.77)

where we have defined 7
¢(T) = _ﬁih_(_) (7.78)

T
the coefficient B is the function of A/g? defined in (7.66) and « is the functional determinant
associated with fluctuations about the sphaleron. It has been estimated [76] to be in the
range,

107 sk 51071 (7.79)
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The equation describing the dilution of the baryon asymmetry in the anomalous elec-
troweak processes reads [74]

8(B + L)

= ~Va(®)(B+L) (7.80)

where Vp(t) is the rate (7.71) of the baryon number non-conserving processes. Assuming T

is constant during the phase transition 2® the integration of (7.80) yields

(B + L)ﬁnal

il 2L P (7.81)
(B + L)initial
where the suppression factor is given by
S=e% (7.82)
. 13 T
X =—N;—t 7.83
5V (7.83)
Using now (7.77) and (5.100)
Mp;,
t=0.029—7% (7.84)
we can write the exponent X as,
X ~ 10"%(7e™¢ (7.85)

where we have taken the values of the parameters, B = 1.87, aw = 0.0336, Ny = 3,

T, ~ 10®> GeV. Imposing now the condition

$210°° (7.86)
or
X 510 (7.87)
leads to the condition on ((T}),
C(T.) 2 Tlog ((Tc) +91og 10 + log & (7.88)

Now, taking k at its upper bound in (7.79), k = 107!, we obtain from (7.88) the bound
[77]
Esph(Tc)

Z 45, 7.89
5 (789

26 Actually this is a very good approximation since phase transition happens very fast at almost a constant
temperature.
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and using the lower bound of (7.79), kK = 10™* we obtain,

Esph (Tc)

z 37, 7.90
- (7.90

Eq. (7.89) is the usual bound used to test different theories while eq. (7.90) gives an idea

on how much can one move away from the bound (7.89), i.e. the uncertainty on the bound

(7.89).

The bounds (7.89) and (7.90) can be translated into bounds on ¢(T%)/T, using the relation
(7.68) and

1
mw(T,) = igqﬁ(ﬂ) (7.91)
we can write H(T.) Ep(T) | Byy(T))
c g sph\£c sph\<c
_ o - Zephllc) 7.92
TC 47 B Tc 36 Tc ( )
where we have used the previous values of the parameters. The bound (7.89) translates into
$(Ty)
—_—2 1.3 7.93
a (7.9
while the bound (7.90) translates into,
(Te) 2 1.0 (7.94)
T.

These bounds, eqs. (7.93) and (7.89), require that the phase transition is strong enough
first order. In fact for a second order phase transition, ¢(7.) ~ 0 and any previously
generated baryon asymmetry would be washed out during the phase transition. For the case
of the Standard Model, sections 2.5 and 4.4, the previous bounds translate into a bound on

the Higgs mass, as we will see in the next section.

7.4.5 Bounds on the Higgs mass in the Standard Model

The effective potential for the Standard Model was analyzed in sections 2.5 and 4.4 in the
one-loop approximation, and in section 6.4 including leading order plasma effects (see egs.
(6.79-6.99)). In this approximation, the longitudinal components of the gauge bosons are
screened by plasma effects while the transverse components remain unscreened. In this way
a good approximation to the effective potential including these plasma effects is provided by
egs. (4.53-4.59), where the coefficient F in (4.56) is replaced by

_ 22m +mf

E = ~95x 1073 7.95
3 473 = ( )



Quirds 563

Now we can use eq. (5.14) and m? = 2Xv? to write,

&(T.) 4Ev?
T, m2

(7.96)

In this way the bound (7.93) translates into the bound on the Higgs mass,

AE
mi S {75 ~ 42 GeV’ (7.97)

while the bound (7.94) would translate into the bound

mp S V4Ev ~ 48 GeV. (7.98)

The bound (7.98) is excluded by LEP measurements [59], and so the Standard Model is
unable to keep any previously generated baryon asymmetry. Is it possible, in extensions of
the Standard Model, to overcome this difficulty? We will see in the next sections two typical
examples where the Standard Model is extended: one is the well motivated supersymmetric
extension of the Standard Model (MSSM) and the other is the simplest extension of the
Standard Model with a complex singlet which does not acquire any vacuum expectation

value.

8 Electroweak Phase Transitions in Extensions of the
Standard Model

The condition that the baryon excess generated at the electroweak phase transition is not
washed out requires a strong enough first-order phase transition, as we have seen in the
previous section, which translates into an upper bound on the Higgs boson mass, see eq.
(7.98). Recent analyses of the minimal Standard Model (MSM) at one-loop [12], and includ-
ing plasma effects [15, 16, 27, 40, 42] in various approximations [43]-[563], show that the above
upper bound is inconsistent with the present experimental lower bound [59], i.e. that the
phase transition is not strongly enough first order. Though, in our opinion, this issue is not
yet fully settled it is interesting to study extensions of the MSM where the phase transition

can be made consistent with present experimental lower bounds on the Higgs boson mass.

8.1 Standard Model with a singlet

In this section we study the phase transition in the simplest of these extensions, which

consists in adding to the MSM a complex gauge singlet with zero vacuum expectation value.
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This extension was proposed in refs. [12, 76, 78] as the simplest way of overcoming the
problems encountered in the MSM. In fact the added boson generates a cubic term in the
one-loop effective potential, which can trigger a strong first-order phase transition if it is
not shielded by a heavy SU(2) x U(1) invariant mass 2. However, as noticed in ref. [80],
the extra boson behaves as the longitudinal components of W and Z gauge bosons and the
corresponding cubic term can also be shielded by plasma effects. Fortunately we will see
this is not always the case and find the region in parameter space where the phase transition
is strong enough first order for values of the Higgs boson mass beyond the experimental

bounds.

The lagrangian of the model is defined as:
L= Lysy +0"5*0,8 — M*S*S — \s(5*S)? — 2(*S*SH*H (8.1)

where H is the MSM doublet with (H) = ¢/v/2, ¢ is the classical field, and M2, \g, (% > 0,

to guarantee that (S) = 0 at all temperatures .

The tree-level potential is that of the MSM (2.79), and the fields contributing to the
‘effective potential are those of the MSM, i.e. the Higgs field h, the Goldstone bosons X, the
gauge bosons W=, Z, v and the top quark ¢, with masses given by (2.80), (2.81), and (2.82),
and the S boson, with a mass

my(¢) = M2+ (6% . (8.2)

The temperature dependent effective potential can be calculated using standard tech-
niques. Plasma effects in the leading approximation can be accounted by the one-loop
effective potential improved by the daisy diagrams. Imposing renormalization conditions
preserving the tree level values of v? = p?/), and working in the 't Hooft-Landau gauge, the
¢-dependent part of the effective potential can be written in the high-temperature expansion
as

Ver(¢,T) = Vipee + AVp + AVp (8.3)
where
AVp = > gAV; (8.4)
i=hx,Wr,Z1,v..Wr,Z7v7,5
(AV; being defined in (6.81) and AVy given by (6.82)). The number of degrees of freedom
¢; in (8.4) is given by (6.83) and
gs =2 (8.5)

2TThis result also holds when the gauge singlet acquires a vacuum expectation value. This case has been

recently analyzed at the one-loop level in ref. [79], where plasma effects are not considered.
28 A cubic term in (8.1) would destabilize the potential along some direction in the S plane for As = 0.

We assume a global U(1) symmetry S — €S which prevents the appearance of such cubic term.
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The Debye masses M? in (6.81) for i = h, x, S, Wy, Wr, Zr, yr are (see eq. (6.84))
M; =mi(¢) + IL(,T) (8.6)

where the self-energies I1;(¢, T') are given by

3 2 e 2 A h2 2
I,(¢,T) = (% St f e %) 7" (8.7)
3 2 + 2 /\ h2 2
(¢, T) = (% oA %) T? (8.8)
2
MIs(g,T) = 2472 (8.9)

while Iy, (¢,T), Hw,.(¢,T), z.(¢,T), and IL,.(¢, T) are given by (6.87) and (6.88). The
Debye masses M? for ¢ = Zy,;, are given through (6.89) to (6.99).

An analytic treatment of the one-loop effective potential was given in ref. [12]. In the
presence of plasma effects a similar treatment of the potential can be done [81] assuming
that the bosonic contribution (8.4) to the effective potential (8.3) is dominated by one field,
namely the S field, and neglecting the contribution from the other bosons. The ¢ dependent
part of the effective potential (8.3) can be written as

V(9) = A(T)¢* + B(T)¢* + C(T) (¢* + KX(T))™’ (8.10)
where y Lie w
A(T) = —-5,!1,% + Z (—3‘ + ?t) T? (8.11)
B(T) = pr (8.12)
__¢r
C(T) = - (8.13)
(¢ + Ag)T? + 3M?
K*(T) = = (8.14)
and . cpT? 3 m?2(v)
pi = p? — = {mg(v) + M?log m%(v)} al- him?(v) log oo T? (8.15)
Ar = At S 10g BT B a0 W) (8.16)

812 " m%i(v) 16m? crT?
The temperature T; is defined by the condition V" (0) =0, or

4A® - 9C*K?* =0 (8.17)
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For T' < T, the origin is a maximum, and there is a global minimum at ¢ # 0 that evolves
towards the zero temperature minimum. For T > T the origin is a minimum and there is a
maximum at ¢_(7") and a minimum at ¢ (T) given by
1
2
T) =
At the temperature 7 defined by the condition

{902 — 16AB + 3|C|{/9C? + 32(2B2K? — AB)} (8.18)

9C? +32(2B*K? - AB) =0 (8.19)

the maximum and minimum collapse ¢_(T7) = ¢4(T7). For T' > T; the origin is the only

minimum.

Using (8.11-8.14) the temperatures 77 and 7, can be written as
2)\Tl (Czﬂ‘%’l + /\Tl 2)

CRT e (8.20)
(£ ))\Tl -5 - 3—42"(42 + As)
TE = 2i {A2 (T3) + \/A4(T2 — 16a,uT2} (8.21)
where o B
{2 B 1
( s ) =1 (¢2+As) (8.22)
AYT) = g iM? 44 (C; ey ) pa (8.23)

The nature of the phase transition depends on the relation between 77 and T,. For values
of the parameters (2, s, M) such that T} > T, the phase transition is first order and the
plasma screening is not very effective. When T; = T, the phase transition becomes second
order because the screening became more effective. In fact, the condition T} = T; gives
the turn-over from first to second order. It provides a surface in the space ({, As, M) which
separates first-order from second-order regions. An analytic approximation can be given, if

one neglects loop corrections in (8.15,8.16), as

¢ 2 AN
S (5+%) e () 2

812 3
where the strict inequality corresponds to the subregion of the space ({, Ag, M) for which

)\Q(C2 + )\s) =

the phase transition is first-order, and the equality corresponds to the turn-over to a second

order phase transition. Since the right-hand side of eq. (8.24) is positive-definite *°, we can

291t is easy to see that the necessary and sufficient condition for this turn-over to exist is that the right-
hand-side of eq. (8.24) is positive-definite. It is not a priori excluded that an isolated region exists in the space
(¢, As, M) where the phase transition is second order. However we have checked that for phenomenological
values of the parameters (A, k) this region does not exist.
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Figure 22: Plot of ¢, (7.)/T. versus m;, for m; = 90, 150 and 175 GeV, A = 10° GeV
and (.« taken from the Table.

see from (8.24) how the parameters M? and (% + \s in (4) and (5) influence the shielding of
the first order phase transition. First, the larger the value of M is, the easier one saturates
the inequality in (8.24) and the easier one reaches a second-order phase transition. The same
can be stated on Ag, though its effect is damped by A\? and would become important only

for a very heavy Higgs. For the same reason the effect of ( is opposite, unless the Higgs is
very heavy.

The complete numerical analysis has been performed in ref. [81]. If we want to establish
an absolute upper bound on the mass of the Higgs boson we need to optimize the phase
transition with respect to the new parameters ({, As, M). As can be seen from eq. (8.24)
this is accomplished for M = 0 % and As = 0. As for (, a quick glance at eq. (8.24)
shows that we should put it to its maximum value (.. The usual requirement for (.« is
that the theory remains perturbative in all its domain of validity, from the electroweak scale
to a high scale A. For that we have to study the renormalization group equations (RGE)
of the minimal extension of the MSM provided by the lagrangian (8.1). At one-loop the
only [-function of the MSM modified by the interactions of S is 3y while there appear new

30We are aware that values M < v would require much more fine tuning than that required for the Higgs

sector of the MSM. However we are taking M = 0 only to establish an absolute upper limit on the Higgs
mass.
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p-functions for the new couplings Ag and (, as [82]

ABy = 8¢* (8.25)
Brg = 2002 + 8C* (8.26)
Bez = ¢* |6A + 6h? + 8As + 8¢% — 2(393 +¢"?) (8.27)
where we are using the convention
16772%12 = (8.28)

for all couplings = = (2, Ag, A, .... From eqs.(8.26,8.27) we see that imposing Ag(my) = 0 as
boundary condition, consistent with our previous requirement, we can reach the maximum
value of ((mw), (max, that will depend on my, ™, and A. We have solved the system of RGE
corresponding to the lagrangian (8.1) between mw and A and obtained (., for different
values of mp and m;. The dependence of (,.x on my is negligible for 60 GeV < m; <
100 GeV. In the Table we show (2, for different values of A and m; =90, 120, 175 GeV.

my (GeV)

A (GeV) | 90 120 | 175
10% 1.774 | 1.742 | 1.667
108 1.095 | 1.067 | 1.011
108 0.793 | 0.770 | 0.728
1™ 0.624 | 0.604 | 0.573
1012 0.515 | 0.498 | 0.473
19t 0.439 | 0.424 | 0.405
1016 0.384 | 0.370 | 0.356

Table

To exhibit the dependence on m; we plot in fig. 22 ¢, (T;)/T. versus my for Ag = 0, M =0,
me = 90, 120 and 175 GeV, and ¢ = (ax, corresponding to A = 10° GeV. In that case
we see from fig. 22 that avoiding baryon asymmetry washout imposes on the Higgs mass an

upper bound of order 80 GeV.

8.2 The Minimal Supersymmetric Standard Model

Among the extensions of the MSM, the physically most motivated and phenomenologically
most acceptable one is the Minimal Supersymmetric Standard Model (MSSM). This model
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allows for extra CP-violating phases besides the Kobayashi-Maskawa one, which could help
in generating the observed baryon asymmetry [84]. It is then interesting to study whether

in the‘MSSM the nature of the phase transition can be significantly modified with respect
to the MSM.

In this section (see refs. [85, 86]), we extend the considerations of the previous section
to the full parameter space, characterizing the Higgs sector of the MSSM. We will include
a full discussion of the top/stop sector and resum the leading plasma corrections to gauge
bosons and stop masses, improving over previous studies [87]. Even barring the interesting
possibility of spontaneous CP-violation at finite temperature [88], as well as the possibility
of charge- and colour-breaking minima, we have to deal with a complicated two-variable
potential, which requires a numerical analysis. After including the most important experi-

mental constraints, we find that there is very little room for the MSSM to improve over the
MSM.

The main tool for our study is the one-loop, daisy-improved finite-temperature effective
potential of the MSSM, V.g(¢p,T). We are actually interested in the dependence of the
potential on ¢; = Re HY and ¢, = Re H? only, where H? and HY are the neutral components
of the Higgs doublets H; and Hs, thus ¢ will stand for (¢1,¢2). Working in the 't Hooft-

Landau gauge and in the D R-scheme, we can write

Vir(d, T) = Vo) +Vi(6,0) + AVA(6,T) + AVaiey($,T), (829)
where
V() = mig+mist+aminin+ S o, (830)
2
Vi(8,0) = 262‘2 o) [lng(f)f-g}, (831
AG@T) = o {Z iy (5:2)
AVaie($,T) =~ S [M3$,T) - mi(9)] (8.33)

The four contributions (8.30-8.33) to the effective potential (8.29) have the following mean-
ing. The first term, eq. (8.30), is the tree-level potential. The second term, eq. (8.31), is
the one-loop contribution at T = 0: @Q is the renormalization scale, where we choose for
definiteness Q% = m%, m?(¢) is the field-dependent mass of the i** particle, and n; is the
corresponding number of degrees of freedom, taken negative for fermions. Since V;(¢,0) is
dominated by top (t) and stop (t1,12) contributions, only these will be included in the follow-

ing. The third term, eq. (8.32), is the additional one-loop contribution due to temperature
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effects. Here J; = J,(J_) if the i** particle is a boson (fermion), and (see eqs. (4.15) and

(4.40))
Ji(v?) = fooo dx z° log (1 = e_\/m) , (8.34)

Since the relevant contributions to AV;(¢,T) are due to top (t), stops (¢1,%;) and gauge
bosons (W, Z), only these will be considered in the following. Finally, the last term, eq. (8.33),
is a correction coming from the resummation of the leading infrared-dominated higher-loop
contributions, associated with the so-called daisy diagrams. The sum runs over bosons only.
The masses M2(¢, T) are obtained from the m?2(¢) by adding the leading T-dependent self-
energy contributions, which are proportional to 72. We recall that, in the gauge boson

sector, only the longitudinal components (W, Z1,,v.) receive such contributions.
The relevant degrees of freedom for our calculation are:
ng=-12, n;, =n;, =6, nw=6, nz=3, nw, =2, ng, =n,, =1. (8.35)

The field-dependent top mass is
m;(¢) = hids. | (8.36)

The entries of the field-dependent stop mass matrix are

mi (¢) = mb, +mi($)+ Di (), (8.37)
mi (¢) = m, +mi(¢)+ Di (4), (8.38)
mk(¢) = ht(At¢2+u¢1), (8.39)

where mg,, my, and A, are soft supersymmetry-breaking mass parameters, u is a superpo-

tential Higgs mass term, and

D (4) = (%-gsnﬁew)g +o” (8% — 2), (8.40)
D3,0) = (Beintoy) T2 51— g (5.41)

are the D-term contributions. The field-dependent stop masses are then

+ [m% (o))° . (8.42)

it (9) = RO TEO) | J [mt-L(qb) - mgﬂ(qs)}

The corresponding effective T-dependent masses, M%l ; (¢,T), are given by expressions iden-

tical to (8.42), apart from the replacement

mi L (¢) = ME (3, T)=mi, () + 1T, (T). (8.43)

i
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The II;, (T') are the leading parts of the T-dependent self-energies of

4 i 1

L {7y = 5ng2+1ng2 108 g T + thz, (8.44)
4 4

I, (T) = §93T2+§Q'2T2+§h¢27’2, (8.45)

where g, is the strong gauge coupling constant. Only loops of gauge bosons, Higgs bosons
and third generation squarks have been included, implicitly assuming that all remaining
supersymmetric particles are heavy and decouple. If some of these are also light, the plasma
masses for the stops will be even larger, further suppressing the effects of the associated
cubic terms, and therefore weakening the first-order nature of the phase transition. Finally,

the field-dependent gauge boson masses are

Q+9

my (4) = (¢2 +¢3), mz(e)= (41 +42), (8.46)

and the effective T-dependent masses of the longitudinal gauge bosons are
M2W (¢, T) = m%’V(QB) + I, (T), (8.47)
1
M2, (6. T) = 5 [ (8) + o, (T) + T, (T)]

r2 2 ’ 2
+ \l i [92 _29 (% + ¢2) + Iy, (T) — p, (T)] + [%(qﬁ% + q5§)] . (8.48)

In eqs. (8.47) and (8.48), Ilw, (T') and Ilp, (T) are the leading parts of the T-dependent
self-energies of W and By, given by
5 47
Iy, (T) = 592:1-12’ g, (T) = _1—8_9

where only loops of Higgs bosons, gauge bosons, Standard Model fermions and third-

272, (8.49)

generation squarks have been included.

We shall now analyse the effective potential (8.29) as a function of ¢ and T'. Before doing
this, however, we trade the parameters m2, m2, m2 appearing in the tree-level potential (8.30)
for more convenient parameters. To this purpose, we first minimize the zero-temperature
effective potential, i.e. we impose the vanishing of the first derivatives of Vy(¢) + Vi(¢,0) at
(¢1, p2) = (v1,v2), where (vq,v2) are the one-loop vacuum expectation values at 7' = 0. This

allows us to eliminate m? and m3 in favour of m% and tan 8 = vy /v;:

64m2 | Oy b1 Q?

m, Om? m? m?
m: = —m2cotB+ —Z cos?2 L [—’—' (lo — — 1)] . (8.51
2 3 ﬂ 9 /6 Z 6472 a¢2 ¢2 ) QZ b12=v1 2 ( )

2 b 2.,2 2
m? = —mitanf — —2< Z cos 206 — Z = [ﬂﬂ (IOgﬂ — 1)] , (8.50)
$1,2=v1,2
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Moreover, m3 can be traded for the one-loop-corrected mass m? of the CP-odd neutral Higgs
boson. In our approximation [89]
2 2
392mt2NAz 'mtg1 (log %% - 1) % (log T I)
. .
£

mj = —m? sin B cos 3 —

8.52
32m2m}, sin? B m%l -m (8.52)

Therefore the whole effective potential (8.29) is completely determined, in our approximation,
by the parameters (m4,tan 3) of the Higgs sector, and by the parameters (m;, mg,, muy,,
i, A;) of the top/stop sector. The same set of parameters also determines the one-loop-
corrected masses and couplings of the MSSM Higgs bosons.

The next steps are the computation of the critical temperature and of the location of
the minimum of the effective potential at the critical temperature. We define here Tj as
the temperature at which the determinant of the second derivatives of Veg(¢p,T) at ¢ = 0

vanishes:

0*Ver(¢, To)
det lma¢ia¢j

It is straightforward to compute the derivatives in eq. (8.53) from the previous formulae; the

] 0. (8.53)
¢1,2=0

explicit expressions are

ot | — m2 + 60 m IO I + 6b m |0 I
2 9 f22 6 l 2 i1 Q3 g Q2 1 Us g Q2
2

2 2 2
x % [-—(99 +3¢'2 + 613 - 12h2) + 6T, (m ) + 6bii ), (mUSH
m

_ 16% {3 [T, (T)]7 + ¢' 2 [Ty, (T)]?
+ 6 [ﬁﬁ (mé,, + IIEL (T))E — @i (méS)
b

+ 6 7 mUa + HtH(T)) = 1,'L (sza) : }
1 [ 8%Vig », 1 y md, 2 mi,
e - L -1 =
: [6@8@] o T T e [m‘?a pler s (18 g

T? mé my,
+ gon () - (75)
— 2 )

o 2 =

The coeflicients a;;, b;; are given by
5 B

1 2 .5 2h; 1
o (A Zanny) gt gy 2
= (2 3o W (" +9 )+m2Qa—m?]3

N

(%]
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2 . 2h2p®
by = (5 sin? 9w) (+9% - th%;b—f,
Qs Us
1 g hils
gy = 2h2 > (— - —-SiIlZGW) (gz + 9l2) + — et
: 2 3 my, — Mg,
2 2h2A?
b = 2h2—(—"29 ) 2 f2_4,
2 ¢~ |38 0w ) (9" + ') - §
2h2 1A
dia = Z_t‘u—tT, (855)
Wtligyy *— gy

and the coefficients @,;, b;; are given by identical expressions, apart from the replacement

md, —my, — mp, —md, +10; (T) — I, (T). (8.56)

Once eq. (8.53) is solved (numerically) and Ty is found, one can minimize (numerically)
the potential Veg(¢, Tp) and find the minimum [v1(Tp), va(Z0)]. The quantity of interest is
indeed, as will be discussed later, the ratio v(Tg)/ Ty, where v(Tp) = \/'ui?(To) + v3(Th).

We now discuss the particle physics constraints on the parameters of the top/stop sector
and of the Higgs sector. To be as general as possible, we treat mg,, my, and the other soft
mass terms as independent parameters, even if they can be related in specific supergravity
models.

The constraints on the top/stop sector will be briefly discussed. Direct and indirect
searches at LEP [59] imply that m; 2 45 GeV, which in turn translates into a bound in the
(mg,, tan B) plane. Electroweak precision measurements [90] put stringent constraints on a
light stop-sbottom sector: in first approximation, and taking into account possible effects
[91] of other light particles of the MSSM, we conservatively summarize the constraints by
Ap(t,b) + Ap(t,b) < 0.01, where the explicit expression for Ap(#,b) can be found in [92].

We finally need to consider the constraints coming from LEP searches for supersymmetric
Higgs bosons [59]. Experimentalists put limits on the processes Z — hZ* and Z — hA,
where h is the lighter neutral CP-even boson. We need to translate these limits into exclusion
contours in the (m 4, tan 3) plane, for given values of the top/stop parameters. In order to do
this, we identify the value of BR(Z — hZ*), which corresponds to the limit my > 63.5 GeV
on the SM Higgs, and the value of BR(Z — hA), which best fits the published limits for
the representative parameter choice m; = 140 GeV, mg, = my, =m =1TeV, A, = p = 0.
We then compare those values of BR(Z — hZ*) and BR(Z — hA) with the theoretical
predictions of the MSSM, for any desired parameter choice and after including the radiative

corrections associated to top/stop loops [93],[89]. Of course, this procedure is not entirely
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correct, since it ignores the variations of the efficiencies with the Higgs masses and branching
ratios, as well as the possible presence of candidate events at some mass values, but it is

adequate for our purposes.

According to eq. (7.89), the condition to avoid erasing any previously generated baryon

asymmetry via sphaleron transitions is

Esph (Tc)

45 8.57
Tc > ) ( )

Particularizing to the MSSM the studies of sphalerons in general two-Higgs models [94], we
obtain that
EYSM(T) < ESY(T), (8.58)

sph

where, in our conventions,

Egh(T) _ 4v2r {Aeﬂ[ﬂ(T)]} v(T) (8.59)

T g 4q2 T '’

and B is a smoothly varying function whose values can be found in (7.66). Finally, the
corrections in ES} due to ¢’ # 0 have been estimated and shown to be small [70]. Therefore,

a conservative bound to be imposed is

o(Ty) 4V2rB {2}
T() 459

R= >1. (8.60)

The last point to be discussed is the determination of the value of A.g[f(75)] to be plugged
into eq. (8.60). The B-function we use is taken from ref. [69], where the sphaleron energy
was computed using the zero-temperature ‘Mexican-hat’ potential, V = 2(¢? — v?)%. The
sphaleron energy at finite temperature was computed in ref. [95], where it was proven that
it scales like v(T'), i.e. as in (7.67), with great accuracy. Therefore, to determine the value of
Aei[0(To)] we have fitted Veg(¢, To), as given by eq. (8.29), to the appropriate approximate

expression,
Vir(o, Th) = }lxeﬁ{e(:ro)][qsz — v*(Ty)]? + field—independent terms, (8.61)

where the field-independent terms are just to take care of the different normalizations of the
left- and right-hand sides. The value of A.g obtained from (8.61),

Veit(0, Tp) — Veg[v(To), To]
v{(To)

Aet[0(T0)] = 4 ) (8.62)

where all quantities on the right-hand side are calculated numerically from the potential of

eq. (8.29), is then plugged into eq. (8.60) to obtain our bounds. We have explicitly checked
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the quality of the fit in eq. (8.61), finding an agreement that is more than adequate for our
purposes.

The numerical results are summarized in fig. 23, in the (m4,tan 8) plane and for the

value of the top quark mass m; = 170 GeV. The values of the remaining free parameters have

1.25

1 1 1 1
0 100 200 300 400 500

mpy (GGV)

Figure 23: Contours of R in the (my,tan() plane, for the parameter choice
my = 170 GeV, mg, = 280 GeV, my, = 0 (m;, ~ 330GeV, m;, ~ 170 GeV,
my, ~ 280 GeV), A; = p = 0. The region excluded by Higgs searches at LEP
is delimited by the thick solid line. For reference, contours of constant m; (in
GeV) are also represented as dashed lines.

been chosen in order to maximize the strength of the phase transition, given the experimental
constraints on the top-stop sector. Notice that arbitrarily small values of my, cannot be
excluded on general grounds, even if they are disfavored by model calculations. Also, we
have explicitly checked that, as in ref. [85], mixing effects in the stop mass matrix always
worsen the case. In fig. 23, solid lines correspond to contours of constant R: one can see
that the requirement of large values of R favours small tan § and m4 > mz. The thick solid
line corresponds to the limits coming from Higgs searches at LEP: for our parameter choices,
the allowed regions correspond to large tan 3 and/or my > mgz. For reference, contours
of constant my, (in GeV) have also been plotted as dashed lines. One can see that, even
for third-generation squarks as light as allowed by all phenomenological constraints, only
a very small globally allowed region can exist in the (ma,tan3) plane, and that the most
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favourable situation is the one already discussed in ref. [85]. More precisely, the region that
is still marginally allowed corresponds to m4 > myz, tan 3 ~ 2, stop and sbottom sectors
as light as otherwise allowed, a heavy top, and a light Higgs boson with SM-like properties
and mass mp ~ 65 GeV, just above the present experimental limit. A less conservative
interpretation of the limits from precision measurements, the inclusion of some theoretically
motivated constraints on the model parameters, or a few GeV improvement in the SM Higgs

mass limit, would each be enough to fully exclude electroweak baryogenesis in the MSSM.

Some final comments on possible ways out are in order. First, one could think of re-
laxing the constraint tan3 > 1 (and the corresponding LEP bounds), which is usually
motivated by the theoretical assumption of universal soft Higgs masses at the SUSY-GUT
scale, My ~ 10'6 GeV. The possibility of tan 3 < 1, however, is incompatible with a heavy
top quark, since, for m; 2 130 GeV and supersymmetric particle masses of order my, the
running top Yukawa coupling would become non-perturbative at scales smaller than My:
such a possibility is strongly disfavored by the successful predictions of the low-energy gauge
couplings in SUSY GUTs.

A second possibility is that large non-perturbative effects, neglected by conventional
calculational techniques, modify the predicted values of the sphaleron energy and/or of
v(Tp) /Ty (for recent suggestions along this line, see [96]). We do not see strong physical
arguments to favour this, but we admit that it cannot be rigorously excluded. Perhaps
alternative approaches to the electroweak phase transition [97] could help clarify this point

in the future.

A third possibility is that including unconsidered effects the baryon violation rate be
suppressed with respect to the value used throughout these notes (eq. (7.77)). This possi-
bility has been recently considered in ref. [98] where one-loop contributions of bosonic and
fermionic fluctuations have been showed to suppress the sphaleron transition, thus shifting
the upper bound on the Standard Model Higgs mass beyond its present experimental limit
(~ 66 GeV'). However the authors of ref. [98] have to make the technical (but not very
realistic!) assumption that the top-bottom Standard Model doublet is degenerate in mass.
Since treating the non-degeneracy as a perturbation is not a good approximation the results

of this paper should not be trusted till a more realistic case can be considered.

Barring the above-mentioned possibilities, one could still try to rescue electroweak baryo-
genesis by further enlarging the MSSM Higgs sector, for example by introducing an extra
singlet. Supersymmetric models with singlets and non-supersymmetric models, however,

develop dangerous instabilities if coupled to the superheavy sector of an underlying unified
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theory. It might well be that baryogenesis has to be described by physics at a scale larger
than the electroweak one.
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