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Field Theory at Finite Temperature
and Phase Transitions1

By Mariano Quirós

Institute de Estructura de la Materia (CSIC), Serrano 123

E-28006 Madrid, Spain

(9.VII.1994)

Abstract. We review different aspects of field theory at zero and finite temperature, related to

the theory of phase transitions. We discuss different renormalization conditions for the effective

potential at zero temperature, emphasizing in particular the MS renormalization scheme. Finite

temperature field theory is discussed in the real and imaginary time formalisms, showing their

equivalence in simple examples. Bubble nucleation, by quantum and thermal tunnelling, and the

subsequent development of the phase transition are described in some detail. Some attention is

also devoted to the breakdown of the perturbative expansion and the infrared problem in the finite

temperature field theory. We have discussed how to improve the theory by including plasma effects

(Debye masses) using either a diagrammatic and a functional approach and showing explicitly their

equivalence to a given order. Finally the application to baryogenesis at the electroweak phase

transition is done in the Standard Model and several extensions thereof, as the case of the Minimal

Supersymmetric Standard Model. In all cases we have translated the condition of not washing out

any previously generated baryon asymmetry by upper bounds on the Higgs mass.

'Based on lectures given at the Troisième Cycle de la Physique de la Suisse Romande, Lausanne

(Switzerland), June 1994.
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1 Introduction

Field theory at finite temperature is a classic (more than twenty-years old) subject, which has

become hot during the last couple of years. In fact the possibility of generating the required

baryon asymmetry of the universe at temperatures near the electroweak phase transition

critical temperature (~ 100 GeV) has triggered a lot of activity related to investigating the

nature of the phase transition in the Standard Model of strong and electroweak interactions

-and minimal extensions thereof- as well as computing the amount of CP violation in these

models. On the other hand old problems, as the failure of perturbative expansion of field

theory at the phase transition critical temperature, needed to be resuscitated since the actual

generation of baryon asymmetry depends to a large extent on the fine details of the theory.

This degree of refinement has produced also a great deal of controversy inside the field.

Since the field is evolving very rapidly, any attempt to cover all the branching out of

the different subjects, or present the ultimate version of them, is damned to failure. For

the same reason, many results are open to controversy and it would be audacious to be

so bold as to draw firm conclusions on them. As an example we can anticipate here the

case of whether or not the Standard Model phase transition is strong enough first order for

the baryon violating interactions (mediated by sphalerons) to go out of equilibrium at the

bubble walls, thus preventing the erasure of any generated baryon asymmetry. The one-

loop result is negative in the sense of imposing an upper bound which is below the present

LEP bound. Introducing plasma effect to one-loop (leading order) the result is worsened

since temperature effects screen part (one third) of the first order phase transition. On the

other hand two-loop plasma effects seem to improve the previous result, and alleviate the
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bound on the Higgs mass, while non-perturbative effects also seem to go along the same

direction. However, to rely upon two-loop corrections to rescue our model can be in conflict

(as everybody can understand) with the validity of our perturbative expansion (whatever
this expansion could be), while our degree of mastery of non-perturbative effects in field

theory would make it hard to draw any final conclusion on the basis of the latter. Finally
it might be that one-loop corrections of fermionic fluctuations (in particular the top's ones)

could be capable of suppressing the sphaleron transitions and increase the upper bound on

the Higgs mass beyond its experimental limit, as it has been recently suggested. Again it
would be premature and bold to draw a firm conclusion on this basis. For all those reasons

I have preferred to present here the tools which should enable the reader to go through the

technicalities of the different papers and raise his/her own judgement, which presumably

will not coincide with that of this author.

These notes are based on a twelve-hour Cours de Troisième Cycle de Physique de la Suisse

Romande, held at Lausanne in June 1994. The aim of them is to provide a pedagogical and

self-contained description of the basic elements which are necessary to follow the most recent

evolution of the field. Completeness has been sacrificed to pedagogy and detail and, as a

consequence, many topics have not been touched upon. I have made what I have considered

a primary choice of topics, which I have described in some detail, while I have ignored others.

If my choice is not the most successful one I have to apologize in advance for that. However

I have tried to provide enough material for the reader to be able to follow all untouched

topics. The outline of these lecture notes is as follows:

Since the effective potential of a field theory inside a thermal bath contains, in particular,
the usual effective potential at zero temperature, the latter is reviewed in Section 2. We

describe the contribution of scalar, fermion and gauge fields to the one-loop, and higher-

loop, effective potential. We discuss the regularization of the one-loop effective potential

using a cut-off in integration momenta and also using dimensional regularization. As an

example we present the case of the Standard Model using both, a cut-off regularization and

renormalization conditions such that the location of the minimum of the potential and its

second derivative (the Higgs mass) do not change with respect to their tree level values,

and also using the most useful MS renormalization scheme. Finally the relationship between

the effective potential and the renormalization group, giving rise to the so-called improved

effective potential, is described in some detail.

The general elements of field theory at finite temperature are described in Section 3.

The different thermodynamical ensembles (microcanonical, canonical and grand canonical)

are briefly presented, and the statistical average on the grand canonical ensemble is defined.
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The generating functional for bosonic and fermionic fields are defined over an arbitrary path
in complex time. Convergence of the two-point Green function is shown to constrain the

possible paths along the complex time. We present explicit expressions for two-point Green

functions of scalar and fermion fields, as well as periodicity properties of them, known as

Kubo-Martin-Schwinger relations. Two particularly interesting paths are studied in some

detail: they are known as imaginary and real time formalisms. In both cases we present the

propagators and Feynman rules. For the case of the imaginary time formalism we summarize

some standard tricks to perform infinite summations over all Matsubara frequencies in

Feynman integrals, both for bosonic and fermionic fields.

In Section 4 the contribution of scalar fields, fermion fields and gauge bosons to the

one-loop effective potential at finite temperature is computed. In all cases, and for the

imaginary time formalism, we use two different methods: the usual procedure of evaluating
the diagrams contributing to the one-loop potential using the Feynman rules for the unshifted

theory deduced in section 3, and a simpler procedure, which can be called tadpole method,

which consists in computing the tadpole in the shifted theory, using the standard tricks of

infinite summations over the thermal modes described in section 3, and integrating over the

external leg. Both methods are explicitly shown to lead to the same results. In the real time

formalism we have also computed the one-loop effective potential for scalar and fermion fields

using the corresponding Feynman rules deduced in section 3 and the tadpole method, and

shown to agree with that computed in the imaginary time formalism. Finally the Standard

Model case is presented as an example.

Some essential elements of the theory of phase transitions at finite temperature are

presented in Section 5. The phenomenon of symmetry restoration is described in the two

important cases of first and second order phase transitions. In fact, the main features of first
and second order phase transitions are outlined with the simple (and realistic) example of

a temperature dependent potential which can be approximated by a renormalizable polynomial

in the classical field. In first order phase transitions, bubble nucleation from the false

to the true vacuum proceeds via quantum penetration of the barrier. At zero temperature
this phenomenon is known as quantum tunnelling, and at finite temperature as thermal

tunnelling. Both quantum and thermal tunnelling are described in some detail. In both

cases the semiclassical description of the decay is provided by the bounce solution and the

decay rate by the euclidean action. For quantum tunnelling (appropriate for the case of

supercooled systems) explicit expressions are provided for the case of the thin wall approximation,

where analytic formulae can be given for the euclidean action and the critical radius

of the bubble. For thermal tunnelling (appropriate for the case of the electroweak phase
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transition) a discussion on the evolution with temperature of the bounce solution is given:

it is shown that just after the critical temperature thin wall bubbles are first formed. Only
if the end of the phase transition is postponed, thick wall bubbles will be formed. Analytic
formulae are given for the case of the thin wall approximation (as e.g. for the radius of
the critical bubble) and also (without assuming the thin wall approximation) for the case

of the renormalizable potential which served to exemplify the first and second order phase

transitions. The beginning of the phase transition (one bubble per horizon nucleated) and

the end of phase transition (all the space filled with bubbles) are dictated by comparison

of the bubble nucleation rate with the expansion rate of the universe. This comparison is

also done in this section with the result that the end of the phase transition should happen

when the euclidean action is ~ 100. In particular cases this evaluation should serve to know

whether the formed bubbles have thin or thick walls.

The problem of the breakdown of perturbative expansion at the critical temperature is

treated in Section 6. Using the simplest theory of one self-interacting real scalar field we

have first exhibited the appearance of infra-red divergences from higher-loop diagrams at

finite temperature and heuristically shown that the one-loop approximation is not valid at the

critical temperature. A new temperature-dependent expansion parameter is defined, which

enables to prove, up to a certain order, the dominance of daisy over non-daisy diagrams.

Resumming an infinite number of Feynman diagrams at finite temperature we obtain an

improved theory, whose expansion parameter is the newly obtained temperature-dependent

expansion parameter. We have constructed the improved theory to leading order, using

functional and diagrammatic methods, and shown the role of the Debye mass on it. We

have explicitly shown that both methods yield the same result. We have also made some

comments about how to go to the next-to-leading order in the improved theory. The latter

being a very controversial point we did not want to draw any final conclusion on it. Finally
we have explicitly computed the case of the Standard Model, which will be useful in the next

sections, to leading order in the improved theory, and given the expressions of the Debye

masses for Higgs and Goldstone bosons, and the longitudinal components of gauge bosons.

Section 7 is devoted to a review of baryon asymmetry generation at the critical temperature

of various phase transitions and the restrictions it imposes on them. We first summarize

the problem of baryon asymmetry generation in the standard cosmological model and the

classical Sakharov's conditions for baryogenesis. We then explore two different scenarios for

baryogenesis: the standard out-of-equilibrium decay scenario and baryogenesis at the
electroweak phase transition. The former (the standard out-of-equilibrium decay scenario) is

based on the decay, out of equilibrium, of a particle whose decays products violate baryon
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number and CP. The decaying particle can be either a gauge or Higgs boson of a grand unified

theory or a gauge singlet coupled to the observable matter by gravitational interactions.

In both cases we have deduced the necessary constraints in the corresponding theory. The

latter scenario (baryogenesis at the electroweak phase transition) is more appealing since it
is related to the physics which is being explored nowadays at present colliders. It is based on

the fact that baryon and lepton numbers are anomalous global symmetries in the Standard

Model that are violated by non-perturbative effects. At zero temperature these effects are

negligible, but at finite temperature they are strong, mediated by sphalerons, and can trigger,
in principle, enough baryon asymmetry as it is required by the nucleosynthesis constraints.

We study the baryon violation rate beyond and below the critical temperature. The latter

being controlled by the sphaleron barrier, we present the result of the calculation of the

sphaleron energy at finite temperature in the context of the Standard Model as a function

of the Higgs mass. Below the critical temperature the sphaleron mediated baryon violation

rate should be out of equilibrium to avoid wash out of baryon asymmetry. This condition is

performed by comparison of the actual baryon violation rate at the critical temperature of

the electroweak phase transition with the expansion rate of the universe at that temperature,
and provides an upper bound on the Higgs mass (which is one of the parameters controlling
the strength of the first order phase transition). The case of the Standard Model is analyzed

in some detail, including plasma effects to leading order. The result translates into an upper
bound on the Higgs mass which is definitively below the LEP experimental lower bound.

Motivated by the previous, negative, result we have analyzed in Section 8 two particularly

interesting and motivated extensions of the Standard Model. First, the case of the

Standard Model with a complex singlet with zero vacuum expectation value. It is almost the

simplest extension of the Standard Model one can think of. In this case we have shown that
the out of equilibrium condition for the sphaleron mediated baryon asymmetry rate translates

into an upper bound which is still beyond the present experimental limit. In particular
we have shown that the previous condition can be fulfilled for Higgs masses below the W

mass, which is also the range of validity we expect for our perturbative results to be

reliable. Secondly, we have analyzed the case of the minimal supersymmetric standard model.

It is the minimal extension of the Standard Model where the gauge hierarchy problem is

resolved. In this case, and imposing the most favorable conditions on the supersymmetric

parameters, we have found a little window for pseudoscalar masses greater than ~ 400 GeV

and tan ß ~ 2. Since a modest improvement in the present experimental bound on the Higgs

mass would make this window to disappear, our results do not lead to optimism, though we

do not want to draw a final negative conclusion for the case of the minimal supersymmetric
standard model.
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2 The effective potential at zero temperature

The effective potential for quantum field theories was originally introduced by Euler, Heisenberg

and Schwinger [1], and applied to studies of spontaneous symmetry breaking by Gold-

stone, Salam, Weinberg and Jona-Lasinio [2]. Calculations of the effective potential were

initially performed at one-loop by Coleman and E. Weinberg [3] and at higher-loop by Jackiw

[4] and Iliopoulos, Itzykson and Martin [5]. More recently the effective potential has been

the subject of a vivid investigation, especially related to its invariance under the renormalization

group. I will try to review, in this section, the main ideas and update the latest

developments on the effective potential.

2.1 Generating functionals

To fix the ideas, let us consider the theory described by a scalar field <p with a lagrangian

density C{(p(x)} and an action

S[J>]=Jdix.C{<P(x)} (2.1)

The generating functional (vacuum-to-vacuum amplitude) is given by the path-integral
representation,

Z[j] (0out | 0-ln)j Jd<i>exp{i(S[<P] + cbj)} (2.2)

where we are using the notation

4>j J d4xcP(x)j(x) (2.3)

Using (2.2) one can obtain the connected generating functional W[j] defined as,

Z[j] exp{iW[j]} (2.4)

and the effective action T[<p] as the Legendre transform of (2.4)

m W[j]-Jd?xS-^j(x) (2.5)

where

6j(x)
In particular, from (2.5) and (2.6), the following equality can be easily proven,

m.£&*.,-&_-, (2.r)
5<p oj 0(p o<t>
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where we have made use of the notation (2.3). Eq.(2.7) implies in particular that,

org,]
5<p

0 (2.8)
3=0

which defines de vacuum of the theory in the absence of external sources.

We can now expand Z[j] (W[j]) in a power series of j, to obtain its representation in

terms of Green functions Gn (connected Green functions Gfc.) as,

°° in fz\j] E —. / d*xi...d4xnj(x1). ..j(xn)G(n)(xu ...,xn)

and

iW[j] E~/ d^xx... dixnj(x1)... j(xn)G(^)(x1,... ,xn)
n=0

Similarly the effective action can be expanded in powers of <p as

— °° 1 /¦ —

rM E-r /d4^¦ ¦ ¦ <?xn4>(Xl)...<p(xn)rM(xu...,xn)

where T^ are the one-particle irreducible (1PI) Green functions.

We can Fourier transform r'n' and <j> as,

(2.9)

(2.10)

(2.11)

r^(x1,...,xn)= /n d^Pi

(2it)<
exp{ipiX.i} (27r)4«<4>(pi + • • • +Pn)T^(Pl,... ,Pn) (2.12)

4>(p) J d4xe-ipx<p(x)

and obtain for (2.5) the expression,

d4Ploo n

»,—n J .¦—i
H-Pr)

„=o* i=i[(27r)

In a translationally invariant theory,

(27r)W(Pl + ---+pn)r^(p1,...,pn

<t>(x) <pc

(2.13)

(2.14)

(2.15)

the field <p is constant. Removing an overall factor of space-time volume, we define the

effective potential Vee(cpc) a«,

r[4] - Jd4x.VeS(to) (2.16)

Using now the definition of Dirac 5-function,

Ö(4)(P) / d4x

(2n)<
(2.17)
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and (2.15) in (2.13) we obtain,

Up) (27r)Vc<5(4)(p). (2.18)

Replacing (2.18) in (2.14) we can write the effective action for constant field configurations

as,
oo -I oo 1

rf>c) E -C(2T)4ô(4)(o)rW(Pl o) £ ±<%rM(jH o) / d*x (2.19)
n=0 n- n=0 n- J

and comparing it with (2.16) we obtain the final expression,

OO 1

VM) - E ^Cr(n) (Pi o) (2.20)

which will be used for explicit calculations of the effective potential.

Let us finally mention that there is an alternative way of expanding the effective action:

it can also be expanded in powers of momentum, about the point where all external momenta

vanish. In configuration space that expansion reads as:

[<p] Jd4x [-veS(<p) + -(a^(x))2z(0) + (2.21)

2.2 The one-loop effective potential

We are now ready to compute the effective potential. In particular the zero-loop contribution
is simply the classical (tree-level) potential. The one-loop contribution is readily computed

using the previous techniques and can be written in closed form for any field theory
containing spinless particles, spin-| fermions and gauge bosons. Here we will follow closely the

calculation of ref. [3].

2.2.1 Scalar fields

We consider the simplest model of one self-interacting real scalar field, described by the

lagrangian

C ^d"cPdll(p - V0(4>) (2.22)

with a tree-level potential

V0 \m2<f + ^ (2.23)



462 Quirós

X
J.—

Figure 1: ÌPI diagrams contributing to the one-loop effective potential of (2.22)

The one-loop correction to the tree-level potential should be computed as the sum of all

1PI diagrams with a single loop and zero external momenta. Diagrammatically they are

displayed in fig. 1, where each vertex has 2 external legs.

The nth diagram has n propagators, n vertices and 2n external legs. The n propagators

will contribute a factor of in(p2—m2+ie)~n 1. The external lines contribute a factor of <p2™ and

each vertex a factor of —iX/2, where the factor 1/2 comes from the fact that interchanging

the 2 external lines of the vertex does not change the diagram. There is a global symmetry
factor A^, where £ comes from the symmetry of the diagram under the discrete group of

rotations Zn and \ from the symmetry of the diagram under reflection. Finally there is an

integration over the loop momentum and an extra global factor of i from the definition of

the generating functional.

Using the previous rules the one-loop effective potential can be computed as,

Veff(</»c) Vo^ + V^to),

with

„^ .^ f d4p 1^) *Ej(27r)42n
[ A#/2

"

p2 — m2 + ie
if d4p

- 2J (2«rlos \ Hin 1

p2 — m? + ie

After a Wick rotation

P°=ipE, PE=(-IP°,P), P2 (P°)2-P2 -Pe>

eq. (2.24) can be cast as,

Vf (^)=2/(2Pe

*)*
l0g

[l 4-
A^/2

"

p% + mz

(2.24)

(2.25)

(2.26)

1We are using the Bjorken and Drell's [6] notation and conventions.
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Finally, using the shifted mass

2( n _ 2
1

x ,2 _
(PVo^c)

m2(to) m2 + -X<Pl —^ (2.27)

and dropping the subindex E from the euclidean momenta, we can write the final expression

of the one-loop contribution to the effective potential as,

Vi(«Ac) \ J -0T7 log [j>2 + m2(cpc)} (2.28)

where a field independent term has been neglected.

The result of eq. (2.28) can be trivially generalized to the case of AT, complex scalar

fields described by the lagrangian,

C d»<padß<p{-V0(<P",<Pt). (2.29)

The one-loop contribution to the effective potential in the theory described by the lagrangian

(2.29) is given by

Vi \ttJ-^ log [p2 + M!(r, 4)} (2.30)

where

<**-*-£& (2-3I)

and Tr M2 2 V£, where the factor of 2 comes from the fact that each complex field

contains two degrees of freedom. Similarly Tr 1=2 Ns.

2.2.2 Fermion fields

We consider now a theory with fermion fields described by the lagrangian,

C iï>al-dr-^n.(Mf)ab^pb (2.32)

where the mass matrix (Mf)l((j>lc) is a function of the scalar fields linear in <plc: (Mf)% T^d,)..

The diagrams contributing to the one-loop effective potential are depicted in fig. 2.

Diagrams with an odd number of vertices are zero because of the 7-matrices property:

tr(-yw ...y*+i) 0.

The diagram with 2n vertices has 2n fermionic propagators. The propagators yield a

factor
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-o-#/
Figure 2: ÌPI diagrams contributing to the one-loop effective potential of (2.32)

Trs\i2n(-y-p)2n(p2 + ie)2n]

where Trs refers to spinor indices. The vertices contribute as

Tr[-i2nMf(<j>c)2n]

where Tr runs over the different fermionic fields. There is also a combinatorial factor ^
(from the cyclic and anticyclic symmetry of diagrams) and an overall —1 coming from the

fermions loop. One finally obtains the total factor

1 Tr(Mr)
2n p2n

The factor Trsl just counts the number of degrees of freedom of the fermions. It is equal

to 4 if Dirac fermions are used, and 2 if Weyl fermions (and u-matrices) are present. So we

will write,

Trsl 2X (2.33)

where A 1 (A 2) for Weyl (Dirac) fermions. On the other hand we have grouped terms

pairwise in the matrix product and used,

-2 2
V -P

where p stands either for p ¦ 7 or p ¦ o, depending on the kind of fermions we are using.

Collecting everything together we can write the one-loop contribution to the effective

potential from fermion fields as,

Vl(0c) -2A,7>W-JP 1

(2tt)4 2n
M)

2 J 2?r 4 B

M2

P2
(2.34)

As in the case of the scalar theory, after making a Wick rotation to the Euclidean

momenta space, and neglecting an irrelevant field independent term, we can cast (2.34) as

d4p

(2w)<
Vi -^\TrJ-^-l0g{p2 + M2(<pc)} (2.35)
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2.2.3 Gauge bosons

Consider now a theory described by the lagrangian,

C --Tr(FILVFn + ±Tr(Dß<payD»cPa + ¦¦¦ (2.36)

In the Landau gauge, which does not require ghost-compensating terms, the free gauge-boson

propagator is

rp
p2 + ie

with

A" _ qp _ iLJ^
" g " p2

(2.37)

(2.38)

satisfying the property pßAßv 0 and A" A, n 1,2,....

The only vertex which contributes to one-loop is

where

C=-(Mgb)2a/3AaßA^ +

(Mgb)lß(to) gagßTr Ur^y TJjV

(2.39)

(2.40)

In this way the diagrams contributing to the one-loop effective potential are depicted in fig.

3.

Figure 3: 1PI diagrams contributing to the one-loop effective potential of (2.36)

A few comments about eq. (2.40): (i) ga is the gauge coupling constant associated to

the gauge field A°; if the gauge group is simple, e.g. 5(7(5), 50(10), E6,..., then all gauge

couplings are equal; otherwise there is a distinct gauge coupling per group factor, (ii) Ta

are the generators of the Lie algebra of the gauge group in the representation of the (/»-fields

and the trace in (2.40) is over indices of that representation.
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Taking into account the combinatorial factors, the graph with n propagators and n
vertices yields a total factor

}_Tr((M9b)2r
2n p2n

y '
where

7Y(A) 3 (2.41)

which is the number of degrees of freedom of a massive gauge boson. Collecting together

all factors, and making the Wick rotation to the euclidean momenta space, we can cast the

effective potential from gauge bosons as,

V, Tr(A)^Tr j -^ log [p2 + (Mgh)2(<pc)} (2.42)

2.3 The higher-loop effective potential

Calculating the effective potential by summing infinite series of Feynman graphs at zero

external momentum is an extremely onerous task beyond the one-loop approximation. However,

as has been shown in ref. [4], this task is trivial for the case of one-loop, and affordable

for the case of higher-loop. Here we will just summarize the result of ref. [4] 2.

We will start considering the theory described by a real scalar field, with a lagrangian C

given in (2.22-2.23), and an action as in (2.1). We will define another lagrangian C by the

following procedure:

j d4x.C{<pc; <P(x)} S[4>c + </>]- S[4>c] - cp5-^- (2.43)

where we have used in the last term the notation (2.3). In (2.43), <pc is an ^-independent

shifting field. The second term in (2.43) makes the vacuum energy equal to zero, and the

third term is there to cancel the tadpole part of the shifted action.

If we denote by V{(pc; x — y} the propagator of the shifted theory,

62S[t]
iD 1{4>c;x- y}

6<p(x)8cp(y)

and

W-'ifap}

(2.44)

2The interested reader can find in [4] all calculational details.
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its Fourier transform, the effective potential is found to be given by [4]:

Veff(to) V0(to)-^j -^\ogàetiV-1{<pc-p} + i{exp i j d4x£I{cpc;<P(x)} (2.45)

The first term in (2.45) is just the classical tree-level potential. The second term is

the one-loop potential, where the determinant operates on any possible internal indices

defining the propagator. The third term summarizes the following operation: Compute all

1PI vacuum diagrams, with conventional Feynman rules, using the propagator of the shifted

theory V{d>c',p} and the interaction provided by the interaction lagrangian jCj{4>c; <p(x)}, and

delete the overall factor of space-time volume / d4x from the effective action (2.16). It can

be shown that the last term in (2.45) starts at two-loop. Every term in (2.45) resums an

infinite number of Feynman diagrams of the unshifted theory.

In the simple example of the lagrangian (2.22-2.23) it can be easily seen that the shifted

potential is given by

V{4>c; to ^(to^2 + T^toto + -^to (2.46)

where the shifted mass is defined in (2.27). The shifted propagator is found to be

W-l{to;p}=p2-m2(to) (2.47)

and the second term of (2.45) easily computed to be

Vi(to) -\ j^j logb2 - m2(to)] (2.48)

which is easily seen to coincide with (2.24), up to field independent terms, so that after the

Wick rotation we recover the result (2.28).

The two-loop effective potential is harder than the one-loop term, but affordable. The

result can be found in ref. [4]. Diagrammatically, the one- and two-loop effective potentials

are given in fig. 4, where it is understood that we are using the Feynman rules of the shifted

+

Figure 4: One and two-loop diagrams contributing to the effective potential of
(2.45)

theory, as stated above.

o
n
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Of course, the previous rules apply also to theories containing fermions and gauge bosons.

The Feynman rules of the shifted theory applied to all 1PI diagrams provide the total effective

potential according to (2.45). In particular it is trivial to obtain the one-loop effective

potential for fermions and gauge bosons, as given by eqs. (2.35) and (2.42), respectively.

Notice that the masses M2((pc), in (2.35), and M2b((pc), in (2.42) are the masses in the

corresponding shifted theories. Diagrammatically (2.35) and (2.42) can be represented in the

shifted theory as vacuum diagrams with one fermion and one gauge boson loop, respectively.

2.4 Renormalizations conditions

The final expression of the effective potential we have deduced in the previous section,

eqs.(2.28), (2.35) and (2.42), is ultraviolet-divergent. To make sense out of it we have to

follow the renormalization procedure of quantum field theories. First of all, to give a sense to

the ultraviolet behaviour of the theory we have to make it finite: i.e. we have to regularize
the theory. Second of all, all infinities have to be absorbed by appropriate counterterms,
which were not explicitly written in our previous expressions. The way these infinities are

absorbed by the counterterms depend on the definition of the renormalized parameters,
i.e. on the choice of the renormalization conditions. Finally the theory, written as a

function of the renormalized parameters, is finite.

In this way, the first step towards renormalizing the theory is choosing the regularization
scheme. We will first present the straightforward regularization using a cut-off of momenta.

2.4.1 Cut-off regularization

We will illustrate this scheme with the simplest theory: a massless real scalar field, with a

lagrangian

C \(1 + 6Z)(dßto2 - \sm2to - ^V (2.49)

where 6Z. 6m2 and <5A are the usual wave-function, mass and coupling constant renormalization

counterterms. They have to be defined self-consistently order by order in the loop

expansion. Here we will compute everything to one-loop order.

The conventional definition of the renormalized mass of the scalar field is the negative

inverse propagator at zero momentum. In view of (2.20) we can write it as:

% <2-50»
d^c ^=0

x2R -r(2>(p o)
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We can also define the renormalized coupling as the four-point function at zero external

momentum,

*.-*•<,-.fl-3f
*c=0

and the standard condition for the field renormalization is,

Z(0) 1

(2.51)

(2.52)

Now we will compute the effective potential (2.28) cutting off the integral at p2 A2.

First of all we can integrate over angular variables. For that we can use,

/ dnpf(p) ~¦/ f(p)dp (2.53)

where p \p\2, and we can cast (2.28) as

Vi (to)
1 r*tI p\og[p + m2(to)]dp.

Jo
(2.54)

327T2 Jo

This indefinite integral can be solved with the help of [7]

J x\og(a + x) -(x2 -a2)\og(a + x) - - I— - ax\

Neglecting now in (2.54) field independent terms, and terms which vanish in the limit
A —> 00, we finally obtain,

We) ^(to)^ + ^-4(^)iog^ (2.55)

Using now (2.55) we can write the one-loop effective potential of the theory (2.49) as,

T, 1. 2±2 X + 6Xl4 Xtoc k2 A204 / X<Pl 1
V -6m2to + —77—toc + 7T"^A +

4! 647T2'1 '
2567T2 \ °g2A2 2

(2.56)

We will impose now a variant of the renormalization conditions (2.50), (2.51) and (2.52).

For the renormalized mass we can impose it to vanish, i.e.,

d2V

dtoc
0 (2.57)

ic=0

For the renormalized gauge coupling A, we cannot use eq. (2.51) at a value of the field equal

to zero. There is nothing wrong with using a different renormalization prescription and using

a different subtraction point. We can use,

d4V
A (2.58)

<t>C=P
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where p is some mass scale. Different choices of the scale lead to different definitions of the

coupling constant, i.e. to different parametrizations of the same theory, but in principle any
value of p, is as good as any other.

Imposing now the conditions (2.57) and (2.58) to (2.56) we can write the counterterms

as,

5m2 -^A2 (2.59)

and
HA2 3A2 AV tnon.5A -32^-32^l0gJr (2-60)

Using now (2.59) and (2.60) in (2.56) we can write the one-loop effective potential in the

previous renormalization scheme as,

A 4 X2toc (<I>1 25

i^ + 256^l0gU""6Kff T,to + TZZrP-, log R - - (2.61)

A similar renormalization scheme can be defined also for theories with fermions and/or

gauge bosons. However for gauge theories the regularization provided by the cut-off explicitly
break gauge invariance so that the dimensional regularization is better suited for them. In
the next section we will review the calculation of the effective potential in the dimensional

regularization and define the so-called MS scheme.

2.4.2 Dimensional regularization

This regularization scheme was introduced by t'Hooft and Veltman [8]. It consists in making

an analytic continuation of Feynman integrals to the complex plane in the number of space-

time dimensions n. The integrals have singularities which arise as poles in l/(n — A) and

have to be subtracted out. The particular prescription for subtraction is called a renormalization

scheme. In working with the effective potential it is customary to use the so-called

MS renormalization scheme [10].

We will compute now the one-loop effective potential (2.28) using dimensional regularization,

i.e.

Vi(to) \(ß2?~* j 70T log [p2 + m2(to)} (2.62)

where p is a scale with mass dimension which needs to be introduced to balance the dimension

of the integration measure. It is simpler to compute the tadpole
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where the meaning of V is the derivative with respect to m2(4>c), using the basic formula of
dimensional regularization,

l-'TÂ(p2f 2,g+a-flr(q + f)r(/3-a-|)
(p2 + M2y " ^ ' r(f)r(/3)

7T2(M2)2" (2.64)

and integrating the resulting integral with respect to m2(<pc). One can then write the
regularized potential (2.62) as,

V,(to)
1 m2(to)

32n2 §(§ - 1) I 47TM2

i-2

r..-i (2.65)

We can expand (2.65) in powers of 2 — n/2 and use the expansion

r(z) - - ie + o(z)
z

where yE 0.5772... is the Euler-Masccheroni constant [7]. We obtain for (2.65)

Vr(to
'(to)

647T2 0 IkZ
2

7£ + log 47T
m2(éc) 3 _,.n „.+ log-^-i+0(--2)

(2.66)

(2.67)

Now the MS renormalization scheme consists in subtracting the term proportional to

1

Cuv
Z 2

¦7B + log47T (2.68)

in the regularized potential (2.67). Therefore the divergent piece,

m4(to)
647T2

— -7E + l0g47T

has to be absorbed by the counterterms. Therefore the final expression for the one-loop

potential, written in terms of the renormalized parameters, is

Vi(<« 6l^m4(A)^log
m2(to

(2.69)

For instance, in the theory described by lagrangian (2.49), the counterterms are given

by,

6m2 0 (2.70)

SX
3A2

327T2 Z 2
- -7E+log47T
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and the effective potential is,

v A,A4*2#, (HI 3\
Kff=4!^+2^6^l0giv_2j (271)

The scale u along this section is related to the renormalization group behaviour of the

renormalized couplings and masses.

For a theory with fermion fields, one needs a trace operation in dimensional regularization,

as Tri f(n). For instance, for an even dimension one could choose, f(n) 2n'2 for

Dirac fermions, and f(n) 2n/2~1 for Weyl fermions. However the difference f(n) — f(A) is

only relevant for divergent graphs and can therefore be absorbed by a renormalization-group

transformation. It is usually convenient to choose f(n) /(4) 2A for all values of n [11].

The effective potential (2.35) can be computed as in (2.62), leading to,

V,(to) -A«uv ; 327T2

1

2
2
- -7E + log47r

M2(to) 3 ,n+ \og~^--+ö(--2)\ (2 72)

In the MS renormalization scheme, after subtracting the term proportional to (2.68) we

obtain,

".(«-A^«J(«{H^-|} ("3)

Similarly, in a theory with gauge bosons as in (2.36), the effective potential (2.42) is

computed as,

V1(to) Tr(A)-^- Z
2

IE + log47T +*^-!+«H
(2.74)

where

Tr(A) n - 1 (2.75)

In the MS renormalization scheme, subtracting as usual the term proportional to (2.68)

one obtains the effective potential,

^) 3^^(^(108^-1} (2.76)

A variant of the MS renormalization scheme is the DR renormalization scheme [9], where

the dimensional regularization is applied only to the scalar part of the integrals, while all

fermion and tensor indices are considered in four dimensions. In this case Tr(A) is taken
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equal to 3, as in (2.41), and subtracting from (2.74) the term proportional to (2.68) one

obtains,

2.5 One-loop effective potential for the Standard Model

In this subsection we will apply the above ideas to compute the one loop effective potential
for the Standard Model of electroweak interactions. The spin-zero fields of the Standard

Model are described by the SU(2) doublet,

9 _L I * + % (2.78)
V2 \ to + h + iX3 J

where <j>c is the real constant background, h the Higgs field, and Xa (a=l,2,3) are the three

Goldstone bosons. The tree level potential reads, in terms of the background field, as

Vo(to) ~<Pl + ^<f>t (2-79)

with positive A and m2, and the tree level minimum corresponding to

,2m

T
The spin-zero field dependent masses are

m2h(to) 3X(p2c - m2

m\(to) A^-m2 (2.80)

so that m2h(v) 2Xv2 2m2 and m2(v) 0. The gauge bosons contributing to the one-loop

effective potential are W± and Z, with tree level field dependent masses,

2

m2w(to) jtl (2.81)

2/, x
92 + gax2

mz(to) —2—to

Finally, the only fermion which can give a significant contribution to the one loop effective

potential is the top quark, with a field-dependent mass

m\(to) f€ (2-82)

where ht is the top quark Yukawa coupling.
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The one-loop effective potential Vi(<pc) can be computed using eqs. (2.28), (2.35) and

(2.42). As we have said in the previous subsection, these integrals are ultraviolet divergent.

They have to be regularized and the divergent contributions cancelled by the counterterms

Ve
6m2

2
<5A

4oil + -rTto. + -j<Pc (2.83)

where we have introduced a counterterm SO, for the vacuum energy or cosmological constant

(see next section).

The final expression for the effective potential is finite and depends on the used regularization

and, correspondingly, on the renormalization conditions. Next we will describe the

two most commonly used renormalization conditions for the Standard Model.

2.5.1 MS renormalization

In this case we can use eqs. (2.67), (2.72) and (2.74) for the contribution to V\(4>c) of the

scalars, fermions and gauge bosons, respectively. In the MS renormalization scheme we

subtract the terms proportional to Cuv, see eq. (2.68), which are cancelled by the counterterms

in (2.83). One easily arrives to the finite effective potential provided by

V(to Vr0K<Pc)
647r2 E n%m4(to)
u*" i=W,Z,h,x,t

,rn2 (to)
log 2u2 -Ci

Gw Cz — -b
Ch cx ct -

where Ct axe constants given by,

and rij are the degrees of freedom

n-w 6, nz 3, n/, 1, nx 3, nt —12

(2.84)

(2.85)

(2.86)

The counterterms which cancel the infinities are provided by,

m4
60, —j (nh + nx) Cuv

c 2
3Am2 / 1 \ _,

6X
167T2 ^g-^h+^)

(2.87)
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where Cuv is defined in (2.68). We have explicitly written in (2.87) the contribution to the

counterterms from the Higgs sector, n^ and nx. The latter give rise entirely to the mass

counterterms 6m2 and SCI. For Higgs masses lighter than W masses, the Higgs sector can

be ignored in the one loop radiative corrections (as it is usually done) and the massive

counterterms are not generated.

2.5.2 Cut-off regularization

A very useful scheme [12] is obtained by regularizing the theory with a cut-off and imposing

that the minimum, at v 246.22 GeV, and the Higgs mass does not change with respect to

their tree level values, i.e.,

rf(Vi + Vict)
d(pc

dtoc

<Pc=V

4>c=V

0

0

(2.88)

Now we can use (2.55) to write

1
Vi^c)

327T2 E ni
i=W,Z,t,h,x

2aU2x mf(to), rnKto)
2

S
A2

m2(to)A2 + (2.89)

Imposing now the conditions (2.88) the infinities in (2.89) cancel against those in Vf
and the resulting (^-dependent potential is finite, and given by,

V(to) V0(to) + -^ E Ufa) (log^ - ri + 2m:ì(v)m2(to)}

The counterterms SCI, Sm2 and SX in (2.83) turn out to be given by

SX

Sm2

sn

1 ^ /,m2(i))-6,
16tt2

1

Ï6Ïr2

m2(v) 3

En'm2-bi A2-m2(«) + 6I(log^Vi +
2

327T2 E n'
i=h,x

1,
A2 - mf(v) + -bi log

m2(v)
A2

A2

+
2

where bw bz bt 0 and bh bx —m2.

(2.90)

(2.91)

We can see again in (2.91) that ignoring the contribution to the one loop effective potential

from the Higgs sector results in the non appearance of a cosmological constant. However,
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unlike the MS scheme, Sm2 is also generated by the contribution of the gauge boson and top
quark loops. Of course the one loop counterterms we are computing along this section are

only useful for two loop calculations.

2.6 Improved effective potential and renormalization group

As we have seen in the previous section, the calculation of the effective action involves a

mass u which is not physical in the sense that all the theory should be independent of

the chosen value of /x. In fact a change in u should be accompanied by a change in the

renormalized parameters (couplings and masses) such that all the theory remains unchanged.

This statement for the effective action can be expressed as an equation [3]

d
» d S

'

li~ä~ + ß'^T ~ Hc-rr
ou oXl b(pc

0 (2.92)

for an appropriate choice of the coefficients ßi and 7, where A^ denotes collectively all

couplings and masses of the theory. In the last term of (2.92) we have made use of the notation

(2.3).

We define the effective potential V as in eq. (2.20),

OO -I

v V(p, K to) v(ß, K, o) - £ ^cr(n)fe o) (2.93)

The role of the vacuum energy CI,

Cl V(p,Xl,Q)

has been recently stressed in ref. [13]. Using now the renormalization group equation (RGE)

satisfied by the effective action (2.92), we obtain the RGE satisfied by V as

d
o d d

dp oXi d(pc
V — 0 —

dp
%

dXi
CI (2.94)

If we make a ^-independent shift to V such that,

V V + ACl(ß, A,)

fi Û + AÛ

with the condition,

du l dXi
fi 0

(2.95)

(2.96)
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then the potential V satisfies the well known RGE,

d
a

d d

dp dXi d<pc
V 0

The formal solutions to eqs. (2.96) and (2.97) can be written as,

V V(p,\,to) v(p(t),\(t),tot))
Cl Cl(p,Xi) Cl(p(t),Xi(t))

where

u(t) uexp(t)

tot) torn
Ç{t) exp^-J\(Mt'))dt^

dXi(t)
ßt(X(t))

with the boundary conditions,

dt

u(0) u

ct>(Q) to

m 1

Ai(0) Ai

(2.97)

(2.98)

(2.99)

(2.100)

(2.101)

In fact eqs. (2.96) and (2.97) can be simply written as,

dt

±V 0
dt

(2.102)

which state that fi and V axe scale-independent. Of course the same happens to all derivatives

of V,
_dnV(p,Xi,to)V^(p,\

which by virtue of (2.99) satisfies

Qn
v(n) t(*)nQjffiVMt), Ht),tot))

(2.103)

(2.104)
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The RGE satisfied by V(n' can be obtained from (2.97) and the property,

an \ d '
[ a 1

dto dto_
—

dto_

ßn ßn

It is given by,
d_ 0_d__ ,_d_

dp. 9Aj d(pc

dto nidto

l/W nryV(n) (2.10E

which implies that V^ is scale independent.

In particular the scale independence of V^n\ n 0,1,..., means that we can fix the scale

t at any value, even (^-dependent. Suppose we fix t by the arbitrary conditions,

ß(t) f(to)
t t(to) log{f(to)/p}

m i(t(to))to

(2.106)

Using (2.106) we can write the effective potential and its derivatives (2.103) as

functions,

v(to) v[f(to),\i(t(to))A(t(to))]
and

V^(to) at(to))n-ß^-y;V(u(t), Ut), tot))

Using eq. (2.105) one can easily prove that [14],

t=t(<t>c)

(2.107)

(2.108)

(2.109)

Fixing the scale is a matter of convention. Fixing the scale, as we have just described, as

a function of to (l-e- giving different scales for different values of the field) is usually done

to optimize the validity of the perturbative expansion, i. e. minimizing the value of radiative

corrections to the effective potential around the minimum of the field. A very interesting
result obtained in ref. [13] is: The RGE improved effective potential exact up to (next-to-

leading)1' log order 3 is obtained using the L-loop effective potential and the (L+l)-loop RGE

ß-functions.

3The convention is (next-to-leading)0 =leading, i.e. L 0. For L 1 the potential is exact to next-to-

leading log.
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3 Field Theory at Finite Temperature

The formalism used in conventional quantum field theory is suitable to describe observables

(e.g. cross-sections) measured in empty space-time, as particle interactions in an accelerator.

However, in the early stages of the universe, at high temperature, the environment had a non-

negligible matter and radiation density, making the hypotheses of conventional field theories

impracticable. For that reason, under those circumstances, the methods of conventional field

theories are no longer in use, and should be replaced by others, closer to thermodynamics,
where the background state is a thermal bath. This field has been called field theory at finite

temperature and it is extremely useful to study all phenomena which happened in the early

universe: phase transitions, inflationary cosmology, Excellent articles [15, 16], review

articles [17, 18] and textbooks [26] exist which discuss different aspects of these issues. In

this section we will review the main methods which will be useful for the theory of phase

transitions at finite temperature.

3.1 Grand-canonical ensemble

In this section we shall give some definitions borrowed from thermodynamics and statistical

mechanics. The microcanonical ensemble is used to describe an isolated system with

fixed energy E, particle number N and volume V. The canonical ensemble describes a

system in contact with a heat reservoir at temperature T: the energy can be exchanged

between them and T, N and V are fixed. Finally, in the grand canonical ensemble

the system can exchange energy and particles with the reservoir: T, V and the chemical

potentials are fixed.

Consider now a dynamical system characterized by a hamiltonian 4 H and a set of

conserved (mutually commuting) charges Qa- The equilibrium state of the system at rest in
the large volume V is described by the grand-canonical density operator

p exp(-^)exp{-YJotAQA-ßH\ (3.1)

where

$ log Tr exp {-^a^-/3/7 j (3.2)

is called the Massieu function (Legendre transform of the entropy), aa and ß are Lagrange

4A11 operators will be considered in the Heisenberg picture.
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multipliers given by,

ß T'1 (3.3)

aA -ßpA

T is the temperature and ua axe the chemical potentials.

Using (3.1) one defines the grand canonical average of an arbitrary operator Ö, as

(Ö) Tr(Op) (3.4)

satisfying the property (1) 1. For instance, charge densities qA and energy density E are

defined as,

1 19$" - v^ -va*-A W
p _ !/m_ lö$£ - v{H)-~vw

while pressure, P, and entropy, 5, densities are

P — (*) —$

5 ™(logp> (3.6)

leading to the relation

E -P + TS + ^qApA (3.7)
A

In the following of this section we will always consider the case of zero chemical potential.

It will be re-introduced when necessary.

3.2 Generating functionals

As in the previous section, we will start considering the case of a real scalar field </>(x),

carrying no charges (ua 0), with hamiltonian H, i.e.

<P(x) eitH<P(0,x)e-itH (3.8)

where the time x° t is analytically continued to the complex plane.

We define the thermal Green function as the grand canonical average of the ordered

product of the n field operators

G<c>(*i,...,xn) (Tctoxi),..., 4>(xn)) (3.9)
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where the Tc ordering means that fields should be ordered along the path C in the complex

i-plane. For instance the product of two fields is defined as,

Tctox)4>(y) oc(x° - if)tox)<t>(y) + ec(y° - x°)tov)4>(x) (3.io)

If we parameterize C as t z(r), where r is a real parameter, Tc ordering means standard

ordering along r. Therefore the step and delta functions can be given as,

9c(t) 9(t) (3.11)

6c(t) (g)~V)

The rules of the functional formalism can be applied as usual, with the prescription,

Sj(y)
Sj(x)

6c(x0-y°)6W(x-y) (3.12)

and the generating functional Z^[j] for the full Green functions, defined as in the case of

field theory at zero temperature (eq. 2.9),

OO -Tl ç
Zß\j\ E -, / rf4*i • • • d4xnj(xl). ..j(xn)G^(Xl,. ..,xn) (3.13)

^o n! Jc

can also be written as,

Zß[j] (rcexp{i jcd4x.j(x)cP(x))) (3.14)

which is normalized to Z(i[0] (1) 1, as in (3.4), and where the integral along t is supposed

to follow the path C in the complex plane.

Similarly, the generating functional for connected Green functions W^[j] is defined as in

(2-4)

Z?[]] exp{iW?lJ]} (3.15)

and the generating functional for 1PI Green functions r^[$], as in (2.5), by the Legendre

transformation,
_6We\j]

Jc" "' 6j(x)

where the current j(x) is eliminated in favor of the classical field 4>(x) as m (2-6)

rP[i] W\y\ - Jc d4x6-fr^j(x) (3.16)

-^=Wr
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In (3.17) it is understood that the rule (3.12) for the functional derivative is to be used.

It follows from (3.16) and (3.17) that (see eq. (2.7))

and that

tox) (tox)) (3.19)

is the grand canonical average of the field <p(x)-

As in eq. (2.8) symmetry violation is signaled by

0 (3.20)
3=0

for a value of the field different from zero.

Again, as in field theory at zero temperature, in a translationally invariant theory (p(x)

to is a constant. In this case, by removing the overall factor of space-time volume arising in

each term of r'3^], we can define the effective potential at finite temperature as in (2.16),

rß[toi -Jd4xVei(to) (3.21)

and symmetry breaking occurs when

d_V^(to)=Q (3.22)
dto

for to + 0.

3.3 Green functions

3.3.1 Scalar fields

Not all the contours are allowed if we require Green functions to be analytic with respect to

t. Using (3.10) we can write the two-point Green function as,

G{-C\x - y) ec(x° - y°)G+(x - y) + 0c(y° - x°)G_(x - y) (3.23)

where

G+(x - y) (<P(x)tov))

G.(x-y) G+(y-x) (3.24)
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Now, take the complete set of states \n) with eigenvalues E„

H\n)=En\n).

One can readily compute (3.24) at the point x y 0 as

G+(x° - if) e"* £ \(m\<P(0)\n)\2 e-M*0-'/)^*0-!/»^) (3.25)

so that the convergence of the sum implies that

-ß < Im(x° - y°) < 0

which requires 9c(x° - y°) 0 for Im(x° — y°) > 0. From (3.24) it follows that the similar

property for the convergence of G-(x° — y°) is that,

0 < Im(x° - y°) < ß

which requires 0c(y°—x°) 0 for Im(x°—y°) < 0, and the final condition for the convergence

of the complete Green function on the strip

-ß< Im(x° - y°) < ß (3.26)

is that we define the function 6c(t) such that

ec(t) 0 for Im(t) > 0.

The latter condition implies that C must be such that a point moving along it has a

monotonously decreasing or constant imaginary part.

A very important periodicity relation affecting Green functions can be easily deduced

from the very definition of G+(x) and G_(x), eq. (3.24). By using the definition of the

grand canonical average and the cyclic permutation property of the trace of a product of

operators, it can be easily deduced,

G+(t-iß,x)=G_(t,x) (3.27)

which is known as the Kubo-Martin-Schwinger relation [20].

We can now compute the two-point Green function (3.23) for a free scalar field,

«*>=/ i^wkpF2 ta(p)e",p*+at(p)eIP1 (3-28)

where

up jp2 + m2, (3.29)
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which satisfies the equation

[d'ldß + m2] G(°\x - y) -iSc(x - y) -iSc(x° - y°)6^(x - y) (3.30)

From (3.28), and using (3.23) we can write the two-point Green function as,

G^(x-y) J {2n)3/2{2u)k)1/2 J (2^)3/2(2Wp)i/2
' (3-31)

[ec(x° - y°) [e-^+^(a(k)a}(p)) + eik*~™(o?(k)a(p))] ¦

0c(y° - x°) [ék*-™(a(p)o)(k)) + e-*x+™(o)(p)a(k))]}

Using the time derivative of (3.28),

*{y) l J (2^(?)1/2 lflt(p)eîPX - aÌP)e'^ (3'32)

and the equal time commutation relation,

[tot,x),tot,y)}=i5^(x-y) (3.33)

one easily obtains the commutation relation for creation and annihilation operators,

[a(p),a^(k)]=6^(p-k) (3.34)

and defining the Hamiltonian of the field as,

H J-^-3ujpai(p)a(p) (3.35)

one can obtain, using (3.34) the thermodynamical averages,

(a\p)a(k)) nB(wp)S®(p - k) (3.36)

(a(pW(k)) [l+nB(u>p)]SW(p-k)

where nB(w) is the Bose distribution function,

n*H ^rr (3-3?)

We will give here a simplified derivation of expression (3.36). Consider the simpler

example of a quantum mechanical state occupied by bosons of the same energy uj. There

may be any number of bosons in that state and no interaction between the particles: we will
denote that state by \n). The set (|n)} is complete. Creation and annihilation operators are
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denoted by a) and a, respectively. They act on the states \n) as, a^\n) y/n + l\n+ 1) and

a\n) y/n\n — 1), and satisfy the commutation relation,

[a,af]=l (3.38)

The hamiltonian and number operators are defined as H wN and N a?a, with
eigenvalues um and n, respectively.

It is very easy to compute now (a)a) and (aa^) as in (3.36) using the completeness of

{|n)}. In particular,

oo oo -i

Tr(e-W) EHe-^ln) £ e"^ —^
n=0 n=0 1 e

and
oo p-/3w

Tr(e-^ata)=gne-^ _^__
from where,

(aty nB(w) (3.39)

and, using (3.38),

(oat) l+nB(w) (3.40)

as we wanted to prove.

Using now (3.36) we can cast the two-point Green function (3.31) as,

G^(x-y) j -^0-[ec(x^ -if)e-^-y) + ec(y° -x°)é^-y^

+nB(wp) (eip<*-"> + e-ip(x-y))] (3.41)

where nB(wp) is defined in (3.37). Making use now of the properties,

nB(-uj) -eßunB(uj) -[1 + nfl(w)]

and

S(p2 - m2) ±- [«(p° + Wp) + <5(p° - üv)] (3.42)

one can write (3.41) as,

G(c\x -y)=J Äp(p)e-*<~!0 [öc(a;° - j/>) + nB(p0)] (3.43)

where the function p(p) is defined by,

p(p) 27r[ö(p°) - e(-p°)]6(p2 -m2) (3.44)
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Now the particular value of the Green function (3.43) depends on the chosen contour C.

We will show later on two particular contours giving rise to the so-called imaginary and real

time formalisms. Before coming to them we will describe how the previous formulae apply
to the case of fermion fields.

3.3.2 Fermion fields

We will replace here (3.23) and (3.24) by,

S%\x-y) (TcM*H>ß{y)) (3-45)

ec(xo-yo)s:ß + ec(yo-xo)s-0

where a and ß are spinor indices, and

SZß(x -y) (rba(xßß{y)) (3.46)

are the reduced Green function, which satisfy the Kubo-Martin-Schwinger relation,

Stß(t-iß,x) -S-ß(t,x) (3.47)

The calculation of the two-Green function for a free fermion field, satisfying the equation

(il ¦ d - m)arT S%\x - y) iSc(x - y)6aß (3.48)

follows lines similar to eqs. (3.28) to (3.44). In particular, one can define a Green function
5<c> as

5$(x - y) (ij.d + m)aßS^(x - y) (3.49)

where S^^x — y) satisfies the Klein-Gordon propagator equation (3.30). One can obtain for

5^ the expression,

S{C)(x -y) f -%- [ec(x° - ,/>)e-*<*-»> + ec(y° - a:VP(x-s)

-nF(u>p) (fM*-v> + e-**1"»))] (3.50)

which can be cast as,

S(c)(x -y) J ^jp(p)e-«-») [ec(x° - y°) - nF(p°)} (3.51)

where np(u>) is the Fermi distribution function

^H ^Vl (3-52)



Quirós 487

which satisfies the equation,

nF(—u>) eß"nF(ui) 1 — nF(uj)

Eq. (3.52 can be derived similarly to (3.39) as the mean number of fermions for a Fermi

gas. This time the Pauli exclusion principle forbids more than one fermion occupying a

single state, so that only the states |0) and |1) exist. They are acted on by creation and

annihilation operators 6+ and b, respectively as:

6t|0) |1),

6+|l)=0,

6|0) 0,

6|1> |0),

and satisfy anticommutation rules,

{0,6+} 1 (3.53)

Defining the hamiltonian and number operators as H ujN and N 6+6, we can

compute now the statistical averages of (6+6) and (66+) using the completeness of {|ti)}.

n=0 n=0
Tr(e-ßH) £He-**|n) £ e"*"1 1 + e

and

Tr(e-^H6+6) ^ne"^" e~ßu

n=0

from where,

(6+6) nF(u>) (3.54)

and, using (3.53),

(66+) 1 - nF(w) (3.55)

as we wanted to prove.

3.4 Imaginary time formalism

The calculation of the propagators in the previous sections depends on the chosen path C

going from an initial arbitrary time t to t — iß, provided by the Kubo-Martin-Schwinger

periodicity properties (3.27) and (3.47) of Green functions. The simplest path is to take
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a straight line along the imaginary axis t —ir. It is called Matsubara contour, since

Matsubara [21] was the first to set up a perturbation theory based upon this contour. In

that case eq. (3.11) reads as,

6c(t) iS(t) (3.56)

The two-point Green functions for scalar (3.43) and fermion (3.51) fields can be written

as,
d4p

W)
where the symbol n stands for

G(t, x) j -g3p(p)e^e-^° [6(r) + nn(p0)} (3.57)

r\B 1 for bosons (3.58)

r\F — 1 for fermions

Analogously, n(p°) stands either for nB(p°), as given by (3.37) for bosons, or nF(p°), as given

by (3.52) for fermions. It can be defined as a function of n as,

n(u>) -^— (3.59)v ; eP" - n

The Green function (3.57) can be decomposed as in (3.23)

G(r, x) G+(t, x)9(t) + G_(r, x)O(-t) (3.60)

Using now the Kubo-Martin-Schwinger relations, eqs. (3.27) and (3.47), we can write,

G(t + ß) vG(r) for - ß < t < 0 (3.61)

G(t - ß) t]G(t) for 0 < t < ß (3.62)

which means that the propagator for bosons (fermions) is periodic (antiperiodic) in the time

variable r, with period ß.

It follows that the Fourier transform of (3.57)

G(u>n,p) j" dr f d3xelulnT-lSïG(T,x) (3.63)

(where 0 < a < ß) is independent of a and the discrete frequencies satisfy the relation,

ne^0 1 (3.64)

i.e.

wn 2WT/T1 (3.65)
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for bosons, and

ujn (2ra + l)-nß~l (3.66)

for fermions.

Inserting now (3.57) into (3.63) we can obtain the propagator in momentum space G.

The integral over r can be easily done with the result,

1f dre^n-p0)r
Ja-a

9(r) + V
(3.67)

where we have made use of eq. (3.64). We see that the integral (3.67) is independent of a,
as anticipated, and does not depend on n. Inserting now (3.67) into (3.63) and making use

of the property,

P(P°) - 0(-p°)]6(p2 - m2) -L[«(p° + Wp) - S(p° - wp)] (3.68)
ZLOp

we can write the propagator in momentum space as,

_i

p '* + nii + w£

where u>n is given by (3.65) for bosons and by (3.66) for fermions

GK,P)= ^- 2M 2
(3.69)

We can now define the euclidean propagator, A(—ir,x), by

G(r,x)=iA(-ir,x) (3.70)

AW L?„/0^'+Ä?^T=I <3-7i>

where G(r,x) is the propagator defined in (3.57). Therefore, using (3.69), we can write the

inverse Fourier transformation,

1 » r d3p

/3^J (2»r p2 + m2 + iv2

where the Matsubara frequencies u>n are defined in (3.65) for bosons and in (3.66) for

fermions.

From (3.71) one can deduce the Feynman rules for the different fields in the imaginary
time formalism. We can summarize them in the following way:

Boson propagator : — -'; pM [2ninß~l,p]
pl — ml

Fermion propagator : ; pß [(2n + l)mß~l,p]
7 • p — m

Loop integral : -; Ë / 7^5 (3-72)
Pn^oo-7 (27r)

Vertex function : -iß(2-K)3S^w.Si3)(^2pi)
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There is a standard trick to perform infinite summations as in (3.72). For the case of
bosons we can have frequency sums as,

1

E /(P° ^n) (3-73)
r n=—oo

1

+

1

2

•1

e-ßz

1

-1.

.2 eßz _ lj

with u>n 2nnß 1. Since the function

ì/?coth(ì/fc)

has poles at z iwn and is analytic and bounded everywhere else, we can write (3.73) as,

where the contour 7 encircles anticlockwise all the previous poles of the imaginary axis. We

are assuming that f(z) does not have singularities along the imaginary axis (otherwise the

previous expression is obviously not correct). The contour 7 can be deformed to a new

contour consisting in two straight lines: the first one starting at —ioo + e and going to ioo+e,
and the second one starting at ioo — e and ending at — ioo — e. Rearranging the exponentials

in the hyperbolic cotangent one can write the previous expression as,
I /.—ioo—e

27TI Jioo—i

1 rico+e

olTi / dzfW
2/Kl ./-ioo+e

Now changing the variable z —> — z in the first integral, the previous expression can be

written as,
1 rioo 1 1 rioo+t 1

2^ LdZ2^ + '<"*>] + MLj^ + «-'»SSTTÏ
and the contour of the second integral can be deformed to a contour C which encircles

clockwise all singularities of the functions f(z) and f(—z) in the right half plane. Therefore

we can write (3.73) as

~ß „goo f{P° ^ U £i[m + Ï{-Z)] + S ^lnB{ZmZ) + n~Z)] (3'74)

where nB(z) is the Bose distribution function (3.37).

Eq. (3.74) can be generalized for both bosons and fermions as,

\JL/(p0=^=SI&VM+/(-*)]+'Lt'twM+f^ (375)

where the symbol n is defined in (3.58) and the distribution functions n(z) in (3.59). Eq.

(3.75) shows that the frequency sum naturally separates into a T independent piece, which

should coincide with the similar quantity computed in the field theory at zero temperature,
and a T dependent piece which vanishes in the limit T —> 0, 1. e. ß —» 00.
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3.5 Real time formalism

The obvious disadvantage of the imaginary time formalism is to compute Green functions

along imaginary time, so that going to the real time has to be done through a process of

analytic continuation. However, a direct evaluation of Green function in the real time is

possible by a judicious choice of the contour C in (3.9). The family of such real time contours

is depicted in fig. 5 where the contour C is

tj-ia
fC4 C2

Imt

rt]
if-ia

•Ret

Figure 5: Contour used in the real time formalism

C Cl[jC2{}C3\JCA

where C\ goes from the initial time U to the final time tf, C3 from tf to tf — io, with
0 < o < ß, C2 from tf — io to U — io, and C4 from U — io to U — iß. Different choices

of a lead to an equivalence class of quantum field theories at finite temperature [22]. For

instance the choice a 0 leads to the Keldish perturbation expansion [23], while the choice

ß/2 (3.76)

is the preferred one to compute Green function.

Computing the Green function for scalar (3.43) and fermion (3.51) fields taking the path

depicted in fig. 5 is a matter of calculation, as we did for the imaginary time formalism

in (3.57)-(3.69). One can prove that the contribution from the contours C3 and C4 can be

neglected [18, 24]. Therefore, for the propagator between x° and y° there are four possibilities

depending on whether they are on C\ or C2. Correspondingly, there are four propagators

which are labelled by (11), (12), (21) and (22).
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Making the choice (3.76), the propagators for scalar fields (3.43) can be written, in

momentum space, as

C(P)=(G2iP) G(y)=MB(ß,P)(A{p) ° Wp) (3.77)y ' \ G^(p) GW(p) J \ 0 A*(p) J
y ' V ;

where A(p) is the boson propagator at zero temperature,

A(P) ~2 '-TT- (3-78)
p* — nv + ie

and the matrix MB(ß,p) is given by,

MB(ß,p) { C0SheÌP) SÌnh(?(PM (3.79)V ' \ sinh0(p) cosh e(p) j
where

-1/2
sinhö(p) e-ßu"'2 (l - e-^y
coshe(p) (l - e-ß^)~V2 (3.80)

Using now (3.77), (3.79), (3.80), and the property

V- + n6(x)
x + ie x

where V means the principal part, one can easily write the expression for the four bosonic

propagators, as

G{xX)(p) A(p)-r2nnB(ivp)S(p2-m2)

GW(j>) G^u> (3.81)

G(i2) Aneß^2nB(ujp)S(p2 - m2)

q(21) G(12)

Similarly, the propagators for fermion fields can be written as

s(pu - i ;SP! GJl{r: i (382)s^'(p) &:;>(p)
G%\p) G^(p)

MF(ß,P)[^-p + ^ßA^ °
M))MF(ß,P)0 (¦y-p + m)aßA*(p)
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where AB(p) is given by (3.78), and the matrix MF(ß,p) by,

MHM - ?"« ***> (3.83)
\ sinhö(p) cosli0(p) I

with

sinhÖ(p) e-^"/2(l + e-^')^1/2

coshÖ(p) [6»(po)-0(-p°)](l + e-^")"1/2 (3.84)

In the same way, using now (3.82), (3.83), and (3.84) one can easily write the expression

for the four fermionic propagators, as

5(11)(p) (j-p + m)(A(p)-27mF(u,p)6(p2-m2))
S^22\p) SW* (3.85)

SW -4tt(7 ¦ p + m)[6(p°) - e(-p°)]eß""l2nF(wp)6(j>2 - m2)

G^) -G(12)

As one can see from (3.81) and (3.85), the main feature of the real time formalism is

that the propagators come in two terms: one which is the same as in the zero temperature
field theory, and a second one where all the temperature dependence is contained. This is

welcome. However the propagators (12), (21) and (22) are unphysical since one of their time

arguments has an imaginary component. They are required for the consistency of the theory.

The only physical propagator is the (11) component in (3.81) and (3.85).

Now the Feynman rules in the real time formalism are very similar to those in the

zero temperature field theory. In fact all diagrams have the same topology as in the zero

temperature field theory and the same symmetry factors. However, associated to every field

there are two possible vertices, 1 and 2, and four possible propagators, (11), (12), (21) and

(22) connecting them. All of them have to be considered for the consistency of the theory. In
the Feynman rules, type 2 vertices are hermitian conjugate with respect to type 1 vertices.

The golden rule is that: Physical legs must always be attached to type 1 vertices. Apart from

the previous prescription, one must sum over all the configurations of type 1 and type 2

vertices, and use the propagator G^ or 5^ to connect vertex a with vertex 6.

There is now a general agreement in the sense that the imaginary time formalism and

the real time formalism should give the same physical answer [25]. Using one or the other

is sometimes a matter of taste, though in some cases the choice is dictated by calculational

simplicity depending on the physical problem one is dealing with.
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4 The effective potential at finite temperature

In this section we will construct the (one-loop) effective potential at finite temperature,

using all the tools provided in the previous sections. As we will see, in particular, the

effective potential at finite temperature contains the effective potential at zero temperature

computed in section 2. The usefulness of this construction is addressed to the theory of

phase transitions at finite temperature. The latter being essential for the understanding of

phenomena as: inflation, baryon asymmetry generation, quark-gluon plasma transition in

QCD,... We will compare different methods leading to the same result, including the use of

both the imaginary and the real time formalisms. This exercise can be useful mainly to face

more complicated problems than those which will be developed in this course.

4.1 Scalar fields

We will consider here the simplest model of one self-interacting scalar fields described by the

lagrangian (2.22) and (2.23). We have to compute the diagrams contained in fig. 1 using

the Feynman rules described in (3.72), for the imaginary time formalism, or in (3.81) for the

real time formalism. We will write the result as,

Vfs(to) V0(to) + Vf(to) (4.1)

where V0(to) is the tree level potential.

4.1.1 Imaginary time formalism

We will compute the diagrams in fig.l. Using the Feynman rules in eq. (3.72), eq. (2.28)

translates into,
d3p

Ißr^J (27T)3

where u>n axe the bosonic Matsubara frequencies defined in eq. (3.65) and

^c) ^E/7^1og^^2) (4-2)

cv2=p2 + m2(to) (4.3)

m2 being defined in (2.27).

The sum over n in (4.2) diverges, but the infinite part does not depend on to- The finite

part, which contains the <pc dependence, can be computed by the following method [15].
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Define,

then,

v(u)= X) log(w2n + iv2)
n=—oo

dv
E

2w

dw ^~* LO2 + U)2

Using the identity,

m'^¥^
with y ßui/2-ir we obtain,

dv
duj

2ß

1 1
1—vr

2y 2
coth 7T3/

1 it
h -2y 2

e-2*y

1 - e-27^

1 e-"w
'

2
' 1-e-""

(4.4)

(4.5)

(4.6)

and

v(w) 2/3 H*(i--*) + a> — independent terms

Substituting finally (4.8) into (4.2) one gets,

*<W& HM1-8"*)

(4.7)

(4.8)

(4.9)

One can easily prove that the first integral in (4.9) is the one-loop effective potential at

zero temperature. For that we have to prove the identity,

dx1 yoo qIqz iq- I — log(—x? + u>2 — ie) — + constant
2 J-oo 27T 2

i.e.

•rJ—o

dx

(4.10)

(4.11)
2-ïïi —x2 +u>2 — ie 2

Integral (4.11) can be performed closing the integration interval (—00,00) in the complex

x plane along a contour going anticlockwise and picking the pole of the integrand at x
—yöß — ie with a residue 1/2uj. Using the residues theorem eq.(4.11) can be easily checked.

Now we can use identity (4.10) to write the temperature independent part of (4.9) as

^/(^W=-i/(^l0g(-p« + w2-l£)

and, after making the Wick rotation p° ipE in (4.12) we obtain,

(4.12)

1 f d3p 1 f d4p 2 2

2 J <W" 2 J (2^l0g[p +m(^)]
(2tt)<

(4.13)
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which is the same result we obtained in the zero temperature field theory, see eq. (2.28).

Now the temperature dependent part in (4.9) can be easily written as,

y^^-^-^Mrn'tofi (4.14)

where the thermal bosonic function JB is defined as,

Jb[m2ß2] H dx x2 log [l - e-\/^
Jo

(4.15)

The integral (4.15) and therefore the thermal bosonic effective potential admits a high-

temperature expansion which will be very useful for practical applications. It is given by

„2\3/2
JB(mz/T2)

45
T _-

4 2m m
32 T7 ^^T212 T2 6 \T2)

(4.16)

(.+2

where at, 167T2 exp(3/2 — 27e) (Ioga;, 5.4076) and is the Riemann £-function.

There is a very simple way of computing the effective potential: it consists in computing

its derivative in the shifted theory and then integrating*. In fact the derivative of the

effective potential
dyl
dto

is described diagrammatically by the tadpole diagram of fig. 6. In fact using the Feynman

rules in (3.72) one can easily write for the tadpole of fig. 6 the expression,

Figure 6: Tadpole diagram for scalar loop

dVf_ _Xtol_ ~ r d3p 1_
'dto " ~^~ßnhj (2vr)3ü,2+<

(4.17)
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or, using the expression (2.27) for m2(<pc)

dVf 1_ ^ r d3p 1

20 J?J (2nyüj2+u2
(4-18)

dm2(to) 20 J='J (2tt)

Now we can perform the infinite sum in (4.18) using the result in eq. (3.74) with a
function / defined as,

/W ~-r2 (4.19)

and obtain for the tadpole (4.18) the result

dVf =(Jhp_[l f- dz__J_+ f ^i^ L_\ (420)
dm2 (to) J (2?r)3 \ 2 J-ioc 2iri w2 - z2 Jc 2ni e^-lw2-z2)

K '

The first term in (4.20) gives the /3-independent part of the tadpole contribution as,

1 /-ioo (Jz 1

n ^-^-2 (4-21)
2 ./-too ziri uji — z*

We can now close the integration contour of (4.21) anticlockwise and pick the pole of (4.19)

at z —uj with a residue 1/2uj. The result of (4.21) is

— (4-22)
4w

v '

The second term in (4.20) gives the /3-dependent part of the tadpole contribution. Here the

integration contour encircles the pole at z w with a residue

1 1

2w e?u - 1

Adding (4.22) and (4.23) we obtain for the tadpole the final expression,

dVi(to) i f d3p r i i i_
1 t cfp

~ 2J (2tt) 2u> ue^-1.

(4.23)

(4.24)
dm2(to) 2) (2tt)3

Now, integration of (4.24) with respect to m2(to) leads to the expression (4.9) for the thermal

effective potential and, therefore, to the final expression given by (4.13) and (4.14).

4.1.2 Real time formalism

As we will see in this section, the final result for the effective potential (4.9) can be also

obtained using the real time formalism. Let us compute the tadpole diagram of fig. 6. Since

physical legs must be attached to type 1 vertices, the vertex in fig. 6 must be considered

of type 1, and the propagator circulating around the loop has to be considered as a (11)
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propagator. Application of the Feynman rules (3.81) to the tadpole diagram of fig. 6 leads

to the expression 5

dVf__ Xto f d4p

dcpc
~ 2 Ì (2?r)4 p2 — m2(to) + ie

or, using as before the expression (2.27) for m2(ip,

¦ 2nnB(u))S(p2 - m2(to))

ch

dVf 1 r d4p

dm2(to) 2 J (2
[SiJ (2n —p2 + m2(to) — ie

+ 2-KnB(w)S(p2 - m2(to))

(4-25)

(4.26)

Now the /3-independent part of (4.26), after integration on m2((pc) contributes to the

effective potential as

-\l^ÌOg{-p2 + m'ì^)-ie) (4-27)

Finally using eq. (4.10) to perform the p° integral, we can cast eq. (4.27) as

ii%- (4-28)
J (2tt)32

V ;

which coincides with the first term in (4.9).

Integration over p° in the /3-dependent part of (4.26) can be easily performed with the

help of the identity (3.42) leading to,

lwrh»w (4.29)

which, upon integration over m2(<pc) leads to the second term of eq. (4.9).

We have checked that trivially the real time and imaginary time formalisms lead to the

same expression of the thermal effective potential, in the one loop approximation.

4.2 Fermion fields

We will consider here a theory with fermion fields described by the lagrangian (2.32). As in

the scalar case, we have to compute the diagrams contained in fig. 2, using the Feynman

rules either for the imaginary or for the real time formalism, and decompose the thermal

effective potential as in (4.1).

5We are replacing in (3.81) the value of u>p given by (3.29) by the corresponding value u> given by (4.3)

in the shifted theory.
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4.2.1 Imaginary time formalism

The calculation of the diagrams in fig. 2, using the Feynman rules (3.72), yields,

where ojn are the fermionic Matsubara frequencies defined in eq. (3.66) and

üj2=p2 + M2. (4.31)

The sum over n is done with the help of the same trick employed in (4.4)-(4.8). Let f(y)
be given by (4.6), then,

yy —j£ y2 + m2 Z=\ y' +

y -
n=T3,... y2 + m2

i^— -f(y-)^y2 + 4n2 2J \2J

f(y)-\f{l]
and using (4.6) we get,

7T 7T 1

nJïtt,... V2 + m2 4 2 e*v + 1

The function v(lj) in this case can be written as,

v(u,)=2 £
«=1,3,

log
Vn2

/?2
4-w2

and its derivative,
dv 4/3 y, y
du> 7T j j y2 + n2

where y 0uj/tt. Then using (4.33) we get

^ 20
dui

[1
.2

1 1

1 + e^J

and, after integration with respect to w,

v(w) 20 !+£'»(»+'*). + w — inde

(4.32)

(4.33)

(4.34)

(4.35)

(4.36)

(4.37)

Replacing finally (4.37) into (4.30) one gets,

«<¦*>--»J&lhi*^**) (4.38)
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The first integral in (4.38) can be proven, as in (4.10)-(4.13), to lead to the one-loop effective

potential at zero temperature (2.35). The second integral, which contains all the temperature
dependent part, can be written as,

- 2X\ I wlog (1 + e~0u) -2X^ß-MMWß2\ (4-39)

where the thermal fermionic function Jp is defined as,

JF[m202] / da; a:2 log
Jo

1 + e-y/x*+ß*m? (4.40)

As in the scalar field, the integral (4.40) and therefore the thermal fermionic effective

potential admits a high-temperature expansion which will be very useful for practical
applications. It is given by

Mm2/T2) ^--^-^log.^T2 (4.41)

¦Çp-*m$ï-r~H*+!i){g)
1+2

where a/ 7r2exp(3/2 — 2'yF) (Ioga/ 2.6351) and £ is the Riemann ^-function.

As we did in the case of the scalar field, there is a very simple way of obtaining the

effective potential, computing the tadpole of fig. 7 in the shifted theory, and integrating over

Figure 7: Tadpole diagram for fermion loop

to- Using for the fermion propagator (3.72)

and the trace formula,

.y-p + Mf
%

p2-M2f

Tr (7 • p + Mf) 2AM/
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we can write for the tadpole the expression,

or, using the expression Mf(<pc) T(pc, where T is the Yukawa coupling,

dVf
_2A

1 ^ f d3p 1- E l-&—^- (4.43)iß.^U (2n)3tü2+w2
V ;dM2(to) 2ßnt?J (2v)3u32n + w2

Now the infinite sum in (4.43) can be done with the help of (3.75), with f(z) given by

(4.19), as

dVf
dM2f(to

r d3p j 1 r°° dz 1 r dz 1 1 Ì
J (2tt)3 \ 2 J-.00 2Viw2 -z2~ Jc~2rießx + luj2-z2) (' '

The first term of (4.44) reproduces the zero temperature result (2.35), after M2

integration, by closing the integration contour of (4.21) anticlockwise and picking the pole at

z —u) with a residue l/2u;. The second term in (4.44) gives the /3-dependent part of the

tadpole contribution. Here the integration contour C encircles the pole at z u with a

residue

(_2A)^-^—- (4.45)

Adding all of them together, we obtain for the tadpole the final expression

1 1dV(to)
_ A f d3p

dM2(to) J (2tt)3 .2w we^ + 1
(4.46)

and, upon integration with respect to Mi we obtain the result previously presented in eq.

(4.38).

4.2.2 Real time formalism

As for the case of scalar fields, the thermal effective potential for fermions (4.38) can also be

very easily obtained using the real time formalism. We compute again the tadpole diagram of

fig. 7, where the vertex between the two fermions and the scalar is of type 1 and the fermion

propagator circulating along the loop is a (11) propagator. Application of the Feynman rules

(3.85) leads to the expression

dto J (2f&TP + Mf)
M2f -vie

2-nnF(u)S(p2 - M)) (4.47)
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or, using as before the expression for Mi,

dVf Tri f d4pWjj J-rl r d-p -i 2 2N (4.48)

Now the /3-independent part of (4.48), after integration on M2, contributes to the effective

potential,
d3p v

(2tt)3 2

which coincides with the first term in (4.38).

-WsfrS <"9)

WtS^HI <4-50»

Integration over p° in the /3-dependent part of (4.48) can be easily performed with the

help of the identity (3.42) leading to,

d3p 1

(2tt)3

which, upon integration over M2 leads to the second term of eq. (4.38).

4.3 Gauge bosons

The thermal effective potential for gauge bosons in a theory described by the lagrangian

(2.36) is computed in the same way as for previous fields. The simplest thing is to compute

the tadpole diagram of fig 8 using the shifted mass for the gauge boson. In the Landau

Figure 8: Tadpole diagram for gauge-boson loop

gauge, the gauge boson propagator reads as,

WM=->-4+^ (4-5i)

where A is the projector defined in (2.38) with a trace equal to 3 (see eq. (2.41)). Therefore

the final expression for the thermal effective potential is computed as,

Vf (to) Tr(A) {\j~0ji logb2 + M2„(to)] + 1^2jMMU<t>o)02]} (4-52)
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where the thermal bosonic function JB in (4.15). The first term of (4.52) agrees with the

zero temperature effective potential computed in (2.42), and the second one just counts that
of a scalar field theory a number of times equal to the number of degrees of freedom (3) of
the gauge boson.

4.4 The Standard Model case

The Standard Model of electroweak interactions was previously defined through eqs. (2.78)-

(2.82), and the corresponding one loop effective potential at zero temperature computed

through eqs. (2.83)-(2.91) using various renormalization schemes and the contribution of

gauge and Higgs bosons and the top quark fermion to radiative corrections. Here we will

compute the corresponding one loop effective potential at finite temperature. We will use

the renormalization scheme of eq. (2.88), so that the renormalized effective potential at

zero temperature is given by eq. (2.90), and consider only the contribution of W and Z
bosons, and the top quark to radiative corrections. This is expected to be a good enough

approximation for Higgs masses lighter than the W mass.

Using eqs (4.39) and (4.52) one can easily see that the finite-temperature part of the

one-loop effective potential can be written as,

AV^(A,T) g Y, niJB[mHto)/T2] +ntJF[m2(to)/T2]
i=W,Z

(4.53)

where the function JB and JF where defined in eqs. (4.15) and (4.40), respectively.

Using now the high temperature expansions (4.16) and (4.41), and the one loop effective

potential at zero temperature, eq. (2.90), one can write the total potential as,

V(to, T) D(T2 - T2)to - ETtoc + ^p-tò (4-54)

where the coefficients are given by

2m2v + m\ + 2m?
D "w - '"5 - ' (4.55)

8ii2

E=2m3w + m3z

Anv3

mi — 8Bv2 __,T2 -±-^ (4.57)

B -d^A2mw + <-^t) (4-58)
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A<T> -A - iSP? (** '»^ + ™i "« £§* - 4-' '<* Ì7P) <i59>

where logylg Ioga;, — 3/2 and logAp loga^r — 3/2, and aB, aF are given in (4.16) and

(4.41). All the masses which appear in the definition of the coefficients, eqs. (4.55) to (4.59),

are the physical masses, i.e. the masses at the zero temperature minimum. The peculiar
form of the potential, as given by eq. (4.54), will be useful to study the associated phase

transition, as we will see in subsequent sections.

5 Finite temperature phase transitions in field
theories

All cosmological applications of field theories are based on the theory of phase transitions

at finite temperature, that we will briefly describe throughout this section. The main point
here is that at finite temperature, the equilibrium value of the scalar field <p, (cp(T)), does not

correspond to the minimum of the effective potential V^=0(4>), but to the minimum of the

finite temperature effective potential Vßs((p), as given by (4.1). Thus, even if the minimum of

V^=0(<p) occurs at (ip) o ^ 0, very often, for sufficiently large temperatures, the minimum

of Vßs(4>) occurs at (<^(T)) 0: this phenomenon is known as symmetry restoration at

high temperature, and gives rise to the phase transition from 0(T) 0 to (p a. It was

discovered by Kirzhnits [26] in the context of the electroweak theory (symmetry breaking

between weak and electromagnetic interactions occurs when the universe cools down to a

critical temperature Tc ~ 102 GeV) and subsequently confirmed and developed by other

authors [27, 15, 16, 28].

The cosmological scenario can be drawn as follows: In the theory of the hot big bang,

the universe is initially at very high temperature and, depending on the function Ve^(0),

it can be in the symmetric phase (0(T)) 0, i.e. <j> 0 can be the stable absolute

minimum. At some critical temperature Tc the minimum at <p — 0 becomes metastable

and the phase transition may proceed. The first transition may be first or second order.

First-order phase transitions have supercooled (out of equilibrium) symmetric states when

the temperature decreases and are of use for baryogenesis purposes. Second-order phase

transitions are used in the so-called new inflationary models [29], We will illustrate these

kinds of phase transitions with very simple examples.
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5.1 First and second order phase transitions

We will illustrate the difference between first and second order phase transitions by
considering first the simple example of a potential 6 described by the function,

V(<P,T) D(T2-T2)to +
X(T)

(5.1)

where D and T2 are constant terms and A is a slowly varying function of T 7. A quick

glance at (4.16) and (4.41) shows that the potential (5.1) can be part of the one-loop finite

temperature effective potential in field theories. More explicit applications will be done later

At zero temperature, the potential

A
VUO) -ToW + -04 (5-2)

(where A A(0)) has a negative mass-squared term, which indicates that the state 0 0

is unstable, and the energetically favored state corresponds to the minimum of (5.2) at

too) -T0, as shown in fig. 9, where the symmetry -d> of the original theory is

spontaneously broken.

V(<D)

V 2D2D ^T,

Figure 9: Typical shape of the zero temperature potential (5.2) with spontaneous

symmetry breaking

"The (j> independent terms in (5.1), i.e. V(0,T), are not explicitly considered.

7The T dependence of A will often be neglected in this section.
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The curvature of the finite temperature potential (5.1) is now T-dependent,

m2(4>, T) 3Xto + 2D(T2 - T2)

and its stationary points, i.e. solutions to dV((p,T)/d<p 0, given by,

(5-3)

toT)

and

0

toT)
^

2£>(T2 - T2)

A(T)

(5-4)

Therefore the critical temperature is given by T0. At T > T0, m2(0,T) > 0 and the origin
4> 0 is a minimum. At the same time only the solution <p 0 in (5.4) does exist. At
T T0, m2(0,To) 0 and both solutions in (5.4) collapse at (p 0. The potential (5.1)

becomes,
A(T„).4

V(4>,T0) (5.5)

At T < T„, m2(0,T) < 0 and the origin becomes a maximum. Simultaneously, the solution

ip(T) 7^ 0 does appear in (5.4). This phase transition is called of second order, because

there is no barrier between the symmetric and broken phases. Actually, when the broken

phase is formed, the origin (symmetric phase) becomes a maximum. The typical potential

(5.1) which describes a second order phase transition is illustrated in fig. 10. The phase

V(*,T)
T>T

T=T,

T=0T<T

Figure 10: The potential of eq. (5.1) describing a second order phase transition.
The potential is normalized at <p 0 for all values of T

transition may be achieved by a thermal fluctuation for a field located at the origin.
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However, in many interesting theories there is a barrier between the symmetric and

broken phases. This is characteristic of first order phase transitions. A typical example is

provided by the potential 8,

V(4>, T) D(T2 - T2)<p2 - ET<P3 + KT). (5.6)

where, as before, D, T0 and E are T independent coefficients, and A is a slowly varying

T-dependent function. Notice that the difference between (5.6) and (5.1) is the cubic term

with coefficient E. This term can be provided by the contribution to the effective potential

of bosonic fields (4.16). The behaviour of (5.6) for the different temperatures is displayed

in fig. 11, and its behaviour reviewed in refs. [12, 30]. At T > Ti the only minimum is at

TC<T<T1

V<t>.T

T^T>T.,

T=T,

T^<T<To- i - .r
=T

Figure 11: A typical first order phase transition. The potential has been normalized

at <p 0 for all values of T

¦ 0. At T Ti

T2 8A(Ti)D2?
(5.7)

8A(Ti)D - 9E2

a local minimum at <p{T) =£ 0 appears as an inflection point. The value of the field <p at

T Ti is,

WTi))
3ETx

2X(T1)
(5.8)

8See, e.g. the one-loop effective potential for the Standard Model, eq. (4.54).
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A barrier between the latter and the minimum at <p — 0 starts to develop at lower temperatures.

Then the point (5.8) splits into a maximum

0m(t) iw) ~ 2W)^9E2T2 - WW1* - T«) (5-9)

and a local minimum

4>m(T) ^~ + ^jT^^T2 - 8X(T)D(T2 - T2) (5.10)

At a given temperature T Tc

^ X(TC)DT2
(5.11)c X(TC)D - E2

the origin and the minimum (5.10) become degenerate,

V(0,Tc) V(toTc),Tc) (5.12)

From (5.9) and (5.10) we find that

FT
0m(Tc) ^ (5.13)

and

MV ^§ (5.14)

For T < Tc the minimum at (p 0 becomes metastable and the minimum at </>m(T) ^ 0

becomes the global one. At T T0 the barrier disappears, the origin becomes a maximum

<Pm(T„) 0 (5.15)

and the second minimum becomes equal to

*^=m (5-16)

The phase transition starts at T Tc by tunnelling. However, if the barrier is high enough

the tunnelling effect is very small and the phase transition does effectively start at a

temperature Tc > Tt > T„. In some models T0 can be equal to zero. The details of the phase

transition depend therefore on the process of tunnelling from the false to the global minimum.

These details will be studied in the rest of this section.
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5.2 Bubble nucleation

The transition from the false to the true vacuum proceeds via quantum penetration of
the barrier. We will use the term quantum tunnelling to refer to tunnelling at zero

temperature, and thermal tunnelling to refer to tunnelling at finite temperature. It can

be understood, in both cases, in terms of formation of bubbles of the broken phase in the

sea of the symmetric phase. Once this has happened, the bubble spreads throughout the

universe converting false vacuum into true one.

5.2.1 Quantum tunnelling

The dynamics of bubble nucleation at zero temperature has been studied by Coleman et al.

[31, 32, 33]. It is found that the probability of decay of the false vacuum per unit time per
unit volume has the form

- Ae~n [1 + 0(h)] (5.17)

where the coefficients A [32] and B [31] depend on the theory under study. In this section

we will study the value of B (which is the most relevant quantity in (5.17) in field theories)

following closely the work of Coleman in ref. [31].

Consider first a particle of unit mass moving in one dimension with a lagrangian,

L \q2 - V(q) (5.18)

and a potential as the one in fig. 12. In semiclassical language, the particle penetrates the

potential barrier and materializes at the escape point o with zero kinetic energy, after which

it propagates classically.

Just to simplify the analysis, take now the square potential shown in fig. 13. The wave

function satisfies the Schrödinger equation,

h2 d2

2ax2+v^ iP(x) EiP(x) (5.19)

so that inside the region 0 < x < L the wave function is given (in natural units) by,

iP(x) ~ e-^v°-E)x (5.20)

for E < V0. The density probability for barrier penetration is thus, for E 0,

P ~ \4>(L)\2 ~ e-2(2VW1/2t e-2 fL[2V(x)]1/2dx (5.21)
Jo
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V(q)

0\\

Figure 12: Potential used in (5.18) to study the probability of quantum jump to
overcome the barrier

For an arbitrary potential V(q) the coefficient B in (5.17) is given by

B 2 f dq(2V(q)f'2
Jqo

(5.22)

We can generalize this description to a particle moving in N dimensions: q(t). The

lagrangian is,

L \q-'q-V(q) (5.23)

and then, according to Banks, Bender and Wu [34],

B 2 f ds(2V)1'2
Jqo

(5-24)

where ds2 dq ¦ dq, go is a local minimum with V(q0) 0 and S G S, the surface of zeroes.

The integral (5.24) is over the path for which B is a minimum, i.e. the path which satisfies

S f ds(2V)1/2 0
Jan

(5.25)

This means that the particle penetrates the barrier along the path of least
resistance.
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V(X)

Vo

O L

Figure 13: Square potential

We just have to determine now the paths satisfying (5.25). To do that Coleman [31] uses

the fact that the solutions to the variational problem

5 f ds[2(E-V)]1/2 0
Jqo

(5.26)

with fixed end points, are the paths in configuration space given by the Euler-Lagrange

equations

(5.27)

with

d2q dv
dt2 dq

1 dq
2

2 dt + v

The differences between (5.25) and (5.26) are:

• £ 0in (5.25).

• The sign of V is reversed in (5.25).

• S is not a fixed point in (5.25), but S 6 E.

(5.28)

Ignoring the last point, the solutions to (5.25) are given by

(Pa _dV
dr2 dq

with
1

2

dq

dr

2

-V 0

(5.29)

(5.30)
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Notice that (5.29) is the imaginary time version r it of eq. (5.27), i.e. the Euler-Lagrange

equation of the euclidean lagrangian,

LF + V (5.31)

We will take the classical equilibrium as a boundary condition,

lim q\r) q0 (5.32)
T—?—OO

and the imaginary time at which the particle reaches a to be r 0, i.e. from eq. (5.30),

q\0) 3 (5.33)

dq

aW

a

0

so that the variation of (5.25) with respect to changes in the end point a vanishes. On the

other hand the motion of the particle for r > 0 is just the time reversal of its motion for

r < 0. The particle bounces off E at r 0 and returns to q0 at T +oo.

Using (5.30) and (5.31) we obtain,

LF 2V

and

(5.34)

ds(2V)1/2 dr2V dr LE

and so the coefficient B in (5.24)

/oo dr LB SB
-oo

is the total euclidean action for the bounce, i. e. for the solution to the imaginary time

equations of motion (5.29) satisfying the boundary conditions (5.32) and (5.33).

It is straightforward to generalize the above ideas to a field theory described by the

lagrangian,

C ^todpt - V(to (5.35)

where the potential V(<p) has a false vacuum at <p+ and a true vacuum at </>_, as shown in

fig. 14. The euclidean action is defined as,

wWHs)'-^*)'- v(to (5.36)
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V«D)

CD-

Figure 14: Typical potential in (5.35) with two vacua: the true vacuum and the
unstable (false) one

and the bounce is a solution of the euclidean equation of motion

(d2 + v2)<p v'(to

with boundary conditions (finiteness of the action)

TH±1oo ^T' ^ ^+

and
d<p

dr (0,£)=0

(5.37)

(5.38)

(5.39)

(5.40)

Then the coefficient B in the vacuum decay amplitude is

B SE(to - SE(to)

Coleman, Glaser and Martin [35] have proven that the bounce is always 0(4) symmetric.
This means that

<P top) (5.41)

with p (t2 + x 2)1/2. The euclidean action is then simplified to

SFj 2tt j~ p3dp^-to+ V

where àj dip/'dp, and the euclidean equation of motion (5.37) simplifies to

3 „ dV
+

d<p

(5-42)

(5.43)
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The boundary conditions (5.38-5.39) read now as

lim top) to

dp p=0

(5.44)

(5.45)

If we interpret 0 as a particle position and p as a time, eq. (5.43) is the mechanical

equation for a particle moving in the potential —V and subject to a peculiar viscous damping

force with a coefficient inversely proportional to the time. The corresponding physical

situation can be seen in fig. 15 If the initial position is properly chosen, the particle will

V *

INITIAL T=0

<t>+

<D. cD

FINAL
T=~

Figure 15: Picture of the mechanical problem of a particle moving in the potential
—V and subject to a viscous damping force

come to rest at time oo at </>+, on the top of the right hand hill. If the particle is released

to the right of to, at some value of (p such that -V((p) < -V(<p+), ^ wm not nave enough

energy (the damping force does not affect this argument) to climb the hill at <p+: it will

undershoot and never rich <p+- On the contrary, if the particle is released to the left of to,

and sufficiently close to <t>- we can arrange for it to stay arbitrarily close to to- f°r arbitrarily

large p: in that case the damping force (~ -) can be neglected, and the particle overshoots

and passes through (p+ at some finite time. By continuity there must be an intermediate
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initial position for which it just comes to rest at <p+- This initial position is the bounce at

p 0,<PB(0).

In short, the semiclassical description of the decay of the false vacuum in field theory
is similar to that in particle mechanics. The classical field makes a quantum jump (say at

t 0) to the state defined by <p(t 0, x), where <p is the bounce, which satisfies eqs. (5.43),

(5.44) and (5.45). In other words, <p(t — 0,5) is the initial position of a function <f>(p) which

satisfies the equation of motion (5.43) and reaches the top of the hill in infinite time, at rest.

Afterwards it evolves according to the classical field equation,

-~(P + V2cP V'(to (5.46)

Because the Minkowskian field equation (5.46) is simply the analytic continuation of the

euclidean field equation (5.37), the solution to the equation (5.46) is just the analytic
continuation of the bounce

tot, x) 4>(p Vx 2 - t2) (5.47)

Therefore, 0(A) invariance of the bounce becomes 0(3,1) invariance of the classical solution.

In other words, the growth of the bubble after its materialization looks the same to any
Lorentz observer.

It is possible to obtain an explicit approximation for the bounce in the limit of small c,

with
e V(to) - V(to) (5-48)

We can write [31]

V(to V0(to + O(e) (5.49)

where Vó is a function chosen such that

V0(to) V0(to) (5.50)

dVo
0 (5.51)

The field <p(p) obeys the approximate equation,

,„ dV0
(5.52)

where we have neglected the <j6' term in (5.43) 9. Integration of (5.52) gives

0 (5.53)\^-Vo
9If £ -C 1 the initial bounce 4>b(0) is very close to <^_ for large p. Then the viscosity damping force can

be very soon neglected.
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whose value is determined by the condition 0(oo) <p+, 4>'(oo) 0

l-to - VQ -V0(to)

Choosing as integration constant R such that

toR) ^(to + to)

we can integrate (5.54) and obtain

r<t>

'w++*-) ^2(V0 - V0(to))
p- R

(5.54)

(5.55)

(5.56)

If R is large, the bounce looks like a ball of true vacuum, <p <j6_, embedded in a sea of
false vacuum (p (p+ with a wall separating them, as in fig. 16. The thickness of the wall is

to

Figure 16: Picture of the bounce solution in the thin wall approximation

small compared to the radius R of the ball. In the thin wall approximation it is justified to

neglect <p': it is zero outside the wall and negligible in the wall because R is large.

We determine the size of the critical bubble Rc by computing B and demanding it to
be stationary under changes of R. Using (5.40)

ßout sE(to) - sE(to) o

and

ßin SE(to) - SE(to)

2n2 J* p3dp [V(to) - V(to)] -YR
and within the wall, in the thin wall approximation,

ri
Bwaii 2-n2 J p3dp

2n2R3S1
[2 + V0(to - V0(to)

(5.57)

(5.58)

(5.59)
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where, using (5.54), Si is given by

S1 2Jdp[V0(to-V0(to)

or, using (from eq. (5.54))

(5.60)

dp ¦

d<p

one obtains

^/2(Vo - Vo(to))

S1 f+ dto^2(V0(to - V0(to))

The coefficient B is thus given by

B —zf&e + 2rr2R3S1

which is stationary at

fic
3Si

(5.61)

(5.62)

(5.63)

which is the radius of the critical bubble 10. It can be easily checked that this extremum

is not a minimum of the action, but a maximum. This corresponds to the fact that critical

bubbles are unstable, either they expand or they contract. Using now (5.63) in (5.62), the

coefficient B for the critical bubble is given by,

277r2^
Bc

2e3
(5.64)

As a simple application we will compute the previous equations for the potential

Vo
X '-*

The bounce solution is given by

top) —fr tanh Kp - R)

the euclidean action in the wall by

the radius of the critical bubble by

Si
3A

R,=
Xe

(5.65)

(5.66)

(5.67)

(5.68)

°Notice that, consistently with our approximation, r is large when e is small.
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and the coefficient B of the critical bubble by

Finally, the coefficient A in (5.17) can be computed following a scheme developed by

Callan and Coleman [32]. The calculation is in general quite complicated and yields,

SE(toY \ det'[-0E + V"(toi1~1/2
2-ïï det[-aE + V"(to)]

(5.70)

where prime indicates that zero eigenvalues of the operator are to be omitted when computing
the determinant. In fact the four zero modes associated with the translational invariance of

euclidean space give rise to the factor (SE(ip)/2iT)2 in (5.70).

5.2.2 Thermal tunnelling

The tunnelling rate at finite temperature is computed by following the same procedure as

above, but using the rules of field theory at finite temperature [36]. In the previous section

we defined the critical temperature Tc as the temperature at which the two minima of the

potential V(<p, T) have the same depth (5.12). However, tunnelling with formation of bubbles

of the field <p corresponding to the second minimum starts somewhat later, and goes

sufficiently fast to fill the universe with bubbles of the new phase only at some lower

temperature Tt when the corresponding euclidean action SB S3/T suppressing the tunnelling
becomes 0(130-140) [37, 76, 12], as we will see in the next section.

We will use as prototype the potential of eq. (5.6) which can trigger, as we showed in

this section, a first order phase transition. In this case the false minimum is <p+ 0, and

the value of the potential at the origin is zero, V(0, T) 0. The tunnelling probability per

unit time per unit volume is given by [36]

- ~ A(T)e~s^T (5.71)

which is the direct translation of (5.17) and (5.40). In (5.71) the prefactor A(T) is roughly
of Ö(T4) while 53 is the three-dimensional euclidean action defined as (see (5.36))

S3 Jd3x^(v<p)2 + V(cP,T) (5.72)

where V(<p, T) is the finite temperature effective potential defined in the previous section

(see eq. (5.6)).
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At very high temperature the bounce solution has 0(3) symmetry [36] and the euclidean

action is then simplified to (see (5.42)),

4?r /
Jo

r dr 5 m +V(tor),T)

where r2 x 2, and the euclidean equation of motion (5.37) yields (see (5.43)),

with the boundary conditions (see (5.44-5.45))

lim è(r) 0
r—»oo v '

d4
dr

0

(5.73)

(5.74)

(5.75)

(5.76)

From here on we will follow the discussion in ref. [12]. Let us take <p+ — 0 outside a

bubble. Then (5.73), which is also the surplus free energy of a true vacuum bubble, can be

written as

4tt /
Jo

2dr iff I +v'<*^> (5.77)

where R is the bubble radius. There are two contributions to (5.77): a surface term Fs,

coming from the derivative term in (5.77), and a volume term Fv, coming from the second

term in (5.77). They scale like,

32|'MV,Di ^R3(V)
(5.78)

and (V) is the average of the potential

S3~2nR2^)6R +

where SR is the thickness of the bubble wall, i

inside the bubble.

For temperatures just below Tc, the height of the barrier V(<pM,T) is large compared to
the depth of the potential at the minimum, — V((pm, T). In that case, the solution of minimal

action corresponds to minimizing the contribution to Fv coming from the region <p — 4>m-

This amounts to a very small bubble wall SR/R <C 1 and so a very quick change of the field

from <p 0 outside the bubble to <p (pm inside the bubble. Therefore, the first formed

bubbles after Tc are thin wall bubbles.

Subsequently, when the temperature drops towards T0 the height of the barrier V(4>m, T)
becomes small as compared with the depth of the potential at the minimum — V((pm,T). In

that case the contribution to Fy from the region <p — 4>m is negligible, and the minimal action
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corresponds to minimizing the surface term Fs- This amounts to a configuration where SR is

as large as possible, i.e. SR/R 0(1): thick wall bubbles. So whether the phase transition

proceeds through thin or thick wall bubbles depends on how large the bubble nucleation rate

(5.71) is, or how small S3 is, before thick bubbles are energetically favoured.

For the case of thick bubbles, 6R~ R and the free energy of the bubble can be written

as,

S3 ~ 2ttä(^)2 + 4irB?jy} (5.79)

The critical radius of the bubble, obtained as the maximum of the action (5.79), is given by

Rc ~ ;
^ (5.80)

fW)
and the action at the critical radius (5.80)

b3 ~

In particular, for the potential (5.6) one can find [12]

(5.81)

33 ~ WF2 (1 -e)3/2 (5-82)

where

e(T) ^f^- (5.83)
-* c * o

For the case of thin bubbles one can adapt Coleman's procedure, as explained in the

previous subsection, and obtain analytic formulae in the limit of e(T) <C 1, where e is the

temperature ratio (5.83). In this limit we can neglect the term 2^ in (5.74), as we did in

the zero temperature case (see eq. (5.52)), and integration of (5.74) yields,

J J2V(<P,T) (5.84)

where we have made use of boundary conditions (5.75) and (5.76). Using now (5.73) and

(5.84) we can write the euclidean action as,

MR+6R) i (R
S3 ~ AtvR2 / J2V(<P, T)d<P + An dr r2V(<pm, T) (5.85)

J<t>(R-6R) v ./0

Application to the potential (5.6), a straightforward calculation gives [12]

^13 02 IR^rt^ (JPT^nZ^(ETfR2 lfere(r) (ET)4R3
i,3(H)-V23 A(T)5/2 3 A(T)3

(5.86)
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The critical radius is obtained as usual maximizing the action (5.86). It yields,

j/2Äm
c

3ETe(T)
while the action at the critical radius is given by

/64tt\ ET
53

V 81 ; (2A(T))3/2e(T)2

(5.87)

(5.88)

After using the thin wall approximation it is convenient to check its validity in all cases.

For the potential (5.6) an analytic formula has been obtained in ref. [30] without assuming

the thin wall approximation. It is given by,

5a

T
13.72

E2 Dil TI
rp2

3/2

/ X(T)D
E2

1-T1
fi (5.89)

where the function f(x) is equal to 1 at X 0 and blows up when x approaches 1. It is

defined by

f(x) 1 + 1 +
2.4

1
+

0.26

(1-xf
(5.90)

A comparison of (5.88) with (5.89) will in general determine the validity of the thin wall

approximation for theories with a potential which can be approximated by eq. (5.6). On the

other hand the connection between zero temperature and finite temperature tunnelling is

manifest. In particular at temperatures much less than the inverse radius the 0(A) solution

has the least action. This can happen for theories with a supercooled symmetric phase: for

instance in the presence of a barrier that does not disappear when the temperature drops to

zero. At temperatures much larger than the inverse radius, the 0(3) solution has the least

action.

5.3 Development of the phase transition

In the previous subsection we have established the free energy and the critical radius of a

bubble large enough to grow after formation. The subsequent progress of the phase transition

depends on the ratio of the rate of production of bubbles of true vacuum, as given by (5.17)

and (5.71), over the expansion rate of the universe. For example if the former remains always

smaller than the latter, then the state will be trapped in the supercooled false vacuum u.
11 In practice this happens whenever the life time of false vacuum decay is greater than the present age

of the universe. Notice that for this to happen it is necessary that the barrier separating the false and true
vacua does not disappear at zero temperature. Of course, as we have discussed in the previous subsections,
this feature is not shared by the potentials described by (5.6).
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Otherwise the phase transition will start at some temperature Tt by bubble nucleation.
However this is not sufficient to claim that the phase transition really proceeds by bubble

nucleation. For that it is necessary that bubbles percolate before the barrier disappear at

the temperature T0. In other words it is necessary that all space will be filled by bubbles

before the barrier disappear. These issues will be briefly discussed in this subsection.

5.3.1 The beginning of the phase transition: bubble nucleation

The probability of bubble formation per unit time per unit volume is given by (5.71)

- ojT4e~B^ (5.91)
v

where B(T) S3(T)/T and the parameter w will be taken of 0(1) 12

Since the progress of the phase transition should depend on the expansion rate of the

universe, we have to describe the universe at temperatures close to the electroweak phase

transition. A homogeneous and isotropic (flat) universe is described by a Robertson-Walker

metric which, in comoving coordinates, is given by,

ds2 dt2 - a(t)2 (dr2 + r2dU?) (5.92)

where a(t) is the scale factor of the universe. The universe expansion is governed by the

equation
8n

p (5.93)
3M2„

where Mpt is the Planck mass,

Mpi G~Ny2 1.22 x 1019 GeV (5.94)

and p is the energy density. For temperatures T ~ 102 GeV the universe is radiation

dominated, and its energy density is given by,

p ~g(T)T4 (5.95)

where

g(T) gB(T) + -aF(T) (5.96)

12The behaviour of (5.91) is dominated by the exponential and so the precise value of u) does not affect

much the results of this section.
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and gB(T) (gF(T)) is the effective number of bosonic (fermionic) degrees of freedom at the

temperature T. For the standard model we have

g^M 2(polarizations) x 12(gauge bosons) + 2(complex) x 2(higgs bosons) 28 (5.97)

gfM 3(generations) x 2(helicities) [3(leptons) + 3(colors) x 4(quarks)] 90 (5.98)

and so

gSM 106.75 (5.99)

which can be considered as temperature independent.

The equation of motion (5.93) can be solved, and assuming an adiabatic expansion of

the universe, a(Ti)Ti a(T2)T2, one obtains the following relationship,

* C^ (5.100)

where

C
J_ /^~3xl0-2

Using (5.100) the horizon length is given by

dH(t) 2C^ (5.101)

and the horizon volume

VH(t) 8(3^ (5.102)

The onset of nucleation happens at a temperature Tt such that the probability for a

single bubble to be nucleated within one horizon volume is ~ 1. Using (5.100),

(5.102) and (5.91), the probability for bubble nucleation in the temperature interval dT is

given by

V-JmitU-Bn (5.103)
dT \ T 1 T y '

where, using (5.88) and (5.83), the exponent B can be written 13 as

647T E (Tc-T„^2
~8TB ^WF2\±^i (5-104)

Therefore, from (5.104) we can easily see that when T approaches Tc from below, then

B(T) —? oo, which reflects the fact that no phase transition can take place for T > Tc.

3We will assume here the thin wall approximation is valid.
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Below Tc, B(T) decreases as T decreases. Let us define Tt as the temperature at which the

probability defined in (5.103) is P(Tt) ~ 1 and we will assume that Tt is reached before the

barrier disappears, Tt > T„. Then for T < Tt we can effectively write BeS(T) —> oo, and so

the corresponding probability goes to zero. So the euclidean effective action Beg(T) has a

minimum at Tt 14 and we can integrate (5.103) using the steepest descent method around

the point B'(Tt) 0. This gives,

We want now to evaluate (5.105) and impose the condition P ~ 1. To do that we can

approximate Tc — Tt ~ Tc — T0, since they are expected to be of the same order of magnitude,
because the change in temperatures from Tc to T0 is a very small one. Then one can use the

relation between Tc and T0 as given by (5.11) to write,

Tc - Tt E2

Tc XD

and finally we can write that P ~ 1 implies,

i n2 Z7»2 i r\r\ (~*p\r
ß(Tt)~137 + log^+41og^p- (5.106)

where we have normalized Tc ~ 100 GeV and E2/(XD) ~ 10~2 which are typical values

which will be obtained in the standard model of electroweak interactions, as we will see later

5.3.2 The end of the phase transition: bubble percolation

In order to guarantee that the phase transition really proceeds by bubble nucleation it is

necessary, but not sufficient, that at least one bubble of the true vacuum be formed per
horizon volume before the barrier of the potential disappear at the temperature T„. The

sufficient condition is that at some temperature T* greater than T0 all the space is filled with

bubbles, which then percolate. The fraction of space in the old phase in a first order phase

transition has been evaluated by Guth and E. Weinberg as [39]

-h{t)Poid(0 e-"W (5.107)

14Notice that the physical origin of this minimum is different to the minimum obtained in ref. [39] which

is due to the decrease of thermal effects at temperatures ~ Tc/4. At the electroweak phase transition the

range in temperature from Tc to T0 is a tiny interval.
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where

h(t)= fdti^àa3(ti)V(tut) (5.108)
Jtc v

and V(ti,t) being the volume at time t of a bubble nucleated at time t\.

Suppose now that the bubble is propagating at the speed of light 15. Then its radius R

satisfies the relation dt a(t)dR, from (5.92) and, therefore, neglecting the bubble initial
size, the bubble radius at time t of a bubble nucleated at time ti is

R(ti,t)=f^- (5.109)
Jti a(t2)

Using now (5.100) and the adiabaticity condition we can cast (5.109) as

and the volume at the temperature T of a bubble nucleated at temperature Ti,

VIT T\
327T C3M3e (1 1\3

V[Tl'T) —a^firF?yT-Ti) (5'm)

Finally the function h(T) in (5.108) can be written, using (5.91) and (5.111), as

When h —> 0, the fraction of space in the new phase

Pnew(i) 1 - Poid(t) 1 - e-h(t) (5.113)

is —> 0. On the other hand, when h —? co, the fraction of space in the new phase is —? 1.

Of course, in practice this is realized when h 0(1). Suppose that this happens at a

temperature T*, where T„ < T* < Tc. The euclidean action goes to infinity when T —» Tc

from below, and decreases for decreasing values of the temperature. So for temperatures T
in the range T* < T < Tc the function B(T) reaches its minimum value at T T*. For

temperatures T < T* all the space has already turned to the new phase and the effective

transition probability is zero since there is no available space. In this way, the effective

action B(T) has a minimum at T T*. Because B(T) is a very rapidly changing function

in the interval of temperatures between Tc and T„, while the change of temperatures itself

10In fact assuming a velocity ß i, 1 is not changing significantly the results in this section. Only extremely
non relativistic bubbles could change it.
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is insignificant, we can make the integral in (5.112) using the steepest descent method. We

obtain,

.,TM 4tt (2(MPty (Tc-T0\4 j n _B(r)h(r} ~ tnrj whr) yi^f (5-114)

where we have made use of the fact that Tc ~ T* ~ T0. The condition h(T*) ~ 1 in (5.114)

translates into the condition on the euclidean action B(T*),
1 r»2 T?2 i nn Ç1p\f

B(T) ~ 124 + 41og±^f- + 41og-^— + logw (5.115)

where we have normalized, as in (5.106), Tc and E2/XD to the typical values obtained in
the standard model of electroweak interactions. The phase transition completes between Tt

and T* very quickly.

6 Improved effective potential at finite temperature

The approach of ref. [16] to the finite temperature effective potential relied on the observation

that symmetry restoration implies that ordinary perturbation theory must
break down at high temperature. In fact, otherwise perturbation theory should hold

and, since the tree level potential is temperature independent, radiative corrections (which

are temperature dependent) should be unable to restore the symmetry. We will see that the

failure of perturbative expansion is intimately linked to the appearance of infrared

divergences for the zero Matsubara modes of bosonic degrees of freedom. This just means that

the usual perturbative expansion in powers of the coupling constant fails at temperatures

beyond the critical temperature. It has to be replaced by an improved perturbative expansion

where an infinite number of diagrams are resummed at each order in the new expansion.

We will review the actual situation in this section.

6.1 The breakdown of perturbative expansion

We will examine the simplest model of one self-interacting real scalar field, described by the

lagrangian (2.22) and (2.23). The one-loop effective potential was computed in section 4.1.

We will use now power counting arguments to investigate the high temperature behaviour

of higher loop diagrams contributing to the effective potential [16, 40, 41]. After rescaling

all loop momenta and energies by T, a loop amplitude with superficial divergence D takes

the form,

TDf(^) (6.1)
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If there are no infrared divergences when m/T —> 0, then the loop goes like TD. For instance

the diagram contributing to the self-energy of fig. 17 is quadratically divergent (D 2),

Figure 17: One-loop contribution to the self-energy for the scalar theory

and so behaves like

AT2 (6.2)

For D < 0, there are infrared divergences associated to the zero modes of bosonic propagators
in the imaginary time formalism [n 0 in (3.72)] and the only T dependence comes from the

T in front of the loop integral in (3.72). Then every logarithmically divergent or convergent

loop contributes a factor of T. For instance the diagram contributing to the self-energy in

fig. 18 contains two logarithmically divergent loops and so behaves like,

Figure 18: Two-loop contribution to the self-energy for the scalar theory

A2T2 A(AT2) (6.3)

It is clear that to a fixed order in the loop expansion the largest graphs are those with the

maximum number of quadratically divergent loops. These diagrams are obtained from the

diagram in fig. 17 by adding n quadratically divergent loops on top of it, as shown in fig.

19. They behave as,

A M2"-i-XM\M2) [6A)

where M is the mass scale of the theory, and has been introduced to rescale the powers of the

temperature 16. As was clear from eq. (6.4), adding a quadratically divergent bubble to a

16In fact, the mass M has a different meaning for the improved and the unimproved theories, as we shall

see. For the unimproved theory, M is the mass in the shifted lagrangian, M2 m2(<j>), while in the improved

theory, M is given by the Debye mass, see eq. (6.41).
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Figure 19: Daisy (n-f-l)-loop contribution to the self-energy for the scalar theory

propagator which is part of a logarithmically divergent or finite loop amounts to multiplying
the diagram by

a A-J (6.5)

This means that for the one-loop approximation to be valid it is required that

T2

M2

along with the usual requirement for the ordinary perturbation expansion

A-Cl

However at the critical temperature we have that Tc ~ M/\/X [see e.g. eqs. (5.1)-(5.3)].

Therefore at the critical temperature the one-loop approximation is not valid and

higher loop diagrams where multiple quadratically divergent bubbles are inserted cannot be

neglected.

What about the diagrams which are not considered in the improved expansion? The

two-loop diagram of fig. 18 is suppressed with respect to the diagram of fig. 17 by A. On the

other hand the multiple loop diagram obtained from that of fig. 18 by adding n quadratically

divergent loops on top of it, see fig. 20, behaves as

Ä
Figure 20: Non-daisy (n-f-2)-loop contribution to the self-energy for the scalar

theory

rp2n+2 rp2n-\-l rp
\n+2± _ yi+1 1 I - x

M2n M2

1+1 / rp
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and it is suppressed with respect to the multiple loop diagram of eq. (6.4) by XT/M 17.

Therefore the validity of the improved expansion is guaranteed provided that,

A < 1 (6.7)

6.2 Improved theory: diagrammatic approach

We have seen that [16, 28] the perturbative expansion fails at temperatures close to the

critical temperature, because of infrared (IR) divergences, and it was proposed to solve the

IR problem by the resummation of an infinite set of the most IR divergent diagrams: i.e.

those belonging to the daisy and superdaisy classes [15]. Improving the effective potential
in different theories by the inclusion of daisy and superdaisy diagrams has produced a lot
of activity in the field during the last years [40]-[54]. Since there has been some controversy

about the correct resummation procedure concerning the leading infrared divergent graphs

[44, 45, 48, 49, 51, 52, 53, 47], I will develop in this section the formalism [55] which was

followed in [41, 50] as well as will compare it with different approaches recently used by other

authors.

We will consider again, and for simplicity, the theory of a real scalar field «3>, described

by the lagrangian (2.22) and the tree level potential

K(ff0)(*) -^>2 + ^>4 (6-8)

with positive A and m2. At the tree level, the field-dependent mass of the scalar field (after

shifting $ —> $ + to is m2(to) 3X(p2 — m2, and the minimum of VQj corresponds to
v2 m2/A, so that m2(v) 2Xv2 2m2.

At finite temperature, the one-loop effective potential can be written diagrammatically
as18,

v^fxH© (6-9)

17Non-daisy contributions to the self-energy are suppressed, with respect to daisy contributions, by O(ß),
where ß is defined in (6.7). The corresponding contributions to the vacuum diagrams (i. e. effective potential)
are suppressed by 0(ß2) [41].

18There is an overall negative sign in front of all diagrams contributing to the effective potential and self-

energies that (for simplicity) will be dropped systematically from the figures, but will be taken into account

in the calculation.
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where n are the bosonic Matsubara frequencies and V,n, are the contributions to the one-

loop effective potential from the different frequencies. They can be written to lowest order

in m(<p)/T as (see eqs. (4.14) and (4.16))

v^ \0=-w,Tm3^ (6-10)

00 1 1

5>M-5 O =±T2m2(to + --- (6.11)

where big bubbles denote the contribution from zero modes and small bubbles the one from

all non-zero modes. The contribution from all modes will be denoted by a big dotted bubble,

i.e.

0=O + O (6-12)

For the zero modes (n 0) there is a severe infrared problem in the loop expansion for

values of <p such that m(<p) <C AT at p 0. At one-loop the potential (6.10) is non-analytic

at m(<p) 0, while the validity of the perturbative expansion breaks down at higher-loop

order, which contribute powers of a and 0 [16, 40]

ml((p) rn((p)

The usual way out is dressing the zero-modes with daisy and super-daisy diagrams [16]. This

can be done by solving the gap equations. For the theory defined by eq. (6.8), and neglecting

the terms represented by the ellipsis in (6.11), the gap equation can be diagrammatically

written as,

£L_ + \JL + -Q- (6.14)

where a double line represents a dressed zero-mode propagator. Using the approximation in

eq. (6.11) the self-energies can be written as

Q =-T2 + ••• (6.15)

-3XTm^ (6.16)
4tt

v '

0(X2to) (6.17)

0(X2to) (6.18)
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and the gap equation (6.14), to 0(A), as

M2 m2(to +^ - ^™ + 0(X2to) (6.19)
4 An

where M is the solution to (6.19). In the approximation of eq. (6.11) the small bubbles are

constant and proportional to T2 (6.15) or zero (6.17) (the ellipsis is neglected), and so they
do not have to be dressed. Going beyond this approximation, also small bubbles would need

to be dressed. We will comment on this possibility later on.

Now we will see how the daisy and superdaisy diagrams amount to a resummation in
the loop expansion of the effective potential which can therefore be written in terms of the

solution to the gap equation (6.19). In the order of approximation we are working only the

zero modes need to be dressed, and only VL' in eq. (6.10) is improved, while 2n^o Vm m

eq. (6.11) does not have any IR problem and can be considered as a good estimate. We will

prove the resummation to four-loop order though also functional methods [56] can be used

[48] as we will see.

The loop expansion of the effective potential will be written as

oo

Véff XI Kff + non ~~ (super)daisies (6.20)
e=o

where IQj indicates the contribution to the effective potential from £-loop daisy and super-

daisy diagrams. Non-(super)daisy diagrams contribute to the effective potential to O(02)

[40, 41], At least, to 0(0) it is consistent to keep only diagrams of daisy and superdaisy

classes. V^f was given in eq. (6.9), while V}iï' and V}H' can be written as

(6.21)

V}n=^{')+Î>T<+^^ (6-22)

where we are putting dots everywhere to remember that all modes (zero and non-zero modes)

are contributing in the loop propagators, and the numerical pre-factors in front of (6.21) and

(6.22) are the symmetry factors of the corresponding diagrams.

Using the approximation in (6.15), (6.17), we can rearrange the loop expansion in (6.9),

(6.21) and (6.22) as

V « - 12

16 16
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•eff 'daisy ' v superdaisy + A<" iO
O

(6.23)

where A^ [¦ • •] means the contribution to [¦ • •] from £-loop diagrams and the double line is

given by eq. (6.14). This decomposition is well defined for I > 2. Next we give the results

for two and three-loop diagrams.

Two-loop

V(2) _daisy e (6.24)

Three-loop

superdaisy

(2)
superdaisy

AW

0

^e

Vs 1 + — + - + -daisy 16 16 16

+ -

(6.25)

(6.26)

(6.27)

(6.28)

A(3) (6.29)

We can see from (6.21) and (6.24) that the symmetry factors for i 2 do not match

the combinatorics for daisy resummation. However including (6.26) the matching is

accomplished as can be seen from the coefficients in (6.21) and the last two terms in (6.24) and

(6.26)
1 1 1

4 8
1 1 1_

12
(6.30)
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On the other hand, we have seen from (6.28,6.29) that Kuperdaisy + a(3) °- Tlle reason

being that all the diagrams in (6.22) could be interpreted either as daisies or as superdaisies.

Therefore we have considered all of them as daisies, because their coefficients match the
correct combinatorics for resummation. This can be seen by comparison with the corresponding
coefficients in (6.27) and it is a general feature of daisy diagrams for t > 3. However, for

I > A there are diagrams that can never be considered as daisies. In that case the previous

cancellation does not hold, but still the equation (6.23) is satisfied. As an example we will
consider the theory at the origin (i.e. at <p 0) to four-loop order.

Four-loop

The contributions to (6.20) and (6.23) can be written as

Ve(ff4)(0)
1_

48 •)+32 (6.31)

vity(o) 1_

48
+

48 48

1

+ I8 (6.32)

VI (4)
superdaisy V^V -i ç. 16 16 16 16

(6.33)

A«>(0) -1
16 32 32

(6.34)

The first diagram in (6.31) can be (and it is) considered as a daisy diagram in (6.32). For

that reason the coefficients of the first three terms in (6.33) and (6.34) are equal and opposite

in sign. The second diagram in (6.31) can never be considered as a daisy diagram. So it
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contributes to the last three terms of (6.33) and (6.34) in such a way that their coefficients

match to those of the second term of (6.31). In particular

16 32 32
3

16

1
~

8 ~ 2
1

x —
32

2 3 1

(6.35)

16 32
~~

32

for the last three terms, respectively.

All-loop

Summarizing the above results, we can write the final equation:

VeS=l-0 +1(fViQ-ift (6-36)eff 2 w 2 %J> 8 Q 6 W* v ;

where the double line indicates the solution of the gap equation (6.14) and (6.19), in the

approximation of eqs. (6.15) and (6.17). Using the explicit solution to (6.19) we can write

(6.36) as

K« -^2 + -Atf + ^T2m2(to - -LtM3 + ¦¦-- ^-2T2M2 + 0(X21T4) (6.37)
2 4 24 127T 6An*

which agrees, as we will see later on, with the result of Amelino-Camelia and Pi [48], who

used functional methods [56] and computed (6.14) and (6.19) to zeroth order in 7

7=^ (6-38)

In the improved theory of zero-modes defined by (6.19) and (6.37), the expansion parameters

a and ß in (6.13) become 19

H
M

which is summed to all orders, and

a A— ~ 1 (6.39)

ß X~ ~ A2 (6.40)
M

19We will keep for notational simplicity the same names a and ß for the expansion parameters in the

improved (as in the unimproved) theory.



Quirós 535

which remains as the only expansion parameter, where M is the Debye mass

M2 m2(to + ^T2 (6.41)

By expanding the solution of eq. (6.19) to different orders in ß we can obtain the effective

potential (6.37) to the corresponding order of approximation. To illustrate the procedure we

will first obtain the solution to O(0°). In that case we have

M2 M2 (6.42)

and the effective potential is given by

VeS -^to + \to + ±T2m2(to - ±TM3 + ¦¦¦ (6.43)

This approximation has been worked out in [43]. The last two terms in (6.36) and (6.37) do

not contribute to this order20 since they start to O(0).

The solution to O(0) is equally easy to be worked out. From (6.19) one can write

M2=M2-^MT + 0(X2to) (6.44)
47T

where the first term is the leading order result, eq. (6.42), and the second term is 0(ß).
Replacing (6.44) in (6.37) and expanding again to ö(ß) we can obtain the corresponding

approximation to the effective potential, given by

KfF =-^<t>2 + \<f + ^T2m2(to - -±-TM3 + ¦¦¦ + %nrAT2A42 + 0(X2<p2T2) (6.45)

This solution was presented in [50]. We can easily check that the last term in (6.45) is an

0(0) correction to the fourth term. It comes partly from the expansion (6.44) and partly
from the last two terms in (6.36).

There is another, recent, proposal by Arnold and O. Espinosa [52] who have advocated

a hybrid method using a partial resummation of the leading contribution of n ^ 0 bubbles

followed by an ordinary loop expansion [54]. One can define a partially dressed propagator

as

h Q + -a—o_ -i- n n n -| (6.46)

where the tiny bubble propagator is defined as,

-O- \t2 (6.47)

°In the language of ref. [50] there is no combinatorial term to this order.
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and a partially resummed loop expansion as

VW« + i0+ig+l(^ + (6.48)

It is easy to check that using the approximation of eqs. (6.15)-(6.18), and ignoring overlapping

momenta, one recovers, to O(0), the same result as that of eq. (6.45).

Other authors [45, 47] have proposed computing tadpoles, instead of vacuum diagrams, to
exhibit some features of the improved theory, e.g. resummation properties and the absence

of a linear term in m(<p) in the final effective potential. Since the tadpole is nothing else

than the (^-derivative of the effective potential, there can be no difference between both

formalisms. In fact, by comparison between the contents of this section and those in [47] one

can easily see that the resummation properties of the tadpole diagrams are inherited from

the corresponding ones in vacuum diagrams. However, in our opinion, the tadpole formalism

has two practical drawbacks: i) The classification of tadpole diagrams is much more involved

than the classification of vacuum diagrams; ii) To obtain the effective potential the tadpole
has to be integrated, which can be a non-trivial operation since it depends on the solution

of the gap equation. However, at the end, both methods should yield the same result.

In our approximation of eqs. (6.11), (6.15) and (6.17) we have been neglecting all

logarithmic terms, which amounted to not dressing non-zero modes. Including them would

amount to write the previous equations as

where Q is the renormalization scale in the MS scheme and log(cg) 3.9076,

-Q-=0(X2to) (6.51)

In that case the gap equation should be written as

(6.52)

and other diagrams should be added to those in (6.24)-(6.34). In particular small bubbles

dressed by insertions of self-energies of the kind (6.18). But the latter are ö(X2<p2) and

depend on the external momentum. If we insist in keeping the logarithmic terms (which in

principle are expected to constitute small corrections to the leading contribution) we should
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give up resummation in the sense of the gap equation (6.52) since overlapping momenta

should be disentangled. A possibility is making a 7 expansion for the gap equation, and

defining an O(j0) gap equation as

=*== + W (6.53)

where the dotted double line means the solution of the truncated gap equation21, i.e.

*,2 2/^ XT2 3ATM 3AM2, Q2 lnri.MW(0) + —- —-—log^ + -.. (6.54)

However, we should pay attention to the fact that the last term in the full gap equation

(6.19) is O(a0j) and solving it, and giving the improved effective potential to some order in

0 implies that we should consider the same order in 7 by adding loop diagrams. In this way

repeating the whole above procedure we would find that to 0(0) one can write the effective

potential as

12
Kff =-((•))- - >%+ - 8*9+ O(02) (6.55)

where the equation (6.54) is solved to O(0). This solution coincides at d> 0 with that in

ref. [48] and for all values of <p with that in ref. [52]. One can check that the logarithmic
corrections which appear are both from the logarithms in (6.49), (6.50), (6.51), and from

the overlapping momenta whose integral is explicitly considered. To higher order in 0 more

terms should be added to (6.55) but care should be taken not to commit overcounting and

non-(super)daisy diagrams should be considered.

6.3 Improved theory: functional approach

In the previous subsection we have reviewed some of the existing resummations using

diagrammatic methods. Here we will see that similar results can be obtained using functional

methods. Also for simplicity we will restrict ourselves to the simplest theory described by

the potential (6.8). We have seen that the improved theory consists in replacing the

improved propagator in (part of) the one loop effective potential. So one needs a self-consistent

loop expansion of the effective potential in terms of the full propagator. This technique was

developed by Cornwall, Jackiw and Tomboulis [56] and applied to the present problem by

Amelino-Camelia and Pi [48].

xOf course the gap equation (6.53), and (6.54), is exact at the origin <j> 0, where 7 0.
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One considers a generalization of the effective action (3.16), Tfi((j>,Q), which depends

not only on the classical field <p, but also on the propagator Q(x,y). The physical solutions

satisfy
svß[<p,g]

6<p(x)

and
srPfoç]

0 (6.56)

,r( o => g0 g0(to (6.57)
oQ(x,y)

while the conventional effective action is related to the new one by

Yß[<p] Tß[cP,C0(to)] (6.58)

Eq. (6.57) determines the form of the propagator. It is known as the gap equation of the

theory.

For translationally invariant field configurations, the propagator is a function of x — y,
Q Q(x — y), and the effective potential is related to the full propagator as in (2.16)

Vf%g] - jd4xVßs(cP,g) (6.59)

The method of ref. [56] consists in generalizing the thermal partition function (3.14) by

introducing sources k(x,y) on top of the usual ones j(x)

Zß[j,k] (Tcexp{i (Jcd4xj(x)<i>(x) + ycd4xd4iMx)k(x,y)^(y)^ (6.60)

where C means here the contour used in the imaginary time formalism described in section

3.4.

The generating functional for connected Green functions is defined similarly to (3.15) as

Z%h]=exp{iWß[j,k]} (6.61)

The effective action r^[(/f>, g] is obtained by a double Legendre transformation of VP^[j, k]

similarly to (3.16)

I*[* g] We{J, fc] - jcd*x™^j(x) - Id**d4y5-^k(x,y) (6.62)

where the currents j(x) and k(x,y) are eliminated in favor of the classical fields (p(x) and

propagator g(x,y), as in (3.17),

SW%k]
6j(x)

8Wß[j,k] 1

Sk(x,y) 2

tox) (6.63)

[Q(x,y) + tox)<P(y)\
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Finally eq. (3.18) generalizes to

6vß[<p,g]
jV- -j(x) - j d4yk(x,y)(p(y)

k(x,y) (6.64)

6<p(x)

6Tß[4>,g]
_ _i

6Q(x,y) 2

The stationary requirements (6.56) and (6.57) are obtained from (6.64) by switching the

sources j(x) and k(x,y) off. It is known that Tß[<p, g] is the generating functional in <p for

2PI Green functions expressed in terms of the propagator g.

Using the techniques of section 2.3, Cornwall, Jackiw and Tomboulis [56] find for the

effective potential (6.59) the expression,

,Q) Vo(to + l-Tr\ogg-1 + l-Tr [v~lg - l] + Vß}(<P,g) (6.65)

where V(d>; x—y) is the tree level propagator in the shifted theory, as in section 2.3. V£j<p, Ç)

is given by all two-particle irreducible vacuum-to-vacuum graphs with two or more loops,

in the shifted theory, with vertices given by the interaction part of the shifted Lagrangian

($—>$ + </>) and propagators set equal to g(x,y). The gap equation (6.57) can be written

as,

g-\p) V-\p)+2-^. (6.66)

where g(p) and V(p) are the Fourier transforms of Ç(x — y) and V(x — y), respectively.

The vertices of the shifted theory are given by the interaction Lagrangian

£int X<p& + ^4 (6.67)
4

and the two-loop diagrams contributing to VfL are depicted in fig. 21 where each line

nÖ+©
Figure 21: One and two-loop diagrams contributing to the effective potential of
(2.45)

represents the propagator G(x,y), and there are two kind of vertices, as provided by (6.67).

The figure eight diagram in (21) is 0(A), while the sunset diagram is C(A2).
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A first (naive) approximation is provided by neglecting all diagrams in fig. 21, which

amounts to an C(A°) approximation. The gap equation gives

g(x,y)=V(x,y) (6.68)

In that case the fourth term on the right hand side of eq. (6.65) is neglected, the third term
is identically zero and the second term reproduces the one-loop correction to the tree level

potential. In summary, this approximation leads to the one loop effective potential.

To be consistent with the approximation worked out in section 6.2 we will truncate V,2\

to 0(A), i.e. we will consider only the figure eight diagram and disregard the sunset diagram
22. In this approximation, and after making the Wick rotation (2.25), the effective potential

(6.65) can be written as

vßs(<p,g) v0(to + \T^Jk\ogg-\k) + \T^jk[v-\<p-,k)g(k)-i}

+ ?AT£ /WT£ / S(p) (6-69)
4 n Jk m JP

and the gap equation (6.66) as

g-1(p)=V-1(p) + 3XTYl[g(k) (6.70)
n Jk

In fact the gap equation (6.70) is represented diagrammatically by eq. (6.14) when the last

diagram is disregarded, as we are doing in our approximation.

We will use for Fourier transformed propagators the Ansatz

gM JTW2 (6-71)

V(<P;p)
l

p2 + 3X<p2 — m?

where the effective mass M is an unknown function of the momentum to be determined from

the gap equations.

Replacing the gap equation (6.70) into the effective potential (6.69) we obtain

Veff'(<P,M) VCl(to+l-TY.l\og(k2 + M2)~-XTY,fg(k)TYJÌG(p) (6-72)
Z r, Jk 4 _ Jk ,„ Jp

22Methods leading to consider diagrams with overlapping momenta, in particular the sunset diagram of

fig. 21 can be found in [49].
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Notice that eq. (6.72) agrees to 0(A) with the diagrammatic equation (6.36) obtained in
the section 6.2. Also the gap equation (6.70) can be written as

M2 3X<P2 -m2 + 3XTj2 f G(p) (6-73)
n Jp

The last term in (6.72) and (6.73) can be computed using the rules of the imaginary time

formalism described in section 3.4. A high temperature expansion (in powers of M/T) of it
yields

n JP
1__L^ + Ö(^
12 A-kT yT2' (6.74)

Using now (6.74) in (6.72) we can write the field dependent part of the effective potential

v&*.m - wi^-fto^
3A

4

MT3 M2T2 „,„4l M2.
+ ^r^r + 0(M4 log—)

247T 16tt2 rp2

On the other hand, we can replace eq. (6.74) into the gap equation (6.73) as

M2 M2 - —TM
An

(6.75)

(6.76)

where the Debye mass is defined in eq. (6.41). By iteratively solving eq. (6.76) we obtain,

M3 M3 - —M*T (6.77)
8?r

which, once replaced into eq. (6.75), gives for the effective potential the same result as that

obtained using diagrammatic methods in eq. (6.45).

6.4 The one-loop improved Standard Model

The one-loop effective potential for the Standard Model was described in section 2.5 (at

zero temperature) and in section 4.4 (at finite temperature). Higher loop corrections have

also an infrared problem for the zero Matsubara modes. In fact, while the masses of the

gauge bosons, eq. (2.81), vanish at <p 0, the masses of the Higgs and Goldstone bosons,

eq. (2.80), vanish at <p2 m2/3X and <p2 m2/X, respectively. Higher loop corrections

contribute powers of

«,., P~2mf
(6.78)

0i,P P-
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which generalize the parameters defined for the scalar theory, eq. (6.13). In eq. (6.78),

i h,x,W, Z labels the different bosonic fields in the theory, and p g2, g'2, X the different

couplings. The first approximation consists in keeping resummation to all orders in a,iP

and O(0°p). To this order only diagrams without overlapping momenta or the quadratically

divergent part (Ö(T2)) of diagrams with overlapping momenta contribute to the polarizations

in the corresponding gap equations.

Plasma effects in the leading approximation can be accounted by the one-loop effective

potential improved by the daisy diagrams [16, 15, 42]. Imposing renormalization conditions

preserving the tree level values of v2 m2/X, as in section 2.5.5, and working in the 't
Hooft-Landau gauge, the (/»-dependent part of the effective potential can be written in the

high-temperature expansion as

VeS(<p,T) VXTee + AVB + AVF (6.79)

where

AV

AVB £ 9lAVt
i=h,x,WL,Zr.,-/IJ,WT,ZT,~rT

m2(toT2 M3(toT m4(to
24 12tt 64tt2

log
m2(v)
cBT2 2m2(to X ëm2(v)

(6.80)

(6.81)

where the last term comes from the infinite running of the Higgs mass from p2 0 to

p2 m\ and cancels the logarithmic infinity from the massless Goldstone bosons at the zero

temperature minimum, and

AV .rr^toT^ mi(to
AVF gtS — 1 log

m2t(v) 2m2(v)
cFT2 m2(to

(6.82)
48 647T2

The number of degrees of freedom gt in (6.80,6.82) are given by

12

9zT g-TT 2

while the coefficients cB andcF in (6.81,6.82) are defined by: log Cb 3.9076, logcp 1.1350.

\swL

9h 1, gx 3, gt

9zL g~rL i, 2gwT
(6.83)

The masses m2(cp) in (6.81), (6.82) are defined in (2.80), (2.81) and (2.82), and the Debye

masses A42 in (6.81) for i h,x, Wr,, W?, Zr, Jt are

M2 m2(to + M<!>,T)

where the self-energies IU(4>, T) are given by

'3g2 + g'2
nh(<p,T)

hi
16

+ - + '¦$ ] T2
2 4

(6.84)

(6.85)
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W)^fc^+Mv16

TlWL(cP,T) jg2T2

nWT(<p,T) nZr(0,r) n7T(0,T) o

The Debye masses A42 for i Zl,1l are given by

^ " ^R(ow
o

o A42,
,{i)s, / m2z(to + HzLzL UzLyL \ r-i,q{

I^ilil /
i(ih

with the rotation R(fi\y)

and the self-energies

W) coso),

sin0£

'i1' -sino);
,(1)

cose);fi)

I1Zlzl(<P,T) (^2cos2ew + Ì—|—(l-2sin2e^cos2ew)
\3 ocos^--

o

+——-(1 - 2sin20w + Isin4^) T2
cos^ 9w 3

nL7i711 *,T) ^e2T

(6.86)

(6.87)

(6.88)

(6.89)

(6.90)

(6.91)

(6.92)

TT CA T^ 1J- COS-övv-sin2^ 2n71zt(0,T) —es T (6.93)
O COS ü\y

The angle 0L in (6.89) is the one-loop temperature dependent correction to the electroweak

angle. In fact the angle 6L(<p,T) defined by

eL(<p,T) ew + e(l) (6.94)

maps (W3,B) into (Z,7).

Using (6.91-6.93) one obtains the eigenvalues and rotation angle in (8.6) as:

A4<2 =1
Zl 2 %¦2:0) +

6 cos2 9w
¦T2 + A(<t>,T)

_
1

7L - 2

H <72

sm

"4 (</>) +"7" TS-* -6 cos^ t>w

2n7izt

A(0,T)

2e^(^T) --

(6.95)

(6.96)

(6.97)



544 Quirós

m? (é)
sin 29L(<P, T) sin 29w-f^- (6.98)

A(<p,T)

with
a2ça r\ 4/,x Uff cos 29wA (0,T) ml(to + m2z(to +

n g
2

12 COS2 9\y
(6.99)

3 cos2 öiv

It is clear from (6.98,6.99) that at zero temperature the electroweak angle coincides with the

usual one: A((p,0) m2z((p), 0L(cp,0) 9W.

7 Baryogenesis at phase transitions

7.1 Introduction

There are two essential problems to be understood related with the baryon number of the

universe:

i) There is no evidence of antimatter in the universe. In fact, there is no antimatter

in the solar system, and only p in cosmic rays. However antiprotons can be produced as

secondaries in collisions (pp —> 3p + p) at a rate similar to the observed one. Numerically,

^~3x IO"4
np

and

^ ~ IO"5
"«He

We can conclude that nB ^> n-g, so n&B nB — n-= ~ nB.

ii) The second problem is to understand the origin of

n — ~ (0.3 - 1.0) x 10"9 (7.1)
n7

today. This parameter is essential for primordial nucleosynthesis [57].

n may not have changed since nucleosynthesis. At these energy scales (~ 1 MeV) baryon

number is conserved if there are no processes which would have produced entropy to change

the photon number. We can easily estimate n.

The baryon number density is,

Pb VbPc ,7 0snB (7.2)
mB mB
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where pB is the baryonic energy density and ÜB pB/pc- Using the critical density,

pc 3H20 1.88 x 10"29/iV cm'3 (7.3)

where H„ is the Hubble parameter today and

h //"„/IOO km Mpc^sec'1

is

one obtains,

<h<l,

nB 1.1 x 10_&hl9.Bcm-5(,2r>_,™-3

On the other hand, the energy density of photons is given by

n7 / dny

where
g~i 1

y
dn~, zrh; „ ,™ 9 dq

(7.4)

(7.5)

(7-6)7 27T2eJVT-r
with g7 2 (the number of degrees of freedom of photons), and E-, q. Using the integral

[7]

where

we obtain

fJo epx _ I
dx p-"T(v)C(v)

«") E ^
2C(3) 3

t7 — 1
IT«

(7-7)

(7.8)

(7-9)

where [7] Ç,(3) 1.20. Using now the equivalence,

(2.735 K)3 1.71 x 103crrT3

we can write

rc7 415
2.735

cm (7.10)

where T0 is the present temperature of the background radiation.

Putting (7.4) and (7.10) together we obtain

n 2.65 x lQ-8ClBh2
2.735

(7.11)
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However, the range of n consistent with D and 3He primordial abundances is [57]

4(3) < 101O77 < 7(10) (7.12)

where the most conservatives bounds are given in parenthesis. From (7.11) we obtain ftB as

a function of n

Ü.B 3.77 x 107nh2
L2.735J

Now, using the range (7.12) for n and for h we obtain,

0.015(0.011) < nB/i2 < 0.026(0.038)

0.015(0.011) < fiB < 0.16(0.21)

where, as in (7.12) the most conservatives bounds are in parenthesis

(7.13)

(7.14)

Sometimes it is useful to describe baryon asymmetry in terms of nB/s instead of nB/ny.
Let us give the relationship between s and n7. From (7.9),

27T2 n4
s ^{T)T3 ^a-CTK

ffeff <7eff7 +

In this way,

4 7
genu 2 + — x - x 3 3.91

—3.91 n7 7.04 n7

and the range (7.12) translates into

5.7(4.3) < —10u < 9.9(14)

(7.15)

(7.16)

(7.17)

(7.18)

Can we explain the value of n, eq. (7.12), in the standard cosmological model? Suppose

that initially n&B 0 exactly, so n 0, and we can compute the final number density

of nucléons left over after annihilations have frozen out. For T < 1 GeV the equilibrium
abundance of nucléons and antinucleons is [57]

3/2nB _
n-= mB

e r (7.19)

where mB ~ 1 GeV.

23If the idea of inflation is correct, then f! 1 and other form of matter has to exist in large quantities
to close the universe. This matter (neutrinos, photinos, sneutrinos, axions, MACHOS,...) is called dark
¦matter.
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When the universe cooled, the number of nucléons and antinucleons decreased as long as

the annihilation rate r^ was larger than H. At

Tf ~ 20 MeV

Tann ~ H and annihilations freeze out, nucléons and antinucleons being so rare that they

can no longer annihilate. Therefore, from (7.19) we obtain,

VS „ VI. „ 10-i8 (7 20)
/ L/y fury

which is much smaller than the value (7.12) required for nucleosynthesis, as well as one

obtains nB ~ n-g.

In conclusion, in the standard cosmological model there is no explanation for the smallness

of the ratio (7.12) if we start from uab 0. An initial asymmetry has to be imposed by hand

as an initial condition (which violates any naturalness principle) or dynamically generated

at phase transitions, which is the way we will explore all along this section.

7.2 Conditions for baryogenesis

As we have seen in the previous subsection the universe was initially baryon symmetric

(nB ~ rig) although the matter-antimatter asymmetry appears to be large today (n&B ~
nB ~S> n-g). In the standard cosmological model there is no explanation for the value of n

consistent with nucleosynthesis, eq. (7.12), and it has to be imposed by hand as an initial
condition. However, it was suggested by Sakharov long ago [58] that a tiny n&B might have

been produced in the early universe leading, after pp annihilations, to (7.12). The three

ingredients necessary for baryogenesis are:

7.2.1 B-nonconserving interactions

This condition is obvious since we want to start with a baryon symmetric universe (AB 0)

and evolve it to a universe where AB ^ 0. B-nonconserving interactions might mediate

proton decay; in that case the phenomenological constraints are provided by the proton
lifetime measurements [59] tp Z 1032yr.
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7.2.2 C and CP violation

The action of C (charge conjugation) and CP (combined action of charge conjugation and

parity) interchange particles with antiparticles, changing therefore the sign of B. For instance

if we describe spin-| fermions by two-component fields of definite chirality (left-handed fields

ipi and right-handed fields iPr) the action of C and CP over them is given by

(7.21)p ' 4>L IpR, IpR » IpL

c ¦ i>L —? V'L °2lp*R, i>R --*g- -o2ìpl

CP ¦ Ì>L —? Ì>R, 1>R —* Ipf

If the universe is initially matter-antimatter symmetric, and without a preferred direction

of time as in the standard cosmological model, it is represented by a C and CP invariant

state, \to), with B 0. If C and CP were conserved, i.e.

[C, H] [CP, H] Q (7.22)

H being the hamiltonian, then the state of the universe at a later time t,

\tot)) eŒt\to) (7.23)

would be C and CP invariant and, therefore, baryon number conserving, Aß 0. The only

way to generate a net AS 7^ 0 is to have C and CP violating interactions.

7.2.3 Departure from thermal equilibrium

If all particles in the universe remained in thermal equilibrium, then no direction for time

would be defined and CPT invariance would prevent the appearance of any baryon excess,

rendering CP violating interactions irrelevant [60].

A particle species is in thermal equilibrium if all its reaction rates, T, are much faster

than the expansion rate of the universe, H. On the other hand a departure from thermal

equilibrium is expected whenever a rate crucial for maintaining it is less than the expansion

rate (T < H). Deviation from thermal equilibrium cannot occur in a homogeneous isotropic

universe containing only massless species: massive species are needed in general for such

deviations to occur.

The number density of a particle species p in thermal equilibrium, for T ^> mp, is given

by,

np~geff(mpT)3/2e-,J£+!? (7.24)
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where pp is the chemical potential. In general, if the species A, B, C, D are in chemical

equilibrium through the reaction

A + B*—>C + D,

we have

Pa + Pb Pc + Pd-

In this way the number density in thermal equilibrium of the antiparticle p (mp — mp) is

np^gett(mpT)3,2e'^-T (7.25)

where we have used that pp —pp by the presence of processes as

pp<—-+77

and /x7 0. lî p carries a baryon number B, then from (7.24) and (7.25),

nAB B(np-np) 2BgeS(mpT)3/2e-:?sinh Ç (7.26)

If p, p undergo the B-violating reactions

pp<—>pp

then pp 0 and n&B 0. Only a departure from chemical equilibrium, i.e. from distributions

(7.24) and (7.25) can allow for a finite baryon excess, n&B ^ 0.

7.3 The standard out-of-equilibrium decay scenario

The so-called standard scenario [61] is the out-of-equilibrium decay mechanism, which

incorporates the three above requirements and that will be described in what follows.

Let Xi be a superheavy boson (vector or scalar) coupled to light fermions with strength
a1/2 (where a1?2 is either a gauge or a Yukawa coupling). Then from dimensional analysis

its decay rate is given by,

Ti ~ aMi (7.27)

where Mi is the mass of X\. Notice that here we are assuming that Xi is coupled by

renormalizable interactions (gauge or Yukawa interactions). However, it is also interesting

to study the case of a gauge singlet scalar boson X2, coupled to light matter only through
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gravitational interactions. This is the case of a singlet in the hidden sector of supergravity
models [62]. In this case, the decay rate of X2 is, from dimensional analysis,

r2 ~ Ml/Mpe (7.28)

where M2 is the mass of X2. We will study in parallel both cases, just considering Xi, Ti
and Mi, for i=l,2.

At the Planck time (T ~ Mpt) we assume all particle species are in thermal equilibrium,
i.e. nxi nj ~ n7 (up to statistical factors), and n&B 0. Since we are assuming

Mi < Mpe, nothing interesting happens until T ~ Mz.

At T < Mi the equilibrium abundance of Xi and Xi relative to photons is, see eq. (7.19),

nXi nx~ \Mi]3/2 _«i
7%v

e t (7.29)

where we have neglected the chemical potential /i,. Then for Xi and Xi to maintain their

equilibrium abundances, they must be able to diminish their number rapidly (with respect

to H(T)). The most efficient way of doing it is by decay, their decay rates Tj in (7.27) and

(7.28) being the keystone for thermal equilibrium.

4k First, if the decay rate is

Fi > H (MA, (7.30)

then Xi and Xi will adjust their abundances by decay to their equilibrium abundance and

no baryogenesis can be induced by Xi and Xi decays. In that case, using (7.27) and (7.28)

and

condition (7.30) is equivalent, for the strongly coupled Xi and Xi, to

Mi « g;g/2aMPt (7.31)

and for gravitationally (weakly) coupled X2 and X2, to

M2 » g%2MPt (7.32)

Obviously, condition (7.32) will never be satisfied for M2 < Mp(.

0 Second, if the decay rate

T, < H(Mi) (7.33)
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then, Xi and Xi cannot decay on the expansion timescale H and so remain as abundant
as photons for T < Mt. This overabundance (with respect to their equilibrium
abundance) is the departure from the thermal equilibrium. In that case, condition (7.33)

is equivalent, for strongly coupled Xi and Xi, to

Mi > gJ/2aMPe (7.34)

and, for gravitationally coupled X2 and X2, to

M2 < g^Mpe (7.35)

It is clear that condition (7.35) is always satisfied, while condition (7.34) is based on the

smallness of g~s a. In particular, if Xi is a gauge boson, a can be in the range between

10_1 and 2.5 x 10~2, while geS can be in the range between 3 x 102 and 102. In this way we

obtain, from (7.34) that condition (7.33) can be satisfied for

Ml > (10"3 - 1Q~4)MPI ~ (1016 - 1015) GeV (7.36)

If Xi is a scalar, its coupling ay is proportional to the squared mass of a fermion,

ay ~ —J a,
\mw I

typically in the range (10~2 — 10~7), from where

Mi > (HT3 - 10"8) MPe ~ (1016 - 1010) GeV (7.37)

Obviously, condition (7.37) is more easily satisfied than condition (7.36). In general,

baryogenesis is more easily produced by scalars than by bosons. On the other hand, as we have

said above, condition (7.35) for gravitationally interacting particles is automatically satisfied

for any mass M2 below the Planck scale.

Later on, at To, when

T, a H(TD) (7.38)

i.e. at

TD ~ g^l4tol2(MiMPt)ll2 < Mi (7.39)

the last inequality coming from (7.34), or,

/ M \ ^l2
To - gJ/4M2 (^g-J < M2, (7.40)
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the last inequality coming from (7.35), Xi and Xi will start to decay and decrease their
number. If their decay violate baryon number, as we are assuming, they will generate a net

baryon number per decay.

Suppose, to fix the ideas, that X has two decay channels a and b, with baryon numbers

Ba and Bb, respectively. Correspondingly, the decay channels of X, a and 6, have baryon

numbers — B„ and — Bb, respectively. Let r(r) be the branching ratio of X(X) in channel

a(a), and 1 — r(l — r) the branching ratio of X(X) in channel 6(6),

(7.41)

VIX b)
1-r

1-r t x
where we are using equality between the total decay rates of X and X (CPT+unitarity).
The mean net baryon number produced in X-decays is

rBa + (1 - r)Bh

and that produced in X-decays is

-rBa - (1 - r)Bb.

Finally, the mean net baryon number produced in X and X-decays is

AB (r- f)Ba + [(1 - r) - (1 - f)] Bh (r - r)(Ba - Bb) (7.42)

Equation (7.42) can be generalized to the case when X(X) can decay to a set of final states

fn(fn) with baryon number Bn(—Bn). In that case, the net baryon number per decay is

AB r^ E Bn [nx — fn) - r(X — /J] (7.43)

At the decay temperature TD < Mi the inverse decay processes are greatly suppressed

with respect to the direct decay,

Mi

r(/„ — Xi) ~ e~-o T(Xi — /„) (7.44)

and thus the net baryon number produced per decay Aß is not destroyed by the net baryon

number produced per inverse decay —AB. At To,

nXi nx — n7
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and therefore the net baryon number density produced is

nAB Aß nx, (7.45)

from where we see that Aß coincides with the parameter n defined in (7.1) if nx, — n7.

The three ingredients of baryogenesis can be easily traced back here:

• If ß is not violated, then Bn 0 and Aß 0.

• If C and CP are not violated, then T(X —? /„) T(X —? /»)> and also Aß 0.

• In thermal equilibrium, the inverse decay processes are not suppressed and the net

baryon number generated per decay is cancelled by inverse decays.

We have assumed to obtain (7.45) that ux, m n7 at the decay temperature To- However,

the entropy release in ATj-decays can be very important (especially if the Xi decay very late,

Tr) <C Mi) and has to be taken into account. In that case, neglecting the initial entropy and

assuming that the energy density at To,

PXi - M{nXi

is converted into radiation at the reheating temperature TrB

J2n
3Ö-3P — ™9enTRH

we obtain,
TT2 T4

nx- - —9*=rr (7-46)' 30y Mt
and, using (7.9), (7.15) and (7.45) we can write the baryon-to-entropy ratio as,

V±S ~ llSä.AB (7.47)
s A M%

v '

We can now relate TRB with the decay rate T, using the decay condition

and so write (7.47) as

r^ ß(gJ^Mpi\X'\B (748)
s \ Mf



554 Quirós

where the coefficient 0 is

'-(3 J ~ 1.7 (7.49)

Now we can replace the values of Ti (i=l,2). For the case of strongly decaying (through
renormalizable interactions) bosons Xx, eq. (7.27) leads to

n±B_=ß
s

gJ/2aMPe

Mi

I 1/2

Aß (7.50)

and for the case of weakly decaying (through gravitational interactions) bosons X2, eq. (7.28)

leads to

V±S=ß
s

M2
1/2

Aß (7.51)
\.gls2MPe]

In both cases, eqs. (7.50) and (7.51), the conditions (7.34) and (7.35), respectively, guarantee

that the numerical coefficients in front of Aß are smaller (even much smaller) than unity
and the net baryon number per decay has to be larger than that initially thought to be

necessary to explain the condition (7.18).

The quantitative analysis of the out-of-equilibrium decay scenario, including the Boltz-

mann equations for the evolution of n, has been performed in ref. [60, 63, 64]. The numerical

analysis essentially confirms the qualitative picture we have described, the only difference

being that the asymmetry does not fall off that rapidly with K Ti/H(Mi) until K » 1.

7.4 Baryogenesis at the electroweak phase transitions

Baryogenesis can be generated at the GUT phase transition. This possibility suffers, however,

from two serious drawbacks:

• If there is a period of cosmological inflation of the universe, any pre-existing baryon

asymmetry would be washed out by the exponential expansion of the universe. In

many cases, the reheating temperature after inflation is not as high as the unification

scale (poor reheating) and so baryon asymmetry cannot be regenerated by the GUT

phase transition.

• There is no experimental evidence of any GUT, and so baryon asymmetry generation at

the GUT phase transition rely on parameters which cannot be experimentally tested.
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It has been recently realized [65, 66] that the three Sakharov's conditions for baryogenesis,

sections 7.2.1, 7.2.2 and 7.2.3, can be fulfilled at the electroweak phase transition:

• Baryonic charge non-conservation was discovered by 't Hooft [67]. In fact baryon and

lepton number are conserved anomalous global symmetries in the Standard Model.

They are violated by non-perturbative effects.

• CP violation can be generated in the Standard Model from phases in the fermion

mass matrix, Cabibbo, Kobayashi, Maskawa (CKM) phases [68]. This effect is much

too small to explain the observed baryon to entropy ratio. However, in extensions of

the Standard Model, as the singlet majoron model or the minimal supersymmetric
standard model (MSSM), a sizeable CP violation can happen through an extended

Higgs sector.

• The out of equilibrium condition can be achieved, if the phase transition is strong

enough first order, in the bubble walls. In that case the B-violating interactions are

out of equilibrium in the bubble walls and a net B-number can be generated during
the phase transition.

7.4.1 Baryon and lepton number violation in the electroweak theory

Violation of baryon and lepton number in the electroweak theory is a very striking
phenomenon. Classically, baryonic and leptonic currents are conserved in the electroweak theory.

However, that conservation is spoiled by quantum corrections through the chiral anomaly

associated with triangle fermionic loop in external gauge fields. The calculation gives,

^B=e^ Nt{^WW-^YY) (7.52)

where N; is the number of fermion generations, WßV and Yßv are the gauge field strength

tensors for SU(2) and U(l)y, respectively, and the tilde means the dual tensor,

W,w -e'luaßWaß.

A very important feature of (7.52) is that the difference ß — L is strictly conserved, and so

only the sum ß + L is anomalous and can be violated. Another feature is that fluctuations

of the gauge field strengths can lead to fluctuations of the corresponding value of ß + L.

The product of gauge field strengths on the right hand side of eq. (7.52) can be written as
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four-divergences,

WW d^ (7.53)

YY dßkY

where

kY e^aßYvaYß (7.54)

k& e»™ß (w:aW$ - ^W^W^
and Wß, Yß are the gauge fields of SU(2) and U(l)y, respectively. In general total derivatives

are unobservable because they can be integrated by parts and drop from the integrals. This

is true for the terms in the four-vectors (7.54) proportional to the field strengths Wßl/ and YIIV

24. This means that for the abelian subgroup U(l)y the current non conservation induced by

quantum effects becomes non observable. However this is not mandatory for gauge fields, for

which the integral can be nonzero. Hence only for non-abelian groups can the current non

conservation induced by quantum effects become observable. In particular one can write,

AB AL NfANcs (7.55)

where Ncs is the so-called Chern-Simons number characterizing the topology of the gauge

field configuration,

Ncs sé / d"Xe%3k {WZW* ~ \^W*WÌW^) (7-56)

Note that though Ncs lts not gauge invariant, its variation ANcs is.

We want to compute now Aß between an initial and a final configuration of gauge fields.

As we have said we are considering (vacuum) field strength tensors Wßv which vanish. The

corresponding potentials are not necessarily zero but can be represented by purely gauge

fields,

Wlt --U(x)dßU~l(x) (7.57)

There are two classes of gauge transformations keeping Wßl/ 0:

• Continuous transformations of the potentials yielding ANcs — 0.

• If one tries to generate ANcs / 0 by a continuous variation of the potentials, then one

has to enter a region where WIU/ ^ 0. This means that vacuum states with different

topological charges are separated by potential barriers.

4We are generically interested in cases where initial and final average values of field strengths are zero.
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The probability of barrier penetration can be calculated using the quasi-classical

approximation as in previous sections. In euclidean space time, the trajectory in field space

configuration which connects two vacua differing by a unit of topological charge is called

instanton. The euclidean action evaluated at this trajectory gives the probability for barrier

penetration as,

r^expf-—)~10-162 (7.58)
V awJ

where ctw g2/An. The number in (7.58) is so small that the calculation of the pre-

exponential is unnecessary and the probability for barrier penetration is essentially zero.

7.4.2 Baryon violation at finite temperature: sphalerons

Expression (7.58) gives the probability for barrier penetration at zero temperature. However,

in a system with non zero temperature a particle may classically go over the barrier with a

probability determined by the Boltzmann exponent, as we have seen in section 5.

What we have is a potential which depend on the gauge field configurations Wß. This

potential has an infinite number of degenerate minima, labeled as Çln. These minima are

characterized by different values of the Chern-Simons number. The minimum Q,0 corresponds

to the configuration Wß 0 and we can take conventionally the value of the potential at this

point to be zero. Other minima have gauge fields given by (7.57). In the temporal gauge

W0 0, the gauge transformation U must be time independent (since we are considering

gauge configurations with W)lv 0), i.e. U U(x), and so functions U define maps,

U : S3 —? SU(2)

All the minima with Wßv 0 have equally zero potential energy, but those defined by a map

U(x) with nonzero Chern-Simons number

n¥\ -^ I d3xeijkTr(UdiU-1Ud]U-1UdkU-1) (7.59)
247T J

correspond to degenerate minima in the configuration space with non-zero baryon and lepton

number.

Degenerate minima are separated by a potential barrier. The field configuration at the

top of the barrier is called sphaleron, which is a static unstable solution to the classic

equations of motion [69]. The sphaleron solution has been explicitly computed in ref. [69]

for the case of zero Weinberg angle, (i.e. neglecting terms O(g')), and for an arbitrary value

of sin29w in ref. [70].
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An ansatz for the sphaleron solution for the case of zero Weinberg angle was given (for
the zero temperature potential) in ref. [69], for the Standard Model with a single Higgs

doublet, as,

W^VW -—f(Ç)dU U'1 (7.60)
g

for the gauge field, and

® 72mu( i
I (761)

for the Higgs field, where the gauge transformation U is taken to be,

U=l-{ Z X + W) (7.62)
r \ -x + iy z J

and we have introduced the dimensionless radial distance £ gvr.

Using the ansatz (7.60), (7.61) and (7.62) the field equations reduce to,

?% W-/)tt-V)-x''(l-/) I7"3)

with the boundary conditions, /(0) h(0) 0 and /(oo) h(oo) 1. The energy
functional becomes then,

Airv r°° f (df_

g Jo \ {<%E= -/. Wi\^,im-r>r + \e(1]'
+ Hl-fW + \(^)e(h'-lf\d( (7.64)

The solution to eqs. (7.63) has to be found numerically. The solutions depend on the

gauge and quartic couplings, g and A. Once replaced into the energy functional (7.64) they

give the sphaleron energy which is the height of the barrier between different degenerate

minima. It is customary to write the solution as,

Esph ^ß(A/52) (7.65)
aw

where ß is the constant which requires numerical evaluation. For the standard model with

a single Higgs doublet this parameter ranges from ß(0) 1.5 to ß(oo) 2.7. A fit valid for

values of the Higgs mass,

25 GeV <mh< 250 GeV
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can be written as,

B(x) 1.58 + 0.32x - 0.05x2 (7.66)

where x rnh/mw-

The previous calculation of the sphaleron energy was performed at zero temperature. The

sphaleron at finite temperature was computed in ref. [71]. Its energy follows the approximate

scaling law,

Esph(T) Esph^ (7.67)

which, using (7.65), can be written as,

2mw(T) D/w 2
Esph(T) nK 'B(X/g2) (7.68)

ctw

where mw(T) \g(<P(T))

7.4.3 Baryon violation rate at T > Tc

The calculation of the baryon violation rate at T > Tc, i.e. in the symmetric phase, is

very different from that in the broken phase, that will be reviewed in the next section. In
the symmetric phase, at <p — 0, the perturbation theory is spoiled by infrared divergences,

as we saw in section 6, and so we cannot rely upon perturbative calculations to compute

the baryon violation rate in this phase. In fact, the infrared divergences are cut off by the

non-perturbative generation of a magnetic mass,

m,M ~ ctwT (7.69)

i.e. a magnetic screening length, Cm ~ («wT)_1. The rate of baryon violation per

unit time and unit volume T does not contain any exponential Boltzmann factor 25. The

pre-exponential can be computed from dimensional grounds, [72] as

T k(awT)4 (7.70)

where the coefficient k has been evaluated numerically in ref. [73] with the result

0.1 < k < 1.0

Now the rate of baryon number non-conserving processes VB(t) is related to the rate V

per unit time and unit volume of fluctuations with changing of the topological number by

2GIt would disappear from (5.71) in the limit T —? oo
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[74]

VB(t) jNff3 (7.71)

We have to compare now the rate (7.71) with the expansion rate of the universe, given

by.

where the last equality holds in the radiation dominated era. Using now eq. (5.100) and

(7.72) we can write the Hubble constant as,

H(t) 17.2-g- (7.73)

and the condition for baryon number violation,

VB(t) > H(t) (7.74)

translates into the condition,

T < 0.377 NfkafyMpe ~ 1012 GeV (7.75)

where we have taken the most conservative value for k, k 0.1, and

aw 0.0336 (7.76)

7.4.4 Baryon violation rate at T < Tc

After the phase transition, the calculation of baryon violation rate can be done using the

semiclassical approximations of section 5, as given by eq. (5.71). The rate per unit time and

unit volume for fluctuations between neighboring minima contains a Boltzmann suppression

factor exp(—ßsph(T)/T), where ßsph(T) is given by (7.68), and a pre-factor containing the

determinant of all zero and non-zero modes, eq. (5.70). The prefactor was computed in ref.

[75] as

r~2.8x 105T4 (—VK^=e< (7.77)
\ An J B1

where we have defined

C(T) ^11, (7.78)

the coefficient B is the function of X/g2 defined in (7.66) and k is the functional determinant

associated with fluctuations about the sphaleron. It has been estimated [76] to be in the

range,
10"4 < k < IO-1 (7.79)
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The equation describing the dilution of the baryon asymmetry in the anomalous
electroweak processes reads [74]

d-<ë±B. -VB(t)(B + L) (7.80)

where VB(t) is the rate (7.71) of the baryon number non-conserving processes. Assuming T
is constant during the phase transition 26 the integration of (7.80) yields

(B + L)unEi =s (781)
(ß + L)initiai

where the suppression factor is given by

S e~x (7.82)

and

y=
2 JT3X ™NfLt (7 83)

Using now (7.77) and (5.100)

we can write the exponent X as,

t 0.029^ (7.84)

X ~ 1010/<7e-c (7.85)

where we have taken the values of the parameters, ß 1.87, aw 0.0336, Nf 3,

Tc ~ 102 GeV. Imposing now the condition

S > IO"5 (7.86)

or

X < 10 (7.87)

leads to the condition on Ç(TC),

C(TC) > 7 log C(TC) + 9 log 10 + log k (7.88)

Now, taking k at its upper bound in (7.79), k 10 ', we obtain from (7.88) the bound

[77]

£sph(rc) > 45, (7.89)
J- r.

20 Actually this is a very good approximation since phase transition happens very fast at almost a constant

temperature.
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and using the lower bound of (7.79), k 10 4 we obtain,

gsFt(Tc) > 37, (7.90)
-* c

Eq. (7.89) is the usual bound used to test different theories while eq. (7.90) gives an idea

on how much can one move away from the bound (7.89), i.e. the uncertainty on the bound

(7.89).

The bounds (7.89) and (7.90) can be translated into bounds on tp(Tc)/Tc using the relation

(7.68) and

mw(Tc) \g<P(Tc) (7.91)

we can write
toTc)

_
g Esph(Tc)

_

1 Esph(Tc)

Tc AnB Tc
~

36 Tc
{ ' '

where we have used the previous values of the parameters. The bound (7.89) translates into

while the bound (7.90) translates into,

T ~-3 (7-93)

^^ > 1.0 (7.94)
Ic

These bounds, eqs. (7.93) and (7.89), require that the phase transition is strong enough

first order. In fact for a second order phase transition, </>(Tc) ~ 0 and any previously

generated baryon asymmetry would be washed out during the phase transition. For the case

of the Standard Model, sections 2.5 and 4.4, the previous bounds translate into a bound on

the Higgs mass, as we will see in the next section.

7.4.5 Bounds on the Higgs mass in the Standard Model

The effective potential for the Standard Model was analyzed in sections 2.5 and 4.4 in the

one-loop approximation, and in section 6.4 including leading order plasma effects (see eqs.

(6.79-6.99)). In this approximation, the longitudinal components of the gauge bosons are

screened by plasma effects while the transverse components remain unscreened. In this way

a good approximation to the effective potential including these plasma effects is provided by

eqs. (4.53-4.59), where the coefficient E in (4.56) is replaced by

E=2_2m3w + m3z^Q5xiQ_3
3 Anvò
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Now we can use eq. (5.14) and m\ 2Xv2 to write,

<P(Tc) AEv2

Tc
~

ml
In this way the bound (7.93) translates into the bound on the Higgs mass,

(7.96)

AEmh<J—~A2GeV (7.97)

while the bound (7.94) would translate into the bound

mh < VÂËv ~ 48 GeV. (7.98)

The bound (7.98) is excluded by LEP measurements [59], and so the Standard Model is

unable to keep any previously generated baryon asymmetry. Is it possible, in extensions of

the Standard Model, to overcome this difficulty? We will see in the next sections two typical
examples where the Standard Model is extended: one is the well motivated supersymmetric
extension of the Standard Model (MSSM) and the other is the simplest extension of the

Standard Model with a complex singlet which does not acquire any vacuum expectation
value.

8 Electroweak Phase Transitions in Extensions of the
Standard Model

The condition that the baryon excess generated at the electroweak phase transition is not

washed out requires a strong enough first-order phase transition, as we have seen in the

previous section, which translates into an upper bound on the Higgs boson mass, see eq.

(7.98). Recent analyses of the minimal Standard Model (MSM) at one-loop [12], and including

plasma effects [15, 16, 27, 40, 42] in various approximations [43]-[53], show that the above

upper bound is inconsistent with the present experimental lower bound [59], i.e. that the

phase transition is not strongly enough first order. Though, in our opinion, this issue is not

yet fully settled it is interesting to study extensions of the MSM where the phase transition

can be made consistent with present experimental lower bounds on the Higgs boson mass.

8.1 Standard Model with a singlet

In this section we study the phase transition in the simplest of these extensions, which

consists in adding to the MSM a complex gauge singlet with zero vacuum expectation value.
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This extension was proposed in refs. [12, 76, 78] as the simplest way of overcoming the

problems encountered in the MSM. In fact the added boson generates a cubic term in the

one-loop effective potential, which can trigger a strong first-order phase transition if it is

not shielded by a heavy SU(2) x U(l) invariant mass 27. However, as noticed in ref. [80],

the extra boson behaves as the longitudinal components of W and Z gauge bosons and the

corresponding cubic term can also be shielded by plasma effects. Fortunately we will see

this is not always the case and find the region in parameter space where the phase transition
is strong enough first order for values of the Higgs boson mass beyond the experimental

bounds.

The lagrangian of the model is defined as:

C C-MSM + öM5*9M5 - M2S* S - XS(S*S)2 - 2Ç2S*SH*H (8.1)

where H is the MSM doublet with (H) <p/V2, cp is the classical field, and M2, Xs, C2 > 0,

to guarantee that (S) 0 at all temperatures 28.

The tree-level potential is that of the MSM (2.79), and the fields contributing to the

effective potential are those of the MSM, i.e. the Higgs field h, the Goldstone bosons x, the

gauge bosons W±, Z,j and the top quark t, with masses given by (2.80), (2.81), and (2.82),

and the S boson, with a mass

m2s(to M2 + Ç2<p2. (8-2)

The temperature dependent effective potential can be calculated using standard

techniques. Plasma effects in the leading approximation can be accounted by the one-loop

effective potential improved by the daisy diagrams. Imposing renormalization conditions

preserving the tree level values of v2 p?/A, and working in the 't Hooft-Landau gauge, the

^-dependent part of the effective potential can be written in the high-temperature expansion

as

Va(d>, T) Vtiee + AVB + AVF (8.3)

where

AVB= £ 9lAVt (8.4)
i=h,x,WL,ZL,fL,WT,ZT,7T,S

(AVi being defined in (6.81) and AVF given by (6.82)). The number of degrees of freedom

gi in (8.4) is given by (6.83) and

gs 2 (8.5)

27This result also holds when the gauge singlet acquires a vacuum expectation value. This case has been

recently analyzed at the one-loop level in ref. [79], where plasma effects are not considered.
28A cubic term in (8.1) would destabilize the potential along some direction in the S plane for A5 0.

We assume a global U(l) symmetry S -• e""S which prevents the appearance of such cubic term.
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The Debye masses M2 in (6.81) for i h,x,S, WL, WT,ZT,-yT are (see eq. (6.84))

M2 m2(to + ni(<P,T) (8.6)

where the self-energies Yii(<p, T) are given by

Uh(<P,T)=(^±^- + ^ + ^ + ÇjT2 (8.7)

nxW,T)=(fc£%^ + f + Ç)T2 (8.8)

nS(^,T) ^Ì^T2 (8.9)

while IIWl(<P,T), IlwT(<p,T), llzT(<p,T), and H^^T) are given by (6.87) and (6.88). The

Debye masses M2 for i ZL,jL are given through (6.89) to (6.99).

An analytic treatment of the one-loop effective potential was given in ref. [12]. In the

presence of plasma effects a similar treatment of the potential can be done [81] assuming

that the bosonic contribution (8.4) to the effective potential (8.3) is dominated by one field,

namely the S field, and neglecting the contribution from the other bosons. The <p dependent

part of the effective potential (8.3) can be written as

,3/2

where

V(<P) A(T)to + B(T)to + C(T) (to + K2(T))C

1.2, ifc2, hr.2

B(T) \xT

C3T

(C2 + XS)T2 + 3M2
[ ' 3C2

and
2 C2 f 2/ n »rf, cBT2 3 l2 2. m2(v)* - 8^ \n*W +Ml0ëmW)\ + ^htmM °g^

X X^ ^4
1 ^7* a.

3
/,41 m2{v)

Ar A + ^5loSZ^73 + TTT^K log-

.10)

8.11)

8.12)

8.13)

8.14)

8.15)

8.16)
8tt2 ö m%(v) 167T2 ' ö cFT2

The temperature T2 is defined by the condition V"(0) 0, or

AA2 - 9C2K2 0 (8.17)
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For T < T2 the origin is a maximum, and there is a global minimum at <p =£ 0 that evolves

towards the zero temperature minimum. For T > T2 the origin is a minimum and there is a

maximum at <p-(T) and a minimum at (p+(T) given by

to±(T) -^— i<èC2 - 16AB ± 3|C|y9C2 + 32(2B2K2 - AB)\ (8.18)

At the temperature Tj defined by the condition

9C2 + 32(2ß2AT2 - AB) 0 (8.19)

the maximum and minimum collapse <p-(Ti) <p+(Ti). For T > Ti the origin is the only

minimum.

Using (8.11-8.14) the temperatures Tl and T2 can be written as

C2T2
2ATl(Ç2/41 + ATlM2)

(8 20)

(f+f)^ - & - ÏN2+xs)

where
2

Tl Ya {A2(T2) + \/A4(T2) - Ï6a~pX\ (8.21)

T + f)2-^(C2 + As) (8.22)

\2(rr\ _ J- M»rf C ^1 I ,2A2(T) ^C4M2 + 4 I y + fJ Mr (8-23)

The nature of the phase transition depends on the relation between T\ and T2. For values

of the parameters (£2, As, M) such that Tx > T2 the phase transition is first order and the

plasma screening is not very effective. When Ti T2 the phase transition becomes second

order because the screening became more effective. In fact, the condition Ti T2 gives

the turn-over from first to second order. It provides a surface in the space (£, Xs, M) which

separates first-order from second-order regions. An analytic approximation can be given, if
one neglects loop corrections in (8.15,8.16), as

£JAS«1+A^
2 u2\ ,-6 1/ MT\ 2

A '

3
+

2 4^2 £) (8-24)
v

where the strict inequality corresponds to the subregion of the space (C, As, M) for which

the phase transition is first-order, and the equality corresponds to the turn-over to a second

order phase transition. Since the right-hand side of eq. (8.24) is positive-definite 29, we can

29It is easy to see that the necessary and sufficient condition for this turn-over to exist is that the right-
hand-side of eq. (8.24) is positive-definite. It is not a priori excluded that an isolated region exists in the space

(£, As, M) where the phase transition is second order. However we have checked that for phenomenological

values of the parameters (A, ht) this region does not exist.
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Figure 22: Plot of <£+(Tc)/Tc versus mh for mt 90, 150 and 175 GeV, A 106 GeV

and Cmax taken from the Table.

see from (8.24) how the parameters M2 and £2 + As in (4) and (5) influence the shielding of

the first order phase transition. First, the larger the value of M is, the easier one saturates

the inequality in (8.24) and the easier one reaches a second-order phase transition. The same

can be stated on As, though its effect is damped by A2 and would become important only
for a very heavy Higgs. For the same reason the effect of Ç is opposite, unless the Higgs is

very heavy.

The complete numerical analysis has been performed in ref. [81]. If we want to establish

an absolute upper bound on the mass of the Higgs boson we need to optimize the phase

transition with respect to the new parameters (£, As,M). As can be seen from eq. (8.24)

this is accomplished for M 0 30 and As 0. As for (", a quick glance at eq. (8.24)

shows that we should put it to its maximum value Cmax- The usual requirement for Cmax is

that the theory remains perturbative in all its domain of validity, from the electroweak scale

to a high scale A. For that we have to study the renormalization group equations (RGE)
of the minimal extension of the MSM provided by the lagrangian (8.1). At one-loop the

only /3-function of the MSM modified by the interactions of S is /3j\ while there appear new

30We are aware that values M -C v would require much more fine tuning than that required for the Higgs
sector of the MSM. However we are taking M 0 only to establish an absolute upper limit on the Higgs
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/3-functions for the new couplings As and £, as [82]

A/3A 8C4

0e C2

0Xs 20A2 + 8C4

6A + 6/i2 + 8As + 8C2 - l(3g3 + gn

where we are using the convention

1671-2
,dx
~dt 0,

(8.25)

(8.26)

(8.27)

(8.28)

for all couplings x (2, As, A,.... From eqs.(8.26,8.27) we see that imposing Xs(mw) 0 as

boundary condition, consistent with our previous requirement, we can reach the maximum

value of C,(m,w), Cmax, that will depend on m/,, mt and A. We have solved the system of RGE

corresponding to the lagrangian (8.1) between mw and A and obtained £max for different

values of m^ and mt. The dependence of fmax on mi is negligible for 60 GeV < nih <
100 GeV. In the Table we show <"max for different values of A and mt 90, 120, 175 GeV.

A (GeV)
mt (GeV)

90 120 175

104

106

108

1010

1012

1014

1016

1.774

1.095

0.793

0.624

0.515

0.439

0.384

1.742

1.067

0.770

0.604

0.498

0.424

0.370

1.667

1.011

0.728

0.573

0.473

0.405

0.356

Table

To exhibit the dependence on mt we plot in fig. 22 <p+(Tc)/Tc versus mi for As 0, M 0,

mt 90, 120 and 175 GeV, and C, Cmax, corresponding to A 106 GeV. In that case

we see from fig. 22 that avoiding baryon asymmetry washout imposes on the Higgs mass an

upper bound of order 80 GeV.

8.2 The Minimal Supersymmetric Standard Model

Among the extensions of the MSM, the physically most motivated and phenomenologically

most acceptable one is the Minimal Supersymmetric Standard Model (MSSM). This model
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allows for extra CP-violating phases besides the Kobayashi-Maskawa one, which could help
in generating the observed baryon asymmetry [84]. It is then interesting to study whether

in the MSSM the nature of the phase transition can be significantly modified with respect

to the MSM.

In this section (see refs. [85, 86]), we extend the considerations of the previous section

to the full parameter space, characterizing the Higgs sector of the MSSM. We will include

a full discussion of the top/stop sector and resum the leading plasma corrections to gauge

bosons and stop masses, improving over previous studies [87]. Even barring the interesting

possibility of spontaneous CP-violation at finite temperature [88], as well as the possibility
of charge- and colour-breaking minima, we have to deal with a complicated two-variable

potential, which requires a numerical analysis. After including the most important experimental

constraints, we find that there is very little room for the MSSM to improve over the

MSM.

The main tool for our study is the one-loop, daisy-improved finite-temperature effective

potential of the MSSM, Veg((p,T). We are actually interested in the dependence of the

potential on to He H° and to R-e H2 only, where H° and H2 are the neutral components

of the Higgs doublets Hi and H2, thus <p will stand for (to, to)- Working in the 't Hooft-

Landau gauge and in the ßß-scheme, we can write

where

VeS(<p,T) V0(to + Vi(0,O) + AVi(<P,T) + AVdaisy(0,T), (8.29)

V0(to m\toi+m22to2 + 2m23toto + ^^(to\-<&, (8.30)

W) E~2rnt(to

AVi(<p,T) ^\}2^Jr

,rn2(to 3

l0*-Qr-2
m2(<P)

p2

(8.31)

(8.32)

AVdaisy(0,T) ~E* [*!?(*,T)-»*?(*)]. (8.33)

The four contributions (8.30-8.33) to the effective potential (8.29) have the following meaning.

The first term, eq. (8.30), is the tree-level potential. The second term, eq. (8.31), is

the one-loop contribution at T 0: Q is the renormalization scale, where we choose for

definiteness Q2 m2z, m2(d>) is the field-dependent mass of the ith particle, and n, is the

corresponding number of degrees of freedom, taken negative for fermions. Since Vi(<p, 0) is

dominated by top (t) and stop (ti,t2) contributions, only these will be included in the following.

The third term, eq. (8.32), is the additional one-loop contribution due to temperature
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effects. Here Ji J+(J_) if the ith particle is a boson (fermion), and (see eqs. (4.15) and

(4.40))

J±(y2) J"0 dxx2 log (l =F e~^+^\ (8.34)

Since the relevant contributions to AVi(<p,T) are due to top (t), stops (ti,t2) and gauge
bosons (W, Z), only these will be considered in the following. Finally, the last term, eq. (8.33),

is a correction coming from the resummation of the leading infrared-dominated higher-loop

contributions, associated with the so-called daisy diagrams. The sum runs over bosons only.

The masses A42(<p, T) are obtained from the m2(<p) by adding the leading T-dependent self-

energy contributions, which are proportional to T2. We recall that, in the gauge boson

sector, only the longitudinal components (Wr,, Zl,Jl) receive such contributions.

The relevant degrees of freedom for our calculation are:

nt -12, n-tl nt-2 6, nw 6, nz 3, nWh 2 nZh n7i 1. (8.35)

The field-dependent top mass is

m\(to h\to2 ¦ (8.36)

The entries of the field-dependent stop mass matrix are

<W rn2Q3+m2t(to + Dl(to, (8-37)

mlW m2U3+m2t(to + Dl(to, (8-38)

m2x(to ht(Atto + pto), (8-39)

where niQ3, mu3 and At are soft supersymmetry-breaking mass parameters, \x is a superpo-

tential Higgs mass term, and

DIM f^-^m2öwi^-^W2-^), (8.40)'**¦""' _ V2 3 w) 2

DUto (lsm29w)9^-^-(toi-4>l) (8.41)

are the ß-term contributions. The field-dependent stop masses are then

m.2 ((j)) + m2 U)
<2w= tL \ R —±

.(*) -rnUtoÈRI + [m2x(to\2- (8-42)

The corresponding effective T-dependent masses, A42 (<p,T), are given by expressions identical

to (8.42), apart from the replacement

"£.» - MLj<t>'T< "t.» + Uh.R(T) ¦ (8-43)
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The nt-t R(T) are the leading parts of the T-dependent self-energies of tr,B

n>,(T) -g2sT2 + -g2T2 + —g'2T2 + -h2T2,

Htfl(T) lg2sT2 + ±g'2T2 + -\h2tT2,

(8.44)

(8.45)

where <7S is the strong gauge coupling constant. Only loops of gauge bosons, Higgs bosons

and third generation squarks have been included, implicitly assuming that all remaining

supersymmetric particles are heavy and decouple. If some of these are also light, the plasma

masses for the stops will be even larger, further suppressing the effects of the associated

cubic terms, and therefore weakening the first-order nature of the phase transition. Finally,
the field-dependent gauge boson masses are

m2w(to ~(<t>\ + to\), rn2z(to 9^-(<t>2i+4>22),

and the effective T-dependent masses of the longitudinal gauge bosons are

M2Wl(<P,T) =m2w(to + UWL(T),
1

2
Mk,-yL(^T) \ h!W + IWT) + UBl(T)}

V ^—^(to + to) + uWl(t) - nBL(T)
gg bi + të)

(8.46)

(8.47)

(8.48)

In eqs. (8.47) and (8.48), UWl(T) and nBi(T) are the leading parts of the T-dependent

self-energies of Wi and Br,, given by

\iwL(T) \g2T2, IlBL(T) f8g'2T2, (8.49)

where only loops of Higgs bosons, gauge bosons, Standard Model fermions and third-

generation squarks have been included.

We shall now analyse the effective potential (8.29) as a function of <p and T. Before doing

this, however, we trade the parameters m\, m2, m\ appearing in the tree-level potential (8.30)

for more convenient parameters. To this purpose, we first minimize the zero-temperature
effective potential, i.e. we impose the vanishing of the first derivatives of Vo(4>) + Vi(<p, 0) at

(4>\,to) (vi,v2), where (vi,v2) are the one-loop vacuum expectation values at T 0. This

allows us to eliminate m2 and m\ in favour of mz and tan0 v2/vi\

-m23 tan 0 - ^ cos 20 - T -^3 2 Y647r
2

-m\ cot ß + ^f- cos 2ß - Y^

dm2 m2 I, m'
dto Q2

-I 01,2—«1.2

647T2
log^

dto to\ Q2

(8.50)

(8.51)
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Moreover, m2 can be traded for the one-loop-corrected mass m\ of the CP-odd neutral Higgs

boson. In our approximation [89]

3g2m2pAt
m3 —mA sin ß cos ß

4(log5--l)-m|(log 1

32n2mw sin2 0
(8.52)

h ""t2

Therefore the whole effective potential (8.29) is completely determined, in our approximation,

by the parameters (mA, tanß) of the Higgs sector, and by the parameters (mt, m.Q3, m\j3,

p, At) of the top/stop sector. The same set of parameters also determines the one-loop-

corrected masses and couplings of the MSSM Higgs bosons.

The next steps are the computation of the critical temperature and of the location of

the minimum of the effective potential at the critical temperature. We define here T0 as

the temperature at which the determinant of the second derivatives of Veff(<p, T) at cp 0

vanishes:
'd2Vefs(<t>,T0)~

det 0. (8.53)
d<ptdto

It is straightforward to compute the derivatives in eq. (8.53) from the previous formulae; the

explicit expressions are

ô2Kffl
dto

mf +
1

6471-2

9 / ,ltjO
6atim2Qt log -^f 1) + Gbumi,, [log^--1

lu3

An2

T_

167T

+ 6

^(9g2 + 3g'2 + 5l2 ¦ 12h2t) + 6ouJ'+ (^J + 60«J'+ ^

+ 6

— {3g2[TlWL(T)]i+g'2[IlBL(T)]i

an (mQ3 + nt-L(T))
2 - an (m^) 2

d2VeS

,"6ai JL
JI2

Q2

v iVÉa

log-^-l \-rnt logt^-17713 + 6l^6ai2

4tt2

^ {6â12 \(m2Q3 + IliL(T)f - « + IliR(T)f]

6a12 («Q3) 2 - (mk) ' } ¦

f/3

Q2

(8.54)

The coefficients oy, 6^ are given by

- (l 2
11 \2~3'ou sin2cV (c72+32) +

2fttV
'Q3 'Ü3
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bu ee (-sm29w)(g2 + g12)
2/i;V

'03 ~ '"Uà

„:„2/i \ /„2 i „>2\ i
2htAt

«22 2ft2 - (- - - sin2 ö^) (g2 + g'2) +
m% - m?,

9h2A2
b22 2h\ - ["- sin2 9w)(g2 + g'^-^sin^W + g'2)- 22hìAÌ2

\3 / mn, - m,-6Q3 '"c/3
2/l2y[i/l

Ol2 "

mQs - mìh

and the coefficients (Zy,&y are given by identical expressions, apart from the replacement

mQ3 - mk - "4 ~ mk + % (T) - UtR(T) ¦ (8.56)

Once eq. (8.53) is solved (numerically) and T0 is found, one can minimize (numerically)
the potential Veg(<j), To) and find the minimum [vi(T0), v2(T0)]. The quantity of interest is

indeed, as will be discussed later, the ratio v(T0)/T0, where v(T0) Jv2(T0) + v2(Tq).

We now discuss the particle physics constraints on the parameters of the top/stop sector

and of the Higgs sector. To be as general as possible, we treat diq,, mU3 and the other soft

mass terms as independent parameters, even if they can be related in specific supergravity
models.

The constraints on the top/stop sector will be briefly discussed. Direct and indirect

searches at LEP [59] imply that m-h > 45 GeV, which in turn translates into a bound in the

(m,Q3, tan ß) plane. Electroweak precision measurements [90] put stringent constraints on a

light stop-sbottom sector: in first approximation, and taking into account possible effects

[91] of other light particles of the MSSM, we conservatively summarize the constraints by

Ap(t, b) + Ap(t, b) < 0.01, where the explicit expression for Ap(t, b) can be found in [92].

We finally need to consider the constraints coming from LEP searches for supersymmetric

Higgs bosons [59]. Experimentalists put limits on the processes Z —» hZ* and Z —> hA,
where h is the lighter neutral CP-even boson. We need to translate these limits into exclusion

contours in the (m^, tan /3) plane, for given values of the top/stop parameters. In order to do

this, we identify the value of BR(Z —> hZ*), which corresponds to the limit m^ > 63.5 GeV

on the SM Higgs, and the value of BR(Z —> hA), which best fits the published limits for

the representative parameter choice mt — 140 GeV, ttiq, mrj3 fn 1 TeV, At p 0.

We then compare those values of BR(Z —* hZ*) and BR(Z —» hA) with the theoretical

predictions of the MSSM, for any desired parameter choice and after including the radiative

corrections associated to top/stop loops [93],[89]. Of course, this procedure is not entirely



574 Quirós

correct, since it ignores the variations of the efficiencies with the Higgs masses and branching

ratios, as well as the possible presence of candidate events at some mass values, but it is

adequate for our purposes.

According to eq. (7.89), the condition to avoid erasing any previously generated baryon

asymmetry via sphaleron transitions is

E*>^TJ > 45 (8.57)

Particularizing to the MSSM the studies of sphalerons in general two-Higgs models [94], we

obtain that
EMSSM{T) < ESM{T) _ (g 58)

where, in our conventions,

3m=±^Bie<äLß\m, (8.59)
T g { Ag2 J T

and ß is a smoothly varying function whose values can be found in (7.66). Finally, the

corrections in Efjfi due to g' ^ 0 have been estimated and shown to be small [70]. Therefore,

a conservative bound to be imposed is

v(Tn)AV2nB{i*fm\R=Vlt2lJL 1 ^ !_>1 (860)
To A5g

V ;

The last point to be discussed is the determination of the value of Aeff[0(To)] to be plugged

into eq. (8.60). The ß-function we use is taken from ref. [69], where the sphaleron energy

was computed using the zero-temperature 'Mexican-hat' potential, V j(<p2 — v2)2. The

sphaleron energy at finite temperature was computed in ref. [95], where it was proven that

it scales like v(T), i.e. as in (7.67), with great accuracy. Therefore, to determine the value of

Aeff[t9(To)] we have fitted Veg(<p,T0), as given by eq. (8.29), to the appropriate approximate

expression,

Vefs(<p, T0) ~ -Aeff[0(Tb)][<P2 - v2(T0)]2 + field-independent terms, (8.61)

where the field-independent terms are just to take care of the different normalizations of the

left- and right-hand sides. The value of Aerr obtained from (8.61),

where all quantities on the right-hand side are calculated numerically from the potential of

eq. (8.29), is then plugged into eq. (8.60) to obtain our bounds. We have explicitly checked
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the quality of the fit in eq. (8.61), finding an agreement that is more than adequate for our

purposes.

The numerical results are summarized in fig. 23, in the (mx, tan/3) plane and for the

value of the top quark mass mt 170 GeV. The values of the remaining free parameters have
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Figure 23: Contours of R in the (m^tan/J) plane, for the parameter choice

mt 170 GeV, mq3 280 GeV, mrj3 0 (m~tL ~ 330 GeV, m-ÌR ~ 170 GeV,

m-hh ~ 280 GeV), At p 0. The region excluded by Higgs searches at LEP
is delimited by the thick solid line. For reference, contours of constant m/, (in
GeV) are also represented as dashed lines.

been chosen in order to maximize the strength of the phase transition, given the experimental

constraints on the top-stop sector. Notice that arbitrarily small values of mrja cannot be

excluded on general grounds, even if they are disfavored by model calculations. Also, we

have explicitly checked that, as in ref. [85], mixing effects in the stop mass matrix always

worsen the case. In fig. 23, solid lines correspond to contours of constant R: one can see

that the requirement of large values of R favours small tan/3 and ma S> mz- The thick solid

line corresponds to the limits coming from Higgs searches at LEP: for our parameter choices,

the allowed regions correspond to large tan ß and/or ma ~> mz- For reference, contours

of constant m/, (in GeV) have also been plotted as dashed lines. One can see that, even

for third-generation squarks as light as allowed by all phenomenological constraints, only

a very small globally allowed region can exist in the (m,A,tanß) plane, and that the most
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favourable situation is the one already discussed in ref. [85]. More precisely, the region that
is still marginally allowed corresponds to ma S> mz, tan ß ~ 2, stop and sbottom sectors

as light as otherwise allowed, a heavy top, and a light Higgs boson with SM-like properties
and mass m^ ~ 65 GeV, just above the present experimental limit. A less conservative

interpretation of the limits from precision measurements, the inclusion of some theoretically
motivated constraints on the model parameters, or a few GeV improvement in the SM Higgs

mass limit, would each be enough to fully exclude electroweak baryogenesis in the MSSM.

Some final comments on possible ways out are in order. First, one could think of

relaxing the constraint tanß > 1 (and the corresponding LEP bounds), which is usually

motivated by the theoretical assumption of universal soft Higgs masses at the SUSY-GUT

scale, My ~ 1016 GeV. The possibility of tan ß < 1, however, is incompatible with a heavy

top quark, since, for mt Z 130 GeV and supersymmetric particle masses of order mz, the

running top Yukawa coupling would become non-perturbative at scales smaller than My:
such a possibility is strongly disfavored by the successful predictions of the low-energy gauge

couplings in SUSY GUTs.

A second possibility is that large non-perturbative effects, neglected by conventional

calculational techniques, modify the predicted values of the sphaleron energy and/or of

v(T0)/T0 (for recent suggestions along this line, see [96]). We do not see strong physical

arguments to favour this, but we admit that it cannot be rigorously excluded. Perhaps

alternative approaches to the electroweak phase transition [97] could help clarify this point
in the future.

A third possibility is that including unconsidered effects the baryon violation rate be

suppressed with respect to the value used throughout these notes (eq. (7.77)). This possibility

has been recently considered in ref. [98] where one-loop contributions of bosonic and

fermionic fluctuations have been showed to suppress the sphaleron transition, thus shifting
the upper bound on the Standard Model Higgs mass beyond its present experimental limit

(~ 66 GeV). However the authors of ref. [98] have to make the technical (but not very

realistic!) assumption that the top-bottom Standard Model doublet is degenerate in mass.

Since treating the non-degeneracy as a perturbation is not a good approximation the results

of this paper should not be trusted till a more realistic case can be considered.

Barring the above-mentioned possibilities, one could still try to rescue electroweak

baryogenesis by further enlarging the MSSM Higgs sector, for example by introducing an extra

singlet. Supersymmetric models with singlets and non-supersymmetric models, however,

develop dangerous instabilities if coupled to the superheavy sector of an underlying unified
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theory. It might well be that baryogenesis has to be described by physics at a scale larger
than the electroweak one.
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