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Spacetime Models from the Electromagnetic Field-

By A. O. Barutt, D. J. Moore and C. Piron

Département de Physique Théorique, Université de Genéve CH-1211 Genéve 4, Switzerland

(1.VI.1994)

Abstract. A geometric treatment of the electromagnetic field leads to the introduction of spacetime
models representing the dynamics of the system. The manifold structure of these models and
differential geometric structure such as a conformal metric are induced from Maxwell’s equations.
Such models take into account the qualitative difference between time and space while retaining
notions such as Lorentz covariance. The conformal metric allows a natural decomposition of the
electromagnetic field into transverse (photon) and longitudinal (force field) components.

1 Introduction

Lorentz covariance is one of the structural cornerstones of physical theory. However a
point that is often overlooked is that such covariance is only dynamical: Lorentz transfor-
mations act on the motion of the system and not on its state. Experimentally it is time
and space that are primitive notions, not spacetime. This fact is mirrored in formalisms
such as axiomatic quantum field theory where one must choose an explicit representation
of the Poincaré group to formulate the theory. This implies in particular a choice of time
direction, that is separating time and space. This does not contradict relativity in space-
time since time and space as separate entities lead directly to dynamical covariance as we
will see later.

In this paper we consider the simple case of the electromagnetic field, showing how
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the search for a geometric representation of its evolution leads to the introduction of
spacetime models. It is important to note that these models are secondary constructions;
space and time being the primitive objects. Each “observer” uses a concrete Galilean
frame considered to be at rest to construct his own spacetime from space and time. In
the future we will call such constructions spacetime models. In this model he can then
use Lorentz transformations to map one motion into another, however to interpret the
equations that he finds he must retain the same spacetime model throughout. Finally, the
geometric properties of the spacetime models describe properties of the dynamics of the
system. For example, the Lorentz matrix is induced by the so-called phenomenological
relations for the electromagnetic field.

The rest of this paper is organised as follows. In section 2 we discuss the notion of
physical space and its corresponding manifold structure. The geometric representation
of the state of the electromagnetic field is then analysed in section 3. As space has no
orientation one must distinguish even forms representing intensive quantities and odd
forms representing extensive quantities. In section 4 we consider the physical time and the
nature of dynamical covariance. In section 5 we show how spacetime models are induced
from a geometric consideration of the dynamics of the electromagnetic field. One finds
that such models come in pairs, allowing for the introduction of antiparticles in a natural
way. The resulting geometric structure is then applied in section 6 to the decomposition
of the electromagnetic field. This decomposition gives a canonical splitting into transverse
and longitudinal potentials, hence allowing the possibility of a gauge-free formulation of
the quantum theory of the electromagnetic field.

2 Space

We study space S as the physical 3-dimensional vacuum space of everyday experience.
As we are interested in modelling a physical system of interest and not the entire universe
we will often consider a part of space, for example the interior of a superconducting cavity.
We are then interested in the properties of the system, that is what one can do with
certainty with the system [Aerts 1982, Piron 1990a]. Such properties are nothing more
than elements of reality in the sense of Einstein [Einstein et al. 1935]. The properties of
space are geometry and fields: as we will see in the following, a study of electromagnetic
fields gives much information on space, and in particular its geometric aspects.

It is important to note that a property is not simply linked to the measuring ap-
paratus: the electromagnetic field exists independently of whether or not we perform any
experiment. The distinction can be made clear by the following examples. A piece of chalk
has the property that it is breakable. However once we perform the experiment the chalk is
broken; in performing an experiment we disturb the properties of the entity. Similarly the
existence of a gravitational field corresponds to the assertion that if we were to introduce
matter it would fall. The field exists independently and in its own right so that the usual
notion of a test particle is redundant. '

Similarly the properties of space manifest the existence of space as a physical object.
The vacuum space is not the void. There is then no need to fill it with some ether to have
something and give reality to geometrical and mechanical properties. Every time an ether
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is introduced into physics one has problems which are only resolved once it is banished.
However the notion of ether remains firmly entrenched in the way of thinking of most
physicists. Einstein went so far as to say that all we can do is avoid the use of the word
[Einstein and Infeld 1947, p184]! For example, Maxwell introduced an ether to support his
electromagnetic waves which lead to well-known problems such as ether drag. Dirac then
quantised the photon as a harmonic oscillator, making the implicit assumption that there
was a substance which oscillates. This lead to infinities which can only be removed in a
rather ad hoc fashion. Finally Feynman adopted the Descartian view that interactions were
caused by the contact or exchange of particles. His sea of four-component photons strongly
resembles the sea of “particules ultramondaines” used by Le genevois Le Sage to explain
gravitation as early as 1818. Let us recall that this theory was finally abandonned only
when Poincaré calculated the unacceptable heating the earth would suffer from the impact
of these particles needed to explain gravity. It is interesting to compare this problem to
the renormalisation required in quantum field theories.

We also emphasise that the concepts of space and time are distinct. There are many
manifestations of this distinction. For example time always flows in the same direction
and only one instant of time is actual. In contrast all of space exists and is actual indepen-
dently of the time. As we will see in section 4, this fact does not interfere with relativity,
as covariance is a dynamical symmetry of the set of possible evolutions and not just a
symmetry of the actual state of the system.

To exhibit the properties of space we must build coordinate systems: the Cartesian
product R® which appears in our equations describes our chosen coordinates and not space
itself. As coordinates are understood as classical observables we can provide coordinate
functions f : § — R [Piron 1976, p12] which then possess a differential structure as defined
by Sikorski [1972]. We repeat that coordinates must be added to the vacuum space. In
the simplest cases, such as that considered here, such a differential structure defines a
differential manifold. In general one has a differential space, a class of structure which
includes manifolds with boundaries or singularities as special cases.

Defining a particular set of coordinates defines an associated orientation, however as
we do not select an a priori set of coordinates, the resulting manifold S is not oriented.
Note that the existence of interactions which do not preserve parity does not select an
orientation since parity is a dynamical symmetry. This is in sharp contrast to time, where
the coordinate representing the time must be taken to increase with the flow of time. An
important consequence of this fact is that when we construct a spacetime model by pasting
time and space together we end up with a pair of models. The two resulting 4-dimensional
models are homotopic in the sense that we can pass from one to the other by a continuous
family of infinitesimal transformations. We can then relate the laws of physics valid in one
model to the corresponding laws valid in the other by continuity. The generalised Galilei
principle then affirms that the laws of physics can be written with any such model. This
defines the CPT map and provides for the introduction of antiparticles [Barut et al. 1993].

The fact that we have no given orientation reinforces the distinction between differen-
tial forms which are odd or even as defined by G. de Rham. For example, the coefficients
of an even 1-form transform as a covector in the usual way, however the coefficients of an
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odd 1-form have an extra factor of the sign of the Jacobian of the transformation [de Rham
1984, p19]. To integrate an even form we must provide an oriented submanifold. The given
form with the orientation then provides an odd volume form on the submanifold, which
can be integrated.

One can clearly see the physical difference between the two types of form by consid-
ering a simple example. If one integrates a mass density over a volume one finds the mass
inside the volume. However this volume is not oriented and so a mass density is an odd
3-form. It is only in this way that one can define, for example, the mass of a non-orientable
surface such as a M6bius strip. On the other hand the integral of a force over a line gives
the work done in moving a particle along the line. The sign of this quantity depends on
the direction in which one follows the curve. Thus we integrate over an oriented curve: a
force is defined as an even 1-form. Such considerations will be used in the next section
to discuss the representation of the electromagnetic field in terms of differential forms on
space.

3 The Electromagnetic Field

In this section we consider the electromagnetic field at each instant of time. A geo-
metric consideration of the dynamics of this object will then lead to spacetime models in
section 5. The electromagnetic field is that property of space related to electromagnetic
phenomena. For example, the presence of an electromagnetic field is indicated by the
acceleration of a charged sphere or the induction of a current in a conducting ring. We
emphasise that the field is defined before the introduction of any such object, it being the
affirmation “If one were to introduce a charged object it would be accelerated”.

The electromagnetic field is described by the electric field E, the electric displacement
D, the magnetic field H and the magnetic lux B. The source is described by the charge
density p and the current J. For more details see for example R. S. Ingarden and A.
Jamiolkowski [1985, pp36-47]. We now show that the physical interpretation of these
objects allows us to describe them as time-dependent forms on space.

We start with the field sources. The integral of p over a volume is the charge contained
within it. The sign is related to the nature of the charges in the volume and not on any
orientation of it. Thus p is an odd 3-form. Further, the integral of J over the non-oriented

surface which bounds a volume is the flux of electric charge out of the volume. Hence J is
an odd 2-form. We will write J := (J, p).

We can make similar arguments for the other quantities defining the electromagnetic
field. The pair B := (E, B) of intensive objects gives the Lorentz force so that the electric
field and magnetic flux are even forms. On the other hand the pair H := (H,D) of
extensive objects couple to the source so that the magnetic field and electric displacement
are odd forms. Since B is an even form the field B;; defines an axial (orientation dependent)
vector. On the other hand, since D is an odd form the field D" defines a polar vector.
Hence [dv divD does not depend on any orientation and thereby defines the electric
charge. The divergence of D can also be defined as a de Rham current when the field is
not differentiable (see Weyl [1940, section 3]), as is the case for punctual sources. It is easy
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to see that, as for the source J, the two forms in each pair differ in degree by unity. It is
this fact that will allow us to define spacetime models by representing the dynamics of J,
B and H as differential forms on a suitable 4-manifold. The fields B and H are related
by the phenomenological relations. These express the fact that the field H acts on the
vacuum to generate the field B. It is this field that then acts on the particles.

The difference in character between the pairs of forms B and H is usually hidden
by the use of vector notation and the mistaken identification of H with B and D with E
in the vacuum. This assumes not only a choice of reference frame but also of canonical
orientation. In this case one can pass from even forms to odd forms by multiplying by the
orientation, a smooth odd function which takes values +1 [de Rham, 1984, p19]. In light
of the preceding discussion we must guard the distinction here.

4 Time

As in the case of the space §, to exhibit the properties of the time T' we must build
a parameter R and its 1-dimensional manifold structure. First let us reemphasise that
time and space are qualitatively different. Time flows in a single direction and so any time
coordinate we add should respect the orientation induced by the flow of time. This fact is
often confused by the fact that since 1983 the SI units for time and length measurements
have been linked; ¢ is now defined to be exactly 299 792 458 m/s. However different
physical phenomena are used to measure time and space. A time interval is measured by
counting the passage of a fixed number of oscillations of a travelling light wave, for instance
the second was defined in 1967 as the duration of 9 192 631 770 periods of the radiation
corresponding to the transition between the two hyperfine levels of the cesium-133 atom.
However a distance is measured by counting the number of troughs of a stationary wave
in a cavity.

Having defined the second as a unit one can then define a corresponding time coor-
dinate scale such as the International Atomic Time (TAI) which was defined in 1980 to
be a coordinate time scale defined at a geocentric datum line and having as its unit one
SI second as obtained on the geoid in rotation. It is also useful to define other coordinate
frames such as the heliocentric frame. These must then be related back to the TAI. To
do this one corrects for the effective gravitational fields acting on the ideal clock. One
can then calculate the time coordinate in the reference frame of interest [Guinot 1986].
Such corrections have a typical magnitude of several hundred nanoseconds and allow one
to synchronise clocks in a neighbourhood of the Earth to within a current accuracy of at
least 2ns/day.

One then observes that there is no dispersion of particles in time, a fact in conflict
with any fully covariant theory treating particles as points in spacetime [Piron 1990b]. It
is also for this reason that we consider space and time as separate objects. It is interesting
to note that the prescription of the International Bureau of Weights and Measures for
defining reference frames is exactly the same as the procedure we will introduce in the
next section to build spacetime models: one pastes a spatial coordinate system to the time
scale defined by some standard measurement. The theory developed here is thus more than
a mere abstraction, it closely parallels the actual practice of physicists in the laboratory.
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Given T, we can now discuss the structure of the set of possible field motions. This
will lead to the introduction of spacetime models. As discussed in the last section, the
state of the electromagnetic field is given by pairs of forms on space, both of the same type
and differing in degree by unity. Hence the dynamics of a given dynamical variable will
be described by a pair of infinitely differentiable maps from T into the set of either even
or odd forms on space, that is an element of one of the sets

Q75(S) := C°(T; A*1%(8)) @ C=(T; ARE(S)),

where A*+(S) and A¥=(S) are the sets of even and odd k-forms on space respectively. For
example the motion of B is an element of the set Q?[:+. The total set of possible motions
is then just the collection of all such sets:

QT(S) = @k,iﬂ;’i_(S),

where k runs from 0 to 4.

Now time has a natural orientation provided by the flow of time: given a 1-form on
T one integrates from the past to the future. This is important as one can then define
a coordinate ¢ which increases with the direction of the flow of time. This provides a
nowhere-vanishing even 1-form dt and corresponding vector field 8; which will be used in
the next section to define spacetime models. Essentially one splits the exterior algebra of
a 4-manifold M using 8;. The two pieces then represent the two pieces of Q7(S). This
will imply that the spacetime model M is diffeomorphic to T x S.

5 Spacetime Models

As discussed in the last section, the dynamics of the electromagnetic field can be

described by the bigraded algebra
Q7(S) i= @r £ 20E(S).

Here the bigrading refers to the indices k and +. We will show that Maxwell’s equations
induce a canonical manifold structure for Q7(S), a dynamical object. To do this we note
that Maxwell’s equations give a natural derivation d on 7(S). One can then represent
Q1 (S) by the set of differential forms on some 4-manifold M, unique up to diffeomorphism,
in such a way that d becomes the exterior derivative.

Explicitly, with B = (E,B), H = (H,D) and J = (J,p) we find that Maxwell’s
equations take the form dB = 0, dH = J if we define the linear operator

_|ds wdr
o[l v

Here dr is the derivative with respect to the time and ds is the application of the exterior
derivative on space pointwise in time. Explicitly, if we choose to write C®(T;A*(S)) as
AYT) ® A*¥(S) then dr = i5,d® 1
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The operator w is defined by wP = (—=1)*P for P € A¥*(S) and wP = (—1)""*P for
P € AF~(S), where n = 3 is the dimension of the space manifold. The difference between
the two is due to the fact that w is derived from the tensorial character of the object and
not directly from its degree as a form. For example, as we have seen an odd 3-form on
space is a scalar density. The trivial lifting of this operator to Q7(S5) takes the matrix

form
| —w 0
w=| o Ll

Since dr has degree 0 and ds degree 1, we can treat d = (dr,ds) as an operator
valued element of Q}‘"‘(S ). Multiplication of a form by this operator is equivalent to the
action of d if we define the graded product

o a'| laAwB' +B8A
HEEIR v

The graded product A and derivation d provide Q7(S) with the structure of a cochain
complex of degree 4, the map d being nilpotent as dr and ds commute. It is then natural
to ask whether this complex can be realised as the exterior algebra of some 4-manifold
M. This manifold would then provide a geometrical representation of the dynamics of the
system and can thus be called a spacetime model. That this can in fact be done, and in
only two ways, is given by the following theorem:

Theorem 5.1 There exists a cochain complex isomorphismo : A(M) — Qp(S) if and only
if there is a diffeomorphism y : Tx S — M. In this case there are two dual diffeomorphisms

Bt

Proof: We sketch a proof, discussing the physical ideas involved afterwards. Let p :
T xS — M be a diffeomorphism. Using the natural projections from T' x S to T and
S respectively we can construct continuous surjections 77 : M — T'"and ng : M — §
from the inverse diffeomorphism p~!. This allows us to define an even 1-form 7+ on M
by setting 7 = *w;dt. Note that by definition dry = +n%ddt = 0. There then exists a
unique vector field X4 such that 74 X4 =1 and X.75P = 0 for all P € A(S). Define the
operators Py = e(7+)ix, and Q1 = ix,e(7+), where e(r+) is the exterior product with
T+ and t¢x, is the interior product with X;. One can then show that P4 and Q4 are dual
projection operators on the exterior algebra A(M). We write A(M) = Vi (M) & Hi (M),
where Vi (M) = P:A(M) and Hy(M) = Q+A(M). A quick calculation shows that for all
k, the linear spaces HE(M) and V. T!(M) are isomorphic and the linear spaces HX (M)
and C°(T;A*(S)) are isomorphic. The cochain complexes A(M) and Qr(S) are then
isomorphic under the map

or : A(M) — Qp(S):am [w“u:giiia] :
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This is the only class of suitable manifolds as two manifolds with isomorphic cohomology
complexes are diffeomorphic, completing the proof. L

The splitting argument used in the proof of the above theorem has a physical origin.
The generalised Galilei principle of equivalence of reference frames asserts that the laws
of physics should be expressible in any coordinate system. In particular we can choose
to paste a right- or a left-handed orthogonal coordinate system for space to the time
coordinate defined with the orientation of the flow of time. These two possibilities are
nothing more than the two models given by the theorem and provide some justification

for the two spacetime approach of A. Connes in the context of non-commutative geometry
[Connes 1992].

The passage from one spacetime model to the other is achieved by the CPT map
[Barut et al. 1993]. Hence one model describes the dynamics of particles and the other the
dynamics of the corresponding antiparticles. Further the fact that dynamical covariance
arises naturally in the context of such models means that the separate existence of space
and time as physical entities is not in disagreement with relativity.

We stress that Qr(S) is a dynamical object. In the rest of this section we will use
further dynamical considerations to induce additional structure on the manifold derived
above. In particular, we will show how the phenomenological relations lead to the existence
of a pseudo-metric. Note that the phenomenological relations describe the equilibrium
response of space to electromagnetism; the current induces a field H which induces a field
B as a property of the vacuum space. This point of view, where geometry arises from
the dynamics of the system, is also discussed in terms of a different set of axioms by J.
Audretsch and C. Lammerzahl [1993] and A. L. L. Videira et al. [1985].

We proceed by showing that the phenomenological relations induce a natural pseudo-
Hodge map *. The easiest way to see this is to express the pair of even forms B = (E, B)
and the odd pair of forms H = (H,D) in the coordinates of a spacetime model. We write

B = 1B, dz* A dz”,
H = LH"e,,ndz? A da?.

As B is even, the coefficients B, are 2-covariant. However H is odd so that H#*" trans-
forms with a factor |||a||| and is 2-contravariant. Here ||a|| is the determinant of the
transformation a and the extra factor appears so that, when combined with the factor of
|||~ that comes from €,,,, the odd form H changes sign with the determinant of a just
as the volume form. Note that for Yang-Mills fields these two forms are taken to have the
same type. This leads to the existence of magnetic instead of electric monopoles, a very
unphysical conclusion.

As discussed in section 3, at equilibrium these two forms are connected by the phe-
nomenological relations, which then provide the conformal geometry of the spacetime
model [see for example Sternberg 1978]. In the vacuum the phenomenological relations
take the general coordinate form

1 A
B}"V = E’LPJ’PAHP ’
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where the pseudotensor p,,,» transforms with a factor |||e|||™" and is 4-covariant. We
will show that the phenomenological tensor w,.,x can be written in terms of a symmetric
matrix §,, also acting in the tangent space which turns out to be invariant under the Weyl
group. This matrix will allow us to write Maxwell’s equations in terms of the generalised
d’Alembertian of a canonical vector potential A, expliciting the quantum aspects of the
theory.

Experiment shows that in a freely falling orthogonal reference frame the phenomeno-
logical relations of interest take the coordinate form

where p is a positive constant and si_jl is a positive symmetric matrix which is then such
that at each point we can find a local coordinate system in which it is equal to a diagonal
matrix with single eigenvalue 9. The gravitational equivalence principle then asserts that
this local reference frame also diagonalises the mechanical inertia tensor. Far away from
material bodies we have by definition that po = 47.10~7 and eqpuo = ¢~ % in SI units.

In such a reference frame we have the following theorem:

Theorem 5.2 There exists a matrix §,,, unique up to a sign, such that pu,px = GupGur —
Gurgvp, in fact

-1 -1
€y Ko 0

A 1/2 —1

Guv = Ztnu'u/

Proof: The equations B;; = %(g,—,,g,-x - g,-,‘gj,,)HP* = puoHY and By; = —%(gupgu —
Gorgip) HP* = e ' H' give the following two sets of relations
(2) §iidj; — §3; = po for i # j
() Joodii — §3; = —€q '
and for the off-diagonal part
(4¢2) Gojgir — Gorgij = 0
(Z’U) goﬂgij — éo,'f]gj =0 fOI‘ 2 75 J
From (4ii) we have that §3.47, = §2,97;. If we eliminate the off-diagonal §,., using (i)
and (ii) we find that (Joodii + €5 " )(Giidkk — o) = (Goodkk + g *)(§iid;; — to). Expanding
and regrouping leads to (§i; — dxk)(e5 " 955 + rodoo) = 0. Hence either §;; = gik or §;; =

—eopoJoo. Thus at least three of the values a = §11, 8 = §22, v = g33 and & = —eopogoo
must be equal.

Suppose that a = 8 = 4 (the other cases being treated by permutation). Then from
() the three §7; with i # j must be equal and from (44%) so must the three §j;. Now, setting
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i = j in (ii2) we have §2,4%, = §2,47. However from (i) we see that g2, # g% since po does
not vanish and so §o; = 0. Since ¢, ' does not vanish either, from (i1) we find that §oo # 0.

Using (iv) we then have that §;; = 0 for : # j. Finally () and (:¢) give §;; = i,u,{lljz and
I = Sy 12 Tt is trivial to verify that this does indeed give a solution. Hence there

is a diagonal matrix §,,, unique up to a sign, such that p,,,0 = (§up9vx — Gurdv,)- m

The invariance properties of §,, can then be deduced from the following lemma:

Lemma 5.3 The matrix §,, at a point is invariant under a linear transformation in the
tangent space at this point if and only if p,,,» is left invariant.

Proof: According to a well-known theorem a linear transformation of the matrix §,, cannot
change its signature. Hence one cannot map §,, into —§,, and so p,,, is invariant if and
only if §,, is. m

One can easily see that §,, transforms with a factor |]|a“|_1/2 and is 2-covariant. It is
then invariant at a given point under the Weyl group, that is the Lorentz transforma-
tions and the dilations acting on the tangent space at this point. To get a corresponding
conformal group on the manifold itself one must integrate the corresponding Lie algebra.
This depends on the global topology of the manifold as one must consider tangent vectors,
which are defined over the whole manifold and not in the tangent space over one point.
For instance, it is well known that the usual special conformal transformations have a
singularity and so do not strictly speaking define a diffeomorphism of R*. The elements g
of the conformal group act as coordinate transformations g : z# + z'# and can be-inter-
preted physically in a passive way. They map each motion of the field into another via the
pullback g*.

In resumé we can then write By, = 3(§updur — Gurdue)H?* = GupdurH?*. This
relation is very suggestive of the definition of the Hodge map for a Riemannian metric
[de Rham 1984, p121] and we will write B = xH in the following. This relation can be
inverted to give H = B, where H*¥ = §#?3**B,, and §*” is the inverse matrix of §,,.
For B = dA we can then write [JA = J where [0 = dxd is the generalised d’Alembertian
acting on 1-forms. In local coordinates [(1** 4, = J* with (0*” = 8,§**§°%674 O,, where
6% is the antisymmetrised Kronecker symbol. Note that the generalised d’Alembertian

contains a factor of yg arising from the factor of ,u.tl,/ ? in Guv-

6 Decomposition of the Field

In this section we show that the fields introduced above allow a natural decomposition
into transverse and longitudinal parts. This is of much importance when we search for
a quantum theory of the photon, which must reduce to Maxwell’s equations for coherent
states. The transverse part of the field A is described by a de Rham current which can
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then be consistently treated as a quantum object. The longitudinal part of A is just a
function and is thus a superselection variable [Piron 1969, D’Emma 1980]. '

To build a spacetime model we must choose a coordinate system in space to paste
to the time coordinate defined with the orientation of time. Having chosen a particular
coordinate system we can use si_jl to define a Riemannian metric on the manifold S. This
provides us with a Hodge operator s and a coderivative ég on space S in the usual way.
If we consider a compact domain in space, such as the interior of a superconducting cavity,
then the Hodge-Kodaira-de Rham theorem allows us to decompose the electromagnetic
field in a canonical way.

The Hodge-Kodaira-de Rham theorem is based on the existence of a Green’s function
G for the generalised Laplacian Ag := dgés + ésds and a projector IIo onto the set of
harmonic forms. Note that a form is called harmonic if its generalised Laplacian vanishes.
Such forms are functions. Each form which is closed and coclosed is harmonic, the reverse
implication only holding in special cases such as when S is complete at infinity [de Rham
1984, p158). Explicitly we have the following result [de Rham 1984, p134]:

Lemma 6.1 Let S be a compact Riemann manifold. Then there exist unique linear
operators Ilp and G acting on the exterior algebra A(S) such that IIp od = doIla =0,
Maocéd=60lla =0,IIpn0% = =|=oILf_\,II'f’A =IIa,God=doG,Gobd=860G,Gox=x*0G,
Gollp =lIn0oG=0and GoA=AoG=1-1l4.

In the proof the compactness of S is required so that the vector space of harmonic forms
will be a finite-dimensional space of functions, allowing the algebraic construction of the
corresponding projector. For non-compact spaces we must limit ourselves to the decom-
position of square integrable forms, treating the problem by considering the limit of a
sequence of forms with compact support. This approach appears naturally in the con-
struction of the quantum mechanical interpretation of the theory, as the Hilbert space is
generated by completing the set of forms of compact support in exactly this way. It is
interesting to note that this idea is also equivalent to the usual approach of physicists when
they enclose a system in a box of ever increasing size.

On Qr(S) we can then define the linear operators

| 8s5dsG 0 | dsésG 0 (A 0
PL= 0 EsdsG], P“_[ 0 dsés |’ Fa = 0 Ia|’

Using the lemma one readily shows that P, P and Pa form a set of mutually orthogonal
projectors. Further one can define the operator

0 — 6sG 0
- 0 §sG | °

A quick calculation shows that df + 6d =1 — Pa and P, 68 = 6, where we use the fact that
dr commutes with dg and 65 and thus with G and I . If we are given an electromagnetic
field B we can define the corresponding potential A = §B and a direct computation shows
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that dA = B — PoB and P, A = A. Note that in general PA B = 0. This is the unique
such field as P, = 8dP, since 8P, = §P5 = 0. Hence we have a canonical description of
B in terms of the physical field A = (-V,A}).

The time-dependent 1-form A on S (which is a de Rham current in general) satisfies
0sA) = 0 and so is the transverse vector potential. The other component —V is a
function by construction. A is defined via its scalar product with a form. It is therefore
nonlocal and defines in a natural way a coherent state whose mean values satisfy Maxwell’s
equations. On the other hand —V possesses definite values which must be interpreted as
superselection variables. Hence when we build an interpretation of the field A it is only A
that is quantum. As there are only two linearly independent coexact 1-forms on space we
find that there are only two helicities as required. Further the transverse vector potential -
does not depend on any particular gauge. In this way one demonstrates the identity of solid
state photons quantised in the Coulomb gauge and the transverse photon quantised in the
Lorentz gauge. The transverse current J |, = *sJ + 8;0dV is responsible for the reversible
production of the coherent photon state whereas the longitudinal current is responsible for
the production of bremsstrahlung photons, a process which is irreversible and random.

7 Conclusion

We have shown how a geometric treatment of the dynamics of the electromagnetic field
leads to the introduction of pairs of spacetime models. The resulting geometric structure
can then be used to provide an intrinsic description of the transverse electromagnetic field,
allowing the possibility of a gauge-free formulation of quantum electrodynamics.
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