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Abstract. Solvable Natanzon potentials in nonrelativistic quantum mechanics are known to group
into two disjoint classes depending on whether the Schrödinger equation can be reduced to a hyper-

geometric or a confluent hypergeometric equation. All the potentials within each cla.ss are connected

via. point canonical transformations. We establish a connection between the two classes with appropriate

limiting procedures and redefinition of parameters, thereby inter-relating all known solvable

potentials.
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It is well known that the Natanzon potentials[l] are exactly solvable in nonrelativis-
tic quantum mechanics. These potentials are of two types corresponding to whether the
Schrödinger equation can be reduced to either a hypergeometric or a confluent hypergeo-
metric equation. Those that lead to a hypergeometric equation (confluent hypergeometric
equation) will be called type-I (type-II) potentials. It has been shown[2, 3, 4] that the members

within each class can be mapped into each other by point canonical transformations
(PCT); however, members of these two different classes cannot be connected by a PCT. Since

a hypergeometric differential equation reduces to a confluent hypergeometric one under
appropriate limits, it is reasonable to expect that the potentials of the above mentioned two
classes can also be connected by a similar procedure. The purpose of this note is to establish
a connection between specifically chosen potentials in each class. A convenient choice is the
so called shape invariant potentials[5] which form a distinguished class in the sense that their
spectra can be determined entirely by an algebraic procedure, akin to that of the harmonic
oscillator, without ever referring to the underlying differential equations. We provide a list
of mappings that connect shape invariant type-I potentials to type-II potentials. In Fig. 1,

we depict inter-relations among all known shape invariant potentials.

Before proceeding further, it is worth reviewing point canonical transformations in non-
relativistic quantum mechanics. We consider a time-independent Schrödinger equation
with a potential function V(a,;x) that depends upon several parameters a, (we will use
h 2m 1):

d?

¦— + V(at;x)-E(a;) 4ia,;x) 0. (0.1)

Under a point canonical transformation which replaces the independent variable x by z

(x f(z)) and transforms the wave function k/>(ai;a;) v (z) j/> (a,-; z)\, the Schrödinger
equation transforms into:

{?-£}g*{™«/M)-*Ml + (£-3}*-a <«>

Requiring the first derivative term to be absent gives v(z) CJf'(z). This then leads to
another Schrödinger equation with a new potential.

d2 f 1 /Sf"2 f"
-JSÏ + {/" [V(a„/(f)) - Eia.)] -r\[^-fT i>(a:;z)=Q. (0.3)

In general, this is not an eigenvalue equation, unless {/'2 (V(at; f(z)) — E(at))} has a term
independent of z, which will act like the energy term for the new Hamiltonian. This condition

constrains allowable choices for the function f(z). For a general potential V(a,: /(*)),
many choices for /(z) are still possible that would give rise to Schrödinger type eigenvalue
equations, and thus, if we have one solvable model, we can generate many others from it.

Ref.[3] contains a list of functions f(z) that relate all shape invariant potentials of type-I
(type-II) to the Scarf (harmonic oscillator) potential. In the following, we will present two
examples where suitable limits take one beyond class barriers, and connect type-I potentials



Gangopadhyaya, Panigrahi and Sukhatme 365

to those of type-II. In particular, we shall exhibit the limiting procedures that convert (a) the
Scarf potential into the harmonic oscillator potential; and (b) the generalized Pöschl-Teller
into either the Morse or the harmonic oscillator potentials. In Table I, we provide additional
examples of limiting procedures and redefinition of parameters.

Scarf potential to harmonic oscillator:
The Scarf potential, given by

Vscarf(x) -A2 + (A2 + B2 - Aa)sec2(ax) - B(2A - a)tan(ax)sec(ax)

goes into the three-dimensional harmonic oscillator potential (HO)

v„0 i„v+ffi±a-(,+î)„
after a shift of origin x —> (r — tjH, a redefinition of parameters A —» (j* + û^t^J ' ^
(o ~ ö^2^)' anc' tnen taking the limit a —> 0.

Generalized Pöschl-Teller potential to Morse:
The generalized Pöschl-Teller potential (GPT)

VaPT(r) A2 + (A2 + B2 + Aa) cosech2 (ar + ß) - B(2A + a )cosech (or + /J)coth (or + ii)

can be converted into two shape invariant potentials of type-II by taking appropriate limits.

One obtains the Morse potential when B —* \Be13, and one takes the limit ß —> oo.

Alternatively, one gets the three dimensional harmonic oscillator potential when[6]

'-(S-WM:^)— °^°-
Here, it is worth noting that we have given straightforward routes for going from type-

I to type-II potentials. Type-] potentials give rise to hypergeometric differential equation
which has three regular singular points. Two of them merge in the limiting procedures
stated above, and as expected one gets a confluent hypergeometric equation. The reverse
procedure of going from type-II to type-I is not well defined. We also provide a figure with
information on different limiting procedures and point canonical transformations that take

type-I potentials among each other or reduce them to type-II potentials.

One of us (PKP) would like to thank the Physics Department of the University of Illinois
for warm hospitality, where this work began. This work was supported in part by the
U.S. Department of Energy under grant number DE-FG02-S4ER40173 and by the National
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Figure 1.

Limiting procedures and point canonical transformations that take

type-I potentials among each other or reduce them to type-II potentials.
Potentials are same as those in Ref.[3].
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Type-I Potential Type-II Potential Limits k. Redef.
of Parameters

Generalized Pöschl-Teller
V (r) - A + \-mh,(ar+0)'

B(2A+a)coth(ar+ß)
sinh(ar+/3)

—ß < ar < CO

£n A2 - (A - na)2

A<B

Harmonic Oscillator

V(r) lwV + 4£il-(/+!)u,
0 < r < oo, 7?„ 2nw

^-» [5 + « TO]
a->0, /3->0

Morse Potential
V(x) A2 + 732e-2ai

-2B{A+^)e-ax
—oo < a; < co

£n A2 - (A - na)2

A-, A

r —t x

/3-> oo

Scarf

v(x)= a2 + <*'+f;-?°>
V i ' cos2 (ox)

B(2,4-a)tan(ax)
cos(ax)

-£<*<£> A>B,
En (A + na)2 - A2

Harmonic Oscillator
V(r) ìwV + <i£ì2_ (/ + §)w

0 < r < co

7?„ 2nw

*-[* + «(¥)]

a->0
Scarf (Hyperbolic)
T/7r\ - 42 i (-A2+B2-Aa)V{X) A + cosh5(QI+^)

B(2/t+a)tanh(a:r+/?)
"*" cosh(ar+/3)

-OO < X < OO, A > 0

£„ A2 - (A - 7ia)2

Morse Potential
V(x) A2 + B2e-2ax

-25(A+f)e-ar
—oo < x < oo

£n A2 - (A - na)2

A-> A

/? —> oo

Eckart
V(r) A2 + f£ - 2Scoth ar
+A(A — a)cosech2ar
0 < r < oo, B > A2, A > 0

En A2 - (A + na)2
1

B2 B2

Coulomb
!/(,-)= f+üi+U

1

e"
A-* a(/ + l)
73 -* f e2

a-» 0

1

4(/+l)2
0 < r < co

F - £* C » J ÌC'n - 4 \(i+ l)2 (n+/+l)2T1

>»2 (4+ncr)2

Rosen-Morse I
V(x) -A2 + % + 2Btan ax
+A(A — a)sec2aa:

En -A2 + (A + na)2
1

B2 B2

Coulomb
V(r)= ;2 + ^ii

1
el

A-> a(/ + 1)

B^%e2
* - r - é
a-* 0

1

4((+l)2
0 < r < co

En - 4 l((+l)2 (n+M-1)2/
1

>12 (A+naf

Table 1.

Limiting procedures and redefinition of parameters
that relate type-I to type-II potentials.
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