Zeitschrift: Helvetica Physica Acta

Band: 67 (1994)

Heft: 3

Artikel: Lee-Yang measures

Autor: Salmhofer, Manfred

DOl: https://doi.org/10.5169/seals-116648

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 28.11.2025

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-116648
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Helv Phys Acta 0018-0238/94/030257-32$1.50+0.20/0
Vol. 67 (1994) (c) 1994 Birkhduser Verlag, Basel

Lee—Yang Measures

By Manfred Salmhofer*

Physics Department, Princeton University
Princeton, NJ 08544, USA

(20,IV.1994)

Dedicated to the memory of Ansgar Schnizer
who was such a wonderful friend

Abstract The relation between the zeros of partition functions and the coefficients of low—density
expansions, and the convergence properties of the latter, are used to show the existence of the
limiting distribution of zeros in the thermodynamic limit. The limiting set of zeros can be identified
as the support of a measure whose moments are the coefficients of the low—density expansion. The
measure is not uniquely defined by these moments. Applications include a general class of lattice
models with fermions.

1 Motivation

The importance of the behaviour of the zeros of the finite volume partition function as the
volume tends to infinity for the theory of phase transitions was revealed in the pioneering
work of Lee and Yang [LY]. The Lee-Yang theorem states that the partition function of
the nearest—neighbour Ising model, which for a system on a finite lattice is a polynomial
in the fugacity 2, can only have zeros for |z| = 1, and thereby rules out nonanalyticities in
the free energy density in the thermodynamic limit for |z| # 1. Analogous statements have
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been shown for more general models [AR], and the use of this type of theorems is in general
to rule out phase transitions in regions which remain free of zeros in the thermodynamic
limit.

A natural question is about the converse of this statement, namely what happens
in those regions of the complex plane where the zeros are, and how the zeros cause the
phase transitions and determine their properties. The idea is that phase transitions are
at those points where the zeros pinch the real axis in the thermodynamic limit [LY], and
furthermore that also accumulation points of the zeros in the complex plane away from the
real axis may influence the behaviour of correlations. One of the motivations for this is the
very simple relationship between the zeros and the free energy density in finite volume. In
order to see how this nice relationship between the zeros and the free energy density carries
over to the thermodynamic limit, it is necessary to specify in which sense the set of zeros
has a thermodynamic limit. The formula for the free energy in finite volume indicates that
only points where the zeros accumulate in this limit are of importance, that is, isolated
zeros do not influence thermodynamic behaviour. One problem which one might encounter
when thinking in terms of accumulation points is that the sets of zeros of the partition
functions of two different volumes are not parts of one sequence of complex numbers, but
may not have any points at all in common, so that one has to deal with the convergence of
the entire sets. The natural way to do this is to look at the measures concentrated on the
sets of zeros because the formulas for the free energy density and its derivatives are also
very simple in terms of these measures and suggest that the correct — and also the most
useful — definition of the set of zeros in the thermodynamic limit is that of the support of
a measure.

This measure has been constructed for the Ising model [LY ,Be], using the relationship
between the zeros and the coefficients of the fugacity (or low—density) expansion. In that
particular case, one can use the Lee-Yang theorem to conclude that the support of the
measure must be a subset of the unit circle. It then follows that the coefficients of the
fugacity expansion are Fourier coefficients of this measure, and the existence of the measure
can be proven from the knowledge of these coefficients. Moreover, standard theorems
about the Fourier transformation imply that the measure is determined uniquely by the
series expansion coefficients. Further physical properties of the measure have been derived
in approximations using the finite number of expansion coefficients which are available in
practice [Be].

In this paper I show under much weaker assumptions that a limiting measure for the
zeros exists, and that it can be identified as the support of a measure £ from which the free
energy density can be obtained by a simple formula. The main idea of this treatment is
simple: it is well-known that in finite volume the coefficients of the low—density expansion
are simple functions of the zeros, and that therefore in finite volume the zeros determine
the expansion coefficients and vice versa. But for virtually any system of interest, it is also
well-known from the theory of cluster expansions [Se] that the low—density expansion has
a positive radius of convergence, and that its coefficients converge to the infinite—volume
ones in the thermodynamic limit. Since these convergence properties pose a restriction on
the zeros, it suggests itself to try to recover the limiting distribution of zeros from these
coefficients. In fact, given the existence of L, the latter simply turn out to be moments
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of L. Once these observations are made, it is not difficult to construct limiting measures
from these moments.

This construction is based only on properties of the expansion coefficients and thus
works without any additional input about the zeros like the Lee—Yang theorem which was
used in the Ising model case. It turns out, however, that the information contained in the
infinite—volume series expansion coefficients alone is not sufficient to guarantee uniqueness,
but that one can construct measures which reproduce them as moments but do not reveal
anything about the actual limiting behaviour of the zeros. The reason for this is that the
expansion coefficients are not all the moments of the measure but only the “holomorphic”
ones. There are other moments which are not determined by the low—density expansion
and therefore the latter is in general not sufficient to show that they converge for a given
sequence of volumes tending to infinity. However, one can use a compactness argument to
show that they have a thermodynamic limit for subsequences. For a given subsequence, the
limiting measure is then uniquely determined, but since different sequences may produce
different limits, uniqueness cannot be shown. This is only possible with further input,
either by determination of the just mentioned additional moments, or by information about
the support of the measure, as in the Ising model.

The measures defined by the zeros in finite volume converge to the thus constructed
limiting measure in the sense that convergence holds when both sides are applied to con-
tinuous functions. To obtain the free energy density, not only continuous functions, but
logarithms have to be integrated, and even more singular functions for its derivatives. I
can show the convergence of these finite-volume quantities to those obtained from the
limiting measure in regions where the zeros do not accumulate. The investigation of this
point reveals a more subtle problem: the points where the zeros accumulate “so strongly”
that one can see this behaviour when testing the measure with a continuous function con-
stitute the support of the infinite-volume measure, however, there may be regions where
accumulation is not sufficient for this, but still strong enough to prevent convergence of
the derivative of the finite volume free energy density to the analytic continuation defined
by the measure. It will also require further information to rule out — or learn more about
— this kind of behaviour.

Wahile stronger assumptions may give stronger results, the merit of the method used
here is that the limiting measures are shown to exist and thus can be used under rather
weak assumptions and without any detailed knowledge. Moreover, the supports of these
measures contain only points where the zeros really accumulate, so that no artificial sin-
gularities are introduced by this, admittedly indirect, reconstruction of the measure from
its moments. It should also be noted that the idea to do this is not that far—fetched:
the resummation techniques used to predict critical behaviour from series expansions also
aim at determining the limiting behaviour of the zeros, from the (for practical studies,
truncated) series expansion. This observation also shows that the uniqueness problem
mentioned above has a very practical aspect: its solution is equivalent to finding a resum-
mation method which is known to converge to the thermodynamic function associated to
the limiting measure of the zeros.

As an application I show that a simple inequality for the lowest coefficient of the
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polynomial implies that the support of the measure must contain points outside of a certain
disk. This restricts the region where the low—density expansion converges or reproduces
the free energy density. In case there is no phase transition on the real axis, I derive a
sum rule which links the integrated susceptibility to the distance of the support of the
measure to the real axis. Finally, I show that a class of lattice fermionic models which
comprises those of use in lattice gauge theory satisfy the assumptions needed to construct
the measure. The low—density expansion is in that case the hopping parameter expansion,
and its resummations play a central role in the analysis of these systems. A technical
innovation is a norm on Grassmann algebras which makes activity estimates for cluster
expansions very simple,

Acknowledgement: I thank Christian Lang and Helmut Gausterer for a collaboration
which motivated this work. It is my pleasure to thank Erhard Seiler and Richard Froese
for some very helpful discussions. Part of this work was done while I was a visitor at the
Mathematics Department of the University of British Columbia in Vancouver. Financial
support by NSERC during that time and support by an Otto—Hahn fellowship from the
Max-Planck—Gesellschaft at present is gratefully acknowledged.

2 Construction

Let d > 1, and assume a statistical mechanical system, that is an assignment (A, M) —
Zx(M), where A runs through the finite subsets of Z¢ and M € C, to be given, such that
the partition function in volume A is a polynomial in M of degree a multiple of |A|:

Assumption 1: There is a, € IN such that for all A C Z¢

Za(M) = 3 pa(A)M" (2.1)

with p,(A) € C and L = a,|A|.

Examples for systems of that kind are the Ising model, with M the fugacity, or models
of lattice gauge theory with fermions, with M the mass parameter (or monomer activity),
which will be considered below. The thermodynamic limit , written briefly as A — oo,
is to be understood as limit of a sequence of finite volumes (Aj),cy in the sense that for
every arbitrary large finite volume A, C Z¢ there is a K € IN such that for all & > K,
Ar D A,. In the setting here, convergence in the sense of Van Hove is not needed.

Introducing the zeros A; € C of the partition function, Z, can be factorized as

L
Za(M) = pr(A) [T - N). (22)
i=1
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The highest coefficient of the polynomial will not play a role and it can always be divided
out, so without loss, pr(A) = 1 (it should be noted, however, that in applications where
there is more than one coupling, p;, may depend on the other couplings). The free energy
density and its derivative can be expressed in terms of the zeros as

M) = "~ log Z4 (M) = a] 2 Zlog(M A:) (2-3)
and
afA -
Xa(M) = = Z (2.4)
Taking out the highest power of M as well and expar_xding in powers of 1/M,
1
fA(M) —aylog =— ) —a,(A)M™™", (2.5)

where the right side is to be understood for the moment as a formal power series in M.
From (2.3), get

L
an(A) = ﬁ doAT (2.6)
i=1
and from (2.4), with a,(A) = a,,
=Y a.(A)M (2.7)
n=0

The simple relation (2.6) between the coefficients of the low—density expansion and the
zeros of Z, is particularly useful if convergence of the former is known to hold.

Assumption 2:

i) (Convergence of the coefficients) There is a sequence (a,)nen such that for any se-
quence of A tending to infinity, a,,(A) — a, as A — oo.

ii) (Uniform convergence of the series) There is M, > 0 and A, C Z% (|A,| < o) such
that for all A with A D A, and all M with |M| > M, the expansion (2.7) converges
absolutely.

A system (A,M) — Zx(M) which fulfills Assumptions 1 and 2 is called a Lee-Yang
system. If nothing else is stated, it is assumed that the given system is a Lee—Yang system
and that A D A,. The constant M, could be put to one by suitable rescaling of M, but it
does not hurt to keep it.
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~ Whenever a convergent cluster expansion exists at large M, Assumption 2 holds (see
also Section 5).

Remark: For a Lee-Yang system (A, M) — Z, (M)

1. the limiting free energy density

f(M) = lim f)(M) (2.8)

A—oo

exists, f(M) — a,logM is analytic on {M € C : |[M| > M,}, and given by the
convergent expansion

f(M) —a,logM ==Y %M‘", (2.9)
n>1

in particular, f is independent of the sequence of volumes that tended to infinity.

2. The zeros of Z, satisfy
|Ai] < M,. (2.10)

Proof: 1. Vitali’s theorem, applied to (fy),. 2. Since f; is bounded on {M € C: |M| >
M,, Zx(M) = exp(|A|fa(M) is nonzero. |

Notation: For ¢ > 0 and 2, € C, call D(2,) = {z € C: |z — 2| < ¢}, and D.(z,)={z€
C:lz— 2| <e}. If z, =0, abbreviate D.(0) = D,, similarly for D. For m,n € IN,, the
monomials pp,, : Dy, — C are defined as

Dol B) 1= EP2%, (2.11)

The space of continuous functions C = {f : Dy, — € : f continuous } is a Banach space
with || - ||leo, and pun € C. The following subspaces of C will be needed in what follows:
A={feC: flp, is analytic }, H ={Re f: f € A}, P = span {pmn : m,n € N}, @ =
span {pon : n € Ny}, Q* = span {p,, : n € N,}, R = {Re q: ¢ € @}. Under completion
with respect to || - ||, P =C, @ = A, R = H.

Define Ny = {z € C: Zx(z) = 0}, ua()) as the multiplicity of A as a zero of Z,, i.e.
how often it appears in the sequence (A,,...Ar) and a measure

1
La= > maNEP (212)
| |4\€NA
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where 65\2) is the two—dimensional delta—distribution concentrated at A € € = IR*. Then

for all n € IN,
['A(Pon) = an(A)
LA(pno) = a'n(A)a

so the expansion coefficients are moments of £4. Moreover, for all M ¢ Nj, (2.3) and
(2.4) can be restated as

(2.13)

(M) = /dLA(z) log(M — z) (2.14)

and

1
X\(M) = f dCA(2) (2.15)
M
and the convergence of the expansions in 1/M of these integrals (uniformly in A) can be
traced to the fact that due to the second point in the above remark, the support of L, is
a subset of D)y, for all A.

Remark: The infinite-volume measure will be defined using the limits of the a,(A),
therefore it is important to note that the a,(A) are only a part of the moments

bun (&) = L (Pn) = [7 2 Z A" (2.16)

of £,. This is the source of the non—uniqueness mentioned in the Motivation. However,
in finite volume the b,,,(A) can easily be obtained from the a,(A) because L, is a discrete
measure: given the a,(A), the coefficients of the polynomial for Z, are reconstructed from

Zy = exp (|A|fa), i-e. explicitly

|A| : en(4)
Pa(A) = Z > H i (2.17)

=1 my,..,mp21 =1
my+..+my=n

and it then suffices to note that the zeros of a polynomial are determined if its coefficients
are known.

If |X;| = M, for all i, as is the case in the Ising model, this problem is absent because
then all the moments b,,,(A) are multiples of the a,(A) or their complex conjugates.

Theorem 1 Let (A,M) — Z,(M) be a Lee-Yang system, then there is a unique
bounded IR-linear functional £ : H — R such that for all h € H, L,(h) — L(h) as A — oco.

Proof: Define L : Q@ + Q* — C by L(pon) = @n, L(Pno) = Gn, and the requirement that it
be linear. For r € R, there is ¢ € Q such that r = ¢+ @, so L(r) = (L(q) + £(7)) € R, that
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N
is, the restriction to R is a real-valued linear functional. Writing 7 = >_ (caPon + €nPno),
n=0
for all A
N
(L= La)(T) 2 leal - lan — an(A)], (2.18)
n=0

and Lp(r) — L(r) for any sequence of A that tends to infinity. Since by (2.12) L, is
a positive functional for all A, the same is true for the limit £, so for a ¢ € R which
is pointwise nonnegative, £(q) > 0. The remaining part of the argument is now almost
standard [RS1]: since R is a space of polynomials, 1 € R, and

OS ”p”oo_pER

(2.19)
0< |plo +PER,
so the linearity and positivity of £ imply that
1£(p)| < lIpllooL(1). (2:20)

L(1) = a,, so L is a bounded linear functional on R with norm ||£| = a,. By the Hahn-
Banach theorem, there is a unique (since R = ) extension to a functional £: H — R
with the same norm. Finally, since R is dense in H and the norms of £ and £, are bounded
by a,, convergence L, (h) — L(h) holds for all h € H. |

The method of proof required no knowledge of the n—dependence of the convergence
a,(A) — ay,.

Corollary: There is a measure p on S! such that for all A € H,

L(h) = / dp(8)h(M,e®). (2.21)
For all M with |M| > M,

Proof: The Poisson integral [Ho| establishes an isomorphism H — C(S',R) between
h € 'H and its boundary values, which are continuous functions on the circle. So £ induces
a bounded linear functional on the continuous functions on S*, which by the Riesz—Markov



Salmhofer 265

theorem [RS1] is a measure. If |M| > M,, the integral on the right side of (2.22) can be
expanded in powers of 1/M, and the coefficients are

2
G = M, ] dp(B)e™ = L(ry) +iL(sn), (2.23)
0
where r, = Re (2") and s, = Im (2") are in H. By definition of £, @, = a,. |

While very simple, Theorem 1 and the Corollary are only of limited use because they
do not reveal anything about the actual location of the zeros, as is clear from the proof
of the Corollary: harmonic functions are determined by their boundary values. Another
way to produce a measure on the disk instead of its boundary would be, of course, to just
use the Hahn-Banach theorem to extend L, as defined on R, to all of C. Again, not only
uniqueness, but also any connection to the finite volume measures is lost in this procedure.
While uniqueness cannot be shown here, the connection to the finite-volume measures
can be maintained by using a different argument, which requires knowledge about the
additional moments b,,, for both n and m nonzero.

Lemma 1: If the zeros stay in Dy, (as is the case for Lee-Yang systems), any sequence
A — oo has subsequences S = (Ax),cn such that

lim £4, (pnn) = Jlim bina(Ag) = BG) (2.24)

exists for all m,n € IN,.

Proof: A compactness argument, which can be implemented as follows: The power series

A(Z,y) = Y bua(A)z™y (2.25)

m,n>0

converges absolutely and uniformly for |z| < M,™! and |y| < M,™!, so (ga), is a normal
family of functions on D, Moz. Therefore any sequence of A which tends to infinity has a
subsequence (Ag ). for which (g4, ), o converges uniformly on compact subsets of D, /MDZ
Therefore the limit function is analytic, and it is easy to see from the uniform convergence

that the limits of the b,,(Ax) exist and are given by the expansion coefficients of the
limiting function. u

Theorem 2: Let (A, M) — Z, (M) be a Lee—Yang system, and let a sequence of A tending
to infinity be given.
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1. For any given subsequence S = (A),.y for which the limit ) exists, there is a

unique measure £ supported in Dy, such that b,(f,)t g C(S)(pm,,). Ly, — L5) as a
measure, that is, for all ¢ € C, L4, (¢) = L5)(p) as n — co.

2. For all such subsequences S, the formula

XS M) = f dL®)(z) Ml (2.26)

il

defines a continuation of X to C\ supp £(), and the so defined function X() is
analytic on C\ supp £,

3. Any two measures associated to different subsequences coincide on the analytic and
harmonic functions.

4. X®) = X&) on the connected component C, of C \ ( supp £5U supp L) which
contains {M : |M| > M,}.

Proof: 1.The construction is similar to the one in the proof of Theorem 1, only that now
L) is defined on P by LS (pyn) = bS) and the requirement of linearity. Again, since
L, (p) = LO)(p) for all p € P, L) is a positive linear functional on P. Since 1 € P,
,C(S} is bounded and thus can be extended uniquely to a bounded linear form on C = P.
By the Riesz—Markov-Theorem, £() is a measure supported in D). Convergence of
La, () — LE)(p) for ¢ € C holds because the norms of £, and L&) are bounded by a,
and convergence holds on P.

2. supp L) is compact, therefore for any M ¢ supp £, there is a neighbourhood Uy of
L) such that the distance of M to Uy is positive. Therefore the map z — ®p(2) =
is continuous in z for all z € U, and the integral is well-defined. Also, ®)s is analytic at M
for all z € Uy, so the integral is analytic as well. It is a continuation of X by construction.

N N
3. Let f € Q, f(2) = Y. faz", then LOVf) = 3 faa, = L)(F) because the limit of
n=0 n=0

the an(A) is independent of the chosen sequence. Since £(5) and L) are continuous and
Q = A, they agree on .A. A similar argument works for R and H.

4. For all |M| > M,, X®)(M) and X)(M) agree by (3) because ®(z) is analytic on
Dyy,, so they must be equal on C, by the identity theorem. |

Remark: There may be many subsequences with different limits for the b, (A), but for a
given subsequence there is no arbitrariness in the measure. If convergence of the b,,,(A) to
a limit which is independent of the chosen sequence is known by some different argument,
the limiting measure is unique. This is true if the b,,, are determined by the a,, e.g. if
all zeros are on the unit circle (as in the case of the nearest—neighbour Ising model), or a
conformal image of it. If supp £ is not known, the b,,, are not determined by the a,,.

To see the relation of this measure to the behaviour of the zeros in the thermodynamic
limit, it is useful to distinguish two kinds of accumulation points.
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Definition: For a finite set A C Z%, ¢ >0 and M € C, let

Ta(e, M) = Y pa(A) = ALA(D:(M)). (2.27)
AENAND, (M)

Let S = (Ax)ien be a sequence tending to infinity. M € C is called an accumulation point

of the zeros for S if for all € > 0, limsup T}, (¢, M) = oo. The set of accumulation points
k—oo0

is denoted by A. An accumulation point M is called weak if there is £, > 0 such that
|A1_,¢|TM (€0y M) — 0 as k — oo, and strong otherwise. M is called an isolated limit point of

zeros if it is not an accumulation point, but if for all ¢ > 0 the set {k € IN : T}, (e, M) > 0}
is infinite.

Remark: A is compact. For any £ > 0, the number of isolated limit points in C \ {z :
d(z,A) < €} is finite.

Theorem 3: Let (A, M) — Z,(M) be a Lee—Yang system, S = (Ar),n be a sequence
tending to infinity for which the b,,, converge, and M € C. Then

1. M is a strong accumulation point for S if and only if M € supp L.

2. If M neither an accumulation point of zeros nor an isolated limit point of zeros,
Xp, (M) — XO)(M) as k — oo.

Proof: 1. Call the set of all strong accumulation points £. Let M € supp £, but
assume that M ¢ ¥. Then there is &, > 0 such that r,\quAk (€0, M) — 0 as k — oo, and

thus for any continuous function ¢ with ¢ |g p,n="0,

1
I'CAk (‘p)l < ”‘p”oomTAk(EO’M) ~4 (228)

as k — oo. Since L4, (p) — L) (p) as k — oo, this implies that £5)(p) = 0 for all
continuous ¢ supported in D, (M), which contradicts M € supp £&). So, supp L) C X.
Now assume that there exists M € £\ supp £). Since supp L) is compact, there is
e > 0 such that D.(M) N supp £°) = @, and a continuous function ¢ : C — [0,1] such
that ¢ |p, Ln=1and ¢ |¢\De( m= 0. Consequently, LE) (o) = 0. But since M € I, there
is ¢ > 0 and a subsequence (Ak?’)p cnSuch that for all p € IN, IT\LTTAkp (e/2,M) > c., and
s0 La,,(¢) = c. for all p, hence ligigf L, () = ce. Since kl_1_’1:;10 L, () exists, this implies

klim L, () > c. which again contradicts convergence to £5)(p).

2. By assumption, M ¢ supp L) by (1), and there are K > 0 and ¢ > 0 such that for all
k > K, Nj, N Do (M) = 0. Again, since supp £ is compact, ¢ can be chosen so small
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that also Dy, (M) N supp £&) = 0. Now take a continuous function ¢ : C — [0,1] such
that ¢ |m= 0 and ¢ |¢yp,, ()= 1, and define

1
M-z

Wy (2) = 9(2) (2.29)
Then ¥ps(z) = 1/(M — 2) on supp £, and so L&) (¥y,) = XS (M). Also, by construc-
tion, La,(¥p) = X4, (M), and ¥y is continuous on C. Therefore, by Theorem 2,

Xp (M) =Lp, (Ty) — LOT)=XS(M) N (2.30)

k—oo

Definition: A limiting measure £) associated to a sequence S for which by, (A) converges
is called a Lee—Yang—measure of the system (A, M) — Zx(M).

3 Discussion

The isolated limit points have no influence on the thermodynamics of the system: although
the finite—volume functions X, (M) may have poles at or around these points, the sum of
their residues vanishes as A — co because there is only a finite number of such poles in a
given neighbourhood of the isolated limiting point. Since the set can have accumulation
points (in the usual sense) only in A, X (5) defines the unique analytic continuation to these
points.

The support of the infinite—volume measure £{5) consists of all the strong accumula-
tion points of zeros. Thus, while the weak accumulation points escape the support of the
measure, no artificial singularities are generated, and the non—analyticities of the thermo-
dynamic functions in supp £ are really caused by the accumulation of zeros. Isolated
weak accumulation points do not influence the thermodynamics of the system because
convergence of the finite—volume functions to the ones defined by the measure holds arbi-
trarily closely to any of these points and so there cannot be a singularity there. However,
as the following example shows, weak accumulation points need not be isolated, but can
fill regions, and these regions need not contain any strong accumulation points, so they
need not intersect with supp £(5),

Example 1: Let a € (0,1), denote Q = [L*], where [z] = max{n € Z : n < z}, and
L .
define Z,(M) = [[(M — X;), where L = |A|, as follows: for i € {1,...,Q}, A = 6, and

i=1
forie{Q@+1,....,.L}, ;=2 Ifz€[0,1]] and 0 < e < 1, [Qe] — 1 < Ti(e, M) < [2Q¢], so
every z € [0, 1] is a weak accumulation point, and 2 is the only strong one. This defines a
Lee-Yang-system, and X®)(M) = z2=. But if z € [0,1]NQ, = = m/n, then z is a zero of
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Zp, for every L for which Q is a multiple of n. Thus, there are sequences tending to infinity
such that X,(z) is undefined for all A in the sequence, and thus there is no convergence
on [0,1] N Q for these sequences.

It is easy to construct similar examples where entire disks are filled with weak accu-
mulation points, and therefore, under the general assumptions stated here, the problem of
non-convergence in regions that are away from supp £, but contain weak accumulation
points, cannot be ruled out. This point should be illuminated by studies of specific models.
However, the above results show that what goes on in any region W of weak accumu-
lation points has no influence on convergence or thermodynamic behaviour at any point
M € C\ W (this is, after all, the reason why the weak accumulation points are not in the
support of the measure). Therefore, only W NIR can be of interest for thermodynamics. If
W NR consists of isolated points only, the presence of weak accumulation points will only
spoil the convergence of the finite-volume functions to the limiting ones at these points
and thus be inessential.

By adapting the proof of the Corollary to Theorem 1, one can construct different
measures that have the same expansion coefficients a,: instead of taking a circle of radius
M, as support of the measure in the Corollary, one can repeat the construction for any
curve which surrounds the zeros in all finite volumes and is such that the corresponding
Poisson integral kernel is defined.

The following simple example illustrates that £ cannot be determined from the series
expansion for X (M) alone.

Example 2: Call |[A| = L and set Z,(M) = M" + M,L. Then, in the infinite-volume
limit,

2r
1 do L |M|>M
X(M)=— | —————— =< M . 3.1
(M) 2wa—Mle‘3 {0 |M| < M, L)
0

Clearly, for any M, < M,, the functions are the same on {|M| > M,}, and from a, = &, ,
one cannot distinguish between measures supported on circles of different radius. Even a 6~
function at zero gives the same a,,. Knowledge of the b,,, = M, 2 8,mn allows to distinguish
between different radii, but the a, do not determine M,.

The uniqueness problem can be summarized as follows. Consider the statements

(a) all a, are known

(b) all by, are known

(c) the support of £ is known to be on the unit circle
(d) £ can be determined uniquely.

Then

(i) (a) does not imply (d),as the above discussion shows.

(ii) (b) implies (d) by Theorem 2 (recall that a,, = byy,); uniqueness follows from the
Stone-Weierstrafl theorem P = C.

(iii) (a) and (c) together imply (d).
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As said before, (c) holds for the Ising model. (iii) extends to a case where supp L is
part of a suitable curve. /

Statement (i) is in accordance with theorems about the convergence of Padé approx-
imants to the function they approximate because these theorems require some specific
assumptions about the analytical structure of the function, e.g. that it is meromorphic in
a certain disk, or a Herglotz function [Ba]. The analytic structure of the function X (M)
considered here is determined by £ (see (2.26)), so further assumptions about its analytic
structure are equivalent to further assumptions about £ or at least its support.

The weak accumulation points cannot be detected by any resummation method based
on the series expansion coefficients because the latter are not changed by the presence or
absence of these points. If the zeros are all on some curve which intersects the real axis
only in a set of isolated points, as is the case in the Ising model, W N R is contained in
this set and, by the above remarks, the weak accumulation points are then, if present at
all, inessential for thermodynamics, as well as for resummation studies.

In general, the support of £ need not be a curve and therefore a construction along
the lines of (iii) may not be possible. However, (ii) can still be applied if the b,,, can be
determined. It is therefore an important open problem to decide whether the b,,, can be
obtained from a similar analysis of a statistical mechanical system with some additional
interactions, or more complicated observables.

4 Application

In applications one often knows the free energy density fy at M = 0, or at least a lower
bound for it [Sa,GLS]. The partition function at M = 0 is the product of the zeros A;,
so a lower bound for it implies that there must be A; outside a certain disk around zero.
Since the function X, (M) has poles at every zero, this in turn implies an upper bound on
the radius of convergence of its expansion in 1/M in finite volume [GLS]. The radius of
convergence 1/p in infinite volume is of interest because at the point M = p the expansion
in 1/M breaks down, and there are models in which a phase transition happens at this
point. It is, however, a bit subtler to show an analogous upper bound for the radius
in the thermodynamic limit. This has two reasons: first, by (2.4), the residue at every
pole of X, (M) is 1/|A|, so it vanishes in the infinite—volume limit, and singularities can
persist in this limit only where O(|A|) zeros accumulate, that is, at the strong accumulation
points. Second, the limiting measure will in most cases not be discrete and therefore the
singularities of X(5) will not simply be poles.

The assumptions on Z,(0) stated above indeed imply that the support of the Lee—
Yang measure contains points outside a certain disk D, centered at zero (Proposition 1).
This implies an upper bound on the radius of convergence of the expansion of the infinite—
volume function in 1/M if the measure has a discrete part or produces branch points in
X ). If the function has discontinuities but no branch points or poles, as in Example 2 of
the previous section, the convergence radius is not restricted by supp £&) = {M : |M| =
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M, }. However, in this example, the expansion in 1/M does not represent the function for
|M| < M,. The alternative that the expansion either diverges or fails to reproduce the
actual thermodynamic function (i.e. the infinite—volume limit of X, ) inside the disk D, is
shown to hold more generally in Proposition 2.

Let p > 0 be the inverse convergence radius of the expansion in 1/M, i.e. the smallest
number such that the expansion

X(M)=> a,M™™! (4.1)

n>0

converges for all M with |M| > p. Whenever X (M) is written without superscript S, it
is to denote the analytic continuation of the function defined on C \ Dy to €\ D,(0)
defined by (4.1). Also, let C, be the connected component of C\ supp £%) which contains
C\ Dy,. The curves « used below are understood to be rectifiable.

Proposition 1: Let (A, M) — Z, (M) be a Lee-Yang—system and assume that there is a
sequence of volumes A tending to infinity such that

r= Ii}{ninf|ZA(0)|I/IA| = lii{ninfl;po(A)P/iAI > 0. (4.2)
—00 —00

(i) Let s = r!/%. Then, for all limiting measures associated to subsequences S = (Ax)cns
supp L)\ D,(0) # 0, and £®)({0}) = 0.

(i3) Let £4®) be the discrete part of £5). If there is ¢ € supp £4®) NC, \ D,(0), then
p2s.

Proof: By Lemma 1, the given sequence has subsequences for which the b,,,(A) converge.
For every such subsequence S, liminfs |Z4(0)]'/"l > 7 > 0 as well. Pick one of these

subsequences, S = (Ag).en- In terms of the zeros, Z,(0) = po(A) = [] (- A=A, By
AEN,

hypothesis, for € > 0 there is k, € IN such that for all & > k,, |po(Ak)|1/lA*| > r—eg. Choose
€ < r, then

1 1
——log|po(Ax)| = == D na,(N)log|A| = /dﬁm(z) log|z| > log(r —¢).  (43)
| Akl Al R

For n € IN, define xn(z) = max{logl,log|z|}, then for all z € Dy, and all n € NN,
—logn < xn(2) < log M, and x,(2) > xn+1(2). For all z # 0, xa(2) — log |z| as n — 0.
Also, for all € € (0,7),

Lay(xn) = / dLa, (2)xn(2) 2 / L, (2)log|z| > log(r —¢). (4.4)
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Since x,, € C, for all n, L4, (xn) — L) (xn) as k — oo, and so
L (xz) > logr (4.5)

follows for all n € IN from (4.4) by taking ¢ — 0, and therefore £()({0}) must be zero.
Thus, calling x(z) = log|z|, x» \, x a.e. (£ ), and by (4.5) and the monotone conver-
gence theorem, [dL®)y exists and [dL®)yx > logr. If supp L) were a subset of D,,
then [dL®)(z)log|z| < a,logs = logr because log |z| < log s there, so (i) must hold. To
see (ii), note that by construction, the expansion (4.1) in 1/M for X is the same as for
X®) as given by (2.26). So, on C,, X = X5). Every z € supp L4 produces a pole in
X ). If p were less than s, X would be bounded for all M with |M| > s. But the limit of
| XE)(M)| as M — ( is infinite. |

Remark: 1. It suffices to show the assumptions made in Proposition 1 for a single
sequence tending to infinity, because the expansion coefficients a, are independent of the
chosen sequence S, and because only a lower bound and not equality is stated.

2. An example which satisfies (4.2) is given in [Sa,GLS]. The assumption on £4) made
in Proposition 1 is sufficient but not necessary to get a bound on p. However, that some
additional assumption about £{5) is necessary to bound p from below can be seen from
Example 2 in the previous section. In this example, p = 0 although supp L) is the circle
with radius M,. On the other hand, the analytic continuation to the inside of the circle
which the expansion defines, X (M) = 1/M, has nothing to do with the actual behaviour
of the function. One may expect the alternative that either p > s or the continuation X
differs from X () to be true more generally. To further elaborate this point, the following
statement is useful.

Lemma 2: If v is a simple closed curve so that § dM [ dﬁ(s)(z)ml_—zl converges, then
1
j{ XS(MYAM = £S5 (Int ), (4.6)
1
where Int vy denotes the interior of 4.

Proof: By Fubini’s theorem, the left side of (4.6) exists and the order of integrations can
be exchanged, so

f XS (M)dM = / AL (2) f dMMl_ - =

| (4.7)
_ f AL (2)xmey (2) = L9 (Int 7).
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Remark: The assumption in the lemma is fulfilled for all v which stay away from
supp L), but it also holds at least in those parts of supp £(5) where £) has a bounded
density.

Proposition 2: For 0 < s < M,, let C, be the connected component of C, \ D,(0) that
contains C \ Dy, .
1. If, for some s € (0, M,), there is a simple closed curve v in C, around a part T of
supp £, which, in C \ D,(0), is nullhomotopic, then p > s.
2. Let z, € supp £&5),0 < 5 < |2,|, and 0 < 7 < |z,|—s such that for almost all ¢ € [0, 27],
z,+re € C,, and that  § ded[,(s)(z)]ﬁ < co. Then p > s.

|M—zo|=r
3. If there is another connected component C, of C\ supp £), and C, \ D,(0) is not
empty and has a connected component R that contains no weak accumulation points, but
contains a simple closed curve v which, in the set C\ D,(0), is homotopic to the circle
with radius M,, then X (M) = X®)(M) can hold only for a subset of R that has no limit
point in R.

Proof: 1. Assume that p < s. By the identity theorem, X()(M) = X (M) for all M € C,,
and so their integrals along v are the same as well. But since v is nullhomotopic in
C\ D,(0), § X(M)dM = 0, whereas by the Lemma, § X®)(M)dM = LE)(Z) > 0.

v v

2. Again, assume p < s, then, by the identity theorem, for all M € C,, X(M) = XO)(M).
Since D,(z,) C C\ D,(0), § X(M)dM =0. Since the integrands are equal a.e., the
| M —z,|=r
2T
integral of X(5) also exists, and [ X©)(z, + re¥)dp = 0. But, by hypothesis, Lemma 2
0 )

applies, and so £5)(D,(z,)) = 0, which contradicts z, € supp £().

3. R is connected, and both X and X are analytic on R. Thus, if the set of points
M € R where X(M) = X®)(M) has a limit point in R, X = X®) on R. Then, by
homotopy invariance of the integral over X,

j[ XS M)dM = f X(M)dM = j{ X(M)dM =

(4.8)
= f XS M)dM = a,
|M|=M,+1

by definition of £(5). On the other hand, in finite volume, the integral of X, over (ora
slight deformation of -y which avoids isolated limit points) is always less than a, because
by the residue theorem

Xa(M)dM - j{ X (M)dM = |1T|£A(C\ Int ) (4.9)
Y

|M|=M,+1
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and the right side has a positive limit as A — oo because there are strong accumula-

tion points of zeros in C\ Int 4. Since there are no weak accumulation points in R,
XA(M) — X©)(M) for all M € R, and so fX(S (M)dM < a, which contradicts

A—-oo

(4.8). &

Remark: Note again that, in 3., it is indeed X %) which is the limit of X, in R as A — oo,
so 3. really shows that the expansion does not represent the thermodynamic limit of the
physical function. Example 2 is a special case of 3., and 2. is true e.g. if the measure has
support on a curve which ends at z,, so that X has a branch point there. If this curve is
also such that a neighbourhood of it can be mapped conformally to a neighbourhood of the
real line, a proposition in [RS4] can be applied to see that X(®) is either discontinuous or
singular at the points in supp £) (non-analyticity of X¢5) in supp £ also follows for
general supp L) from an argument using Lemma 2 if the measure is absolutely continuous
or discrete).

Sum Rule: Let a, = 2 and assume that for all M € R and all finite A C Z¢, Z, (M) > 0,
so that all zeros are off the real axis and come in complex conjugate pairs. Define

(M —2z)(M-%)

Let M ¢ Ny, then

1 1

L
11 1
R _1 _ 411
(6a) = (M — Ak)M ) 2|A|§ImAk(M—/\k M—Ak) (411)

Mh

L (63r) is meromorphic in M and decays as |M|~2 for |[M| — oco. Therefore [ dMLp(6y)
exists and can be evaluated as a residue,

o L
™ 1
f dM LA (6r) = ] ; T ] (4.12)

Proposition 3: Let (A, M) — Z,(M) be a Lee-Yang-system for which Z, (M) > 0 for
all M € R and all finite A C Z%. Assume that there is € > 0 such that there are no
accumulation points of zeros of Z, in U, = {z : |Im z| < €}, that is, that there is no phase
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transition on the real axis. Then the thermodynamic limit of (4.12) yields an upper bound
for the integrated susceptibility:

T 82f® 1 1 7a
dM < () < i < 4.13
/ | OM? M < ﬂ,/ A |Im z| — T e S%g £ |Im 2| — € (4.13)

Proof: Without loss it can be assumed that U, does not contain any isolated limit points
either. From Theorem 3, supp L) NU, =0, so for all z € supp L), [Im 2|! < &7!, and
JdLS)(2)[Im 2|~! exists. By a similar argument as in the proof of Theorem 3, 63 can be
deformed in U, such that the resulting function is continuous and still gives £4(8)s) and
L5)(83) when £, and L) are applied to it, and therefore convergence L4 (8x7) — L5 (81)
as A — oo holds. A similar argument works for the integral over z — |[Im z|~!. So (4.12)
has a thermodynamic limit, and it remains to note that for M ¢ supp £5)

62 (S) 1
_61{4 = ] L) (2) T (4.14)
and thus for M € R
3?2 f() 1
< ) z) ——0 = £ . 41

5 Illustration

In this section I show that a general class of lattice models with fermions are Lee—Yang
systems. The variable M is the mass, and the expansion parameter x = 1/M is usually
called the hopping parameter. The partition function on a finite lattice is a polynomial
in M because of the nilpotency of the Grassmann variables. Assumption 2 is verified by
showing that there is a convergent cluster expansion for large |M|.

Convergence of this expansion is well-known for the standard models of lattice gauge
theory [Se]. In most of these cases the fermionic action is bilinear (four—fermion terms can
be linearized by introduction of auxiliary fields), the fermions can then be integrated over,
and the resulting determinant can be expanded in 1/M. I choose a different strategy and
estimate the Grassmann integral directly in terms of a norm on the Grassmann algebra.
The product inequality for this norm allows for a simple proof of the activity estimates for
finite-range interactions which may be arbitrary polynomials in the fermionic variables,
for which the introduction of auxiliary fields would be very complicated, if viable at all.
The norms used to estimate the fermionic integrals are defined in the Appendix.

Let R > 0 and A be a finite set, |A| = D, A C Z% |A| < oo, and denote by Ga
the Grassmann algebra with generators ¥ (z), 1a(z), @ € A, z € A. The set A x A can
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be assumed to be ordered in some way and then the definitions of the Appendix apply
directly. The interaction S of the fermions consists of two parts

S =MS,+8, (5.1)
S, = Z Z "r/’*a(w)waﬂ"pﬂ(m) (5.2)
z€A a,feA

with W € GL(D, C) satisfying |[W~!|| = 1, where || - || is the norm for matrices defined
in the Appendix. Call Sp(A) = {X C A: diam X < R} (here diam X = max{|z — y| :

z,y € X}).
31 = Z Z OpX, (53)

XeSa(A) rEmt

opx= .,  Fep(@)pFy" (5.4)
PPCXxA
PyUP! =X,|P|+|P!|=p

(for P=(Y,C)C X x A, P, =Y) and ® € B, where B denotes a set of parameters (part
of which may be random variables which will be integrated over afterwards), Fpp/(®) is
only assumed to be locally bounded for the moment. Define

A= f dypdyp M, (5.5)
Ga
for p € Gy
(Do = 23! f dpdip Moy, (5.6)
Ga
and
ZA(D) = (€% )onr- (5.7)

Denoting @ =10 W, |Q7!|| = [M|™! = q, (p)or = {p)o With {-)g given in the Appendix,
and it is clear from an expansion of Z,(®) in powers of M that Assumption 1 is fulfilled,
with a, = D.

Polymer expansion for Z,(®): Define polymers v = {(p,, X,),---,(pr,X;)}, where
r € N, X; € Sp(A), p; € 2N with |X;| < p; < 2D|X;|, and where X,,..., X, are such
that the graph G(X,,...,X;) is connected ( G(X,,...,X,) is defined as the graph with
vertex set {1,...,7} such that the line (ij) is in G(X,, ..., X,) if and only if X; N X; # 0).
The set of all polymers is called Tr(A), and for v = {(p,, Xi),...,(pr, X;)} € Tr(A),

suppy=X,U...UX,, and |y| = Z:lpi. Then, with p, x = e»* — 1,

= I II +mx)=

Xesnld) IXISPK?;?XID (58)

= Y I ]] a+9(v.7)

ICTr(A) yeT vEY
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where a(y) = [] ppx, and g(v,7') = —1 if the supports of v and 4’ are not disjoint,

(p.X)ey
zero otherwise. The activity of the polymer « is
z(7) = (a(7))o,n (5.9)

and by definition of the polymers, Z, (®) can be written in the standard form of a polymer
expansion

Z(@) = > [[zM]] @+ (5.10)

TcTr(A) 7€l T#Y

Consequently,

Sa(®) = . logZA Z > Uvem) [] 200, (5.11)
i=1

| n=1 '1'1 ::::: 'YuerR(A)

with the Ursell functions U [Se], and convergence of the expansion for S;(®) can be shown
if activity and entropy estimates hold.

Lemma 2:

1. (Entropy estimate) Let Ej(v,,8) = [{y € Tr(A) : 9(7,%) = —1,|y| = s}. then there
are s, € IN and K > 0 such that for all s > s, and all A,

EA(o, 8) < | supp 7| K® < |70 K°. (5.12)

More concretely, K < 6 -2Y/2, where V = |{z € Z9 : |z| < 2R}| is the volume of a
ball of radius 2R in Z¢,

2. (Activity estimate) Let

Fpp(X,® , 5.13
w(®) = ngrz“m;,rggcul Pp (X, ®)| < 0 (5.13)

without loss, assume p(®) > 1. If [M| > 4P, for all v € Tr(A),

" 7l
p(P)e (°)4D) (5.14)

|2(y)] < (—W

Proof: 1. See Appendix B. 2. Recall ¢ = |M|!. Since u(®) < oo, by definition (A.8)
of ” : “91
lopxll, < E |Fpp (X, ®)|g PP <

PPCXxA
PLUP =X, |P|+|P!|=p

<@u@®) ), 1< (4P9Pu(@).

PP CXxA
PiUP 1 =X,|P|+|P|=p

(5.15)
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Now by (A.21) and repeated application of (A.9),

[(a(Moal <lla@lly < T lle ~1||, <

(p.X)ey

< 11 (e”"”"‘“'"l)s IT lopxl,elt,

(p.X)ey (p. X)Ey

(5.16)

where |e* — 1| < |alel®! was used in the last step. Let: vy = {(p:, X:),---, (pr, Xr)}. If
|M| > 4D Z(4Dq)p. <r <> pi=|yl|, so

l2(1)] < (u(@)eHD) (4Pq) L% < (u(@)eHPaPg)P]. (5.17)

Corollary 2: Let X C B such that for all A

M = sup u(®) < oo. (5.18)
Pek

Then there is M, (M) > 0'such that for all ® € K and all A, the expansion (5.11) converges
absolutely for all |[M| > M, (M), and in this region, Alim SA(P) exists, is independent of

the chosen sequence and an analytic function of M. Assumption 2 holds, so (A, M) —
Z)(P)(M) is a Lee-Yang—System. Moreover, Sy (®) is analytic in any parameter on which
Fpp/(®) depends analytically.

Proof: For all ® € K, M| > 4P, |2(y)| € (MeM4P/|M|)"l. Therefore convergence
uniformly in A is a standard consequence [Se | of Lemma 2. Since the polymers have
bounded supports, no activity eventually depends on A any more as A — 0o, so the chosen
sequence is inessential. Existence of the limit function and the analyticity statements follow
from Vitali’s theorem. To complete the proof of Assumption 2, note that the uniform
convergence implies that the coefficients of the expansion in 1/M in finite volume converge
to those in infinite volume. |

This generalizes the statement that the expansion in 1/M of the fermion determinant,
viewed as effective action from integrating out fermions with a bilinear interaction, con-
verges. For gauge fields ® = U coupled to the fermions via the discretized covariant
derivative [Se], boundedness (5.18) holds globally for all U. For bosonic fields coupled to
the fermions by Yukawa interactions, Fpp/(®) ~ @ and so boundedness holds on compact
subsets.

If the ® are random variables themselves, and their interaction is such that it admits
a convergent expansion as well, convergence for the combined polymer expansion can be
shown if pue* can be controlled using the interaction of the ®. For brevity, the arguments
will only be sketched here for some models of interest in lattice gauge theory. The following
are Lee—Yang systems:
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1. Models with gauge fields ® = U, U : A, — G, where A, denotes the set of links of A,
and G is a compact group, in the “compact formulation”, where the integration measure
of the U] is the Haar measure on . The interaction between fermions and gauge fields is
as usual,

Sys = Z (1/3(:c)T,(+) Q@ P(U)Y(z +e,) +¥(z + eu)T,(_) ® P(Uz)_lw(w)) ) (5.19)
i)

where P(U;) is the parallel transporter, P denoting a unitary representation of G under

which the 4 transform, the matrix functions T,(E) are assumed to be bounded in I. The
interaction of the gauge fields is 35, where S, is a bounded function of U, e.g. the Wilson

plaquette action [Se]. Then u(U) < sup (||T,(+)|| + ||T}(_)||) is independent of U. Therefore,
leA,

if |3] is small enough and |M| is large enough, activity estimates hold for all polymers in
the combined expansion.

2. QED in noncompact formulation, that is, with integration over real gauge fields A;
and a suitable gauge fixing term. U; = e, so the bound for p is the same as in the
previous case. This model cannot be treated by an ordinary polymer expansion because
the photon is massless, but since S;; is gauge invariant, a combination of Corollary 2
and the renormalization group in the form of [BY] can be used to extend the proof that
analyticity in 1/M holds uniformly in the volume, as given in [DH] using the methods of
[BY], to models with non—bilinear gauge-invariant interactions of the fermions.

3. Scalar fields coupled to the fermions by Yukawa—type interactions. As remarked above,
p(®) ~ |®| in that case, but it is possible to split the Higgs potential V into two parts,
V =V, + V,, such that V, can be used to control pge* and convergence of the expansion
can be shown if the boson hopping parameter is small enough and the other couplings are
suitable.
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Appendix A

Let L > 1,__L_ = {1, ...,L} and G be the Grassmann algebra over C generated by
Y1,...,%r and ¥y,...,%r. Every I C L defines an ordered sequence i, < i, < ... < j

such that I = {i,,..., 4}, and, defining the monomials
¥ =] (4.1)
r=1
and
]
' =] v (A2)
r=1

for every f € G there is a finite sequence of complex numbers (¢17(f)); s such that

F=Y su(H)v'y’. (4.3)

LicE

The map ¢ : G — C(2u), f — ¢11(f) is a vector—space isomorphism. In the notation of
ordered sequences, this representation of f reads

7 |7
f Z Z ¢{11 ..... (9 2§ P _7;} f) H (d)lr H "v[)'lr (A4)
k=0 i< (‘k

The Grassmann integral is the linear map [ dydy : G — C
g
fro [ s = (1K), (4.5)
G

For Q € GL(L,C) the fermionic bilinear form with covariance Q! = C is

$,Qv) = Y $:Qivy. (A.6)

i,9€{1,..,L}

and the associated expectation value is

(flg=

- QW)
o ] dpdipe®e ¢, (A7)
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The purpose of the following is to introduce a norm ||.|| on G such that for all f € G

(o < 1l

Definition: Let ¢ > 0.

L i+i
I, = 3 leDla = = a7 Y Isu(Al- (A.8)

LJcL 1,j=0 =i, |-T=4

Proposition: For all ¢ > 0 (G, || - [|,) is a Banach algebra, in particular, for all f € G and
g€y,

I £gll, < 1fllgllgly- (4.9)

Proof: Obviously, G is a C-algebra, and for ¢ > 0, || - ||, is a norm on G. Since G ~ c?
as a vector space, it is complete. To see the product inequality (A.9), let f,g € G. Then

oun(fg) = Y e(IT,J,7)¢1:()érr(9), (A.10)

=M
JUF =N

where the condition of disjoint union comes from nilpotency and ¢(I,I’,J,J') € {-1,1}
is a sign factor caused by anticommutativity when reordering the product. Applying the
triangle inequality and summing over all M with |M| =m and all N with |[N| =n,

L
Ifgl, < 3 @ Y Igr()] - 1rr(9) (4.11)

mn=0 r.JgJy

where the prime on the sum means that I, J, I’, J' are restricted to INI' =0, |[IUI'| = m,
and JNJ' =0, |JUJ'| = n. On the other hand,

L
171,09l = 3= ¢ 3 16ns()l - l6rr (@), (4.12)
m,n=0 [+ |=m
[+ |=n

and (A.9) follows because the restriction in the sum (A.11) is stronger than the one in
(A.12). 5
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Lemma:

(fle= zg f dipdipelP V) f = Z 3" ¢ri(f)ersdetTr(C) (A.13)

1=0 |1|=|.J|=l

where T';;1(C) € M(l, C) has the coefficients (T'7(C))u = Cj,i, and €75 € {-1,1}.

Proof: Obviously, no term with |I| # |J| can contribute to the integral, and by linearity,

L
(flg= Z Z ¢11(f) Ris (A.14)
=0 I.J
with .
R — dibe @Gy A.15
Ru = gorg [ @wdie® @9ty (4.15)
g
With sources S € M (L, C) for the bilinears
_y
Riy= R(S) |s=o0, A.16
N LOI (4.16)
where ;
R(S) = 300 / dipdipeP@HY) — det(1 + CS). (A.17)

Now, by definition of I ;, for all permutations =, p € S
Ry oy = €(m)e(p) Rr, (A.18)

(here I C L is identified with the ordered sequence i,,...,i; which it defines and ¢ is
the sign of the permutation), also by (A.17), Ry is a function of T';;(C) alone, which is
multilinear and of modulus at most one if C = 1. Up to a sign, it must therefore be the
determinant of T ;r(C). [ |

Then

det A= e w)HAW(z)ts 5 I Aros <

TES, eSS, i=1

< X T Ao = (A.19)
i=1

¢:{1,....,n}—{1,....,n}

= ﬁ (zn: Aji) < AN

i=1 j=1
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and ||A|| < ||A|| for any submatrix A of A, so minors of A are also bounded by ||A|".

Proposition: For all f € G,
(Hlo < fllyoy (4.20)

Proof: Insert (A.19) into (A.13). |

Remark: (1) In a translationally invariant lattice theory with covariance C,

ICl =Y Coy =C(0), (A4.21)

yeA

the Fourier transform of the absolute value of the propagator at zero.

(2) For general A € M(n, C), Hadamard’s inequality [Ha), | det A| < n"/?|A|* where |A| =
sup; ; |Aij| gives the best possible bound for the determinant of A. The bound by || Al| is in
general much worse because in the proof of det A < || A]| all signs have been neglected (thus
the same statement will be true if the determinant is replaced by a permanent). Actually,
for the matrices which saturate Hadamard’s inequality, |A| = nA. But the matrices
encountered in the case of the hopping expansion are diagonal, so for them ||A|| = A and
| All is preferable because it obeys the product inequality (A4.9).

Appendix B

Introducing the notation 1(E) =1 for E true and 1(F) = 0 for E false and remem-
bering the definition of polymers,

BEr(o,8) = Y, Ug(1,%) =-Dl(h|=s) =
Y€T'r(A)

S Z Z GA('YOaPI:"'apn)a

n>1 Pr..pn€2N
Lt tpn=0

(B.1)

where

1
EA('Yo;pl,---apn)=;;’T E : 1((X1U"'UX")ﬂ SUpp 70’7&0)
" Xy Xn€Sg(A) (B.2)

1Xil<p;
x 1(G(X,, - ..,X,) connected ).
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(X,U...UX,)N supp 7, # 0 = 35 : X; N supp v, # 0, and, denoting the set of all tree
graphs on {1,...,n} by T,, G(X,,...,X,) connected = IT € T,, : T C G(X,,...,Xyn),

SO

1
eA(’Ymph e -:pn) S —_" Z nA(T) YosP1y- - 7pn)a (B‘S)
n.
TeT,
WA(Ta’Yo,Pu---,Pn) ZZ Z I(Xjn supp 707&@)
4=1 xl...l.g,l.es_.l(p\) (B.4)
AL

R UG X5 s+ 55.80) D)
The characteristic function in the last expression can be rewritten as
HG(X,,...,X) D T) = [] 1X.n Xy #0). (B.5)
(vw)eT
Inserting this, 9A(T, Yo, P1,---,Pn) Can now be estimated by “stripping off the leaves of
the tree” [Br|. Let n > 2, fix T € T, and j € {1,...,n}, let d,,...,d, be the incidence

numbers of T', and order the vertices according to their distance from j: Vi = {i €
{1,...,n} : d(i,j) = k}, where d(i,7) is the number of steps necessary to go from i to j

over bonds of T, and let W11 = {l € Vi1 : (il) € T}. Then Vi = |J Wi, for w € V4,
ier_l

|Ww,k| = dw -1+ 6k1, and

{1,...,?’1} = U U VVi,k+1- (Bﬁ)

k=0ieV;

k
Define Vy = U V&, N = |{x € Z¢: |z| < 2R}, B =2V,
1=k

P = [T @)™, (B.7)

vEV;

and

Uk

> [T 1x.nx., #0), (B.8)

(Xv)ye Vi (vw)eT
|Xo|<pv XueSp(A) VW=Ye-1

then the sum over the X can be estimated using the following inequality: for all k& €

...k},
9 <P [ (BIXul)™ % (B.9)

we Vk—]

Proof of (B.9): Induction downwards in k. Let k& = k. Then

= >[I I 1xnx,#0)<

(Xu)yevz 'UEV;_I weWu,I
| Xv|<py,XveSR(A) (B.].O)

<II II > ux.nx,+#0).

veVe  weW - XuweSgp(A)
k-1 v,k |xw|.<_Pw
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Fort >0
Puw
D UXNX, #OX <D D D Xy 23) <
XweSg(A) zeX, r=1 XweSp(A)
|Xw|<pu [Xw]<r (3,11)
Pw N :
t
ity (7)) < olnta.
Thus
< [T II %lpeB= T BIXH™A, (B.12)
vely ; weW 2 veVi,

which shows (B.9) for k = k because |W,zl =dy,—1, and d, =1 for all v € V. Now let

1<k <k-—1 and assume (B.9) to be true for { = k+ 1. Since k+1 > 2, ég411 = 0. By
definition and (B.9),

O = Z H 1(X, N Xy # 0) g4y <

(Xv)ye A (v,w)eT
Xol<po.XoeSp(A) *<Vh-10EV

< > I uxnXe#0)Pu [T BIXD™ <

(B.13)
Xodoev, (vw)eT weVi
[Xo|<pv,XveSR(A) YEVE-1EYL
<P [ TI 3 1xenx, #0)(BiXu)™".
vEVi weW,; XweSp(h)
1Xw|<pw
The summation over X is again done by (B.11)
<P [[ I (X8 (BIX,)™) <
’UE‘/*_l wEWu,k
<| II ®Bx)™* | Peys [T (Bpu)™ ' = (B.14)
v€Vi weVy
=P [[ BIX,)™ . |

v€V
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Taking (B.9) with k = 1, and using again (B.11) to estimate the last sum over X,

nA(Ta Yos P15 - - - apn) < Z Z (lejl)d’ H (pr)d.,-—l -l

j=1 X;rSupp r0#9 veV,
1X;1<p;

7
< Z| supp 'Yolpjijdj+l H (Bp‘u)dunl =
j=1 veV (B.15)

n n
i
= | supp 7|p;B* [[ (Bp)* ™!
j=1 1=1

= | supp 1olsB™* [[ 7,
I=1

where in the last step ) (d; — 1) = n was used. Summing over trees and using Cayley’s
theorem, get for n > 2

Bn+2
€A(Yor P1s- - - Pn) < | supp %Is————

(n— di-1
<
Z, @t s
di 4ot dn=2n (B.16)

— 9\
< | supp Yo|sB™*? (nn_'2)-ezp,. =

Bn+2
= | supp 7o|se nn=1)

Forn=1,v={(p,X)} and |y| = p and

eA(¥oP) = >, 1(X N supp 7, #0) < | supp 7o B < |yo| BP. (B.17)
XeSaMXI<p

With these estimates

8/2
B~
s 2
EA(’Ym ) < i supp 'Yol (B + se B Z n—_l)m (B].S)
where
dz 1 1
ns = 1= " < B.19
e Z f Imrizstl (1 - 22)271 - pa(l _p2)n ( )

Py, PR E€2N
Pit.tpn=s 0<|z|=p<1
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for all p € (0,1). So

8/2

Bn
s —sn2 ~ 2] <
EA(%0,8) < | supp 7| (B+se p °B g———n(n—l)(l p°) ) <

< | supp 7| (B +se’p* B*%(1 - pz)_’/z) < (B.20)
B 8
= | supp /(B + B)s | —— ) .
pV1-p?

Choosing p = 1/+/2, there is s,(B) € IN such that for all s > s, , A, 7,

B(%,9) < | supp 7| (6vB) (B21)
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