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Equations de Hartree-Fock dans ’approximation du
tight-binding

Franck Daumer

U.R.A.-C.N.R.S. n® 758
D.M.I., Université de Nantes
44072 Nantes Cedex 03, France -

(5.VII.1993, revised 15.III1.1994)

Résumé. Nous étudions le probléme de Pexistence et de I'unicité des solutions des équations de
Hartree-Fock. Nous nous placons dans I'approximation du tight-binding, ce qui correspond a
supposer que la distance entre les noyaux est grande. Nous supposons également que les noyaux
sont en nombre supérieur aux electrons et qu'ils ne résonnent pas. A partir des états propres
des noyaux isolés, nous donnons alors un procédé de construction de solutions des équations de
Hartree-Fock. En outre, ce procédé fourni le niveau fondamental.

Abstract. We study the existence and uniqueness of solutions to the Hartree-Fock equations. Our
approach is based upon the tight-binding approximation, which implies that distances between
the nuclei are supposed to be large. It is also assumed that the nuclei are not resonant and
their number is greater than that of electrons. We propose an iterative procedure which yields
approximate solutions of the Hartree-Fock equation starting from the eigenfunctions of the isolated
nuclei. Moreover, this method provides the ground state of the system.

1 Introduction

L’objet de ce travail est d’étudier les niveaux d’énergie stables de certaines molécules en ioni-
sation. Nous nous plagons dans le cadre de la théorie de Hartree-Fock, ’aspect ”Schrédinger”
de ce probleme ayant déja fait 'objet d’une thése [4]. Un probléme assez voisin concernant
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I’équation de Hartree associée a un cristal en ionisation a également été étudié par C. Al-
banese [2]; ce probléme a d’ailleurs été repris dans [4].

Les techniques utilisées dans cet article sont dues & B. Helffer et J. Sjostrand. Ces deux
auteurs en ont fait un usage intensif pour décrire semi-classiquement le spectre de certains
hamiltoniens quantiques. On pourra consulter notamment : [7], [8], [9] et [10].

Avant de présenter ses résultats, 'auteur tient & remercier B. Helffer pour lui avoir
proposé le sujet et pour les nombreuses discussions qu’il a eues avec lui. Il remercie également
E. Lieb pour 'avoir aidé dans la démonstration de 'unicité du niveau fondamental.

On considére ’hamiltonnien

N

H=Y(-A +V(1:,)+ZW i — ), (1.1)

=1 i<

ou N désigne le nombre d’électrons du systéme, A; désigne le laplacien par rapport a la
variable z; € R?, et V représente le potentiel induit par le champ électrostatique extérieur;
il est de la forme

V(E L = RL (12)

i MN

Vi € L®(R?) désigne le potentiel d’interaction entre un électron et un des noyaux situé
en R, € R®. Le potentiel W € L*(R?) correspond & l'interaction entre deux électrons.
Ces potentiels ne sont pas coulombiens pour des raisons de simplicité mais ce qui va suivre
devrait s’adapter sans trop de difficulté pour des champs coulombiens. On suppose de plus
que

Vze R, VISk<Z, |Vil@) |+ | W) IS C(1+]z])”, o >0 (1.3)
W > 0. (1.4)
Vz € R3, W(—z) = W(z). (1.5)

La condition (1.4) est une condition de répulsion entre deux charges de méme signe. La
condition (1.5) permet de considérer H comme un opérateur auto-adjoint non borné sur
Pespace des fermions L2, , = AYL?*(R% R). Le domaine de H est H3,, := H*(R* ,R) N
L%, = ANH*(R3,R). Les fonctions de L2,,, sont des fonctions

é:R*» — R
telles que pour toute permutation 7 € Sy, on ait

¢(-’13~r(1), ey Tr(N) ) = (—l)ITI¢(T17 e ,.’L’N).

Les valeurs propres de H sont données par les extréma faibles (condition d’ordre 1) de la
fonctionnelle d’énergie

8(¢) =< H¢:¢ >L§hya’ ¢ € Hp2hysr H ¢ ”L2 = 1. (16)

phys
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Ce n’est pas exactement le probléme qui nous intéresse. Nous allons suivre ’approximation
de Hartree-Fock. Cela consiste & minimiser la fonctionnelle d’énergie € sur un sous-ensemble
particulier de H2, , constitué des déterminants de Slater

_ — _1 N
(}5 = Uy _/\ L AU = “\/—ﬁ(let('lh(xg)) (17)
u; € H*(R* R), < w,u; >r2®ay= ;.

Les conditions d’orthogonalité entre les fonctions u; donnent

| &1z, = 1. (1.8)

phys

Pour plus de détails concernant cette approximation, on pourra consulter E. Lieb et B.
Simon [L-S]. Ces deux auteurs ont montré que, dans un certain sens et pour des potentiels
coulombiens, les énergies fondamentales obtenues en minimisant la fonctionnelle £ respec-
tivement sur thys et sur l'ensemble des déterminants de Slater sont asymptotiquement
équivalentes lorsque N tend vers l'infini : théoréme 4.1 dans [11]. Ce probléme a également

été étudié par J. P. Solovej [12] et J. G. Conlon [3]. On pourra également consulter [6].

Si ¢ est un déterminant de Slater donné par (1.7), alors

E(p) = ./R3 T(x) dr + fns p(x)V(x) dx + %//RJ)(RS p(x)p(y)W (xz — y) dzxdy

(1.9)
_% ./[Rsng p(z,y)*W (x — ) dady,
ol
N o | .
T(w) = Z | v’lti(-’lf) |2, p(T) — Zui(fn)z, ﬂ(-’lﬁ,y) _ Zui(x)ui(y)_ (1.10)
1=1 i <

T(z) s’appelle la densité d’énergie cinétique, p(x) s’appelle la densité d’électron et p(z,y)
représente la matrice de densité. Si ¢ est un extrémum de la fonctionnelle d’énergie £
restreinte & ’ensemble des déterminants de Slater, alors il existe une représentation de ¢
sous la forme (1.7) telle que

VISi<N, (“A+V+pxW = K(p))u: = equs (1.11)

ou e; € R est un multiplicateur de Lagrange, p* W est le produit de convolution entre p et
W et K(p) désigne 'opérateur intégral de noyau p(x, y)W (x — y) € L2(R? x R?).

L’objet de ce travail sera, sous certaines hypotheses de ionisation et de non résonnance
entre les noyaux, de produire des solutions pour le systeme de Hartree-Fock (1.11). Nous
prouverons également, sous certaines hypothéses supplémentaires, I’existence d’un niveau
fondamental figurant parmi les solutions produites précédemment.
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2 Résolution des équations de Hartree-Fock

Pour N < Z, nous allons montrer ’existence de solutions u; pour les équations de Hartree-
Fock (1.11). Chaque fonction u; étant localisée prés d’un noyau R;. On suppose que

V1<i<N, €? <0 est valeur propre simple de — A +V; :

o € H2(RY), || [lusrny=1, (=A + Viul = el @1)
VI<i<N,VYN<j<Z:eld¢Sp(—A+V). (2.2)
V1<i,j <N, i#j, : & ¢Sp(—A+V;+Wxul’ — K(u?)) (2.3)

ol K (u?) est I'opérateur intégral (sur L*(R?)) de noyau W (z — y)ud(x)ud(y) € L*(R).

V; étant une perturbation A-compacte, le spectre essentiel de —A + V; est le méme que celui
—A cest a dire [0, +00). L’hypothése (2.1) assure done juste ’existence d’un spectre ngatif
pour —A + V;. Le fait que la valeur propre €} soit simple est essentiel dans ce qui va suivre
et ceci est vérifié en particulier pour le niveau fondamental.

Les hypothéses (2.2) et (2.3) sont génériquement vérifiées si les potentiels V; sont distincts.

Ces trois hypothéses nous permettent ainsi d’éviter les effets tunnels (cf. introduction du
paragraphe 4 pour plus d’explications).

On a alors les résultats suivants

Théoréme 2.1 Sous les hypothéses (1.3), (1.4), (1.5), (2.1), (2.2) et (2.8) :

L \
1. Pour toute > 0, il existe R. > 0 tel que si R := = I&j? | R — Re |> Re alors le systeme
(1.11) admet une unique solution (u;)1<icn € H*(R*)N telle que

{ V1<i <N |[w|lemey=1,
lei—ef |[<cet || wi—ul(.—Ri)|lp2rey< €.

1

(2.4)

2. Une telle solution vérifie alors

V1< 1,7 < N, < Ui, Uj > L2(RY)= (5,',]'
u; — (. — R;) = O(R™7) dans H?(R3) (2.5)
ei —e) = O(R™) si R — oc.
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Théoréme 2.2 On suppose de plus que

VI<i<N, € =inf Sp(-=A+V;) < inf inf Sp(—A +V;), (2.6)
N<j<Z
ViI<i#j<N, e <inf Sp(—A+V;) lfug) s - (2.7)

Alors Vénergie de Hartree-Fock admet un minimum absolu sur 'ensemble des déterminants
de Slater '. Le déterminant qui réalise ce minimum est unique au signe prés. C’est celui qui
est obtenu au théoréme (2.1).

Ces résultats seront démontrés dans les paragraphes suivants.

3 Quelques propriétés sur les déterminants de Slater

Proposition 3.1 1. Soit ¢ = ui A+ --Aupn un déterminant de Slater et soit A € SO(N).
On pose
v = Au € H*R*)". (3.1)

Alors les fonctions (vi)i1<i<n sont orthonormées dans L*(R®) et

¢=1v N Aup. (3.2)

2. Sotentdp=uy A--- Aun et = v1 A--- Avun deuz déterminants de Slater. Si ¢ =1,
alors il existe A € SO(N) vérifiant (3.1).

3. Soient ¢* = ufA--- Auy et Y = Vi A--- Avy deux familles de déterminants de Slater.
Pour que ¢¢ = y* + O(¢) dans L%, (resp. dans HZ,..), il faut et il suffit qu’il eziste
Af € SO(N) telle que

vf = A% + O(e) dans L2(R®)N (resp. dans H*(R%)M). (3.3)

Démonstration-Les points 1 et 2 sont classiques (cf [11]). Tls se déduisent également du
point 3 avec € = 0.

3-Supposons que ¢ = ¢ + O(¢) dans L2, . On a alors

phys-

N

Z(—l)lflﬁ%)(x,-): S (=) ] sy () + O(e) dans LA(R)M.
i=1

TESN TESN i=1

1]’existence de ce minimum a déja été etablie (sans I'unicité) par E. Lieb et B. Simon sans les hypoth&ses
(2.2) et (2.3), cf. th. 2.4 de [11].
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En multipliant par J] vi(2:) et en intégrant suivant les variables x;, i # j, on obtient
i#]

vi= > (=DM < wrgiy, v > urgsy + Ole) dans LE(R?).

TESN i£]

On obtient finalement (3.3) en posant

A= (“j,k)lgj.ksi\’a avec ajr — E (_1)|T| I | < Ur(s); Ui b Y
S
(1)=

L’orthogonalité de la matrice A résulte de l'orthogonalité des systemes {u;} et {v;}

Corollaire 3.2 Les densités (1.10) et l’energie (1.9) ne dépendent que du déterminant de
Slater ¢ = uy A --- Aun et non du choiz des fonctions uy,- -+, un.

4 Localisation des fonctions propres pour des équations
du type Hartree-Fock

On considére le sous-ensemble fermé de L?(R3)V
He = {u= (w)icicv € PN, | |l2rey= 1, || v —w( — Ri) [l2msy< e} (4.1)
Pour u € H,, on introduit les opérateurs intégro-différentiels suivants

VI<i<N, Hi(u) = —A+ V + ) W *ui - > K(uy) (4.2)
i#i J#i
ou K (u;) est défini comme dans (2.3). Les opérateurs H;(u) sont des opérateurs auto-adjoints

non bornés sur L2(R?) de domaine H%(R?*). D’aprés un théoréme de perturbation compacte,
on a

Vu € He, V1 < i < N, SpessHi(u) = [0, 00). (4.3)
Pour u € H, N H2(Q)V, le systéme (1.11) s’écrit

VI <i< N, Hi(u)u; = eju;. (4.4)

A partir de cette remarque, nous pouvons déja donner une idée de la démonstration du
théoreme 2.1 :

il est classique, d’aprés S. Agmon [1], que les fonetions « sont & décroissance exponentielle.
On a donc, avec 'hypothése (1.3),

H"((U?(' - Ri))lSiS.’V)u? .= R) = (. — R) + O(R™) si R — co.

Cela suggere l'existence d'une solution de (1.11) proche de (u](. — Ri)),<;cy- Pour obtenir
une solution exacte, on peut procéder de la fagon suivante.
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1. On montre que 'opérateur H; ((u?(. = R)) e N) se découple, plus précisément que le

spectre de H,-((u?(. — Ri))1<ic N) est modulo O(R™7) le méme que celui de

N z
P-A+V)e P (-A+V; +W+ul® - K(ud).
i=1 J=N+1
N z \
2. Puisque ) ¢ SpEP(—-A+V))d P (—A+V; + W ) — K(uF)), (daprés (2.2) et
i=1 Ji=N+1

(2.3)) et puisque €} est valeur propre simple de —A + V;, on en déduit que H,-((u?(. —
Ri))<ic N) posséde exactement, pour R assez grand, une unique valeur propre e} prés

de €] et de plus e} est simple. Si on note u! une fonction propre normalisée associée &
e}, alors quitte & la changer en —u!, on a aussi

ul = ul(. — Ry) + O(R™) dans H*(R?) et e} =€) + O(R™7).

3. On procede ensuite de la méme maniére en considérant les opérateurs Hi((u})KK N)

au lieu de Ht((u?( a7 N). On montre qu’on obtient alors des suites convergentes
(uF), 1 < i < N dont les limites u; vérifient les équations (4.4).

Ce n’est pas exactement de cette maniere que nous allons procéder. Pour des raisons tech-
niques, nous avons préféré utiliser un théoréme de point fixe. On introduit ’application
définie pour R assez grand par :

I i He 2V = ('Ui)lSiSN — (ﬁi)ISiSN € He

olt ¥; est l'unique fonction propre de H;(v) qui appartient & H.. On montre alors que F
est contractante (pour R assez grand) et posséde alors un unique point fixe dans H. ce qui
fourni la solution de (4.4).

Pour rendre rigoureux ce schéma de démonstration, il est nécéssaire d’étudier le spectre
des opfateurs H;(v) pour v € H,. Cette étude est essentiellement basée sur la localisation
des fonctions propres ce qui est 'objet de la

Proposition 4.1 Soit | un intervalle compact de (—00,0). Il existe des constantes *

er, Cr > 0 telles que pour tout 1 < 1 < N, pour tout 0 < ¢ < €, pour tout u € H, et
pour toute fonction propre normalisée 4; € H*(R®) de H;(u) associée a4 une valeur propre
€ €1, on ait

| Fou; || mmrey< Ci, (4.5)
avec
flx) = 121-.?1\{{]?" <x-—Rp>} - (4.6)

2Ces constantes sont indépendantes de R et de la configuration des noyaux. Il en sera ainsi de toutes les
constantes qui apparaitront dans la suite.



244 Daumer

Démonstration-Remarquons tout d’abord que

f(IL') [ [ oo 3
<x-—~y>f(y)eL (R%) et Vfe L®(R3. (4.7)

Par intégration par parties, on a ’estimation d’énergie
2 =N
0= < f9(Hi(u) — &),& >r2Ro)

= [ IV(@) P dot S P 0R(Qilw) = &) da— 3 < f27K ()i, @ > 1o
J#E

avec

' 2 2
Qi) =V + 3 W rul - f_I_VQiL.
J#i f

D’apres (1.3) et (1.4), il existe une constante C; > 0 telle que pour tout € > 0, pour tout
u € H¢ et pour tout é; € I, on ait

Vz e R}, tq. f(x)>

, s
T < Qi(u) —& < Cy.

On en déduit alors que

H fa’ﬁ,.,; HHI(RS)S Cv] + Z |< fQﬂIﬂ’(’lt‘j)’ﬁ,t‘, s >L2(R3)| .
J#i

Admettons provisoirement les deux estimations suivantes

|< f2“(K(u§'( = Rj)))’l-l.,;,ﬂ.i >L2(R3)|S &

f"u?(- — B) ”%%Rs) (4.8)

|< F27 (K (u;) — K(uj(. = R)))ii, @ >r2mn|< Ce || f70 ||72Rs) - (4.9)

On en déduit que si € est assez petit, alors

|| £ || RS Cr(l+ 2 fa’“'.(f)(- i) HQL?(R"') )
J#i

ce qui démontre (4.5) puisque, d’aprés (1], les fonctions «f sont & décroissance exponentielle
Vz e R®, [ud(x) |< Cre /¢ Cp > 0. (4.10)
[}

Démonstration de (4.8)-On a
< PR~ Bt > < [ @) @) | e - R) |
< Jo W= T e 1 - R) 1) | dy de

Grace a l'inégalité de Cauchy-Schwarz, on en déduit que

< PR~ R))eu,u:>|<||wo-u>% ] £708C = Ry (12211 4 |12
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ce qui démontre (4.8) grace a (1.3), (4.7) et (4.10)

Démonstration de (4.9)-On a
| < o) — K@ = R 1<l W= ) R o
x [ o F@7 1) | F0)7 18 |- | wi(@)u0) — (@ - R)u§(y — B) | da dy
< C I £ ]l wi(@)us(y) - w3le — Ry)ul(y — Ry) Ilia< Ce || 7 |13

Corollaire 4.2 [l existe un voisinage compact I de €? dans (—o0,0), il existe des constantes
Cr>0,€e >0 et R >0 telles que pour tout 0 < € < ¢;, pour tout u € H. et pour toute
fonction propre normalisée 4; de H;(u) associée ¢ une valeur propre é; € I, on ait

VR 2 Ry, ||t |[gr@n< Ci1R™7, (4.11)
avec ;= {r € R?, |z—R;|> R}.

Ce résultat sera démontré au paragraphe 5.

5 Etude spectrale des opérateurs H;(u)

Soit u € M. et soit A;j(u), 1 < i < N, l'opérateur non borné sur L?(€;), de domaine

H?N H} (), défini comme H;(u). A;(u) est un opérateur autoadjoint.

Nous allons montrer que, sur tout intervalle compact de (—o0,0), le spectre de H;(u) se
comporte, lorsque R est grand, comme le spectre de (=A + V;) & A;(u). Par ailleurs, nous
montrerons également que, lorsque R est grand, A;(u) ne possede pas de spectre au voisinage
de €. Cela prouvera l'existence d'une unique valeur propre pour H;(u) au voisinage de €f.

En procédant comme dans la proposition 4.1, on montre la
Proposition 5.1 Soit I un intervalle compact de (—oc,0). Il existe des constantes e > 0

et Cr > 0 telles que pour tout 1 < i < N, pour tout 0 < ¢ < ¢, pour tout u € H, et pour
toute fonction propre normalisée @; de A;(w) associée a une valeur propre €; € I, on ait

|| fot | na < Cr (5.1)
Corollaire 5.2 Soit 1 < i < N. Il eriste un voisinage compact I de € dans (—00,0), il
existe Ry > 0, e; > 0 tels que pour tout 0 < e < ¢;, R> Ry et u € He, on ait

Sp Ai(u) NI = 0. (5.2)
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Démonstration-Par I’absurde, si pour tout voisinage compact I de €?, il existe B > 0
arbitrairement grand, ¢ > 0 arbitrairement petit et u € H, tels que

D’apres (2.2) et (2.3), on peut choisir ] = [¢f — 8,60 + 8] et J = [¢? — 26, € + 28] avec § > 0
assez petit pour que
VN <j < Z, Sp(—A +V;)NnJ =0, (5.3)

VISGSN, j#4, Sp(-A+V;+ Wsuf —K@)nJ=0. (5.4)
Comme SpessA;(u) = [0,00), il existe 4; € H? N H(£2;) et &; € I tels que
A.’('U,)ﬁi == é,’ﬁ,, et H U; IILQ(Qi): 1.
Soient xx € C(R3,(0,1]), 1 < k < Z, telles que

(’E)“{O si|ax— Ry |>R
XEWE)=\1 si|z—Re|< R-1.

z
On pose xo =1— ) _ Xk On a alors d’aprés (5.1)
k=1

|l xot: || L2 < CR™°.
En outre, y:i; = 0, donc

Z [ Xxs ”%-?(Q,-)Z 1-CR™°.
k#£0,i

En particulier, si R est assez grand, il existe k # 0 et 7 tel que

" 1
|| X8 || 2002 NoTh (5.5)

-1 cas:si N<k< Z.
On a
(—A 4+ Vi(x — Ri) — &) xetis = —[A, xi]t; + xe(—A + Vi(x — Ry) — Ai(uw)) i

c’est & dire

(A + Vi(x — Ri) — &)xats = —  [A, xelits — xe Y Ve(x — Re)ils
ik
- Xk ZVV * 'U,? ﬂi + Xk ZK(’U,])TL
i i

1. Estimation de [A, x)i:.
On a d’apres (5.1)

1 A, xklt || L2r) < C || @ |1 (R=1<fe=Re)<R)<S CR™C.
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2. Estimation de xxVe(x — R))u;, £ # k.
On a
|| xxVe(x — Ri)di ||L2ry< sup Rl Ve(z — Re) | - || s ||zows)

x— R |<

c’est & dire, grace a (1.3)
Il xxVe(z — Re)tts || 2wy < CR™7.

3. Estimation de xx W * 2 @.

On a 5 "
I xe W g @ || 2 <|| xeW * uj ||

< I xeW x u§(c = Ry)? ||z + || xeW * (uf = (- = R3)?) ||z= -
Comme k # j, le premier terme s’estime grace a (1.3) et (4.10)
| xkW *uj(. — R;)? [|lee< CRT°.
Le second terme s’estime de la fagon suivante

| xeW * (uf — ud(.— Ri)*) o<l Xk llzee - [| W |zeo
x || wj +ui(c — Ry) 2 - || wj — u3(. — Ry) ||2< Ce.

On a donc
|| xxeW * u?ﬂ,- l|L2< CR™% + C.

4. Estimation de x K (u; ).
On a

| xx K ()t ||z < || W [|zeo || Xty H2|] uj ||z2]] @ ||162
< C |l xeu(- = Ry) |2 +C || uj — w3(. — Ry) ||z -

Comme k # j, on en déduit, grace & (4.10) que

| xuK (u;)t; ||2< CR™7 + Ce.

On a donc, d’apres 1, 2, 3 et 4
|| (=A + Vi(z — Re) — é)xxtl; || 2< CR™7 + C.

On peut donc choisir R assez grand et ¢ assez petit pour que

8
| (—A + Vi(z — Re) — &) xails |22 < 7N

On en déduit alors, grace a (5.5), que

[| (—A + Vi(z — Ri) — &)Xl ||z

dist(€;, Sp(—A + WV)) < ~
(&, Sp(=A + Vi) EEAR

<é
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ce qui contredit (5.3).
2% cas:sil< k< N.

n
On a ( —-A + Vk(.'L' s Rk) + W % u(,:( = Rk)z — K(ug( — Rk)) — éi)Xkﬁi
= —[A, xelt@: — [K(uR(- — Rx)), xxliis
+ xe(—A + Vi(x — Rp) + W ud(. — Ri)? — K(ul(. — Ri)) — Ai(u))iu
= —[A, &)@ — [K(uR(- — Ri)), xxlt — xe 2 Ve(z — Re);

L4k
—xe > Wxud i+ xe D K(ue)i
L#i,k £k
+ XkW * (ug( — Rk)2 = uﬁ)ﬂ, — Xk(ff(ug & == Rk)) = K(uk))'&.,

1. Estimation de [K (u2(. — Rx)), Xxk|@:-

On a
(K (. — RO, xelta(@) = [ Wie — yhudly — RO(v)

x (xk(2) = xx(y)) dy ui(z — Re)-
Donc, d’apres (1.3) et (4.10)
| [K(u(,;( _ Rk)):Xk]ﬂi(m) | < C/Rs <z-—y ~—° e—(|w—Rk|+|y—Rki)/C
x | xe(x) = xe(W) | - | ily) | dy.
On en déduit alors que
|| [K (up(- — R)), xkltis ||32< C/fm - <z —y > g He-RelHy-Rel/C
x | xa(z) = xe(y) 2 dz dy || % |1z

et en examinant le support de xx(x) — xx(y), on en déduit que

|| [K (ui(- = Ri)), xxlt ||2< CR™.

2. Estimation de xiW * (ul(. — Ri)? — u?)i;.
On a
Il kW * (ui(. — Re)®~ ug)i ||Z2
= [ xe@?([ W@ =)y~ R - u(v)’) dy)’ise)” da

ce qui donne
| xeW * (uR(- — Re)® = ud)s o2 < || Xk Hoeell Wollzeo || wi(c — Rie) + ue |12
x || uf(- — Re) — ug ||2< Ce.
3. Estimation de xx(K (up(. — Rr)) — K (us))i;.
On a

| xe(K (ua(- — Re))— K (ue))is |[2<|| X e - |l (‘)’V lzeo - || @i || 22
X || ug(z)ue(y) — up(z — Re)up(y — Re) |2y < Ce.
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D’apres 1, 2 et 3, on a alors
| (—A+ Vi(z — Rg) + W s uj(. — Ri)* — K (up(. — Ri)) — &)xelii ||z2< CR™7 + Ce.

En procédant comme dans le premier cas, on montre que cela contredit (5.4)

]
Démonstration du corollaire 4.2.
Soit )z;,:“» 1-—*)(,' € CSO(Q,,[O,I]) 32,(.’1‘) =1si I-'L"'Ri |2 R+ 1. On a
(Ailu) — &) (xatis) = —[A, Xt — Y _[K (uy), Xils.
i
1. Estimation de [A, ¥:].
On a
I {A, Xl |2 < C || @ || g (r<je-Ril< R41) -
D’apres (4.5), on en déduit que
|| {A1}2i]'&i ||L2_<_ CR—G.
2. Estimation de [K(u;), X:lis;, j # 1.
On a
K (w5), () = ws() [ W (@ = 9) w(0) @) (le) — %) dy.
En outre, cette intégrale se majore par
C <=y > |w) | W) | dy
lz-y|>R/2
+C [ %) %) | w0) || %) | dy
le-y|<R/2
=(1)+ ().
L’intégrale (I) se majore par CR~°. Pour estimer (/I), on remarque que si | z —y |<

R/2 et si xi(x) # xi(y), alors R/2 <|y — R; |[<3R/2+ 1. On a alors, d’apres (4.5) :
({II) < CR™°. On en déduit alors que

I[K (uy), it |2 < CR™°.

D’aprés 1 et 2, on a "
|1(As(w) — &)(Xst) [|2< CR™.

En outre, d’apres (5.2)
Vé; €I, VueHe, YO < e< e, VR> Ry ¢ || (Ai(w) — &) ||cze.an< Cr

ce qui démontre (4.11). .
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Corollaire 5.3 Il existe 6 > 0, Rs > 0 et €5 > 0 tels que pour tout 0 < € < €5, pour tout
R > Rs et pour tout u € He, on ait

Sp Hi(u) N [ef — 6,6 + 8] = {&}. (5.6)

é; étant alors une valeur propre simple. De plus, si ii; est une fonction propre normalisée de
H;(u) associée d é;, alors (£ii)1<i<n € He.

Démonstration-On a

(Hi(u) — ). = Ri) = ) Vi(z — Ro)ui(z — R)
k#i
+ > W xud ul(x — R) — > K(u;)u) (- — Ry).
J#i i#i
1. Estimation de Vi(z — Rk)uﬁ’(m:— Ri), k # 1.
D’apres (1.3) et (4.10), on a

|| Vil = Ri)ui (x — Ri) ||r2< CR™.

2. Estimation de W * w2 u{(z — R;), j # 1.
On a
| W u? wd(z — Ri) ||z < || W o* (uf — ud(. — R))*)wd(x — Ry) ||
+ | W (. — Rj)u(x — Ry) |22 -

Le premier terme se majore par Ce et le second se majore, grace a (4.10), par CR™7.

On a donc
|| W uf wW(x — R) ||2< CR™ + Ce.

3. Estimation de K (u;)u)(. — R:), j # 1.

On a 5 i i "

| K (uj)ui (- = Ri) |2 < | (K (uy) — K(w5(. — R;)))us (- — Ri) |l
+ || K (uj(. = Ri))wd (- = Ri) |l

et en procédant comme précédemment, on a

|| I((’u?)’ll?( = H,) ||L2S Ce+ CR™°.

On a donc, d’aprés 1, 2 et 3
| (Hi(u) — el (. — Ry) ||z2< Ce+ CR™°.

Pour tout voisinage I de €?, il existe donc ¢; > 0 et Ry > 0 tels que, pour tout 0 < € < ¢,
pour tout R > R; et pour tout u € H,, H;(u) possede une valeur propre é; dans I. En
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accord avec (2.1), on choisit [ = [ — §,el + 8] et J = [e) — 26,€) + 26], avec § > 0 assez
petit pour que
Sp(-A+V)nJ = {e}. (5.7)

Montrons que, pour R assez grand et e assez petit, é; est la seule valeur propre de H;(u) dans
I et qu’elle est simple. Par I'absurde, si H;(u) possede deux valeurs propres é; et f; dans /
(distinctes ou doubles confondues). Il existe alors deux fonctions propres i; et 9; € H*(R?)

telles que -
Hi(u)"&,- = éiﬁi " Hi(’l))'l-),; = fi’U;’
”ﬁiHLZZHﬁiHL?:I , < U, U >e=0.

On a alors

(—A+Vix— R) — &) = — Y Vi(z — Re)its — 3_ W *ud s+ Y K (u;)s.
k#i i J#i

1. Estimation de Vi(x — Ry)i, k # 1.
Ce terme s’estime, grace a (1.3) et (4.11) par
|| Vil — Ri)a; ||L2< CR™°.
2. Estimation de W v} a;, j # i.
On a
| W2 @ || g2 <|| W (02 — 9.~ Ry)®)its |2 + || W g (. — Ry)? s || 2= (1) + (I1).

Le premier terme (I) se majore par
(D2 <[ uy — w2 — Ry) |I2 . / /RSXRH W(x — y)(u; () + uQ(y — R;))*s(x)? da dy

et cette derniére intégrale se majore, grace & (1.3), (4.10) et (4.11) par : C(e2 + R™%).
Le second terme se majore de maniére analogue. On a donc

| W s 22 it || o< C(E + R™).

3. Estimation de K (u,)i;, j # .

On a
| K (u)ts |2 < || (K (ug) — K (u5(- — Ry)))its ||z2

1] K~ Ry))is s (1) + (ID).
Le premier terme se majore par
W72 = [ (L, We =) @) @) - e - Ry - ) dy) do
<2 [ ([ W -1)u@u@we) - uy- k) &)’ d

R3
/Ra W (z — y)iu(y)ui(y — R;)(us(z) — uj(z — R;)) dy)* da

+2 /Rs(
— (II1) + (V).
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En outre
arn <z ff | Wiyl umte - R dedy |lu -3 - R) [,
donc, d’apres (1.3), (4.10) et (4.11)
(IIT) < CE(R™* 4 &4).
De la méme maniére, on montre que

(IV) < CeR™%.

On a donc
(I) S C(R™ +¢%)
et de méme
(II) < CR™°.
On a donc

| K (u))fi || 2< C(R™ + €2).

Finalement, d’aprés 1, 2 et 3, on a
|| (A + Vi(z — R) — &)t ||.2< C(R™ + €°), (5.8)

et de méme pour ;. En choisissant R assez grand et ¢ assez petit, on en déduit que —A + V;
possede au moins deux valeurs propres (distinctes ou doubles confondues) dans I, ce qui
contredit (5.7).

En outre, on déduit de (5.7) et de (5.8) que

(et § R
===,

En particulier, si € est assez petit et si R est assez grand, (£ui)i1<icn € He.

H ’&,‘i"ll.? w == R1) HL’_’S

6 Démonstration du Théoréme 2.1

Avec les notations du corollaire 5.3, si 0 < € < ¢5 et R > Ry, il existe une unique application
F i Hedu = (ui)icicy — = (li)1cicn € He
telle que
ﬁ-i < HZ(RJ), P],;(’u.)ﬂi = éﬂ-t,‘, | é,; - 8(-) I_<__ b.

1

Admettons provisoirement le
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Lemme 6.1 Si ¢s5 est assez petit et si Rs est assez grand, alors F est une application
contractante.

On en déduit que F posséde un unique point fixe. D’apres (4.4), cela démontre la premiere
partie du théoréme 2.1.

Pour établir le point 2, on pose v = (u)(. — Ri))1cicn € He et & = (Ti)icicy = F(v).
D’aprés (4.10), u?(. — R;) est un quasi-mode de 'opérateur H;(v)

(Hi(v) — ed)v; = O(R™°) dans L*(R?).
On en déduit alors, grace a (5.6), que
& —el=0O(R™7)
et d’apres (5.6), on a aussi
B —ul (. — R) = O(R™) dans L*(R?). (6.1)

Soit u = (ui)1<i<n, I'unique point fixe de F. F étant contractante, il existe une constante
0 <k <1 telle que

|| u—v ”Lz(Ra)N:H .7'—(’&) - .7'-(’1)) [lL?(Ri‘)NS k H U—"uv HL2(R3)N .
On en déduit alors, grace a (6.1), que
v =2l <l v =2 ||L2wayy + 1|9 = v ||2moyn < K || w— v ||2meyy +O(R™7)

c’est a dire
u; —ud(. — R) = O(R™) dans L*R?).

On a la méme estimation dans H2(R?) grace & une propriété d’ellipticité de H;(u). Par
suite, on a aussi |
€ = 6? =+ O(R_c’)

Démonstration du lemme 6.1-Soient u et v € H.. On pose @ = F(u) et & = F(v).
On a alors

(Hi(v) — &)t = (Hi(v) — Hi(u))i
= Z W (’U? e 'U?) Uy — Z(I((UJ) s K(u‘,))’&,
i i
1. Estimation de W * (v} — u?) @;, j # i.
On a, grace a 'inégalité de Cauchy-Schwarz
W (0] = uf) @ [[7< f fRast W (2 — y)%s(2)* (u;(y) + vi(¥))" dy. || v; —u; |22 -
On en déduit alors, grace & (1.3) et (4.10), que
| W (v —u3) i |]2< Cle+ R7O) || w5 — w5 |12 -
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2. Estimation de (K (v;) — K (u;))t, 7 # i
On a

(K@) = K@) s = [ (W = 9)(@@)0) - u(@)u0)a) dy) de

/(1 — s 12
= 2/./R3xR3 Wz — )" (w;(x) + vj(z N’ u(y)? dy || vi —u; || -
On en déduit alors, comme précédemment que

|| (K (v;) = K (u;))t; [|2< Cle + R7) || v — u ||z -

On a donc, d’apres 1 et 2
Il (Hi(w) = &) ll2< Cle + R || v — i ||z
ce qui prouve, d’apres (5.6), que

H U; — U4 ”L'-’S (:(( + R—a) H V; — U4 “L‘z .

u
7 Démonstration du Théoreme 2.2
Soit H lopérateur de Schrisdinger obtenu en négligeant les interactions entre les électrons
H= Z i+ V() =AN(=A+V) sur L2,
D’apres [4] (théorémes I11.2.1 et 111.2.3), on a, sous les hypothéses du théoreme 2.2, le
Lemme 7.1 Soit I un intervalle compact de'(—oo,O) tel que
VI<i<N, Sp(=A+V)nI=1{"}, elel. (7.1)
Alors, il existe Ry > 0 tel que
VR>R;, Sp(-A+V)nI={& 1<i<N}, (7.2)
ot é; sont des valeurs propres simples telles que
é =¢el + O(R™). (7.3)

De plus, si i; sont les fonctions propres normalisées associées, alors, quitte d changer i; en
—U;, On a

U = u,?(. — R)+O(R™°) dans H?*R?). (7.4)
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En fait, ce résultat a déja été établi dans cet article. En effet, d’apres (5.6), en prenant
W =0, H;(u) = —A + V admet une unique valeur propre simple & au voisinage de e}.
En utilisant les mémes techniques, on montre que ce sont les seules valeurs propres dans [.
L’estimation (7.3) résulte de

(~A+V = e)ul(. — R) = O(R™).

La plus petite valeur propre de H est alors

N
=) é&=¢"+O(R™) (7.5)
i=1
avec
N
=3 ¢ (7.6)
i=1

et la fonction propre associée est

_ N
p=11 A Ny € \ H}(R?).

D’aprés [11], il existe un déterminant de Slater ¢ € AV H?(R?) qui réalise le minimum de la,
fonctionelle £ définie par (1.6).

D’aprés (1.4), on a H > H, donc
E=<Hp,¢p>p << Hpp>p < < Hp¢p>12 < < Hp,p>p2 .
On en déduit alors, d’apres (1.3), (7.4) et (7.5) que

< (H —&)p, ¢ >12= O(R™). (7.7)
D’apres (7.2), il existe une constante § > 0 (indépendante de R) telle que
H—-e>6 sur {¢}* (7.8)

Soit 11 le projecteur orthogonal sur {¢}+. On a alors, grace a (7.9) et (7.10)
61| 11g |[f2<< (H — )19, [1p > pa=< (H = &), ¢ >12= O(R™).
Cela prouve que, quitte a changer ¢ en —¢, alors
o=¢+ OR?) dans LARV). (7.9)

Grace & un résultat de régularité, on a la méme estimation dans H2(R®*"). On en déduit
alors, d’apres (3.3) et (7.4), que
G=u AN ANuy

avec

VI<i<N, w=u)(—R)+OMR ) dans H*R?). (7.10)
En outre, d’apres (1.11), les fonctions wu; vérifient les équations de Hartree-Fock (4.4). D’aprés
(7.10), on a aussi

VI<i<N, e € +O(R?).

Dong, si R est grand, (u;)i<i<y € H. et est un point fixe de F. Ce point fixe est unique et
correspond a la solution obtenue au théoréeme 2.1.
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