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Résumé. Nous étudions le problème de l'existence et de l'unicité des solutions des équations de

Hartree-Fock. Nous nous plaçons dans l'approximation du tight-binding, ce qui correspond à

supposer que la distance entre les noyaux est grande. Nous supposons également que les noyaux
sont en nombre supérieur aux electrons et qu'ils ne résonnent pas. A partir des états propres
des noyaux isolés, nous donnons alors un procédé de construction de solutions des équations de

Hartree-Fock. En outre, ce procédé fourni le niveau fondamental.

Abstract. We study the existence and uniqueness of solutions to the Hartree-Fock equations. Our
approach is based upon the tight-binding approximation, which implies that distances between

the nuclei are supposed to be large. It. is also assumed that the nuclei are not resonant and
their number is greater than that of electrons. We propose an iterative procedure which yields
approximate solutions of the Hartree-Fock equation starting from the eigenfunctions of the isolated
nuclei. Moreover, this method provides the ground state of the system.

1 Introduction

L'objet de ce travail est d'étudier- les niveaux d'énergie stables de certaines molécules en
ionisation. Nous nous plaçons dans le cadre de la théorie de Hartree-Fock, l'aspect "Schrödinger"
de ce problème ayant déjà fait l'objet d'une thèse [4]. Un problème assez voisin concernant
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l'équation de Hartree associée à un cristal en ionisation a également été étudié par C.
Albanese [2]; ce problème a d'ailleurs été repris dans [4].

Les techniques utilisées dans cet article sont dues à B. Helffer et J. Sjöstrand. Ces deux
auteurs en ont fait un usage intensif pour décrire semi-classiquement le spectre de certains
hamiltoniens quantiques. On pourra consulter notamment : [7], [8], [9] et [10].

Avant de présenter ses résultats, l'auteur tient à remercier B. Helffer pour lui avoir
proposé le sujet et pour les nombreuses discussions qu'il a eues avec lui. Il remercie également
E. Lieb pour l'avoir aidé dans la démonstration de l'unicité du niveau fondamental.

On considère l'hamiltonnien

H f:(-Ai + V(Xi)) + £ W(xi - x,), (1.1)
•=i »<.j

où N désigne le nombre d'électrons du système, Ai désigne le laplacien par rapport à la
variable Xi e R3, et V représente le potentiel induit par le champ électrostatique extérieur;
il est de la forme

V(x) '£Vk{x-Rk). (1.2)
k=l

Vfc € Z/°°(R3) désigne le potentiel d'interaction entre un électron et un des noyaux situé
en Rk € R3. Le potentiel W £ L°°(R3) correspond à l'interaction entre deux électrons.
Ces potentiels ne sont pas coulombiens pour des raisons de simplicité mais ce qui va suivre
devrait s'adapter sans trop de difficulté pour des champs coulombiens. On suppose de plus
que

Vr e R3, VI < k < Z, | Vk(x) | + | W(x) |< C(l+ | x |)"°', o > 0. (1.3)

W > 0. (1.4)

Vr € R3, W(-x) W(x). (1.5)

La condition (1.4) est une condition de répulsion entre deux charges de même signe. La
condition (1.5) permet de considérer H comme un opérateur auto-adjoint non borné sur
l'espace des fermions L2phys := ANL2(R3,R). Le domaine de H est H2hys := H2(R3N,R) n
L^hya — ANH2(R3,Il). Les fonctions de L2hys sont des fonctions

0 : R3N —* R

telles que pour toute permutation r e Sn, on ait

<J>(XT(1),--- ,XT{N),) (-I)|T|0(.Tl,---,.TW).

Les valeurs propres de H sont données par les extréma faibles (condition d'ordre 1) de la
fonctionnelle d'énergie

€(<!>) =< H<b,4»Llhyt, 4> £ H2hys, H <b \\Lihy 1. (1.6)
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Ce n'est pas exactement le problème qui nous intéresse. Nous allons suivre l'approximation
de Hartree-Fock. Cela consiste à minimiser la fonctionnelle d'énergie S sur un sous-ensemble

particulier de H2hya constitué des déterminants de Slater

f <p m A A uN ^det(in(xj)) ^\ Ui e F2(R3,R), <in, tij>mw)=6ij.
Les conditions d'orthogonalité entre les fonctions m* donnent

Il <t> 11^= 1. (1.8)

Pour plus de détails concernant cette approximation, on pourra consulter E. Lieb et B.
Simon [L-S]. Ces deux auteurs ont montré que, dans un certain sens et pour des potentiels
coulombiens, les énergies fondamentales obtenues en minimisant la fonctionnelle S
respectivement sur H2hys et sur l'ensemble des déterminants de Slater sont asymptotiquement
équivalentes lorsque N tend vers l'infini : théorème 4.1 dans [11]. Ce problème a également
été étudié par J. P. Solovej [12] et J. G. Conlon [3]. On pourra également consulter [6|.

Si <j> est un déterminant de Slater donné par (1.7), alors

£^ L. T(x) dx + / P(x)v(x) dx + ô [[ p(x)p(y)W(x - y) dxdy

~ô IL, „,p(x'V)2w(x-y) dxdy>

OÙ

r(x) jr | Vut(x) |2, p(x) 2>(.r)2, P(x,y) ~ ë««(a:)u,(y). (1.10)
1=1 t=l 1=1

t(x) s'appelle la densité d'énergie cinétique, p(x) s'appelle la densité d'électron et p(x,y)
représente la matrice de densité. Si <j> est un extrémum de la fonctionnelle d'énergie S

restreinte à l'ensemble des déterminants de Slater, alors il existe une représentation de <j>

sous la forme (1.7) telle que

VI < i < N, (-A + V + p * W - K(p))ui em (1.11)

où ti € R est un multiplicateur de Lagrange, p * W est le produit de convolution entre p et
W et K(p) désigne l'opérateur intégral de noyau p(x,y)W(x — y) £ L2(R3 x R3).

L'objet de ce travail sera, sous certaines hypothèses de ionisation et de non résonnance
entre les noyaux, de produire des solutions pour le système de Hartree-Fock (1.11). Nous

prouverons également, sous certaines hypothèses supplémentaires, l'existence d'un niveau
fondamental figurant parmi les solutions produites précédemment.

(1.9)
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2 Résolution des équations de Hartree-Fock

Pour N < Z, nous allons montrer l'existence de solutions Ui pour les équations de Hartree-
Fock (1.11). Chaque fonction Ui étant localisée près d'un noyau Ri. On suppose que

V 1 < i < N, e? < 0 est valeur propre simple de — A + Vi

ut £ H2(B?), || ui ||l»(r.,= 1, (-A + V,K e°u°. (2.1)

V 1 < i < N, VJV < j < Z : eli Sp(-A + Vj). (2.2)

V 1 < i,j < N, i ^ j, : eU Sp(-A + Vj + W* uf - K(u])) (2.3)

où K(u°) est l'opérateur intégral (sur L2(R3)) de noyau W(x — y)u°(x)u°(y) £ L2(R6).

Vi étant une perturbation A-compacte, le spectre essentiel de — A + Vj est le même que celui
—A c'est à dire [0,+co). L'hypothèse (2.1) assure donc juste l'existence d'un spectre ngatif
pour —A + V,. Le fait que la valeur propre e" soit simple est essentiel dans ce qui va suivre
et ceci est vérifié en particulier pour le niveau fondamental.

Les hypothèses (2.2) et (2.3) sont génériquement vérifiées si les potentiels Vj sont distincts.

Ces trois hypothèses nous permettent ainsi d'éviter les effets tunnels (cf. introduction du

paragraphe 4 pour plus d'explications).

On a alors les résultats suivants

Théorème 2.1 Sous les hypothèses (1.3), (14), (1.5), (2.1), (2.2) et (2.3) :

1. Pour tout e > 0, il ariste Re > 0 tel que si R:— - min | Rk - Rt \> Re alors le système

(1.11) admet une unique solution (uì)i<ì<n G H'2(R3)N telle que

V l<i<N, H«, |b<R3)=l, ,24i
\et-ePt\<eet \\ «,-«?(.- R,) |U»(R.,< e.

K ]

2. Une telle solution vérifie alors

IV
1 < i,j < N, < Ui,Uj >L2(R3)= ôij

Ui - u?(. - Ri) 0(R-a) dans ^(R3) (2.5)

et - e? 0(R-a) si R -> oo.
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Théorème 2.2 On suppose de plus que

Vl<i<N, e°i= inf Sp(-A + Vi) < ^inf^ inf Sp(-A + Vj), (2.6)

VI < iï j < N, e° < inf Sp(-A + Vj) |{uo}x (2.7)

Alors l'énergie de Hartree-Fock admet un minimum absolu sur l'ensemble des déterminants
de Slater1. Le déterminant qui réalise ce minimum est, unique au signe près. C'est celui qui
est obtenu au théorème (2.1).

Ces résultats seront démontrés dans les paragraphes suivants.

3 Quelques propriétés sur les déterminants de Slater

Proposition 3.1 1. Soit (p U\ A- ¦ ¦ Aun un déterminant de Slater et soit A £ SO(N).
On pose

v Au £ H2(R3)N. (3.1)

Alors les fonctions (vì)i<ì<w sont orthonormées dans L2(R3) et

</> Vi A--- Avn- (3.2)

2. Soient <f> — uj A • • • A un et ip v\ A ¦ ¦ ¦ A vn deux déterminants de Slater. Si<f> ip,

alors il existe A e SO(N) vérifiant (3.1).

3. Soient <jf u\ A ¦ ¦ ¦ A uN et ip v\ A ¦ ¦ ¦ A vN demi: familles de déterminants de Slater.
Pour que tff ijf + 0(e) dans L2vhys (resp. dans H2hyJ, il faut et il suffit qu'il existe
Ae £ SO(N) telle que

ve Aiu( + 0(t) dans L2(R3)W (resp. dans H2(R3)N). (3.3)

Démonstration-Les points 1 et 2 sont classiques (cf [11]). Ils se déduisent également du

point 3 avec e 0.

3-Supposons que <p€ -tpl + O(t) dans L2hys. On a alors

E (-1)M n«T(i>(*i) E (-1)|T| n«r(.)fe) + O(e) dans L2(R3)N.
t€Sn i=l t€Sn t=l

'L'existence de ce minimum a déjà été établie (sans l'unicité) par E. Lieb et B. Simon sans les hypothèses
(2.2) et (2.3), cf. th. 2.4 de [11].
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En multipliant par PJftOi:«) et en intégrant suivant les variables Xi, i ^ j, on obtient

Vj E (-1)|T| Il < «Mo.** > UrU) + 0(t) dans L2(R3).

On obtient finalement (3.3) en posant

A (a.j,k)i<j.k<N, avec aiJc- E (_1)M II < ur{i)^i >
reSN i^j

L'orthogonalité de la matrice A résulte de l'orthogonalité des systèmes {m,} et {vi}

Corollaire 3.2 Les densités (1.10) et l'energie (1.9) ne dépendent que du déterminant de

Slater (p u\ A ¦ ¦ ¦ A un et non du choix, des fonctions U\, ¦ ¦ ¦, un-

4 Localisation des fonctions propres pour des équations
du type Hartree-Fock

On considère le sous-enseinble fermé de L2(R3)N

Ht {u= (uOiS«s* £ L2(R3)N, || tu |b(R:<)= 1, || tu -«?(. - Ri) |b(R.)< e}. (4.1)

Pour u £ He, on introduit les opérateurs intégro-différentiels suivants

VI < i < N, Hi(u) -A -l V + E W * «i - E K(ui) (4-2)

où K(uj) est défini comme dans (2.3). Les opérateurs Hi(u) sont des opérateurs auto-adjoints
non bornés sur L2(R3) de domaine H2(R3). D'après un théorème de perturbation compacte,
on a

Vit € ne, VI < i < N, SpessHi(u) [0, co). (4.3)

Pour u £ ne D H2(Çl)N, le système (1.11) s'écrit

VI < i < N, Hi(u)Ui em. (4.4)

A partir de cette remarque, nous pouvons déjà donner une idée de la démonstration du
théorème 2.1 :

il est classique, d'après S. Agmon [1], que les fonctions «.? sont à décroissance exponentielle.
On a donc, avec l'hypothèse (1.3),

Hi((u% - Ä,))lstsiV)ti?(. - Ri) c?u?(. - Ri) + 0(R-°) siR - oo.

Cela suggère l'existence d'une solution de (1.11) proche de («°(. — ßi))i<i<^- Pour obtenir
une solution exacte, on peut procéder de la façon suivante.
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1. On montre que l'opérateur Hi((ul-(. — R-ì))1<ì<n) se découple, plus précisément que le

spectre de Hi((u°(. — Äi))1<i</V) est modulo Ö(R~") le même que celui de

0(-A + V})e © (-A + Vj + W*uf -K(u°j)).
J=l J-N+l

N Z
2. Puisque e° £ Sp@(-A + V,) © 0 (-A + Vj + W * uf - K(u°)), (d'après (2.2) et

.7=1 i=N+l
(2.3)) et puisque e® est valeur propre simple de —A + Vit on en déduit que Hi((u^(. —

Rì))i<ì<n) possède exactement, pour R assez grand, une unique valeur propre e\ près

de e° et de plus ef est simple. Si on note u\ une fonction propre normalisée associée à

e\, alors quitte à la changer en —u\, on a aussi

u\ u% - Ri) + 0(R-a) dans H2(R3) et e\ ~ e° + 0(R"a).

3. On procède ensuite de la même manière en considérant les opérateurs Hi((u\)l<i<Nj
au lieu de #»((«?(¦ —fij))1<i<ivi. On montre qu'on obtient alors des suites convergentes

(«<%, 1 < i < N dont les limites Ui vérifient les équations (4.4).

Ce n'est pas exactement de cette manière que nous allons procéder. Pour des raisons
techniques, nous avons préféré utiliser un théorème de point fixe. On introduit l'application
définie pour R assez grand pai' :

T :H(BV (^)i<i<N —? (vi)i<i<N 6 H£

où iii est l'unique fonction propre de Hi(v) qui appartient à Hf. On montre alors que T
est contractante (pour R assez grand) et possède alors un unique point fixe dans 7ie ce qui
fourni la solution de (4.4).

Pour rendre rigoureux ce schéma de démonstration, il est nécessaire d'étudier le spectre
des opfateurs Ht(v) pour v £ H(. Cette étude est essentiellement basée sur la localisation
des fonctions propres ce qui est l'objet de la

Proposition 4.1 Soit 1 un intervalle compact dc (—oo,0). Il existe des constantes 2

e/, Gj > 0 telles que pour tout. 1 < i < N, pour tout 0 < < d, pour tout u £ He et

pour toute fonction propre normalisée ài e H2(R3) de Hi(u) associée à une valeur propre
ëi € /, on ait

Il fui ||„.(RS)< C,, (4.5)

avec

f(x) mmN{R, <x-Rk >}. (4.6)

2Ces constantes sont indépendantes de R et de la configuration des noyaux. Il en sera ainsi de toutes les

constantes qui apparaîtront dans la suite.
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Démonstration-Remarquons tout d'abord que

^—— €L°°(R6) et V/e L°°(R3). (4.7)
< x - y > f(y)

Par intégration par parties, on a l'estimation d'énergie

0= <f2a(Hi(u)-ëi),èi>L2çR?)

L I V(/*Äi) I2 dx + L(r*i)2(Qt{u) - èi) dx - E < f"K(uj)ùi, ùi >mR3)
JR JR *,.

avec

Qi(u) v + E w »«»-^Iffl!.
D'après (1.3) et (1.4), il existe une constante Cj > 0 telle que pour tout c > 0, pour tout
u G We et pour tout èi € /, on ait

VïGR3, t.q. f(x)>~ : i- < Qi(u) - è{ < C/.

On en déduit alors que

Il fui ||wi(R3)< C/ + E l< /^(«f)*,* >L2(m\

Admettons provisoirement les deux estimations suivantes

|< f^(K(u% - R3)))ùi,ùt >t,(R3)|< C || fu% - Rj) \\lHm (4.8)

| < f°(K(uj) - K(u% - Rj)))ùt, ù, >mm\ < Ce || fui | |£2(R3) (4.9)

On en déduit que si e est assez petit, alors

n fui \\2HHm< c/(i + E n r«"(- - «,) iiî-(r.3)

ce qui démontre (4.5) puisque, d'après [1], les fonctions là sont à décroissance exponentielle

Vr e R3, | uPj(x) \< C,e-M/G', G, > 0. (4.10)

¦
Démonstration de (4.8)-On a

|< f2°K(u](. - Rj))üi,ïk >| < f f(x) | ùi(x) | | u%x - R3) |

x j^ W(x - y)fj^Lf(yy | u«(y - Rj) || ùi(y) \ dy dx.

Grâce à l'inégalité de Cauchy-Schwarz, on en déduit que

|< f"K(u% - A,))«,, fi, >|<|| W(x - »)Ä II^H /*M°(. _ fì,) |pt2|| ùi ||i,
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ce qui démontre (4.8) grâce à (1.3), (4.7) et (4.10)

¦
Démonstration de (4.9)-On a

| < f2°(K(uj) - K((u% - Rj)))ùi,ìk >»\<\\ W(x - y)-f(xr "
'f(vY ""

x /4,xRÏ /(*)" I *(*) I f(v)" I *(») I
•

I uj(*)«i(y) - «5(* - Hj)«?(ï/ - ^) | <fc dp

< C lira* |ß,|| Uj(x)uj(y) - u5(a: - Rj)u°j(y - Rj) ||y< Ce || /"ü, Mi»

Corollaire 4.2 /Z existe un voisinage compact I de e^ dans (—oo, 0), il existe des constantes

Ci > Q, ei > 0 et Rj > 0 telles que pour tout. 0 < c < e/, pour tout u £ 7ie et pour toute
fonction propre normalisée ùi de Hi(u) associée à une valeur propre ë, £ I, on ait

VA >/?.,, || n* ||»»(nc)< C/A-", (4.11)

avec ui {x £ R3, \x-Ri\>R}.

Ce résultat sera démontré au paragraphe 5.

5 Etude spectrale des opérateurs H{(u)

Soit u £ 7i£ et soit Ai(u), 1 < i < N, l'opérateur non borné sur L2(f2i), de domaine
H2 H Hq(Qì), défini comme Hi(u). Ai(u) est un opérateur autoadjoint.

Nous allons montrer que, sur tout intervalle compact de (—oo,0), le spectre de Ht(u) se

comporte, lorsque R est grand, comme le spectre de (-A +¦ V%) © Ai(u). Par ailleurs, nous
montrerons également que, lorsque R est grand, Ai(u) ne possède pas de spectre au voisinage
de e°. Cela prouvera l'existence d'une unique valeur propre pour Hi(u) au voisinage de e\.

En procédant comme dans la proposition 4.1, on montre la

Proposition 5.1 Soit I un intervalle compact de (—oo,0). // existe des constantes e/ > 0

et Ci > 0 telles que pour tout 1 < i < N, pour tout 0 < e < e/, pour tout u £ He et pour
toute fonction propre normalisée ùi de Ai(u) associée à une valeur propre ëi £ I, on ait

Il fui ||„,{ni)< Ci. (5.1)

Corollaire 5.2 Soit 1 < i < N. Il existe un voisinage compact I de e° dans (—oo,0), il
existe Ri > 0, e/ > 0 tels que pour tout 0 < t < e/, R > Ri et u £ He, on ait

Sp Ai(u) n / 0. (5.2)
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Démonstration-Par l'absurde, si pour tout voisinage compact / de e°, il existe R > 0

arbitrairement grand, e > 0 arbitrairement petit et u £He tels que

Sp Ai(u)f\I ï®.
D'après (2.2) et (2.3), on peut choisir / [e? - 6, e° + 6} et J [e? - 2-5, e? + 26] avec <5 > 0

assez petit pour que
V7V < j < Z, Sp(-A + Vj) n J 0, (5.3)

VI < j < N, j / i, Sp(-A + Vj + W * uf - K(u*)) n J 0. (5.4)

Comme SpessAi(u) — [0,oo), il existe ùt £ H2 n Hq(Uì) et ëi £ I tels que

Ai(u)ùi-ëiùi et. || «t IU3(n,)= 1-

Soient Xk e CS°(R3, [0,1]), 1 < k < Z, telles que

v.M-i0 si|x-fife|>iï
x"W-\l si|x-Ä|<Ä-l.

On pose Xo 1 - E Xk- On a alors d'après (5.1)
k=i

Il Xoùi ||w(n,)< CR-".

En outre, Xi«* 0, donc

E II xä llï.(ni)> i - cr-°-
kjiO.i

En particulier, si R est assez grand, il existe k. / 0 et i tel que

Xkùi |U»(n4)> -T^ff- (5-5)
/2N

-1er cas : si N < k < Z.

On a

(-A + Vk(x - Rk) - ëi)xkùi -[A, xk\ùi + Xfc(-A + Vk(x - Rk) - Ai(u))û.,

c'est à dire

(-A + Vk(x - Rk) - ëi)xkùi - - [A, Xk]ûi - Xk E VAX ~ Rt)^

- Xk E W * u) "* + X* E K(uj)ùi.

1. Estimation de [A,Xfc]wt-

On a d'après (5.1)

[A,Xk}Ùi \\v(R*)< C || ùi \\HHR-i<\x-Rk\<R)< CR ".



Daumer 247

2. Estimation de XkVi(x — Ri)ùi, i^k.
On a

H XkVe(x - Ri)ùi ||î3(R3)< sup | Vt(x - Re) \ || ùi \\l2(RS)
\x-Rk\<R

c'est à dire, grâce à (1.3)

\\XkVt(x-Rc)ùi\\LHm<CR-'7.

3. Estimation de Xk V/ * u2 ùi.

On a
Il XkW*u2jùi\\L2<\\xkW*u2\\^
< || XkW * u% - R,)2 |U~ + || XkW * (u) - u% - Rj)2) |U«

Comme A; ^ j, le premier terme s'estime grâce à (1.3) et (4.10)

\\XkW*u%-Rj)-i\\L~<CR-''.

Le second terme s'estime de la façon suivante

|| XkW* (u] - u%- Rj)2) \\L~<\\ Xk |U- • Il W |U-
x || Uj + «$(. - Ä,) Hi» || u, - «§(. - Ri) \y< Ce.

On a donc

\\XkW *u)ùi\\Li<CR-° + Ce.

4. Estimation de XkK(uj)ùi.
On a

Il **#(«;)* ||i? < || W lUccll X,W, ||L2|| u, |Ua|| fi, \\L2

< c n x*«?(. - A,) lb +c n w, - «5(. - a,) ib
Comme fc ^ j, on en déduit, grâce à (4.10) que

\\xkK(uj)ik\\L2<GR-" + Ce.

On a donc, d'après 1, 2, 3 et 4

|| (-A + Vk(x - Rk) - ëi)xkui \\L2< CRT" + Ce.

On peut donc choisir R assez grand et e assez petit pour que

|| (-A + Vk(x - Rk) - ëi)Xkùi \\L2< -j=.
On en déduit alors, grâce à (5.5), que

dist(ëx,Sp(-A + Vu)) < H(-^ + ^-^)-ëi)x^lb < g
Il XkUi ||t>
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ce qui contredit (5.3).

-2ieme cas : si 1 < k < N.

-A + Vk(x - Rk) + W * u°k(. - Rk)2 - K(ul(. - Rk)) - ëi)Xkui
-[A,Xk]ùi - [K(u°k(. - Rk)),Xk]ùi

+ Xk(-A + Vk(x -Rk) + W* u°k(. - Rk)2 - K(u°k(. - Rk)) - A(u))ü>
-[A,Xk]üi - [K(u°k(. - Rk)), Xk\ùi - Xk E Vt(x - Rt)üi

- Xk E W * uî "* + Xk E K(ue)ui

+ XkW '* (u°k(. - Rk)2 - u2jùi - Xk(K(ul(. - Rk)) - K(uk))ùi.

1. Estimation de \K(uk(. — Rk)),xk]ùi-
On a

[K(u°k(. - Rk)),Xk]ùi(x) /R3 W(x - y)u°k(y - Rk)ûi(y)

x (Xk(x) - Xk(y)) dy u°k(x - Rk).

Donc, d'après (1.3) et (4.10)

I \K(ul(. - Rk)),Xk\ùi(x) | < cfR3 <x-y >-° e-d-M-Hir-HkD/o

x I Xk(x) - Xk(y) I
•

I ùi(y) | dy.

On en déduit alors que

|| [K(ul(. - Rk)),Xk\ùi \\h< cJJRixR3 <x-y >-2" e-«\*-m+\v-RMC

x I Xk(x) - Xk(y) I2 dx dy \\ùt |||2

et en examinant le support de Xk(x) — Xk(y), on en déduit que

\\[K(ul(.-Rk)),Xk]iH\\L2<CR-".

2. Estimation de XkW * (u°k(. - Rk)2 - u2)ùi.

On a

\\XkW*(ul(.-Rk)2-u2k)ùi\\2L2
/R3 Xk (xf(JR3 W(x - y)(ul(y - Rk)2 - uk(y)2) dy)%(x)2 dx

ce qui donne

|| XkW * (u°k(. - Rk)2 - u2)ùi \\L2 < || xk IU-II W lU-H u°k(. - Rk) + uk \\L2

x \\ii°k(--Rk)-uk\\L2<Ce.

3. Estimation de Xk(K(u°k(. - Rk)) - K(uk))ù{.
On a

|| Xk(K(u°k(. - Rk))- K(uk))ùt \\L2<\\ xk IU- || W |U» || fi, \\L2

x || uk(x)uk(y) - u°k(x - Rk)u°k(y - Rk) \\t,hb.<>)< Ce.
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D'après 1, 2 et 3, on a alors

|| (-A + Vk(x - Rk) + W * u°k(. - Rk)2 - K(ul(. - Rk)) - ëi)Xkùi \\l2< CRT" + Ce.

En procédant comme dans le premier cas, on montre que cela contredit (5.4)

¦
Démonstration du corollaire 4.2.

Soit Xi - 1 - Xi € Q°(fii, [0,1]). Xi(x) 1 si | x - Ri \> R + 1. On a

(Ai(u) - ëi)(xiùi) -[A, Xilùi - Et^(ui)' Xi\ùi-
fri

1. Estimation de [A,Xi]fit-
On a

Il [A,Xi]w> \\l2< C H fii \\hhr<\x-Rì\<r+i) ¦

D'après (4.5), on en déduit que

[A,x,]«,||^<Cß-<I.

2. Estimation de [K(uj),Xi\ûi, j / i-

On a

[K(uj),Xi\ùi(x) uj(x) I W(x - y) Uj(y) îk(y)(xi(x) - Xi(v)) dy.
JR3

En outre, cette intégrale se majore par

Ci <x-y>-°\uj(y)\ \ùi(y)\ dy
J\x-y\>R/2

+C f | Mx) - UV) I I Uj(y) | | üi(y) \ dy
J\x-y\<R/2

(I) + (H)-

L'intégrale (/) se majore par CR~a. Pour estimer (77), on remarque que si | x — y |<
fi/2 et si Xi(x) / Xi(y), alors fi/2 <\ y - Ri \< 3fi/2 + 1. On a alors, d'après (4.5) :

(77) < CR'". On en déduit alors que

\\[K(uj),Xilùi \\l*< CRT".

D'après 1 et 2, on a

||(yli(M)-è1)(À'Â)ll^<Cfi-CT.
En outre, d'après (5.2)

Vèi e I, V« € He, VO < e < e/, Vfi > fi/ : || (At(v) - è*)"1 \\c(l\h*)< Ci

ce qui démontre (4.11). ¦
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Corollaire 5.3 II existe S > 0, Rg > 0 et eg > 0 tels que pour tout 0 < e < e«, pour tout
R> Rg et pour tout u £ He, on ait

Sp Hi(u) n [e° - 6, e°i + 6} {èi}. (5.6)

ëi étant alors une valeur propre simple. De plus, si ùi est une fonction propre normalisée de

Hi(u) associée à ëi, alors (±fii)r<i<w £ Tit.

Démonstration-On a

(Hi(u) - e?K(. - fii) E Vk(x - Rk)u°i(x - Ri)
k^i

+ E W * u2 u«(x - Rt) - Y,KWj)uï(. - Ri).
fri fri

1. Estimation de Vk(x - Rk)u°(x - R%), k / i.

D'après (1.3) et (4.10), on a

\\Vk(x-Rk)u1(x-Ri)\\L2<CR-".

2. Estimation de W * u2 u°(x — R{), j ^ i.

On a

|| W * u2 u?(x - 7?,) \\L2 < || W * (u2 - u% - Ri)2)u°(x - Ri) \\L2

+ \\W*u%-Rj)u0i(x-Ri)\\L2.
Le premier terme se majore par Ce et le second se majore, grâce à (4.10), par CR~"'.
On a donc

|| W * u) u0i(x - Ri) \\L2< CRT" + Ce.

3. Estimation de K(uj)u°ì(. - Rt), j ^ i.

|| K(uj)u°i(. - R,) \\L2<\\ (K(uj) - K(u% - Rj)))u% - R.) \\L2

+ \\K(u%-Rj))u°i(.-Ri)\\L2
et en procédant comme précédemment, on a

|\K(uj)uU-- 7?-i) ||j*< Ce + CR-".

On a donc, d'après 1, 2 et 3

|| (Hf(u) - e°K(. - Rt) \\L2< Ce + CR~a.

Pour tout voisinage 7 de e", il existe donc e/ > 0 et Ri > 0 tels que, pour tout 0 < e < e/,

pour tout R > Ri et pour tout u £ H€, Hi(u) possède une valeur propre ëi dans 7. En
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accord avec (2.1), on choisit 7 [e" - 6,e" + è] et .7 [e" - 2ô,e° + 26], avec 6 > 0 assez

petit pour que
5p(-A + Vi) n J {e?}. (5.7)

Montrons que, pour R assez grand et e assez petit, ê, est la seule valeur propre de Hi(u) dans

I et qu'elle est simple. Par l'absurde, si Hi(u) possède deux valeurs propres ëi et fi dans 7

(distinctes ou doubles confondues). Il existe alors deux fonctions propres ùi et Vi £ 772(R3)
telles que

Hi(u)ùi ëSi Hi(v)ùi fiïii
Il ùi \\l2=\\ ùi ||L2= 1 < ùi,ùi >L2= 0.

On a alors

(-A + Vi(x -Ri)- ëi)ùi ~Y,Vk(x- Rk)ùi - E W * u) ùi + E K(uj)ûi.
k^i fri fri

1. Estimation de Vk(x — Rk)ûi, k ^ i.

Ce terme s'estime, giâce à (1.3) et (4.11) par

||l4(x-fifc)fii|b<Cfi-<T.

2. Estimation de W * u2 ùi, j / i.
On a

Il W*U2jùi \\L2<\\ W*(u2j-U°j(.-Rj)2)ùi \\L2 + || W + U^.-Rjfùi \\L2= (/) + (//).

Le premier terme (7) se majore par

(7)2 <|| Uj - u% - Rj) \\2L2 ff W(x - y)(uj(y) + u°j(y - Rj))%(x)2 dx dy

et cette dernière intégrale se majore, grâce à (1.3), (4.10) et (4.11) par : C(e2 + R~2a).
Le second terme se majore de manière analogue. On a donc

||^*M2fii||L2<C(e2 + fi-ff).

3. Estimation de K(uj)ùi, j y= i.

|| K(uj)ù% \\L2 < || (K(uj) - K(u% - Rj)))ùi \\L2

+ \\K(^(.-Rj))ùi\\L2-(I)-r(II).
Le premier terme se majore par

(/)2 UL w{x ~y) üi^u^u^ - u> - R^y -**»dy)2 dx

- 2/r3(/r3 w{x - »)*(»)«>(*)(«*(») - u°(y - Ri)) dyfdx

+ 2/r3(/R3 w{x - y^y^y - A;)M*) - u°M - *>)) w2 dx

(III) + (IV).
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En outre

(777) < 2 ff W(x - y)2tn(y)2u%y - R,)2 dx dy \\ u, - u% - Rj) \\h,
J J Rs x R-H

donc, d'après (1.3), (4.10) et (4.11)

(777)<Ce2(fi-2<T + e2).

De la même manière, on montre que

(IV) < Ce2R-2a.

On a donc

(7) < C(R-a + e2)

et de même

(77) < CRT".

On a donc

\\K(uj)üi \\r.2< C(R-° + e2).

Finalement, d'après 1, 2 et 3, on a

|| (-A + Vi(x - R,) - èi)fii \\L2< C(R~" + e2), (5.8)

et de même pour ùi. En choisissant R assez grand et e assez petit, on en déduit que —A + Vi

possède au moins detrx valeurs propres (distinctes ou doubles confondues) dans 7, ce qui
contredit (5.7).

En outre, on déduit de (5.7) et de (5.8) que

C(e2 + R~a)ùi±l,ï(.-Ri)\\L2<
6

En particulier, si e est assez petit et si R est assez grand, (±Uì)i<ì<at € He.

6 Démonstration du Théorème 2.1

Avec les notations du corollaire 5.3, si 0 < e < e* et R > Rg, il existe une unique application

T : rit Bu -- (uji^N —> « (üt)i<i<N £ Ti(

telle que
fis £ 772(R3), fii(w)fii èifii, | ëi - e° |< 6.

Admettons provisoirement le
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Lemme 6.1 Si eg est assez petit et si Rg est assez grand, alors F est une application
contractante.

On en déduit que T possède un unique point fixe. D'après (4.4), cela démontre la première
partie du théorème 2.1.

Pour établir le point 2, on pose v («"(. — Ri))1<i<N £ He et v (Ùì)ì<ì<n F(v).
D'après (4.10), w"(. - fi) est un quasi-mode de l'opérateur Ht(v)

(Hi(v) - e°i)vi 0(R-a) dans L2(R3).

On en déduit alors, grâce à (5.6), que

ëi - e°i 0(R-°)
et d'après (5.6), on a aussi

vi-u0i(.-Ri) O(R-") dans 72(R3). (6.1)

Soit u (ui)\<i<N, l'unique point fixe de T. T étant contractante, il existe une constante
0 < k < 1 telle que

\\U-V |U»(RS)nH| T(u)-T(v) ||i»(R3)Ar< k\\u-V \\l?(R?)N -

On en déduit alors, grâce à (6.1), que

\\U-V ||z,2(R3)AT<|| U - V ||iî(R3)W + || V - V ||z,2(R3)JV< k 11 U - V ||lï(RS)N +0(R~")

c'est à dire

m - u% - Ri) 0(R-") dans 72(R3).

On a la même estimation dans 772(R3) grâce à une propriété d'ellipticité de Hi(u). Par
suite, on a aussi

ei e°i + 0(R~a)

Démonstration du lemme 6.1-Soient u et v £ Ht. On pose fi F(u) et v F(v).
On a alors

(Hi(v) - êi)fii (Hi(v) - Hi(u))in
YsW* (v2 - u)) in - J2(K(vj) - K(Uj))ùi.
fri fri

1. Estimation de W * (t;| — uj) ùt, j / i.

On a, grâce à l'inégalité de Cauchy-Schwarz

|| W * (v2 - u]) ùi \\2L2< [f D3
W(x - y)2ûi(x)2(uj(y) + Vj(y)f dy. \\ Vj - Uj |||2

On en déduit alors, grâce à (1.3) et (4.10), que

|| W * (v2 - u2) u, \\L2< C(e + R-") \\vj- Uj \\L2
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2. Estimation de (K(vj) — K(uj))Ùì, j / i.

On a

Il (K(Vj) - K(uj)) ùi \\2L2= [([ W(x - y)(vj(x)vj(y) - Uj(x)Uj(y))ùi(y) dy)2 dx
J R.3 J R.3

^ 2 IL „, W^x - V)2M*0 + vj(x))2ù-i(y)2 dy || v, - uj |||2

On en déduit alors, comme précédemment que

|| (K(vj) - K(u3))ùi \\L2< C(e + R-°) || v, - Uj \\L2

On a donc, d'après 1 et 2

|| (Hi(v) - ëi)ûi \\L2< C(e + R'") || Vi - u, \\L2

ce qui prouve, d'après (5.6), que

II««-*! ÏÏL2<C(t + R-") || vt-ut \\L2.

7 Démonstration du Théorème 2.2

Soit H l'opérateur de Schrödinger obtenu en négligeant les interactions entre les électrons

77 £(-A, + V(xi)) Aw(-A + V) sur L2phys.

i=l

D'après [4] (théorèmes III.2.1 et III.2.3), on a. sous les hypothèses du théorème 2.2, le

Lemme 7.1 Soit I un intervalle compact de (—oo,0) tel que

VI < i < N, Sp (-A + Vi) n 7 {e1,1}, e? € 7°. (7.1)

Alors, il existe fi/ > 0 tel que

VR>Ri, Sp(-A-rV)nl {ëi, 1 < « < TV}, (7.2)

où ë, sont des valeurs propres simples telles que

ëi e? + 0(R-a). (7.3)

De plus, si ùi sont les fonctions propres normalisées associées, alors, quitte à changer ùi en
—ùi, on a

ùl u^(.-Ri)+0(R-a) dans 7f2(R3). (7.4)
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En fait, ce résultat a déjà été établi dans cet article. En effet, d'après (5.6), en prenant
W 0, Hj(u) —A + V admet une unique valeur propre simple ëi au voisinage de e®.

En utilisant les mêmes techniques, on montre que ce sont les seules valeurs propres dans I.
L'estimation (7.3) résulte de

(-A + V- él)u% - Ri) 0(R-a).
La plus petite valeur propre de H est alors

e=J2ei e0 + O(R-°) (7.5)

avec

e° f>° (7.6)
t=r

et la fonction propre associée est

N

^âiA-Attiv £ /\772(R3).

D'après [11], il existe un déterminant de Slater <p £ /\N 772(R3) qui réalise le minimum de la
fonctionelle £ définie par (1.6).

D'après (1.4), on a 77 > 77, donc

ë=< 770, 0 >L2 < < H<j>,4> >L2 < < H<p,4> >l2 < < H(j>,<j> >L2

On en déduit alors, d'après (1.3), (7.4) et (7.5) que

< (77 -è)0,0 >L2=ö(R-°). (7.7)

D'après (7.2), il existe une constante 6 > 0 (indépendante de R) telle que

H-ê>6 sur {0}1-. (7.8)

Soit u le projecteur orthogonal sur {^}-1. On a alors, grâce à (7.9) et (7.10)

S || 00 ||22<< (77 - ë)îl</>,îl<t> >L2=< (77 - ë)<p,<p>L2= ö(R-°).
Cela prouve que, quitte à changer 0 en — <j>, alors

0 4> + 0(R-a'2) dans L2(R3N). (7.9)

Grâce à un résultat de régularité, on a la même estimation dans 772(R3iv). On en déduit
alors, d'après (3.3) et (7.4), que

4> Mi A • • • A Un

avec

Vl<i<N, ul u%-Ri) + 0(R-''12) dans 772(R3). (7.10)

En outre, d'après (1.11), les fonctions ?i; vérifient les équations de Hartree-Fock (4.4). D'après
(7.10), on a aussi

VI < t < N, a e°i + 0(R-"12).
Donc, si R est grand, (wì)i<ì<jv £ "Hi et est un point fixe de T. Ce point fixe est unique et
correspond à la solution obtenue ait théorème 2.1.



256 Daumer

References

[1] S. Agmon, Lectures on exponential decay of solutions of second order elliptic equations :

bound on eigenfunctions ofN body Schrödinger operators, Math, notes, t.29, Princeton
University Press, (1982).

[2] C. Albanese, Localised solutions of Hartree equations for narrow-band cristals, Comm.
Math. Phys. 120, 97-103, (1988).

[3] J.G. Conlon, Semi-classical limit theorems for Hartree-Fock theory, Comm. Math.
Phys., 88, 133-150, (1983).

[4] F. Daumer, Equation de Schrödinger dans l'approximation du tight binding, thèse,
Nantes, 2 février 1990.

[5] F. Daumer, Equation de Schrödinger avec potentiel électrique périodique et champ
magnétique constant, dans l'approximation du tight binding, comm. in P.D.E., 18(5&6),
1021-1041 (1993).

[6] D. Gogny, P.L.Lions, Hartree-Fock Theory in nuclear Physics, Mathematical modeling
and numerical analysis, vol. 20, n°4, 571-637, (1986).

[7] B. Helffer, Semi-classical analysis of the Schrödinger operator and applications Springer
Lecture Notes in Math., n° 1336, (1988).

[8] B. Helffer, J. Sjöstrand, Multiple wells in the semi-classical limit I, Comm. in P.D.E.,
vol 9, (4), 337-408, (1984).

[9] B. Helffer, J. Sjöstrand, Puits multiples en limite semi-classique II. Interaction
moléculaire. Symétries. Perturbations, Ann. I.H.P., vol 42, n° 2, 127-212, (1985).

[10] B. Helffer, J. Sjöstrand, Multiple wells in the semi-classical limit III. Interaction through
non-resonant wells, Math. Nadir, 124, 263-313, (1985).

[11] E.H. Lieb, B. Simon, The Hartree-Fock Theory for Coulomb Systems, Comm. Math.
Phys., 53, 185-194, (1977).

[12] J.P. Solovej, Proof of the ionization conjecture in a reduced Hartree-Fock model, Inven-
tiones Math., vol 104, 104-291, (1991).


	Equations de Hartree-Fock dans l'approximation du tight-binding

