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Abstract: We consider the Dirac evolution equation in presence of a time dependent electromagnetic potential
which is a solution of the homogenous wave equation with regular and compactly supported initial data. We prove a
propagation property for the free Dirac Hamiltonian using the explicit form of the free propagator that we use
together with an energy estimation and the finite propagation speed of the Dirac evolution we prove existence and
unitarity of the wave operators associated to the couple of Dirac evolutions: the free one and the time dependent one.

1. INTRODUCTION

In this paper we study the existence and completeness of the wave operators for a Dirac
Hamiltonian with a time dependent potential defined as the solution of the free Maxwell equations
with regular and compactly supported initial data. This problem is of interest in connection with
the study of the Dirac Quantum Field in interaction with an external electromagnetic field. It can be
shown [T] that if the “one-particle” scattering matrix exists and satisfies a special property, then
the scattering matrix for the quantum field also exists and can be computed by the second
quantization procedure. This problem is considered in [P] but only partial results are obtained and
nothing is said concerning the completeness of the “one-particle” wave operators. We restrict
ourselves to the case of compactly supported electromagnetic fields and prove that the wave
operators exist and are unitary.

We shall work in the Hilbert space #=L*(IR*)®C* and we shall denote by Q; the operator
of multiplication with x; in # and by D; the operator —id/dx;=~id;. We shall also use the
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notations: D=-iV, 9,=0/dt. We shall denote <€>={1+IE*}"'2 for Ee R™ and also for n-tuples of

commuting selfadjoint operators, by using the functional calculus for selfadjoint operators. We
shall denote by B(x,,R) the closed ball of radius R and center x, and by S(x,,R) its surface. For

any subset A in R™ we shall denote by % Aits characteristic function and by A€ its complementary
in R™. Moreover we shall denote by %(IQI<R) the selfadjoint operator associated to the function
y 4 (EI<R) by the functional calculus for selfadjoint operators and similarly for “<™ replaced by
“<,>,2". We denote by $(#) the algebra of bounded linear operators on # and by B(C*) the
algebra of linear operators on C*. For any se R we denote by HS(R?>) the Sobolev space of order
s on R? with the norm: Jul =] <D>Sul 2, g3, and # S=H%R*)®C*.

Let us consider a Dirac Hamiltonian describing an electron in interaction with an external
electromagnetic field without sources. We shall consider the light velocity c=1. The

clectromagnetic field in the Coulomb gauge is described by a three component real vector field
A]-(x,t) with j=1,2,3 and xe R3, teR that satisfies the homogeneous wave equation :

32 .
(1.1) (gt-z-—A)A]:O for j=1,2,3.

We consider the following type of initial data:

(1.2) A(x0) = a(x), 2jeCo(R?)
) -
5 Ax0) = bjx), bjeCo(R?)

(1.3) U {(supp a)) U (supp b))} < B(O,R).
i=1,2,3
It is well-known that the solution of (1.1) in R can be written in the form :
4 AEY=1{2(t | ameydog)+t | by dom).
4 "3t Ikl lyl=1
Let o; for j=1,2,3 and B be the Dirac matrices (complex hermitian 4 by 4 matrices) so that
the Dirac Hamiltonian will be :

H(t) = —ia-V+mB+ea-A = Hp+ V()
(1.5) Hp=-io-V+mp
V() =ec-A

where m>0. Sometimes we shall denote the unit matrix in C* by 0y in order to simplify some
notations. We shall be interested in the nonhomogeneous time evolution on # generated by the
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family {H(t) }yc R given by (1.5) i.e. the two parameter family {U(t,s)}¢ s R Of unitary operators
on #, solution of the Cauchy problem :

(1.6) id,U(t,s) = H()U(t,s)
U(s,s)=1.

One can easily observe that for Itl—eo, H(t) goes in norm resolvent sense [RS1] to Hp and we

would like to compare the nonhomogeneous evolution U(t,s) with the free one generated by Hy :
(1.7) Up(t) = exp{-itHo}.
We shall define the operators:

Ws(t) = U(s,0)Ug(t—s)

(1.8)
W) = Uo(s - U(Ls)

and we shall study the existence of their limits when Itl—eo, with respect to the strong operator
topology on 3(#). Our main result is that for t—+e0 both the above operators have limits in the

strong topology . We denote these limits by:
(1.9) Wi= s-lim W(»)
vk _ 1 *
VD' = im WO
for any se R.

For ke R3 we shall denote v(k)e R? the classical velocity corresponding to the momentum
k, for the free movement :

(1.10) (k) = (k2+m?) k.

For Ke R, we denote :

(1.11)  wK) = KEK2+m?) "2¢[0,1).

2. THE FREE DIRAC PROPAGATOR

In studying the limits 1.9 some detailed information about the free evolution Up(t) will be
needed and we dedicate this section to this problem. Let us begin by deducing an explicit form for
the distribution kemel of Uy(t) for any t=0.
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It is well known [T] that Hy defines a selfadjoint operator on #, having domain # ! and
spectrum 6(Hg)=(—ce,—m]U[m,e) and being essentially selfadjoint on C5(IR*)® C*. Thus U(t)
defined by (1.5) is the strongly continuous unitary group generated by Hy.

Let & :L2(R",dx)—L2(IR",dk) be the unitary operator induced by the Fourier transform :
@D @00 =100:= o [, e T fxdex.

We shall also denote by & the unitary operator on # obtained by taking the tensor product with
e B(C4).

We denote by 3, the usual Dirac measure at point ae R, by 8(x=0) the Dirac measure at 0
in R" and by 8(Ix|=a) the inverse image f *83 of &, by the function R?sx+—> f(x)=Ixle R. Then
for pe ¥ (R"™) we have :

22)  <B(x=a)g>= | 6do,0=a""1 | av)do(v)
[xl=a vi=1

where do, is the measure induced by the Lebesgue measure of R on the sphere S(0,r).

Now let us study the free evolution in the representation obtained by the Fourier transform.
We define:

A -
(2.3) Hy=7H,

and the following applications:
R3sk— Hy(k): = o-k+mpPe B(C*)

(2.4) R3sk— uk):={k*+m?}2¢R,
Rk — IL(K) : = uk) '(uk)1 £ H k) B(CH.

Then ﬁo is the operator of multiplication with ﬁo(k) and we have the relation:
A A A

(2.5) Ho(k) = p(k) (T1, (k) - T1_(K)).

In this representation the unitary operator Uy(t) is given by multiplication with the following

matrix valued function :

26) Utk = exp{~itF ()} = exp{~itu(H1, k) +exp{itn HI () =

A\ sin (k)
= (9,—iH )%_
ERERTT(S
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We shall make the notation:

A sin tu(k)
2.7 Stk i=—————.
pk)

Remark 2.1: For any t, Jg(t;k) as a function of keR3 is a bounded function of class C(R?) and
thus belongs to &’(R3). Moreover it is easy to see that it is an odd function of t.

A
We want to compute the inverse Fourier transform of S(t;.) by making use of the integral
representation and recurrence relations for Bessel functions [WW]. We shall denote by Jy the

Bessel function of order N for which we have the following recurrence relations:
d
@28) N =-g Y@
N
@9 J@=@" L) @),

Then by denoting r=Ix| we have the following formula [GSh]:

(2.10)  F{8(xl=a)}(x) = a¥2r1-W2] , (ar).

If we consider now that n=2m+3 and the explicit form of the Bessel functions of half-integer
order, then we can get the formula [GSh] :

@11)  F{@! %)ma-ls(lxha)}(x):\/% soar

If we denote by S(t,x) the inverse Fourier transform of §(t;k) with respect to keR?, then
one can prove the following result.

Lemma 2.2; For t>0 we have :

— 1 J,(m{t?-x}12)
S(‘;")=‘\/;{('t' A== 1 g2y 72 )"

Proof: We shall view the function :

122
(2.12)  R3*sk—puk):={k*+m?} “eR,
as being defined on the cylinder :

2.13)  {kA)eR*XR2|A2+A2 =m?}

in IR3, Thus if we denote p={k?+A?}"2 we have :
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(2.14) S(t;x) = (21:)‘3"2L J do, (M) J elkx mdBk
2nm p=m ) p
R

Thus one can observe that S(t;x) is the restriction at the hyperplane: {(x,w)e R’ | W =w,=0} of
the inverse Fourier transform of the following distribution in &’(IR3) :

215  StkA) = 18“‘“’

S(AMl=m).

If we denote by T the inverse Fourier transform of (p"1 sin tp) and if we make use of formula
(2.11) we obtain :

2 2 1/2
2.16)  Tytxo)= '\/ ) S(tx “”}

We denote by T, the inverse Fourier transform of the distribution 8(/Al=m) and using formula
(2.10) we obtain :

(2.17) Ty(t;x,0) = (21)*2m]J, (mlol) 8x=0).

For S we have then the relation :
(2.18)  S(tx) = (27)” (T *T,)(t:x,0).

Let now ¢ be a function in & (R3); using (2.18) we have :
(2.19)  <S,0>=(2m)">"? \/ ( : dt t <f*8, 0>
(220)  ®x,0)=(2r)*m £ _ Jo(mlef) o(x,0+0) 20’ .

Using theorem 6.1.2 in [H], considering the application:

R,x[0,2m)xR% (p.&.x)—> h(p.&.x):=(x.{p?-x2}2cos &,{p?-x?}"%sin E)e R3
and observing that | det h’(p,&,x) I=p we obtain :
2.21)  <S,0>=(m) \/ m(; dt)I d3x J o(xo)

) —vit2 —x21112
(*uylsus(({,l)’o(m'w v{t2 - x2}12)) do,(v)).
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Taking now into account relation (2.8) and differentiating in & ‘(R?) with respect to t we obtain

the desired formula for S. W

Proposition 2.3: If Uy(t) is the strongly continuous unitary group generated by Hyand
fe#(R3) then we have the following formula:

O Uo®e)x) =

[ Jy(m{t2-y2}17%)

(x—-y)d>
B,y m{t?—y2}1/2 o=y Y}

lprd _ -
a2 1G] | ox-y)doe)—misigny

(i) (UoH))(x) = S—lf,l:—t D B(J(‘) t)d3Y J()(m{t2 -y {1y |—2¢(X-Y)+|y|2Y(Vy¢(X—Y))}
where D = at—iﬁo.

Proof: The first formula results immediately from lemma 2.2 if one remarks that for t>0 the
distribution kernel of U(t) is just (2r) 32D S(t;x~y) and it is easy to see that for t<0 a signt

appears due to remark 2.1. For the second formula one can use once more the relation 2.8 and
integrate by parts in the first formula of the proposition so that the surface contribution cancels out
with the first term and one gets the desired result by observing that if we put z={t? — p2}”2 then :

(2.22) el b e B |

In the rest of this section we shall prove some propagation properties for the free evolution.
First let us consider the case when at time zero the state has its Fourier transform of class

Co(R*)®C*.

Pfoposition 2.4: Let fe ¥ be such that 't\'eC;’(lR?’)@ﬂZ“ with supp ?C B(0,K), then for any
NeN there is some Cy<oo, depending on N and f, such that for t>0 one has

Cn
I X(|Q|2u(2K)t)Uo(t)f | € (1t )N .

Proof: Using formula (2.6) we get:

(2.23)  Uoi)x) =
@ny3"2 l{ OO () By ddxer (222 1fz et RCHAE

where 1, feC2(R®)® C* with support in B(0,K). Let us denote :

(2.24) O(x,t) = Ixl+t
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¢(kx,0) = 0(x,0 ™ {k-x £ tu(k)}

so that the exponents in (2.23) are of the form 8¢,. Now we observe that :
N —1p . K

(2.25) Vo, (x,t) = 0(x,t)” {x+ ) t}.

We evidently have that ——~ (k) < u(K), so that if x|=u(2K)t we shall have :

2K)-u(K 2K)-u(K
(2.26) |(Vk¢_t)(k;"’t)|2u( Ix)l+:] ( )t2u§+u)(212)( >0,

Thus the usual non-stationary phase argument [RS3] gives us the result. W
Now let us consider the case when at time zero the state is of class C(R HerH

Proposition 2.5: Let fe # be such that fe C°;(1R3)® C*with supp f< B(0,r), then for tcR ,

upe (0,1) and xe R3 with IxI>r+ut and ue [ug,1) we have that for any Ne N we can find a
constant Cy, depending only on N and ug but not on £, such that :

(U, | < Cy t{1-u N2 (1-2)T228) 5 s,
Proof: For xe R? and pe R + we shall use the notation :

227 (Op): = Ml | fOx=pv)doyv)

50 that the second point of proposition 2.3 may be written :

228)  U0NH) = SED [ ap Jo(m{tz--pz}”z);—p (P (Dx:p))-

If we use now the fact that supp f € B(0,r) so that Ix—pvI<r and the condition imposed to x, we
get:

(2290  (UHx) = —‘&DI  dpJo(m {2~ 2}”2) (p(f)(x,p))

Now we remind the recurrence relation (2.9) and the relation (2.22) and we make the notation
z={t2—p2}12 in order to get:

@230)  UoDw=Ep [t dpd )(z”JN(z)) 5 (PP =

1 signt

- = TESD [ dp(@NinGe ))—(——) (PEx:p)) .
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Using now the Holder inequality, the fact that [Jy(z)I< 1 and denoting z,=t{1-u?}!/2 we obtain :

231  |(UymHx)| <

C signt z + 2,4t 1 d N1 d . 2 172
sw—%*m({0° 2" d2)) (| {(; 55) (ggp—)‘(p(t)(x,p))} p2dp) <

N+1
< Czozn s1gnt (I {(__) (_ (f)(x,p)+——(f)(x,p))}2 2dp)m

m

It is very easy to see by induction on N that the following formula is true :
(2.32) ( ) Fp)=p NI, aN(nF‘J)(p)( 2y

where ay(0)=0, ay(N)=1, ay(j)=(N—j—1)ay_;()+ay_,(—1). Finally, considering also the
derivatives appearing in ID and the fact that p=ut we get the desired result. W

3. THE NONHOMOGENEOUS TIME EVOLUTION

In this section we want to define and study the solution of the Cauchy problem (1.6). We
shall begin by discussing some properties of the electromagnetic potential defined by (1.1-1.2). It
is well known that the solution of (1.1) in R3 can be written in the form (1.4).

Lemma 3.1: The solution (1.4) has the following properties :

a)  For t2R, supp AjC X' g, = {xeR? | t-R<kISt+R},
b)  sup |AGxD]S =

S DS
c) HAj("t)"L2(R 3)S C,forany t.

Proof: We shall consider only the case t>0, the other case being quite similar. Due to formula
(1.4), in order to have Aj(x,t);ﬁO we must have Ix+tyl<R for some ye S(0,1). But then we have
| ixl—tl < Ix+tyl<IxI+t and point (a) follows immediatly. Now let us change variables in formula
(1.4) and pass to the sphere S(0,t) in order to get:

an  amo- {7 2y (x+yNO()+

S(0, t)nIB( R)J

1 ' .
t S(O,t)r!B(x,R) (by(x+y) + V)aJ(HY))th(Y)}-
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It is easy to see that for Ix|>R we have the relations:

2
nR (bl:+lxl) < 2nR2

3.2) A(S(0,t) "B(x,R)) = E:(_tl (R2- (t—IxI)z) <
(where #£(A) denotes the Lebesgue measure of A), so that one easily obtains the estimation of

point (b). Moreover we see that :
47 3 3 8nR ) 2
(3.3) MARY =7 (R+t)’—(t-R)?) = = (3R*+1?)

so that one gets the estimation of point (c) by using point (b). B

Corollary 3.2: We have the following estimation for the operator norm of the time dependent
potential defined in (1.5) :

C

1 @) VOlg 4y < T -

Let us now consider the existence of the solution of the Cauchy problem (1.6). We shall

follow [P] and use the procedure described in chapter X.12 of [RS 2]. The results that we proved
concerning the electromagnetic potential imply that V(t) is a hermitian bounded operator on #, for

any te R and goes to 0 for t— oo, with respect to the operator norm. Thus for any te R we can
define : H(t) = Hy + V(1) as a self-adjoint operator in # with domain #’ 1. We conclude that the

problem (1.6) is well defined. For the completeness of our argument we shall review the main
points of the construction in chapter X.12 of [RS 2]. Let us first define the bounded operator :

(3.4) V@) = Up®)* V() Ug(t).

Proposition 3.3: For any te R the operator {’(t) is bounded and hermitian in ¥ and there exists

a two-parameter family of unitary operators {O(ts)} R in # such that:

tse

i) the application R?2 (t,s)—> U(t,s)e B(#¥) is strongly continuous.
ii)U(r,s)U(s,t) = U(r,1), for any 1,steR.
iii) i3, 0(t,8) = V(©) U(t,s), for any tseR and U(s,s)=1 for any seR.

Proof: We want to make use of the theorem X.69 in [RS 2], so that we have to verify that the
application: Rat—> V(t)e B(¥K) is strongly continuous. Let us fix t,,t, in R, then V(t,)—
Vi, )=U,(t,)* Vi, )Up(t, )= Uy(t,)* V(t,)Uy(t,). But the unitary group generated by H, is
strongly continuous and uniformly bounded so that all we have to prove is that these facts are also
true for the application R at— V(t)e $(#). The uniform boundedness follows from the
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Corollary 3.2 and we shall prove now that it is continuous even in the operator norm topology. In
fact :

IV(t)) -Vl < Cjnn}g3 I ACat) A1)l e (R3)"
Using now formula (3.1) and the dominated convergence theorem one proves the proposition. W

We shall now define the unitary operators:

(3.5) U(ts): = Uy) U, 5)Uy(5)* e B(#) .
Lemma 3.4: For t;seR and fe #'! we have that U(t,s)fe #!.

Proof: Evidently D; commutes with H, for any j=1,2,3 and one can see that
#1=9(H0)={fea‘t’|Djfea’c’ for j=1,2,3}. In the sense of distributions we have that
DjU(t,s)f =U0(t)D}U(t,s)U0(s)*f. But the unitary group generated by H, leaves its domain
invariant, so that all we have to study is ljjU(t,s)f for fe #! and show that it belongs to #.
Formula X.129 in [RS 2] gives :

- . “ft Itl Itn—l -
(3.6) Uts)f =f+ Zk=1(-—1) ) dt, 0dt2 4 dth(tf)V(tn)f.
If fe #, then DjV(t)f — V(t)Djf - i(ajV(t))f and for the derivatives of V(t) we have the estimations:
3

and using relation (3.2) we obtain that supp (ajAk) Cc A'pand ajAke C‘;’(]RB). Thus :

C

In conclusion, if fe #! then V(t)fe #" for any real t. Moreover :

n 11 i
DIT._ve) = iqvui)l)j +Z qvai) D, Vet [TV
= i=

i=+1

Combining all these results we obtain that [Dj,ﬁ(t,s)]e.%(i’t’) and:

<Clt-sleS'ts!, m

I D5, D)y 4 <

Proposition 3.5: The operators {U(t,s)} form a two-parameter family of unitary operators

tse R
satisfying :
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i) the application R?3 (1,s)—> U(t,s)e B(#) is strongly continuous.

i) U(r,s)U(s,t)=U(r,t), for any rs,teR.
i) id,U(t,s) =H()U(t.s), for any t,se R and U(s,s)=1 for any seR.

Proof: Take fe #, then by using lemma 3.4 and the fact that V(t)e B(#) we see that

UL =3,Uy® U(ts)Uy(s)* f= Ug){(—iH,— iV} U(t,s) Uy(s) "=
= -i{Hy+ V() }U(L8)f = - iH®U(t,s)f
and observing that 2(H) = D (Hy)=# ! one finishes the proof of the proposition. W

In the following we prove some estimations for the evolution of the position and
momentum observables.

Propeosition 3.6: For any fe 9(<Q>) we have the following estimation :

| QUS) N < C{ 1 Qff +It—sll £l }.

Proof: We shall follow the proof of a similar result in [T]. Let A>0 and let us define the bounded
operator X; = Q(1 +MIQN)~'e B(#). For fhe #" one has :

(U)X, U0 = (0X; 10 +if | (h,UCT,8)* [Ho,X; 5] UT9)f)dt =

= (0.Xj0 +[_ (0,U(s)*oIDX;,]U(ts)Ddt

D,.X. ] = 8. (1 —1 _ _quk_

and we observe that [Dy,X; ;] € B(#) and is uniformly bounded for A— 0. Thus if we take now
he # and fe D(<Q>) we get :

|0, U)X 5, UES)DIS Ih,X; 201 +Cle—sl 11 b
Taking now the limit A—0, we obtain the result. B

In order to study the time evolution of the momentum we shall need some results
concerning some multiple commutators.

Lemma 3.7: Suppose fe# 1 then U(t,5)fe #, and we have the estimation :

| DIUt,s)fl < C{IIDIfl +In(1+I1t—sl) Ifl }.
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Proof: Let us define the following function of t, for s fixed:
E® : =1 IDIUELS)I” 20
and let us compute its derivative

AL = i(F,U(L,)*[H),ID2JU(Ls)f) =iZ §=I(f,U(t,s)* [V©®.D21ULs)D.

Computing the commutator and taking the module we get :
EXOIES 2Zj=lHDjU(t,s)ﬂ| | @;VOULs)fl < c\Ew <112,

Thus E(t) < | IDIF|? +CJ : E(1) 7~ ldr and using now a simple form of the Gronwall lemma we

obtain the result. W

For j=1,2,3 let us denote d=D; and by induction for N=0 the multiple commutators
Vi =[Vn-1,d] that are nothing else but i times the N-th partial derivative of V(t) with respect of
X; .
]

Lemma 3.8: The following relation is true :

V=2 cKd“Kvg
Proof: For N=1 the formula is obvious and we can proceed by induction on N. B
Lemma 3.9: The following relation is true :

V,dN =% :=IC§ (@NKvd + NV dVK).

Proof: For N=1 we have [V,d?] = d[V,d] +[V,d]d and we shall proceed by induction on N, by
denoting :

{dNEvgd"}: = (@ B vgdN + dNvedh ),
Then :
[V,d*™N*2) = [v,dd™Nd] = {V,dN* 1} +d[V,dNd =
N -
={d"V,d"* 1} + {[V,,dN)dN* 1} +dE k=lc§ {dN-Ky dN}d.
Using now lemma 3.8 for the second term one easily gets the result. l

Proposition 3.10: For Ke N and fe #X we have the estimation :
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I IDEU(LS)EI < C{IDIEN An(l+1t—s1) £l }.
Proof: We shall proceed as in lemma 3.7 and we shall consider the function :

Ex(® : =1 IDIXU(Ls)f |2 < 3K-1X j_l(f,U(t,s)*D]?KU(t,s)f) <
<313 ;lubgﬁU(t,s)nuz.

If for each j=1,2,3 we denote CK(t)=IID§-(U(t,s)fIIZ, and compute its derivative we get
Lk = (£ U(t,s)* [V(t),DzjK] U(t,s)f) and using now lemma 3.10 we see that :

13801 <2Z " CkIDK-LULs)I | VOl DKUES)EI <

<C \l Ee®Ck_ ,(© <t>"1 £

so that the induction hypothesis and the Gronwall lemma can be used in order to get the desired
resultt. W

Our last problem in this section will be to use the method of energetic inequalities in the

same way as Chernoff [C] in order to derive some propagation properties in the regions where
there is no field, i.e. in the exterior of &' ; . We shall start with reviewing the inequality proven

by Chemoff. In C* we shall denote the scalar product by <-,->.

Proposition 3.11: Let fe # and let us denote f(t,x):=(U(t,s)f)(x). Then for any tin R  we

have the following estimation :

[ <ftx).f(tx)>d? < J <f(s,x),f(s,x)>d>x.
oy (t,x),f(t,x) Bxo P g} (8,x),f(s,x)

Proof: First let us take f in C};(R*)®C* and let us consider the 4-component vector field :
(3.9) g(tx):= {<u(t,x),aju(t,x)>}j=0,1’2’3

and the following set in R*:

(3.10) K (xpr,s.t) = {(Tx)e R4 Ix—xq < 1+(t-1), s<T<L).

We remark that the boundary of o"(x,r,s,t) is :

(3.11) O (xg.1,8,t) = { B(xgr+t—5)x{s} } U {B(x Dx{t}} UZ(x,1,5,t)

(3.12) 2(Xg.I,8,t) 1 = {(‘t,x)elR4| IXx—xgl=r+t-1, sST<t}.
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Then it is easy to see that :

(div g)(tX) = 2Re<u(t,x),Z j=00£j8ju(t,x)>

= 2Re <u(t,x),imBu(t,x)> =0

where we denoted by 0, the partial derivative with respect to t. Thus the Gauss theorem applied in
K (Xg.1,8,t) gives :

0= | <ftxfex)>d®x — [ <f(s,x).f(s,x)>d%
B(xo.1) B(xopr+t—5)

3
<u(t,x), . o:v:u(tx)>
+Z(xo’r{s’t) u(t0),Z | _jo5v;u(tx)

where: v = (V(,V1,V5,V3) is the normal to Z(x,,r,s,t), pointing towards the exterior and it is easy
to see that it is proportional to the 4-vector: (l,lxj - (xo)jrl(xj - (xo)j)). Observing that

z ?=1ajv iS 1 we get the desired estimation for f in C‘:(IR3)® C*. Then we can aproach any fe #

by such functions and as the estimation only depends on the L?-norm it will remain true. W

If Re R, and 8>0, we denote by N a “regularised characteristic function™ of the ball
B(0,R) satisfying the following properties:

NsrE C™(R,), 0<n;x(<1, supp Nz < [0,R) and Ngp(r)=1forrSR-3.

Proposition 3.12: Let R be defined as in section 2 by the support condition for the
electromagnetic potential at time 0. Then for any fe # and any t.2t,>R, we have the following

relation :
U(t,,t, X(QI<t,=R)f = Uy(t, —t,)x(IQl<t, —R)f.
Proof: Let us fix >0 and let us denote
() =U(tt)ng,, r(QE fO)=Ug(t-t)n5,, _ 5 (QIL.
Then we observe that
fit;)= £t))=ng,, g (Qf ;3f()=—iHOIW; 3f(t)=-iHoH1).
Now we shall prove that in fact we have the following equality :

Ultty)Ng,, - g IQDF = x(1QIS t-RF(D.
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In fact if Ixyl>t—R, let p>0 be such that B(xy,p)< B(0,t— R)C. Then according to proposition
3.11 we have that :

| <f(t,x),f(t,x)>d3x < | «f(t, ,x),f(t,,x)> d>x =0
B(xo,p) MG Baoprrty 27020

due to the fact that B(xg,p+t—t;) € B(0,t, —R)°C {supp f(t,)}°. Thus we conclude that :
3f(t) = — IHO) = — i Hyf(t) — iV()x(QI< t— R)f() = — iH,f(t)

and due to the unicity of the solution of the Cauchy problem we have that for any t2t, the
equality: f(t)= f(t) is true. Then one can approach the function x(IQI<ty—R) by functions 1, bg=

R(IQI) with & 0 and use the continuity of U(t,,t,) in order to get the result. W

Proposition 3.13: Let R be defined as in section 2 by the support condition for the
electromagnetic potential at time 0. Then for any fe# and any t,2t,2R, we have the following

relation :

x(1QI>t,+R)U(t,, t,)f = %(1QI>t, +R)U(t, — t,)f
Proof: Let us define as in the proof of the above proposition

f() =Utty)f, f()=Uyt—1,)f, g(t)=1(t)— f(t) such that g(t,)=0
and its time derivative is given by :

9,g(t) = — iH(DE(t) + iHy f(t) = — iH,g(t) —i V()

and let us use once more the method used by Chernoff, by constructing the 4-component vector
field g(t,x) in (3.9) associated now to the function g(t,x). We choose an arbitrary point x, in

B(0,t;+R)® and pe R, such that B(xy,p)C B(0,t;+R)° and we consider again the set
K (xg:P5t5,t;) in 3.10. We observe that B(xy,p+t,—t,)< B(O,t2+R)° and :

(divg) (1,x) = 2Re <g(tx),Z 2=0ujajg(t,x)>

= 2Re <g(t,x),imP g(t,x)> + 2Re < g(t,x),(—iV({E)f(t,x) >.
But we see that in &' (xq,p,t,,t,), due to the choice of x4 and p, we have V(t) =0 and thus we

obtain that :

I<g(t1,x),g(t1,x)>d3x < I <g(t5,X),8(ty,x)>d’x=0.
B(xy,p) B(xg,p+ty-tp)

In conclusion g(t, ,x)=x(1QI<t, +R)g(t,,x) and thus x(IQI>t, +R)g(t;,x)=0. W
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4. THE WAVE OPERATORS

In this section we shall study the asymptotic behaviour of the nonhomogeneous evolution
U(t,s) when t =<0 and s is fixed. There are two serious reasons to suppose that asymptotically
this evolution should be equivalent to the free one, Uy(t—s ). First one has that the potential goes
to zero in the norm-operator topology but the difficulty comes from the fact that the time decay of
the potential and of all of its derivatives (with respect to time and space variables) decay only as
(. 1) and thus are not integrable. But secondly, one has that the potential leaves any compact set in
R 3 travelling with the velocity 1, the velocity of light, while for any finite energy the electron
travels with a velocity v(k), see formula (1.10), that is strictly less then 1, so that after some finite
time it will remain outside the region of the electromagnetic potential and thus will evoluate freely.
The main point will thus be to use propositions 3.12 and 3.13 in order to prove that rigorously.
However the time decay of the potential is also needed in showing that the kinetic energy of the
particle cannot increase to fast, as one can see from proposition 3.10.

Let us consider the operators W (t) = U(s,))Up(t - s), their duals and their limits defined in

(1.9). If one supposes that these limits exist, one can see that for different values of se R one has
the following relation:

(4.1) we =Us;,s)Wg, Ugls,—sy)

so that it is enough to consider only a fixed value of s that we shall take to be 0.

We shall begin with the problem of the existence of the limits (1.9). This problem is quite
simple and has been solved in [P], but we shall give here a new proof that does not use the
uniform bound with respect to time for the L%-norm of V(t), that may no longer be true if one
wants 10 extend these results to more general initial conditions for the electromagnetic potential.

Proposition 4.1: The following limits Wg f= lim Wy exist forany fin #.
t—too

Proof: Let us first remind the definitions of W(t) in (1.8): W(t) = U(0,t)U(t). We shall use the
Cook method and for some fixed fe % we define the application:

R at = f(t):= W()fe #.

Let us suppose first that fe #' and moreover that its Fourier transform fe C‘:’(IR?’)® C*4. Then the

above application is differentiable and if we compute its derivative we get:
(1) = 9, Wo(Of =iU(0,0) V(U (0)f so that: |

IFOI< £+ 1 UO)VE@U D Ide.
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A
Now let us suppose that supp f < B(0,K) and let us decompose the norm above as follows :

IFCOI < 11+ 1 20QI<uRIDVEU O de+

+17 120QIzuERV@ U0 dr .

For the first integral one observes that for T>1,, where 1,=(1 —u(2K))"1R, one has that
Xlxlicu (ZK)T)V(T)=0 so that in the first integral we can integrate only up to T,. For the second

integral we can use proposition 2.4 and conclude that it has a finite limit for t—ee. For a general
fe % one can now approach it by elements with Fourier transform in C‘;(IR3)® C* and use then

the fact that W y(t) is an isometry in order to prove the existence of the limit. W
Our next problem is to prove that the strong limits in (1.9) are in fact unitary in #.
Theorem 4.2 The isometric operators W bt are unitary in ¥.

Proof: In order to prove this result we shall prove that the adjoints Wo(t)=I= also converge for

t—>+co with respect to the strong topology. In order to do that we shall use the properties of U(t,s)
that we proved in section 3 and we shall show that the function f(t) =W0(t)*f has a Cauchy
property for t—+oo, Thus let us fix some fe #.

1) First let us prove the following estimation concerning the evolution “in front of the
electromagnetic potential . For any £>0, there is some finite T,(€,f) such that for any t271(e,f)

we have the estimation :
(4.2) I x(1QI>R+)U(t,0)f]l <€.

In fact by using proposition 3.13 with t; =t and t, =R and denoting f,=U(R,0)f we see that one
has the relation:

(4.3) X(IQI>R+0)U(t,0)f = x(1QI>R+U(t,R)f, = x(1QI>R+1)U,(t,R)f,.
Now let us choose ge # such that ge C:(lR3)® C* and:

(4.4) If, — gl < €/2.

Then using proposition 2.4 we can conclude that for t large enough:

(4.5) | x(IQI>R+) UL R, || < €72

and the estimations (4.4) and (4.5) imply now (4.2).
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2) For t271,(¢,f) let us consider the following decomposition of U(t,0)f=f:

(4.6) f'l: = T]61’2,R+l5+'t(lQ|)f‘l: +{1 _nBIZ,R+6+t(IQ|)}f1: .

Due to (4.2) the second term is small uniformly in T21,(€,f). We shall prove now that for any
>0, there exist T,27,(e,f) and ¥e(0,1) such that if we denote t,=1, +‘t:;:r we have the following

estimation :

4.7) I x(1QI>t, —R-&2)U(t,, T M5/ r 45 +1g ( Ql)f,tE | <e.
We shall start with the Duhamel formula:

(4.8) U(t,t)g = Ug(t—T)g— f ;Uo(t -0)V(o)U(o,T)gdo.

Using this formula we get fort>1:

49)  Ix(IQI>t-R-d/2)U(tDhgy, p .5, (QDE <

< IX(IQI>t— R~ 8/2)Uy(t— DMy 2.5 1QDEl + 1 IV(@lg ) AT
and for the integral we see that due to corollary 3.2 one has:
4.10) | IV(O)lg(4)dolfel < ClflIn(1+7~1*7).

In order to estimate the first term on the right-hand side of the above inequality let us define v, by

the following condition:
(4.11) te —R—&/2=R+T,+8/2+vg(te —T¢)

so that ve =1— (2R+8)1;7 is the minimal velocity needed to get from supp M 8/2R+5+1 & time T,

t0 SUPP X(jxi>te - R — §/2) at time t,. We remark that we can suppose 1-v, as small as we like by
taking T, large enough. Thus we can apply now proposition 2.5 for the first term and get that for
any N we have :

4.12) Q> -R-8/2)Uy(te = TeMypp g 1 5.0, (QVE I} <
<CnsTe N DVAA-AND2 ) 5 g3y

Using now proposition 3.10 for the norm of the derivatives of U(t,,0)f(x) and the fact that due to
proposition 3.11 the volume of the support of the function:
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X(1Q>te R~ &2)U(te =T r 4 547e (QDfr,
is of the order of 1287 we finally obtain :

I Z0Qi>te ~R— 82)Ug(te ~ Mgy .5 4ee (QEe I <
< CN,G Té—(N—2)/’Y/2 (}n (1 +T£ ))(N+2)/2

so that we can choose N>y~ 112 in order to prove (4.7).

3) Let us now use the estimations (4.2) and (4.7) in order to prove a Cauchy property for
f(t) = Wo(t) f as t—eo. Let €>0 and t,2t, 2t, =T, +1! with T, 2To (€.f). Then we have :

4.13)  Wolt)) = Wo(t)"f = Uyt UGt T )L =Ny p 454c, (QD M -
“Upt)Uty Tl ~ Mgy gy (QDHe +
+Ug(t DU(t,,t ) (1QI>t, —R - 8/2)U(t, ,te)nw’m Se (IQI)fTe—
~Ug(t)U(ty,te XIQI>te R =D Ut Te Mpsz R34 (QDE; +
+Ug(t) Ut X(IQISt, =R~ 82Uty Te My r 4547, (QDfre -

“Ug(tx)U(ty e X(QIS te ~R-82)U(te Te Mgy o 54ep 1QE, -

Using (4.2) for the first two terms, (4.7) for the third and fourth terms and observing that due to
proposition 3.12 the last two terms cancel out, one obtains:

(4.14) | Wt,)"f—W,(t,)fl <de

and thus the following limit exists: tlim Wo(t)*f and is equal to W'{,*f and thus the operator W, is
—3>C0

unitary in #. Evidently the whole analysis may be repeated for t— —eo and thus one gets a similar
result forW,. W
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