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A New Asymptotic Condition for Absolutely Continuous
Spectrum of the Sturm-Liouville Operator
on the Half-Line

by I. Al-Naggar and D. B. Pearson

Department of Applied Mathematics,
University of Hull, Hull HU6 7RX, England.

(26.XI.1993, revised 30.III.1994)

Abstract. A new asymptotic condition I im / (f(x,A))2dx// |f(x,A)|2dx 0 is proposed to
,T „0 0M—* DO

describe solutions f(x,A) at real spectral parameter A of the Sturm-Liouville differential

equation - S\' ' + V(x)f(x,A) Af(x,A) over the half-line 0 < x < co The asymptotic
_i 2

condition is shown to imply absolute continuity of the Schrödinger operator T — — -r-2 + V(x)
and starting from this condition a wide variety of consequences for spectral theory and

asymptotics of solutions is developed, including the precise determination of the spectral density

function.

Applications will include a range of problems in classical and quantum theory, including the

detailed analysis of continuous spectra in potential scattering.

1 Introduction

It has been commonly realised for many years by physicists and mathematicians

that there is a close connection between the spectral properties of the Sturm-Liouville
j 2

differential operator T — g—2 + V(x) acting on the half-line 0 < x < co with regular
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boundary condition at x 0 and limit-point case at x oo and the large x asymptotic
behaviour of solutions f(x,A) of the corresponding real A differential equation

d2f(x,A) + V(x) f(x,A) Af(x,A)
dx2

Here V(x) is a given real potential function, which we assume locally integrable, and

A e IR is the spectral parameter. Typically the differential operator T might be defined

subject to Dirichlet or Neumann conditions at x 0 but other more general boundary

conditions are also used. The limit -point condition at infinity (see [1]), which will hold in

particular if V(x) is bounded at large distances but also much more generally, implies

that no boundary condition is necessary at infinity in defining T

Although the link between spectral properties and large x asymptotic behaviour of

solutions is well known, it has not always been so clearly understood what precise

mathematical form this link was to take. For example, it has been conjectured that the

absolutely continuous spectrum corresponded precisely to such A e R for which solutions

of the differential equation were bounded at large distances. Though this statement of the

conjecture can be refuted by counterexamples, under certain restrictions the existence of

bounded solutions can still play an important role.

The most clear-cut and decisive criterion able to distinguish between the various

types of spectral behaviour for the general Sturm-Liouville operator depends on the notion

of subordinacy. A solution f(x,A) is said to be subordinate, for given A £ K if that

solution is asymptotically smaller, in L2 norm, than all other solutions g(x,A) for the

same value of A apart from constant multiples of f More precisely, f is said to be

subordinate provided

1 i m
/N(f(x'A))2dx
—j 0 for any solution g which is not a constant

N^a, /N(g(x,A))2dx
o

multiple of f.

The use of subordinacy in spectral analysis leads to a characterisation of each

component of the spectrum in terms of subsets of K on which subordinate solutions exist.

For precise statements of these results, and proofs, see [2],[3],[4]; for two recent

applications see [5],[6].

Applying the ideas to the continuous spectrum, it follows, for example, that the

support of the absolutely continuous spectrum is located precisely on the complement of

those A for which there are subordinate solutions. For definitions and examples of
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absolutely continuous and other types of spectrum, see for example [4].

The purpose of the present paper will be to establish a criterion which is analogous

to that of subordinacy, but will apply to A in the absolutely continuous spectrum, and

which moreover will allow a complete and detailed analysis of the nature of that spectrum,

including the determination of the corresponding spectral density.

Spectral properties of the Sturm-Liouville operator are controlled by the boundary

behaviour of the Weyl m-function m(z) as the complex variable z approaches the real

axis from the upper half-plane. (See Section 2 for definition and properties). The

differential operator T is unitarily equivalent to the multiplication operator

h(A) —» Ah(A) in the Hilbert space L2(R, dp(A)) where the spectral function p(A) is

monotonie non-decreasing and defined up to an additive constant by

p(A2)-p(Ai) l im ì/A2Imm(A + ie)dA,

for any Ai, A2 which are not discrete points of the measure. At points of absolute

continuity, the spectral measure takes the form dp ji^dA where the spectral density

%\ ' is given almost everywhere by

äelA) lim^ilmm(A + i6).dA £-+0+ 7T v '
In quantum mechanical applications to the Schrödinger equation, the spectral density may
be thought of as a local probability density for the energy of the system. Mathematically,
the spectral density provides a complete description of the absolutely continuous spectrum.

The paper is organised as follows. The starting point, in Section 2, will be the

asymptotic condition
1 i m /N(f(x,A))2dx//N I f(x,A) 12dx 0 : (A),
N-co ° °

to be satisfied at some real value of A by a solution f(x,A) of the governing differential

equation. Clearly, to satisfy condition (A), f(x,A) has to be complex. However, since A

is real, f(x,A) is a linear combination u(x,A) + M(A)v(x,A) of real solutions u,v, which

we shall define subject to prescribed initial conditions at x 0 In Section 2, we give a

precise definition of the coefficient M(A) and provide an alternative formulation of

Condition (A) in terms of the large x asymptotics of real solutions u,v, bringing out more

clearly the relationship between Condition (A) and the definition of subordinate solutions.

In Section 3, we explore the consequences of Condition (A) for the large x
asymptotics of solutions u(x,z), v(x,z) of the differential equation at complex spectral

parameter z for z close to a point A of the real axis. Estimates are carried out in the
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Hilbert space L2(0,N) in which N is allowed to vary in a controlled way with e The

main results, summarised in Theorem 1, illustrate how very precise asymptotic estimates

can be drawn from an apparently simple condition (A). We emphasise here that our

original asymptotic condition need be satisfied at a single real value of A only, and that
no restrictions whatever have been imposed on the large x behaviour of the potential
function V(x)

In Theorem 2 of Section 4, having determined the asymptotics of solutions at

complex z these are used to establish a link between M(A) and the boundary value of
the m-function m(z). In particular, our asymptotic condition implies absolute continuity
of the spectrum, and the spectral density is just — ImM(A) Theorem 3 then provides

necessary and sufficient conditions for Condition (A) to hold in terms of boundary

behaviour of the m-function and asymptotics of solutions at complex z

Finally, in Section 5, we exhibit the close connection between the asymptotic
condition and local behaviour of the spectral function p(A)

From a single asymptotic condition (A) which describes the behaviour of solutions

at just one, real, value of the spectral parameter, we are thus able to draw a variety of

consequences relating to spectral properties, spectral functions and densities, complex z

asymptotics and boundary behaviour of the m-function. We consider that the results

justify the further investigation of absolutely continuous spectra through these methods,

and we would anticipate their application to a wide range of problems in classical and

quantum physics.

2 The asymptotic condition

We consider the family of differential operators

Ta -dx2 + VW(-'/2 <"<%). (1)

acting in L2(K and subject to the boundary condition

(cosa)f(O) + (sina)f'(O) 0

where V(-) is real-valued and V e Li(0,N) for any N>0.
Associated with the differential expression - -j-2 + V(x) is the corresponding

differential equation

- a$X,z) + V(x) f(x,z) zf(x,z) (0 < x < œ ; Imz > 0) (2)

with its real counterpart
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- g^f(x,A) + V(x)f(x,A) Af(x,A) (0 < x < oo ; A € R) (2)'

We denote by u (-,z) v (-,z) the solutions of eq. (2), and correspondingly

solutions u (-,A), v (-,A) of eq. (2)', subject to initial conditions

u„(0,z) cos a v (0,z) - sin a

u '(0,z) sin a v '(0,z) cosa

(3)

The Weyl-Titchmarsh m-function m (z) [1],[7] is defined for Imz > 0 by the

condition that

ua(-,z) + mQ(z)va(-,z)eL2(0,œ).

We assume the limit-point case at infinity, so that the above condition defines m (z)

uniquely. Then m (z) has the Herglotz representation ([7])

àPn, (t)
mQ(z) cot a + r J-2L— (a t 0 Imz > 0) (4)

—oo

with, for a — 0 the modified representation

—oo

The differential operator T is unitarily equivalent to a multiplication operator in

the space L2(R,dp For notational convenience, we shall usually drop the suffix a

which will then be understood, and refer to the differential operator T its corresponding

m-function m(z) and spectral measure u dp and solutions u,v of eq. (2) subject to
conditions (3).

Our principal concern in this paper is with the absolutely continuous spectrum of T.

The absolutely continuous part p of the measure p has density function given almost
ac

everywhere by — Im m (A) Here m (A) is the boundary value of the m-function,

defined for A e R by

m (A) 1 i m m(A + ie) (5)+ e-»o +
The essential support of p consists of all A e R for which the limit in eq. (5) exists and

ac

has strictly positive imaginary part.

The underlying idea, as in [2], is to relate all spectral properties of the self-adjoint
differential operator T to the asymptotics of real A solutions f(x,A) of the
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corresponding differential equation (2)'. The starting point will be an asymptotic
condition for f(x,A) which may be regarded as the analogue, for absolutely continuous

spectra, of the subordinacy condition used to characterise spectral behaviour in [2],[3],[4].

Definition: We shall say that Condition (A) holds, for a given real value of A if a

solution f(x,A) ofeq. (2)' exists, for which

1 i m /(f(x,A))2dx//|f(x.A)|2dx 0 (6)
N—>oo 0 0

That Condition (A) is satisfied, for appropriate values of A for a wide range of standard

types of potential, follows readily from the known asymptotic behaviour of solutions in
these cases. If V is of short range, so that J00 | V(x) | dx < w eq. (6) will be satisfied for

o

any A > 0 by taking f(x,A) to have the asymptotic behaviour f(x,A) ~ e1*1 and a

similar conclusion follows for a large class of long range potentials, by making a suitable

modification to the asymptotic form in order to take account of the long range tail of the

potential. For a periodic potential with period 1 and A in the interior of any band of the

continuous spectrum, there is a solution f(x,A) and real valued function /3(A) for which

f(x + nl,A) ein^A)f(x,A) (n 1,2,3,- • •) Eq. (6) then follows from the fact that

Se2 ™ ' is bounded for fixed A provided /5(A) is not a multiple of w whereas
1

XI | e
™ ' |2 n For the spectral theory of periodic differential equations see [8].

1

These examples, and others which could be adduced, demonstrate the relevance of

Condition (A) to the analysis of one-dimensional Schrödinger operators. In the sequel, we

shall assume eq. (6) but make no other detailed assumptions concerning the asymptotics

either of the potential V or of solutions of the differential equation. We are then working
within a very general framework, which will lead to far-reaching consequences for the

asymptotics at both real A and complex z as well as a complete treatment of the

absolutely continuous part of the measure.

We proceed now to an alternative formulation of Condition (A), which exhibits

more clearly the link between this condition and the subordinacy criterion. Since, in eq.

(6), any multiple of the solution f(x,A) will do just as well, without loss of generality we

can write

f(x,A) - u(x,A) + M(A) v(x,A) (7)

where u( • ,A), v(• ,A) are the two solutions defined earlier.

Here the coefficient M(A) must satisfy ImM(A) i 0 since eq. (6) cannot hold for any real
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solution f Moreover, in eq. (6), f(x,A) could be replaced by the complex conjugate

f(x,A) with M~(A) for M(A) in eq. (7). Hence without loss of generality we may define

M(A) to have strictly positive imaginary part.

Lemma 1

Let M Ç R denote the set of A for which Condition (A) holds. Then the complex valued

function M(A) is uniquely defined for A e M by the properties ImM(A) > 0 and
N N

1 i m / (u(x,A) + M(A)v(x,A))2dx// |u(x,A) + M(A)v(x,A)| 2dx 0 (8)
N->oo ° °

Moreover, a necessary and sufficient condition for eq. (8) to hold, with ImM(A) > 0 is

that

lim/ (u(x,A) + M(A)v(x,A))2dx// (v(x,A))2dx 0 (9)
N-üo ° °

Proof
For A e M we have already seen that M(A) exists, with ImM(A) > 0 such that eq. (8)

is satisfied. Uniqueness will follow shortly. For A e M, define a (A), bN(A) by

aN(A) /N (u(x,A))2dx//R (v(x,A))2dx"0 0

bN(A) /Nu(x,A)v(x,A)dx//S(v(x,A))2dx

Schwarz's inequality then implies (b (A))2 < a (A)

Expanding integrands and dividing numerator and denominator by / (v(x,A))2dx
0

eq. (8) becomes

UmaN(A) + 2M(A)bN(A) + (M(A))2

"-+"aI(A) + (MW +^(A))bN(A)+ |M(A)|2

_limaN(A) + 2A(A)bN(A) + (A(A))2 - (B(A))2 + 2i (B( A)b„(A) + A(A)B(A))
-H-«» aK(A) + 2A(A)bN(A) + (A(A))2 + (B(A))2

0 (10)

where we have defined A(A) B(A) by

A(A) ReM(A)"

B(A)= ImM(A).
(H)
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Suppose a sequence {Nj} can be found, j 1,2,3,-•• such that Nj—kb and

|b | ->od With a > (b )2, this would imply b /a -» 0 Taking the second ratio in

(10) with N Nj and dividing numerator and denominator by a this ratio would

then converge, for this sequence, to unity. Hence, in fact, the postulated sequence {Nj}
cannot exist; from this it follows that b„ is bounded. Moreover av must also be

bounded, since again any sequence {N;} with av —» œ implies bM /a_ -? 0 and leads to
Nj 11 j flj

a contradiction. Hence the denominators in eq. (10) are bounded in the limit N —? oo for

fixed A. Multiplying throughout by the denominator and taking the limit now yields

lim aN(A) + 2A(A)bs(A) + (A(A))»-(B(A))2 0

1 im 2B(A) (b (A) + A(A)) 0
(12)

Eqs. (12) are just the real and imaginary parts, respectively, of eq. (9). Conversely,

starting from eq. (9), and observing that the denominator in (10) approaches 2(ImM(A))2,

eq. (8) may be verified (provided ImM(A) > 0)

We can also use eqs. (12) to deduce the limits b (A) —? — A(A)

aH(A)-(A(A))2 + (B(A))2.

Recalling, from eq. (11), the definitions of A(A) and B(A) we have, then,
1 im/Nu(x,A)v(x,A)dx//N(v(x,A))2dx -A(A) =-ReM(A)
N-+00

lim/N(u(x,A))2dx//B(v(x,A))2dx= (A(A))2 + (B(A))2 |M(A)p

(13)

Note that eqs. (13) determine A(A) and (B(A))2 for every A e M With the positive

square root for the imaginary part, the uniqueness of M(A) is assured, completing the

proof of the Lemma.

Definition: The function M(A) defined for A e M by eq. (10), with ImM(A) > 0 is

called the M-function for the differential operator
T -?Ë2 + V(X) in L2(0>m)-

Note that an equation identical to eq. (9), with m(A) instead of M(A), is the defining

equation for the notion of subordinacy, where m(A) oo whenever v(-,A) is subordinate.

Two important differences between the m-function m(A) and the M-function are (i) that

m(A) is real whereas M(A) is complex and (ii) that, with m(A) for M(A) the limit in

eq. (8) is 1 not 0 These two cases lead to entirely different asymptotics and spectral
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behaviour, as we shall find in the following sections.

3 Asymptotics ofsolutions

The key to most of the results of this paper will be a detailed asymptotic analysis of

the large x behaviour of solutions of the differential equations (2) and (2)'. In

particular, we shall be interested in a comparison between asymptotics of the solutions

u(x,A), v(x,A) and u(x,z), v(x,z) respectively, defined subject to initial conditions (3).

Note first of all, by a straightforward application of the variation of constants formula,

that u(x,z) is given in terms of u(x,A), v(x,A) with z A + it, e > 0 by the solution

of the integral equation

u(x,z) u(x,A) + ie u(x,A)/ v(t,A)u(t,z)dt

-iev(x,A)/ u(t,A)u(t,z)dt (14)
0

We shall write this equation in the form

u(-,z) u(-,A) + Leu(-,z), (15)

where L is the linear operator defined by

(L f)(x) ie u(x,A)/Xv(t,A)f(t)dt - ie v(x,A)/XU(t,A)f(t)dt (16)Co 0

The basic idea will be to iterate eq. (15) to obtain

u(-,z) (l + Le + Le2+-..)u(.,A)
in the Hilbert space L2(0,N) where N is chosen with reference to the value of the small

parameter e It will by no means be true that ||L || < 1 The following Lemma will

provide appropriate norm estimates for powers of L

Lemma 2

Let L be a linear operator in L2(0,N) given by

(Lf)(x) A(x,t)f(t)dt
0

and suppose that

|k(x,t)| < <p(x)<p(X)(t < x)
where ip(-) e L2(0,N)

Let || • ||H denote norm in L2(0,N) i.e. ||h||N P | h(x) 12dx

and define two operator norms || • || and || ¦ || by
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||L|| =sup||Lh||N
h^O

H N

ess.sup| (Lh)(x)|
llTll _ sup o<x<N
l|L||s - h*0

" "
||h||

•

(Thus || ¦ || regards L as an operator from L2(0,N) to Lm(0,N); we shall assume ip

has finite Lm norm).

Then the following norm estimates hold for powers of L

l|Ln|lN < (IMIK)2n/n (17)

l|LnllN < (IIvIIh)211-1 ess^sup^Cx)|/i5T^5_T7r (17)'

Proof
To avoid complications of notation, we consider the case n 3 ; the argument for

general n follows similarly.
The kernel K(x,t) of L3 is given for t < x by

K(x,t) //k(x,ti)k(ti,t2)k(t2,t)dt,dt2, where the integration is over the region x>ti>t2>t

Applying the Schwarz inequality, together with the given bound on the kernel k(x,t) we

have

|K(x,t)|2< (// ^(x)^(t,)vï(tï)dt1dtï)
x>ti>t2

// <p2(ti)v32(t2)çp2(t)dt!dt2)
t]>t2>t

The Hilbert -Schmidt norm estimate [9] for integral operators now gives

(IML)2< (/// ^xMtiMtjJdxdtidt,)
x>ti>t2

/// ^(tiV^VMdtrdtîdt)
tl>t 2>t

By a symmetry argument, each of the integrals on the right-hand side gives |M|ij/3!

Hence (17) follows in the case n 3 and the extension to general n is straightforward.
The estimate (17)' comes from the bound

(n-nK)2<^<rp/iK(x't)i2dt-
We are now ready to estimate the norm of the operator L defined by eq. (16). Here we

use the fact that the kernel is bounded in absolute value, through Schwarz's inequality, by

eV(u(x,A)2 + (v(x,A))2 v/(u(t,A))2 + (v(t,A))2 (t < x)
Thus (17) gives in this case

ll(Lf)n|lN<En[(||u(.,A)||H)2+(||v(.,A)||N)2]n/n!
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However, inspection of eq. (14) shows that the kernel of L is unaltered if u(-,A)

v1|v(-,A)||N/||u(-,A)||K and v(-,A) v1|u(-,A)||N/||v(-,A)||N are substituted respectively for

u(-,A) and v(-,A) Making these substitutions into our bound for ||(L )n|L results in

the improved estimate

||(Le)«||N<(2e||u(.,A)||N||v(.,A)||N)Vn! (18)

A similar argument, from (17)', leads to the result

ll(Le)nHN <

e«(2||u(.,A)sii iiv(.,A)iiR)«-' e;;-;;p m^w-.af + v2(x,a)ik,a)h2
~ • (I8)'

v/n!(n-l)!
We now have, by iteration of eq. (15),

u(-,z) (l-L£)-1u(-,A), (19)

where (1-L )"' is bounded in L2(0,N) and

||(l-Le)lN<exp{2e||u(.,A)||N||v(.,A)||K} (20)

Given any e > 0 and a fixed positive constant c the relationship N N( e) between e

and N will be defined by the condition

é(I|v(-,A)||n)2 c. (21)

Our aim will be to determine the asymptotics of u(¦ ,z) v( • ,z) (z A + ie) in the Hilbert

space L2(0,N) as e —» 0 + and N —? œ with e,N related by eq. (21). In the sequel,

the relationship N N(e) will be understood even when not explicitly stated. From eqs.

(13), we have ||u(-,A)|| < const ||v(-,A)|| for large N so that eq. (21) guarantees, in

(20), that ||(1 - L )"1||H is uniformly bounded in the limit e -? 0 +

By the notation Y X + o (ip) we shall mean that

jj^ ||Y — X || /II^L 0 ; in other words, in the limit N-> m

£-?0-1-

Y X + a correction term which is asymptotically much smaller than ip in norm.

The following Theorem summarises the asymptotic behaviour of u(-,z), v(-,z)
which is a consequence of the Condition (A) stated in Section 2. As in section 2, we write

M(A) A(A) + iB(A) where M(A) is the M-function; estimates are not intended to be

uniform in A.
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Theorem 1

Suppose Condition (A) is satisfied, for some A e R and let

z A + ie for e > 0 With N N(e) defined by eq. (21) u(x,z)

v(x,z) satisfy the following asymptotic formulae, in the limit
e — 0+ ,u(x,z) u(x,A) cosh {£B(A)/x(v(t,A))2dt}

0

-i((A(A)/B(A))u(x,A) + ((A2(A) + B2(A))/B(A))v(x,A))
sinh {£B(A)/X (v(t,A))2dt}

0

+ oN(v(.,A)) (22)

v(x,z) v(x,A) cosh{fB(A)/x(v(t,A))2dt}
0

+ i((A(A)/B(A))v(x,A) + (1/B(A))u(x,A))

sinh{eB(A)/x(v(t,A))2dt}
0

+ oN(v(.,A)). (22)'

Proof
We operate with L on the right hand side of (22). Operating on the first term

gives

i e u(x) /x v(t)u(t) cosh(eB /l v2(s)ds) dt
O 0

- i £ v(x) r u2(t) cosh (eB /' v2(s)ds) dt (23)
O 0

where we have simplified the notation by dropping explicit reference to the parameter A

The first of the two contributions on the right hand side of (23) may be integrated

by parts to give

Y (x) i e u(x) /x v(t) u(t) dt cosh(eB/x v2(s) ds)
e 0 0

- i e u(x) /x eB v2(t) (f v(s) u(s) ds) sinh(eB /' v2(s) ds) dt (23)'OO 0

Given any 6 > 0 eqs. (13) show that we can find C > 0 such that, for x > C (—A—5)

r v2(t)dt < /x v(t) u(t) dt < (-A+<5) /x v2(t) dt
0 0 0

Note that | Y (x) | < const e | u(x) | for 0 < x < C so that

/ |Y (x)|2dx/||v(-)||2 -> 0 as e -» 0 Moreover, the contribution to Y (x) coming

from the t integration over the interval 0 < t < C is again bounded by const. e|u(x)|
Hence, if we are to neglect anything which is vanishingly small in norm compared with

v(-) in the limit e -» 0, we need consider Y (x) only for x > C and with t > C in the
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integrand of (23) '. We can therefore write

r v(t)u(t)dt -A /xv2(t)dt + 0(5||v(-)L2) and
0 0 "

/' v(s)u(s)ds -A /' v2(s)ds + 0(fl|v(-)|L) in the integrand. Noting that
0 0 »

2

CIIV(')IIN is bounded, this leads to the result

Y(x) -ieAu(x) /x V2(t)dt cosh(eB /x V2(s)ds)
c 0 0

+ ieAu(x) /x eBv2(t)(/4 v2(s)ds) sinh(£B /* v2(s)ds)dt
0 0 0

+ 0(*|u(x)|).
Since 6 > 0 may be chosen arbitrarily small, and ||u(-)|| < const ||v(-)|| the error term

in this asymptotic expression for Y (x) is vanishingly small compared with v( ¦ in the

limit. On integrating by parts, we can go further and carry out the integration explicitly,
to give

Y (x) -ieAu(x) r v2(t) cosh(eB/1 v2(s)ds)dt + o_(v)
C O 0 »

-i(A/B)u(x) sinh(eB /x v2(t)dt) + o_(v). (24)
0 "

This is the first of the two contributions to the right hand side of (23). The second

contribution to (23) may be evaluated in the same manner, to give

-ie(A2+B2)v(x) /x v2(t)cosh(fB /* v2(s)ds)dt + o_(v)
o o B

-i((A2+B2)/B) v(x) sinh(eB /x v2(t)dt) + o_(v)
0

™

Writing eq. (22) in the form u(x,z) U (x,A) + o (v(-,A)) we can proceed as above to

evaluate the remaining terms of L U ; the basic idea is that, in each term, in the

asymptotic limit to order v one can justify in each term the replacement in the integrand
of u2(t) by (A2+B2)v2(t) and of u(t)v(t) by -Av2(t) after which integrations may be

carried out explicitly. This leads, after simplification, to

LU u(x)cosh(eB /x v2(t))dt) -i{(A/B)u(x) + (A2+B2)/Bv(x)}
e e o

sinh (eB /x v2(t)dt) - u(x) + o_(v)
0 "

Comparing with the original expression, in (22), for U we have L U U —

u(x) + oR(v)

Using eq. (15), where now we refer explicitly to the arguments z and A we have

(l-L£)(u(.,z)-U£(.,A)) u(.,A)-(l-Le)U£(-,A) oH(v(-,A)).
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However, ||(1 — L )_1|| is bounded in the limit e —> 0 + and it follows that

u(-,z) - U (-,A) o (v(-,A)) This is exactly eq. (22) and eq. (22)' is verified by a

similar argument. This completes the proof of Theorem 1.

Although eqs. (22) and (22)' present the most convenient expressions of the

asymptotic behaviour of u(x,z) and v(x,z) an alternative approach using (17)' and the

norm || • || instead of || ¦ || is to derive pointwise estimates. In that case one arrives at

identical asymptotic formulae to (22) and (22)', with the error term replaced by a

correction z (x,A) which is dominated by u and v in the sense that

lim zf(x,A)Mu(x,A))2 + (v(x,A))ï 0

£-»0 +
(The limit is uniform in x for 0 < x < N(e)) This formulation of asymptotics is a

natural one particularly if a priori bounds on u(x,A) and v(x,A) are known.

The following Corollary is a simple consequence of eqs. (22) and (22) ' on taking the

appropriate linear combination, and will be the starting point in Section 4 to investigating
the boundary value of the Weyl-Titchmarsh m-function.

Corollary to Theorem 1

The linear combination u + Mv has the asymptotic behaviour

u(x,z) + M(A)v(x,z)

(u(x,A) + M(A)v(x,A)) exp {- eB(A) /x (v(t,A))2dt}
0

+ oN(v(.,A)) (25)

We conclude this Section with a number of asymptotic formulae which follow from

eqs. (22) and (22)' on integrating products. In these formulae we shall say that an error

term z (x,A) satisfies z (x,A) o( /e) provided lim £z (x,A) 0 and the limit is
£ £-»o+

e

uniform in x for 0 < x < N(e)

We have, then,

/x(u(t,z))2dt /x(u(t,A))2dt + o(VO (i)
0 0

/x(v(t,z))2dt /x(v(t,A))2dt + o(VO (H)[(26)

/xu(t,z)v(t,z)dt /xu(t,A)v(t ,A)dt + o(1/e) (iii)
0 0

/x|v(t,z)|2dt (1/2eB(A))sinh{2£B(A)/x(v(t,A))2dt} + o(1/e) (iv)
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The proof of eqs. (26(i)-(iv)) follows the same lines as were taken in evaluating expressions

such as (23) in the asymptotic limit.

4 Boundary values of the m-function

It is well known [7],[10], that spectral properties of the differential operator
T -d2 + V(x) in L2(0,oo) are governed by the behaviour of the Weyl-Titchmarsh

dx2

function m(z) as z approaches the real axis. The following Theorem establishes the link
between this and the function M(A) defined in Section 2.

Theorem 2

Let M e R be the set of A 6 R for which Condition (A) holds. Then the m-function m(z)
and the M-function M(A) are related, for all A 6 M, by

M(A) lim m(A+if) (27)
£-»0 +

Moreover the spectral measure p restricted to the set M is purely absolutely continuous,

with density function - ImM(A)

Proof
The second part of the Theorem follows the first part from the standard

characterisation of pac in terms of boundary values of m(z). Hence we have only to

prove eq. (27). To do so, we use the Weyl limit point/limit circle theory; see [1],[4].

For any e,N > 0 with z A + ie the Weyl theory defines a circle C (z) in the

upper half plane such that in the limit N —» oo and with z held fixed, the family of
circles C converges to the single point m(z). The radius R of the Weyl circle C is

given by

R =(2e/N|v(t,A)|2dt)-'.
n 0

Here we shall not hold z fixed, but instead, as in Section 3, hold A fixed and define by

eq. (21) the relation N N(e) between N and e In that case, R will no longer

converge to zero in the limit N —» oo since we also have e —» 0 We can, however, use

(iv) of eqs. (26) to evaluate the limit, giving
1 i m R (A+ie) 2B(A)/sinh(2CB(A)) (28)
?=!8 +

A further consequence of the asymptotic formulae derived in the last section is that,
for N sufficiently large, M(A) is in the interior of the circle C To verify this, we
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have to check that M(A) satisfies the defining inequality for the interior of CN namely

e /N | u(t,z) + M(A)v(t,z) 12dt < ImM(A) (29)
0

Using eq. (25), the left hand side of (29) is given asymptotically for large N and small e

by

e /N |u(t,A) + M(A)v(t,A)|2 exp {-2£B(A)/t(v(s,A))2ds}dt
0 0

Using the same methods as in the proof of eqs. (26), we can take the limit £ —» 0 N —» m

with N N(e), to give
1 i m 2f(B(A))2 /N (v(t,A))2 exp {-2eB(A) /t(v(s,A))2ds}dt
v k _ o o

B(A) (1 - exp {-2CB(A)> < B (A) (25)

Since B(A) is just the right hand side of (29) we have verified that M(A) does indeed lie

in the interior of C for N sufficiently large.

Standard Weyl theory implies that m(z) also is in the interior of C Hence the

distance, measured in the upper half plane, between m(z) and M(A) cannot exceed

RN(A+ie) for large N

Noting the inequality sinhd? > 6 for 8 > 0 it follows from eq. (28) that R (A+ie)

< /C for N sufficiently large.

We have, then,

|m(z)-M(A)| <l/C, (30)

provided e is sufficiently small and positive. (We can here drop all reference to N since

the left hand side of (30) is now independent of N)

Since C in (30) is an arbitrary positive constant, eq. (27) follows immediately, and

the Theorem is proved.

Theorem 2 allows us to define a family of solutions f(x,z) of eq. (2) with z in the

upper half plane, having boundary value f(x,A) given by eq. (7) as z approaches a point
A on the real axis. Thus, we can write

f(x,z) u(x,z) + m(z)v(x,z) (31)

Following Theorem 2, we can prove several remarkable asymptotic formulae

satisfied by f(x,z)

Corollary to Theorem 2

Define M as in Theorem 2. Then for A e M with z A 4- i£, we have
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1 i m,e/x(f(t,z))2dt 0 (i)
e-»o+ °

lim r((f(x,z))2dx//m|f(x,z)|2=,0 (ii)
e-»o+° °

1 i m e||f(. ,z) - (u( • A) + M(A)v( ¦ ,A))exp{-eB(A)/(v(t,A))2dt}||2=0 (iii)
£->0+ °

(32)

Moreover, the limit in (32)(i) is uniform in x for 0 < x < oo

Proof
Since m(z) —? M(A) as z -» A the asymptotics of f(x,z) in L2(0,N) are as for

the function u(x,z) + M(A)v(x,z) Proceeding as in the proof of eqs. (23), and using eq.

(25), it is then straightforward to verify (i) of eqs. (32) for 0 < x < N(e) and that the

limit is uniform over x in this interval. To verify (i) or x > N( e) we have to obtain a

bound for e/m f(t,z))2dt Following the proof of Theorem 2, with m(z) for M(A) on the
N

left hand side of (29) we have already shown that
1 * m N
N-» oo e/s | f(t,z) 12dt B(A) (1 - exp{-2CB(A)})
e->o + °

Moreover, from the Weyl theory we have the standard formula

e/°° |f(t,z)|2dt Imm(z). (33)
0

Taking the limit z —? A it follows that

lim
N-»oo e/m |f(t,z) 12dt B(A) exp {-2CB(A)} (34)
e->o+ °

By taking C large, we can therefore ensure that e/°°(f(t,z))2dt is arbitrarily small in the
N

limit e—»o+ with N N(e) Hence the limit in (32)(i), initially proved only for

o<x<N(e) now extends to all x in the range o<x<m and is, moreover, uniform in that
interval. From the uniformity of convergence, it follows immediately that
e/IB (f(x,z))2dx converges to zero in the limit e—>o+ From eq. (33), we see that the

denominator of eq. (ii) approaches B(A)/e asymptotically, and the second equation of the

Corollary is proved. Finally, note that (iii) of eqs. (32) is a simple consequence of eq. (25),

provided that we had || • || instead of || ¦ || As in the proof of (ii) of the Corollary, we

therefore need to estimate the contribution to the norm coming from x > N Such an

estimate for f(-,z) is provided by eq. (34), and it remains only to obtain a similar

estimate for

e/00 |u(t,A) + M(A)v(t,A)|2exp{-2£B(A)/t (v(s,A))2ds} dt
N °
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This we can do in the same manner as for previous asymptotic estimates, setting

|u(t,A) + M(A)v(t,A)|2 ^/t|u(s',A) + M(A)v(s',A)|2ds'

and integrating by parts; here once again we make use of the comparisons (13) between

integrals, and an asymptotic bound as on the right hand side of (34) is obtained. Since

again the value of the constant C may be chosen arbitrarily large, the final part of eqs.

(32) is verified, and the proof of the Corollary is complete.

Eq. (32)(i) is an important ingredient in establishing necessary and sufficient

conditions for Condition (A), in terms of the boundary behaviour of the m-function m(z)
In the following result, which as before assumes limit point case at infinity, f(-,z) is again

defined by eq. (31).

Theorem 3

For any given AeR with z A+ie Condition (A) holds if and only if both

(i) lim e/x (f(t,z))2dt 0

£->0+ °

uniformly in x for 0 < x < œ and

(ii) 1 i m m(z) exists and has strictly positive imaginary part.
f-»0 +

Proof
If Condition (A) holds at A then (ii) of Theorem 3 follows from eq. (27) together

with the observation, in Lemma 1, that ImM(A) > 0 Moreover (i) of Theorem 3 is one

of the consequences of the Corollary to Theorem 2.

Conversely, suppose (i) and (ii) of Theorem 3 are satisfied. We have to deduce

Condition (A). The argument is sufficiently close to that of Theorem 1 that it will be

enough to give a sketch of the proof. Whereas in Theorem 1 we used asymptotics for

integrals of solutions u(x,A), v(x,A) of the real A Schrödinger equation to derive

corresponding asymptotics for the Schrödinger equation at complex z here we put the

argument into reverse to derive real A asymptotics of a solution f(x,A) from the

postulated behaviour of f(x,z) To this end, we start from the integral equation

f(x,A) f(x,z) -ief(x,z) r v(t,z)f(t,A)dt
0

+ iev(x,z)/xf(x,z)f(t,A)dt (35)
0

The solution f(x,A) of eq. (35) satisfies the differential equation (2)' and from the

initial values of f and -r- we find that

f(x,A) u(x,A) + m(z)v(x,A) (36)

Strictly, we should write f(x,A;z) to indicate the dependence of this solution, through
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m(z) on the value of the complex parameter z A + ie ; for simplicity of notation, and

to emphasise that we are dealing with a solution of the real A differential equation, we

prefer to suppress this dependence on z

We shall determine the asymptotics of f(-,A) in the Hilbert space L2(0,N) where

for e>0 and a fixed positive constant 7 the relationship N N(e) between e and N

will be defined by the condition (cf. eq. (21))

e(l|v(-,z)||K)2 7.

Since, by hypothesis, m(z) is bounded as z approaches A eq. (33) implies also the norm
estimate

e(||f(-,z)||N)2< const.

Writing eq. (35) in the operator form

f(•,A) f(-,z) + Kf(-,A) the above bounds for v(-,z) and f(-,z) may be used,

as in Lemma 2, to derive norm estimates for powers of K as operators in L2(0,N) In

particular, this guarantees that ||(1 — K )~'|L is uniformly bounded in the limit e —? 0 +

and the solution of eq. (35) for f(-,A) may be obtained by iteration. Now apply the

integral operator K to the function

f(x,z) exp {-ie /x v(t,z)f(t,z)dt}
0

Using (i) of the Theorem and integrating by parts, we arrive at the asymptotic formula

(1-K (f(x,z) exp {-ie /x v(t,z)f(t,z)dt})
c 0

f(x,z)-rON(v(-,z)),

which on comparison with the equation for f(-,A) and using the bound on (1 — K )"'

leads to

f(x,A) f(x,z) exp {-ie /x v(t,z)f(t,z)dt} + o,.(v(-,z)) (37)
0 n

Now use (ii) of the Theorem to define m (A) 1 i m m(z) so that
+ e->o +

Im m+(A) > 0 Since ||v(-,A||H ||(1- K^"1 v(-,z)||N < const ||v(.,z)||N the

convergence of m(z) to m (A) in eq. (36) allows us to replace f(x,A) on the left hand

side of (37) by f (x,A) where

f, (x,A) u(x,A) + m (A)v(x,A)

Notice that here f (x,A) is indeed independent of z
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It remains to use (37), with f for f to estimate the integral / (f (x,A))2dx

Here the norm estimates for v(-,z) and f(-,z) imply that the argument of the

exponential function remains bounded and that we have, on integrating by parts and using

once more (i) of the hypotheses of the Theorem,

lim e/N (f (x,A))2dx 1 i m e/B (f(t,z))2 exp{-2ie /Sr(s>»)f(B,«)d8}dt
e—o + ° + e->o + ° °

0

On the other hand, ||v(-,z)|| ||(1 - K )v(-,A)|| < const. ||v(-,A)||N from which it

follows that
e/N (v(x,A))2dx > const, e ||v(-,z)||2 > const. > 0

0

Combining these bounds, we now have, with N N(e)

lim /N (f, (x,A))2dx / /K (v(x,A))2dx 0

e-o+° + °

The relationship N N(e) maps any neighbourhood 0 < e < e0 of zero

continuously on to a corresponding semi-infinite interval N0 < N < oo in such a way that

e becomes arbitrarily small for large N Thus general properties of the mapping imply
that the limit e —» o + may be replaced by a limit N —» oo Hence eq. (9) holds with

M(A) m (A) By Lemma 1, we have now verified Condition (A), and with this the

proof of Theorem 3 is complete

5 Further comments and developments

The set of all A e R for which m(z) has a boundary value having positive

imaginary part, defines an essential support for the absolutely continuous spectrum. From

Theorem 2 we see that all A at which Condition (A) holds he in this essential support.

However, the characterisation of Condition (A) provided by Theorem 3 entails an

additional property (i), and leaves open the question of whether the set of A at which

Condition (A) holds is itself an essential support for the absolutely continuous spectrum.

Although in all cases which we have analysed in detail Condition (A) is found to hold at

almost all A € R we are as yet unable to find a definitive answer to the question of

whether this will be true in general. We conjecture that the set M defined in Theorem 2,

is indeed an essential support for the absolutely continuous spectrum. To verify this

conjecture, it will be necessary to show that (i) of Theorem 3 holds, as a uniform limit in

x for almost all A As a first step in this direction, one may show that property (i) does

hold, for almost all A in the x—»oo limit ; namely, we have, almost everywhere,
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lim e/CDf(t,z)2dt 0. (38)
e->o + °

To verify (38), start from the identity
erf(t,Zl)f(t,z2)dt m(z0:^z2),

O «1*2
in which the integral has been evaluated by standard arguments involving Wronskians, and

proceed to the limit zi —» z2.

Then eq. (38) is equivalent to

lim e dm(z) _ Q (38)'
e—» o + dz

Using the Herglotz representation (4) or (4)' for the m-function in terms of the

spectral function dp we can restate (38)' as

lim /»fÄ) 0. (38)"
e—»o-l- -oo

v '

In the limit as z A + ie -» A the integral in (38)' ' is governed by the behaviour

of the spectral function p(t) near t A In particular, if p(t) is differentiable at A

we can integrate by parts and make the change of variable t A + es Substituting the

asymptotic form for the spectral function near A and using the fact that

/°° A.»; ds 0 we can verify that (38)" holds at all points of differentiability.

Indeed, identities for spectral integrals may be used to show that e dm(z) has zero
dz

boundary value wherever m(z) has a (finite) boundary value.

It follows that property (i) of Theorem 3 is almost everywhere equivalent to (i)':
lim e/°° (f(t,z))2dt 0
e—»0+ x

This integral too may be evaluated using Wronskian methods. Thus

ef (f(t,z))2dt e{f(x,z) Jf'(x,z) -f'(x,z) Jf(x,z)}
where the prime denotes differentiation with respect to x

Let us define an m-function mx(z) with corresponding spectral function px(t)

for the differential operator in the interval [x,oo) where now the initial conditions (3) are

applied at the endpoint x rather than at zero. We take for simplicity the case a 0

Condition (i) ' may then be written

lim e(f(x,z))2/M2 0.
e-»o+ \l^>
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If the measure dp is absolutely continuous, then dpx will have a density function

- Im mx (t) where mx is the complex boundary value of mx In that case Condition

W,
with change of integration variable t A + es becomes

Mm 1/a>Imm(A+es)|f(x A+ie)l2ds
Q

e->o + x-oo (s-i)2|l+(x,A+es)|2
This Condition will hold, in particular, if the m-function is continuous at A if |f(x,z)|2
is uniformly bounded near z A for z in the upper half-plane, and if |f, (x,t)|2 is

uniformly continuous in t at t A (Note also, from the proof of Theorem 3, that to

establish Condition (A) it is enough to restrict attention to x in the range

0<x <N, where e(||v(-,z)||N)2 7

These arguments, which relate asymptotic behaviour of solutions in the complex
lane more directly to local properties of the spectral measure p and related measures px

are the first steps in the establishment of further links between asymptotics and spectral

behaviour. In particular, it appears that further progress can be made in the analysis of

potentials for which there is a uniform pointwise bound on solutions. This is an area of

special interest in scattering theory, and will be the subject of continuing research.
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