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A New Asymptotic Condition for Absolutely Continuous
Spectrum of the Sturm-Liouville Operator
on the Half-Line

by I. Al-Naggar and D. B. Pearson

Department of Applied Mathematics,
University of Hull, Hull HU6 7RX, England.

(26.XI.1993, revised 30.III.1994)

Abstract. A new asymptotic condition | im [Y(f(x,A))2dx/f" |f(x,A)|2dx = 0 is proposed to
N—o ° "
describe solutions f(x,)\) at real spectral parameter A of the Sturm-Liouville differential

equation — d—?:;-)((—);—)‘) + V(x)f(x,A) = M(x,A) over the half-line 0 < x < @. The asymptotic

condition is shown to imply absolute continuity of the Schrodinger operator T = — %;2 + V(x),
and starting from this condition a wide variety of consequences for spectral theory and
asymptotics of solutions is developed, including the precise determination of the spectral density
function.

Applications will include a range of problems in classical and quantum theory, including the
detailed analysis of continuous spectra in potential scattering.

1 Introduction

It has been commonly realised for many years by physicists and mathematicians
that there is a close connection between the spectral properties of the Sturm-Liouville
2
differential operator T = — %}? + V(x) acting on the half-line 0 < x < o, with regular
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boundary condition at x = 0 and limit-point case at x = o, and the large x asymptotic
behaviour of solutions f(x,A) of the corresponding real ) differential equation

_'d2f£xz)\) + V(x) f(x,1) = M(x,)) .

Here V(x) is a given real potential function, which we assume locally integrable, and

X € R is the spectral parameter. Typically the differential operator T might be defined
subject to Dirichlet or Neumann conditions at x = 0 , but other more general boundary
conditions are also used. The limit-point condition at infinity (see [1]), which will hold in
particular if V(x) is bounded at large distances but also much more generally, implies
that no boundary condition is necessary at infinity in defining T .

Although the link between spectral properties and large x asymptotic behaviour of
solutions is well known, it has not always been so clearly understood what precise
mathematical form this link was to take. For example, it has been conjectured that the
absolutely continuous spectrum corresponded precisely to such A € R for which solutions
of the differential equation were bounded at large distances. Though this statement of the
conjecture can be refuted by counterexamples, under certain restrictions the existence of
bounded solutions can still play an important role.

The most clear—cut and decisive criterion able to distinguish between the various
types of spectral behaviour for the general Sturm-Liouville operator depends on the notion
of subordinacy. A solution f(x,A) is said to be subordinate, for given A € R, if that
solution is asymptotically smaller, in L2 norm, than all other solutions g(x,\) for the
same value of A , apart from constant multiples of f . ‘More precisely, f is said to be
subordinate provided

Lim Jo(E(x))%x
N—a [7(g(x,)))%dx

= (0 for any solution g which is not a constant

multiple of {.

The use of subordinacy in spectral analysis leads to a characterisation of each
component of the spectrum in terms of subsets of R on which subordinate solutions exist.
For precise statements of these results, and proofs, see [2],[3],[4]; for two recent
applications see [5],[6].

Applying the ideas to the continuous spectrum, it follows, for example, that the
support of the absolutely continuous spectrum is located precisely on the complement of
those A for which there are subordinate solutions. For definitions and examples of
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absolutely continuous and other types of spectrum, see for example [4].

The purpose of the present paper will be to establish a criterion which is analogous
to that of subordinacy, but will apply to A in the absolutely continuous spectrum, and
which moreover will allow a complete and detailed analysis of the nature of that spectrum,
including the determination of the corresponding spectral density.

Spectral properties of the Sturm-Liouville operator are controlled by the boundary
behaviour of the Weyl m-function m(z) as the complex variable z approaches the real
axis from the upper half-plane. (See Section 2 for definition and properties). The
differential operator T is unitarily equivalent to the multiplication operator
h(A) — Ah()) in the Hilbert space L%(R, dp())) , where the spectral function p(A) is
monotonic non-decreasing and defined up to an additive constant by

p(A2) —p(A)=1lim lez Im m(A + ie) dA,
T
E—=0+ A

for any Ay, A; which are not discrete points of the measure. At points of absolute
continuity, the spectral measure takes the form dp = %ild)\ , where the spectral density

Qg&-&) is given almost everywhere by
do(A) _lim 1 .
—g&—-) = o4 7 m() + i€) .

In quantum mechanical applications to the Schrodinger equation, the spectral density may
be thought of as a local probability density for the energy of the system. Mathematically,
the spectral density provides a complete description of the absolutely continuous spectrum.

The paper is organised as follows. The starting point, in Section 2, will be the
asymptotic condition
lim /[ I;(f(x,)«))"’tht/! r;If(x,)x)lzdx =0 (A),

— o

to be satisfied at some real value of A by a solution f(x,)) of the governing differential
equation. Clearly, to satisfy condition (A), f(x,A) has to be complex. However, since A
is real, f(x,A) is a linear combination u(x,A) + M(A)v(x,A) of real solutions u,v, which
we shall define subject to prescribed initial conditions at x = 0 . In Section 2, we give a
precise definition of the coefficient M(A) and provide an alternative formulation of
Condition (A) in terms of the large x asymptotics of real solutions u,v, bringing out more
clearly the relationship between Condition (A) and the definition of subordinate solutions.

In Section 3, we explore the consequences of Condition (A) for the large x
asymptotics of solutions u(x,z), v(x,z) of the differential equation at complex spectral
parameter z ,for z close to a point A of the real axis. Estimates are carried out in the
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Hilbert space L2(0,N) in which N is allowed to vary in a controlled way with ¢ . The
main results, summarised in Theorem 1, illustrate how very precise asymptotic estimates
can be drawn from an apparently simple condition (A). We emphasise here that our
original asymptotic condition need be satisfied at a single real value of A only, and that
no restrictions whatever have been imposed on the large x behaviour of the potential
function V(x) .

In Theorem 2 of Section 4, having determined the asymptotics of solutions at
complex z , these are used to establish a link between M()) and the boundary value of
the m-function m(z). In particular, our asymptotic condition implies absolute continuity
of the spectrum, and the spectral density is just %ImM(A) . Theorem 3 then provides

necessary and sufficient conditions for Condition (A) to hold in terms of boundary
behaviour of the m-function and asymptotics of solutions at complex z .

Finally, in Section 5, we exhibit the close connection between the asymptotic
condition and local behaviour of the spectral function p(}) .

From a single asymptotic condition (A) , which describes the behaviour of solutions
at just one, real, value of the spectral parameter, we are thus able to draw a variety of
consequences relating to spectral properties, spectral functions and densities, complex z
asymptotics and boundary behaviour of the m—function. @We consider that the results
justify the further investigation of absolutely continuous spectra through these methods,
and we would anticipate their application to a wide range of problems in classical and
quantum physics.

2 The asymptotic condition
We consider the family of differential operators
T, =5, + VE)(-"/y < a< ]y, (1)
acting in L2(R,) and subject to the boundary condition
(cosa)f(0) + (sina)f’(0) =0,

where V(-) is real-valued and V € Ly(0,N) forany N> 0.

)

Associated with the differential expression — 3;2 + V(x) is the corresponding

differential equation :
- %%g(x,Z) + V(x) f(x,2z) = zf(x,2) , (0 < x< o;Imz > 0) (2)

with its real counterpart
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— $f(x,2) + VH(x,A) = M(x,)) (0<x<w;A€R) (2)’

We denote by u(-,2) , v (-,z) the solutions of eq. (2), and correspondingly
solutions u (-,A), v (+,A) of eq. (2)’, subject to initial conditions

ua(O,z) = coS a va(O,z) = - sin o

(3)

u, (0,z) =sina v ’(0,z) =cos @
The Weyl-Titchmarsh m-function m (z) [1],[7] is defined for Imz > 0 by the

condition that
uy(+z) + m (z)v (-,2) € L2 (0,0) .

We assume the limit-point case at infinity, so that the above condition defines ma(z)

uniquely. Then ma(z) has the Herglotz representation ([7])

5 40, (1)
m (z) =cot a+ [ +— (a#0,Imz>0), (4)
-
with, for @ = 0, the modified representation
_ b 1 ¢ i
m(®) = e+ [ (=g o 0) (4)

The differential operator Ta is unitarily equivalent to a multiplication operator in
the space Lﬁ(iR,dpa) . For notational convenience, we shall usually drop the suffix a,

which will then be understood, and refer to the differential operator T , its corresponding
m-function m(z) and spectral measure x = dp , and solutions u,v of eq. (2) subject to
conditions (3).

Our principal concern in this paper is with the absolutely continuous spectrum of T.
The absolutely continuous part p  of the measure u has density function given almost
ac

everywhere by % Im m +()\) . Here m +()\) is the boundary value of the m-function,

defined for A € R by

m () =11 m m() +ie) (5)

The essential support of x  consists of all A € R for which the limit in eq. (5) exists and
ac
has strictly positive imaginary part.

The underlying idea, as in [2], is to relate all spectral properties of the self-adjoint
differential operator T to the asymptotics of real A solutions f(x,A) of the
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corresponding differential equation (2)’. The starting point will be an asymptotic
condition for f(x,A) which may be regarded as the analogue, for absolutely continuous
spectra, of the subordinacy condition used to characterise spectral behaviour in [2],[3],[4].
Definition: We shall say that Condition (A) holds, for a given real value of A , if a
solution f(x,A) of eq. (2)’ exists, for which
lim ?(f(x,,\))2dx/?|f(x.)\)] dx =0 (6)
N—m O 0
That Condition (A) is satisfied, for appropriate values of A , for a wide range of standard
types of potential, follows readily from the known asymptotic behaviour of solutions in
these cases. If V is of short range, so that [® |V(x)|dx < o, eq. (6) will be satisfied for
0

any A > 0 by taking f(x,A) to have the asymptotic behaviour f(x,A) ~ ei'p:x ,and a
similar conclusion follows for a large class of long range potentials, by making a suitable
modification to the asymptotic form in order to take account of the long range tail of the
potential. For a periodic potential with period 1 , and ) in the interior of any band of the
continuous spectrum, there is a solution f(x,A) and real valued function A(A) for which
f(x +nl,A) = einﬂ(’\)f(x,)\) ,(n=123,---). Eq.(6) then follows from the fact that

n .
x e2mﬁ()\) is bounded for fixed A provided A(A) is not a multiple of 7, whereas
1

n .
z |emﬁ(A) |2=n. For the spectral theory of periodic differential equations see [8].
1

These examples, and others which could be adduced, demonstrate the relevance of
Condition (A) to the analysis of one-dimensional Schrodinger operators. In the sequel, we
shall assume eq. (6) but make no other detailed assumptions concerning the asymptotics
either of the potential V or of solutions of the differential equation. We are then working
within a very general framework, which will lead to far-reaching consequences for the
asymptotics at both real A and complex z , as well as a complete treatment of the
absolutely continuous part of the measure.

We proceed now to an alternative formulation of Condition (A), which exhibits
more clearly the link between this condition and the subordinacy criterion. Since, in eq.
(6), any multiple of the solution f(x,A) will do just as well, without loss of generality we
can write

f(x,A) = u(x,A) + M(}) v(x,A) , (7)
where u(-,\A), v(-,A) are the two solutions defined earlier.
Here the coefficient M()) must satisfy ImM(X) # 0, since eq. (6) cannot hold for any real
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solution f . Moreover, in eq. (6), f(x,A) could be replaced by the complex conjugate
f(x,A) , with M()) for M()) ineq. (7). Hence without loss of generality we may define
M()) to have strictly positive imaginary part.

LEMMA 1
Let M CR denote the set of A for which Condition (A) holds. Then the complex valued
function M()) is uniquely defined for A € X by the properties ImM()A) > 0 and

N N
Lim ] (u(x) + MO)6A) X/ [u(x) + M()v(x,A)|2dx = 0. (8)
N—o
Moreover, a necessary and sufficient condition for eq. (8) to hold, with ImM(A) > 0, is
that

N N
Lim [ (u(x,A) + M(A)v(x,A))%dx/] (v(x,A))2dx =0. (9)
N—w 0 0
PrOOF
For X € M, we have already seen that M()) exists, with ImM(A) > 0, such that eq. (8)
is satisfied. Uniqueness will follow shortly. For X € X, define aN(A), bu()‘) by

ay() = [" (u(x,)2dx/[" (v(x,2))2dx

by(A) = /" u(x, A)v(x, A)dx/["(v(x,A)) 2dx
0
Schwarz’s inequality then implies (by(A))? < aN(,\) :
Expanding integrands and dividing numerator and denominator by é M(v(x,)))2dx

eq. (8) becomes
1im &) + 2MO)by (X)) + (M(Y))?

N— o aN(A) + (M(}) +]V[()\))bn()\) + |M(A)|?

Lim&(A) + 280b(A) + (A(X)2 = (B(A))? +2i(B(A)by(A) + A(X)B(}))
T —ow aN(A) + 2A(A)bN(/\) + (A(A))? + (B(A))?
=0, (10)
where we have defined A()), B()) by

AU):ReMO)]

(11)
B()) = ImM()) |
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Suppose a sequence {N;} can be found, j = 1,2,3,--- such that Nj—o and
|b, | —w. With a_ > (b_ )?, this would imply b_/a_  — 0. Taking the second ratio in
Nj X; Nj Ni' Xj

(10) , with N = N;, and dividing numerator and denominator by ay. this ratio would
i

then converge, for this sequence, to unity. Hence, in fact, the postulated sequence {Nj}

cannot exist; from this it follows that bN is bounded. Moreover Ay must also be

bounded, since again any sequence {N;} with ay. — o implies by /a.N_-—> 0, and leads to
] it Nj

a contradiction. Hence the denominators in eq. (10) are bounded in the limit N — o , for
fixed A. Multiplying throughout by the denominator and taking the limit now yields
lim a () + 2A(A)b,(A) + (A(A))2—(B(A))2=0
lim 2B(A) (by(}) +A(X))=0

N—wo
Eqgs. (12) are just the real and imaginary parts, respectively, of eq. (9). Conversely,
starting from eq. (9), and observing that the denominator in (10) approaches 2(ImM(A))?,
eq. (8) may be verified (provided ImM(A) > 0) .

We can also use egs. (12) to deduce the limits b (}) = —A(}),
ay(A) = (A(X))2 + (B(A))?.

Recalling, from eq. (11), the definitions of A(A) and B(A) we have, then,
1im t{)“u(x,)\)v(x,A)dx/jN(v(x,A))zdx = —A()) = —ReM(})
N—w ¢ (13)
Lim ["(u(x,1))2dx/["(v(x,))2dx = (A(A))2 + (B(X))? = [M(})|?

N—w

Note that egs. (13) determine A(A) and (B()))? for every A € . With the positive
square root for the imaginary part, the uniqueness of M()) is assured, completing the
proof of the Lemma.

Definition: The function M(X) , defined for A € X by eq. (10), with ImM(A) > 0, is
called the M —function for the differential operator

2
T=-%,+ V(x) in L(0).

Note that an equation identical to eq. (9), with m()) instead of M(A), is the defining
equation for the notion of subordinacy, where m()\) = » whenever v(-,A) is subordinate.
Two important differences between the m—function m()\) and the M—function are (i) that
m(]) is real whereas M(A) is complex , and (ii) that, with m()) for M(A) , the limit in
eq. (8)is 1 not 0. These two cases lead to entirely different asymptotics and spectral
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behaviour, as we shall find in the following sections.

3  Asymptotics of solutions

The key to most of the results of this paper will be a detailed asymptotic analysis of
the large x behaviour of solutions of the differential equations (2) and (2)’. In
particular, we shall be interested in a comparison between asymptotics of the solutions
u(x,MA), v(x,A) and u(x,z), v(x,2z) respectively, defined subject to initial conditions (3).
Note first of all, by a straightforward application of the variation of constants formula,
that u(x,z) is given in terms of u(x,A), v(x,A) , with z = X + i¢, € > 0, by the solution
of the integral equation

u(x,z) = u(x,A) + ie u(x,\) g"v(t,,\)u(t,'z)dt

—iev(x,)) g"u(t,,\)u(t,z)dt . (14)
We shall write this equation in the form
u(-,z) = u(-,A) + L u(-,z), (15)
where Le is the linear operator defined by
(L £)(x) = i€ u(x,)) t[)xv(t,)\)f(t)dt —ie v(x,\) fu(t,,\)f(t)dt | (16)

The basic idea will be to iterate eq. (15) to obtain
u(2) = (L+ L+ T2+ ) u(,))

in the Hilbert space L2(O,N), where N is chosen with reference to the value of the small
parameter ¢ . It will by no means be true that ”Le” < 1. The following Lemma will

provide appropriate norm estimates for powers of Le .

LEMMA 2
Let L be a linear operator in L2(O,N) , given by
X
(L)(x) = [ k(x)i(t)dt,

and suppose that

[k(x,t)| < @(x)e(t)(t < ),
where ¢ (-) € L2O,N) .

Let |||, denote normin L2(O,N),i.e. Il = |£N|h(x)|2dx,

and define two operator norms ||-||, and ||-||; by
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IL{ly = sup [[Lhll/[h]l, ,
N h#O N N

ess.sup| (Lh)(x)]
[IL” _ sup of<x«<\
N~ h#0 [{hf]

(Thus ||-||H regards L as an operator from L2(O,N) to L®(O,N); we shall assume ¢

has finite L” norm).
Then the following norm estimates hold for powers of L
L™y < (llelly)22/n ! ' (17)

L1 < (el )2nt 5. supl ()| / ey (17)"

0<x<N

PROOF
To avoid complications of notation, we consider the case n = 3 ; the argument for

general n follows similarly.

The kernel K(x,t) of L3 is given for t < x by
K(x,t) = [[k(x,t1)k(t1,t2)k(ts,t)dt,dts , where the integration is over the region x2t>t22t .
Applying the Schwarz inequality, together with the given bound on the kernel k(x,t) , we
have

IK(xt)[2< ([ @ (x)pX(tr)@*(t2)dt,dts)
x2t 1262
(J] A t)e(ta)p?(t)dtdts)
t2t 22t
The Hilbert -Schmidt norm estimate [9] for integral operators now gives
(L)< (f / { P(x)p2(t1)p%(t2)dxdt dts)
12

xzt 2
( JI]  @2(t)p(t2)p(t)dt dtodt) .
t2t 2t

By a symmetry argument, each of the integrals on the right-hand side gives ||<p||§/3!

Hence (17) follows in the case n = 3, and the extension to general n is straightforward.
The estimate (17)’ comes from the bound

(I-ll)? € S555¥P 71K (x,t)] %t

We are now ready to estimate the norm of the operator L, defined by eq. (16). Here we

use the fact that the kernel is bounded in absolute value, through Schwarz’s inequality, by
[N F VA VGA)T F EX)?  (E<x).
Thus (17) gives in this case
L) € (- M)l)2 + (v (-,A)l1;)2" /n!
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However, inspection of eq. (14) shows that the kernel of L_ is unaltered if u(-,))

VIV ATTTRCT, and () VTG AIIVC AT, are substituted respectively for
u(+,A) and v(-,)) . Making these substitutions into our bound for ||(L e)n“N results in

the improved estimate

L™y € ellul- M) glv(-A)l)" /ot (18)

A similar argument, from (17)’, leads to the result
eyl <
2lu(- Myl VG Soexex VAR + v20 Xl X2 _—
We now have, by iteration of eq. (15),

u(-,2) = (1 - L )u(- ), (19)
where (1—L )™ is bounded in L2(0,N) and

12 =L )7l < exp{2elfu(-, M)l Iv(-,2)ll} (20)

Given any ¢ > 0, and a fixed positive constant c , the relationship N = N(e€) between ¢
and N will be defined by the condition

e(lv(-: Al )2 =c. (21)
Our aim will be to determine the asymptotics of u(-,z), v(-,z) (z= A + ie) in the Hilbert
space L%0,N) as ¢ - 0+ and N — o, with ¢N related by eq. (21). In the sequel,
the relationship N = N(¢) will be understood even when not explicitly stated. From egs.
(13), we have [[u(-,A)|l; ¢ const [[v(-,A)||, for large N, so that eq. (21) guarantees, in

(20), that [|(1 —L )7, is uniformly bounded in the limit ¢ — 0 + .

By the notation Y _=X_+ 0,(%) we shall mean that
lim
N—o
€=}

Y, — X€||H/||¢||N = 0 ; in other words, in the limit N — o,

Ye = X6 + a correction term which is asymptotically much smaller than % in norm.

The following Theorem summarises the asymptotic behaviour of u(-,z), v(-,2)
which is a consequence of the Condition (A) stated in Section 2. As in section 2, we write
M(A) = A()) + iB()) , where M()) is the M—function; estimates are not intended to be
uniform in A.
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THEOREM 1
Suppose Condition (A) is satisfied, for some X € R, and let
z=A+ie for ¢>0. With N = N(¢) defined by eq. (21) , u(x,2z) ,
v(x,z) satisfy the following asymptotic formulae, in the limit
€ — 0+ ,u(x,z) = u(x,A) cosh {eB(A)g"(v(t,A))Zdt}
—i((A(2)/B(A))u(x,A) + ((A2(A) + B%(A))/B(A))v(x,))
sinh {eB()\)£x (v(t,X))2dt}

+ ON(V(' ’)\)) (22)

v(x,2z) = v(x,A) cosh{eB(/\)éx(v(t,)\))zdt}
+i((AQ)/BONVEA) + (/B()) u(x,)
sinh{ eB(A)é"(v(t,A))i?dt}
+ 0, (v(+,)) - (22)
Proor
We operate with L_ on the right hand side of (22). Operating on the first term

gives
ieu(x) é" v(t)u(t) cosh(eB ét v(s)ds) dt

—1 € v(x) [*u2(t) cosh (eB J* v2(s)ds) dt, (23)
0 0
where we have simplified the notation by dropping explicit reference to the parameter A .

The first of the two contributions on the right hand side of (23) may be integrated
- by parts to give :
Y (x) =1 eu(x) g" v(t) u(t) dt cosh(eB[* v2(s) ds)
o]

—1i e u(x) g" eB v2(t) (ét v(s) u(s) ds) sinh(eB _c[)t v(s) ds) dt . (23)’

Given any § > 0, egs. (13) show that we can find C > 0 such that, for x > C, (—A—6)
g" v2(t)dt € g" v(t) u(t) dt < (—A+46) [* v2(t) dt .
4]

Note that |Y (x)| < const € [u(x)| for 0<x< C,sothat
{CIYG(x)de/ [v(-)l]} = 0 as ¢— 0. Moreover, the contribution to Y (x) coming

from the t integration over the interval 0 < t < C is again bounded by const. €|u(x)]| -
Hence, if we are to neglect anything which is vanishingly small in norm compared with
v(+) in the limit ¢ — 0, we need consider Yf(x) only for x> C, and with t > C in the
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integrand of (23)’. We can therefore write
[* v(t)u(t)dt = -A ,gx v2(t)dt + 0(6||v(-)||:) , and
[ b v(s)u(s)ds = —A [ t vi(s)ds + O(6]|v(-)||;) in the integrand. Noting that
ellv(- )H; is bounded, this leads to the result
Y (x) = —ieAu(x) ,g * v2(t)dt cosh(¢B é X v2(s)ds)
+ ieAu(x) [* er2(t)(£t v(s)ds) sinh(eB é" v(s)ds)dt

+ 0 (6]u(x)]) -
Since &> 0 may be chosen arbitrarily small, and [|u(-)||, < const |[v(-)||, , the error term

in this asymptotic expression for Yf(x) is vanishingly small compared with v(:) in the

limit. On integrating by parts, we can go further and carry out the integration explicitly,
to give
Y (x) = —eAu(x) éx v2(t) cosh(thJ;t v¥(s)ds)dt + o, (v)

= —i(A/B)u(x) sinh(eB éx v2(t)dt) + oy (v). (24)

This is the first of the two contributions to the right hand side of (23). The second
contribution to (23) may be evaluated in the same manner, to give
—ie(A2+B2)v(x) J* v¥(t)cosh(eB [* v¥(s)ds)dt + o (v)
0 1]

= —i((A2+B2)/B) v(x) sinh(eB ‘cl;x v¥(t)dt) + oy(v) .
Writing eq. (22) in the form u(x,z) = U (x,A) + oy (v(+,1)) , we can proceed as above to
evaluate the remaining terms of LEU‘E ; the basic idea is that, in each term, in the

asymptotic limit to order v, one can justify in each term the replacement in the integrand
of u2(t) by (A2+B?)v2(t), and of u(t)v(t) by —Av2(t), after which integrations may be
~ carried out explicitly. This leads, after simplification, to

LU, = u(x)cosh(eB t[)" v2(t))dt) —i{(A/B)u(x) + (A24+B?)/Bv(x)}

sinh (B {" v¥(t)dt) —u(x) + oy(v) .

Comparing with the original expression, in (22), for U‘E , we have LeUe =U e
u(x) + oy (v) .

Using eq. (15), where now we refer explicitly to the arguments z and A, we have
(1 - Le)(u(':z) - Uf('JA)) = U(',A) - (1 - LG)UE(')A) = ON(V(':’\)) .
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However, [|(1— Lf)“" is bounded in the limit ¢ — 0 + , and it follows that
u(-,z) = U (+,A) = oy(v(-,A)) . This is exactly eq. (22) , and eq. (22)’ is verified by a
similar argument. This completes the proof of Theorem 1.

Although egs. (22) and (22)’ present the most convenient expressions of the
asymptotic behaviour of u(x,z) and v(x,z) , an alternative approach using (17)‘ and the
norm ||-[[; instead of |||, ,is to derive pointwise estimates. In that case one arrives at

identical asymptotic formulae to (22) and (22)’, with the error term replaced by a
correction ze(x,/\) which is dominated by u and v in the sense that

lim z(x,)//u(xA))? + (v(x,A))2=0.

E—= 0+
(The limit is uniform in x for 0 < x < N(¢)) . This formulation of asymptotics is a

natural one particularly if a priori bounds on u(x,A) and v(x,A) are known.

The following Corollary is a simple consequence of eqs. (22) and (22)’ on taking the
appropriate linear combination, and will be the starting point in Section 4 to investigating
the boundary value of the Weyl-Titchmarsh m—function.

Corollary to Theorem 1
The linear combination u + Mv has the asymptotic behaviour

u(x,z) + M())v(x,z)
= (u(x,A) + M(A)v(x,))) exp {— eB(}) é" (v(t,A))dt}

+ 0y(v(-, V) (25)

We conclude this Section with a number of asymptotic formulae which follow from
egs. (22) and (22)’ on integrating products. In these formulae we shall say that an error

term z (x,A) satisfies z (x,1) = 0(1/ ¢) provided lim ez (x,A) =0 and the limit is
e— 0+

uniform in x for 0 < x < N(e) .

We have, then,

[¥(u(t,2))%dt = [*(u(t,1) s + o}/ ) (i) |
[¥(¥(t,2))%dt = [*(v(t,2))%dt + o}/ ) (i1) | e
[¥u(t,2)v(t,2)dt = [Xu(t,A)v(t,A)dt + of'/e) (iii)
[¥|v(t,2) | %dt = (! /2¢B(X))sinh{2€B(A) [X(v(t, 1)t} +o('/e) (iv)
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The proof of eqs. (26(i)—(iv)) follows the same lines as were taken in evaluating expressions
such as (23) in the asymptotic limit.

4  Boundary values of the m—function

It is well known [7],[10], that spectral properties of the differential operator

T = —dajz + V(x) in L*0,0) are governed by the behaviour of the Weyl-Titchmarsh
X

function m(z) as z approaches the real axis. The following Theorem establishes the link
between this and the function M(X) defined in Section 2.

THEOREM 2
Let e R betheset of A € R for which Condition (A) holds. Then the m-function m(z)
and the M-function M() are related, for all X € A, by

M(A) =1im m(A+ie) (27)
€E—0+

Moreover the spectral measure u , restricted to the set X, is purely absolutely continuous,
with density function 1lr ImM(}) .

PRrOOF

The second part of the Theorem follows the first part from the standard
characterisation of p,c in terms of boundary values of m(z). Hence we have only to
prove eq. (27). To do so, we use the Weyl limit point/limit circle theory; see [1],[4].

For any ¢N > 0, with z = X + ie, the Weyl theory defines a circle CN(z) in the

upper half plane such that in the limit N — o, and with z held fixed, the family of
circles CN converges to the single point m(z). The radius R, of the Weyl circle CN is

given by
R, = (2€ £N|v(t,)\)[2dt)'1.

Here we shall not hold z fixed, but instead, as in Section 3, hold ) fixed and define by
eq. (21) the relation N = N(¢) between N and €. In that case, R, will no longer

converge to zero in the limit N — o , since we also have ¢ — 0. We can, however, use
(iv) of egs. (26) to evaluate the limit, giving
lim Ry (Aie) = 2B())/sinh(2CB(1)) . (28)
N—
e— 8+
A further consequence of the asymptotic formulae derived in the last section is that,
for N sufficiently large, M(X) is in the interior of the circle CN . To verify this, we
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have to check that M()) satisfies the defining inequality for the interior of CN , hamely

€ {“ |u(t,z) + M(A)v(t,z)|2dt < ImM(]) . (29)
Using eq. (25), the left hand side of (29) is given asymptotically for large N and small e
by

¢ g“ |u(t,2) + M(A)v(t,1)| 2 exp {~26B()/*(v(s,)))"ds}dt .

Using the same methods as in the proof of eqs. (26), we can take the limit e = 0, N — o
with N = N(e), to give

Lim 2¢(B(A))2 [Y (v(t,1))? exp {—2€B()) [%(v(s,)))%ds}dt

N— 0 (v]

e— 38+

= B(A) (1 —exp {—2CB(A)} ) < B (}) . (25)

Since B()) is just the right hand side of (29) , we have verified that M()) does indeed lie
in the interior of CN , for N sufficiently large.

Standard Weyl theory implies that m(z) also is in the interior of CN . Hence the

distance, measured in the upper half plane, between m(z) and M(}) , cannot exceed
Ry (A+ie) , for large N .

Noting the inequality sinhf > 6 for 8 > 0, it follows from eq. (28) that RN(/\+ie)
< 1/ C for N sufficiently large.

We have, then,
- 1
|m(z) -M(})| < °/C, (30)
provided e is sufficiently small and positive. (We can here drop all reference to N , since
the left hand side of (30) is now independent of N) .

Since C in (30) is an arbitrary positive constant, eq. (27) follows immediately, and
the Theorem is proved.

Theorem 2 allows us to define a family of solutions f(x,z) of eq. (2) , with z in the
upper half plane, having boundary value f(x,A) given by eq. (7) , as z approaches a point
A on the real axis. Thus, we can write

f(x,z) = u(x,z) + m(z)v(x,2) . (31)

Following Theorem 2, we can prove several remarkable asymptotic formulae
satisfied by f(x,z) .

Corollary to Theorem 2
Define M asin Theorem 2. Then for ) € X, with z = X + ie , we have
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lix(r)ln*,_eé"(f(t,z))zdt =0 (i))
Lim (o) [ "l(x, 2)]* =0 (i1)|(32)
Lim ef(-,2) = (u(-, A) + MOY(- A))exp{-eBA)[(v(8,1))dt}|=0 (iii)

€e—0+
Moreover, the limit in (32)(i) is uniform in x for 0 < x < o .

PROOF

Since m(z) — M()) as z — X, the asymptotics of f(x,z) in L% O,N) are as for
the function u(x,z) + M(\)v(x,z) . Proceeding as in the proof of egs. (23), and using eq.
(25), it is then straightforward to verify (i) of eqs. (32) for 0 < x < N(e¢) , and that the
limit is uniform over x in this interval. To verify (i) or x > N(¢) , we have to obtain a
bound for € f(t,z))%dt . Following the proof of Theorem 2, with m(z) for M()) on the

N

left hand side of (29) , we have already shown that
lim .
N—o ¢f |f(t,z)]|%dt = B()) (1 —exp{—2CB(A)}) .
e—o+ °

Moreover, from the Weyl theory we have the standard formula
e/ |{(t,2)|%dt = Im m(z) . (33)
0

Taking the limit z — A, it follows that
lim
N—ao €f" |f(t,z)|%dt = B()) exp {—2CB()\)} (34)
e—o+ °

By taking C large, we can therefore ensure that ¢f”(f(t,z))%dt is arbitrarily small in the
N

limit e—o+ , with N = N(e¢) . Hence the limit in (32)(i), initially proved only for
0<x<N(e) , now extends to all x in the range 0<x<w , and is, moreover, uniform in that
interval. From the uniformity of convergence, it follows immediately that

eé ® (f(x,z))%dx converges to zero in the limit e—o+ . From eq. (33), we see that the

denominator of eq. (ii) approaches B(A)/e asymptotically, and the second equation of the
Corollary is proved. Finally, note that (iii) of eqs. (32) is a simple consequence of eq. (25),
provided that we had ||-||; instead of [|-]]. As in the proof of (ii) of the Corollary, we

therefore need to estimate the contribution to the norm coming from x > N . Such an
estimate for f(-,z) is provided by eq. (34), and it remains only to obtain a similar

estimate for

eim lu(t,A) + M(X)v(t,A)]2 exp{—2eB()\)£t (v(s,A))%ds} dt .
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This we can do in the same manner as for previous asymptotic estimates, setting
|ut,3) + MOO)¥(6,0) (2 = $ [8u(s”,A) + M(A)v(s’,X)| ds’
(4]

and integrating by parts; here once again we make use of the comparisons (13) between
integrals, and an asymptotic bound as on the right hand side of (34) is obtained. Since
~ again the value of the constant C may be chosen arbitrarily large, the final part of egs.
(32) is verified, and the proof of the Corollary is complete.

Eq. (32)(i) is an important ingredient in establishing necessary and sufficient
conditions for Condition (A), in terms of the boundary behaviour of the m-function m(z) .
In the following result, which as before assumes limit point case at infinity, f(-,z) is again
defined by eq. (31).

THEOREM 3
For any given AeR, with z = A+ie, Condition (A) holds if and only if both

(i) lim ef*(f(t,z))dt=0,
e—o+ °

uniformly in x for 0 < x < o, and
(i) 1im m(z) exists and has strictly positive imaginary part.
=0

PROOF

If Condition (A) holds at A, then (ii) of Theorem 3 follows from eq. (27) together
with the observation, in Lemma 1, that ImM(A) > 0. Moreover (i) of Theorem 3 is one
of the consequences of the Corollary to Theorem 2. ‘

Conversely, suppose (i) and (ii) of Theorem 3 are satisfied. @~ We have to deduce
Condition (A). The argument is sufficiently close to that of Theorem 1 that it will be
enough to give a sketch of the proof. ~Whereas in Theorem 1 we used asymptotics for
integrals of solutions wu(x,A), v(x,A) of the real X\ Schrodinger equation to derive
corresponding asymptotics for the Schrédinger equation at complex z , here we put the
argument into reverse to derive real A asymptotics of a solution f(x,A) from the
postulated behaviour of f(x,z) . To this end, we start from the integral equation

f(x,A) = f(x,2z) —ief(x,2) éx v(t,z)f(t,A)dt

+ iev(x,z) [* {(x,2z)i(t,A)dt . (35)
0
The solution f(x,A) of eq. (35) satisfies the differential equation (2)’ and from the
initial values of { and $- we find that
f(x,A) = u(x,A) + m(z)v(x,)) . (36)

Strictly, we should write f(x,A;z) to indicate the dependence of this solution, through
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m(z) , on the value of the complex parameter z = A + ie ; for simplicity of notation, and
to emphasise that we are dealing with a solution of the real A differential equation, we
prefer to suppress this dependence on z .

We shall determine the asymptotics of f(-,A) in the Hilbert space L%(0,N), where
for € > 0 and a fixed positive constant 7 . the relationship N = N(¢) between ¢ and N
will be defined by the condition (cf. eq. (21))
e(llv(-2)lly)* = .
Since, by hypothesis, m(z) is bounded as z approaches ) , eq. (33) implies also the norm

estimate
e([|f(-,z)||N)2 < const.

Writing eq. (35) in the operator form
f(-,A) =1(-,2) + Kef(-,)«) , the above bounds for v(.,z) and f(:,z) may be used,

as in Lemma 2, to derive norm estimates for powers of K as operators in L0,N). In
particular, this guarantees that [|(1 — K )7 is uniformly bounded in the limit € — 0 +,

and the solution of eq. (35) for f(-,A\) may be obtained by iteration. ~Now apply the
integral operator Ke to the function

f(x,z) exp {—e £ * v(t,2)f(t,z)dt}

Using (i) of the Theorem and integrating by parts, we arrive at the asymptotic formula
(1-K ) (f(x,z) exp {-ie [* v(t,2)i(t,2)dt})
0

= {(x,z) + oN(v(-,z)),

which on comparison with the equation for f(-,A) and using the bound on (1 — KE)'1 g

leads to
f(x,)) = (x,z) exp {—ie {" v(t,2)i(t,2)dt} + oy (v(-,2)) (37)
Now use (ii) of the Theorem to define m +()\) =1lim m(z), so that

e— 0+
Im m+()\) > 0. Since ||v(-,)\||N = ||(1- Ke)‘1 v(-,z)]|N < const ||v(-,z)||K , the

convergence of m(z) tom +(A) in eq. (36) allows us to replace f(x,A) on the left hand
side of (37) by f_l_(x,/\) where
f,(xA) = u(x,A) + m+()\)v(x,A) ;

Notice that here f +(x,)\) is indeed independent of z .
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It remains to use (37), with f + for f, to estimate the integral £ N (i +(x,A))2dx :

Here the norm estimates for v(-,z2) and f(-,z) imply that the argument of the
exponential function remains bounded and that we have, on integrating by parts and using
once more (i) of the hypotheses of the Theorem,

Lim ¢f" (f,(x\)dx=1im ¢" ((t,2))? exp{-2ie [*¥(s,2)f(s,z)ds}dt
e—o+ °© e—=04+ © 0

=0.
On the other hand, |[[v(-,z)lly, = Il(1 — K )v(-,A)[l; ¢ const. lv(+,A)ll; » from which it

follows that
e!}N (v(x,A))%dx > const. € ||v(-,2)||? > const. > 0.

Combining these bounds, we now have, with N = N(¢),

lim [Y¢ L(xA)%dx / [Y (v(x,0))%dx = 0.
e—o0+ ©° 0

The relationship N = N(¢) maps any neighbourhood 0 < € < ¢, of zero

continuously on to a corresponding semi—infinite interval N, ¢ N < o in such a way that
¢ becomes arbitrarily small for large N . Thus general properties of the mapping imply
that the limit ¢ — o + may be replaced by a limit N — o . Hence eq. (9) holds with
M(A) = m +()\) . By Lemma 1, we have now verified Condition (A), and with this the

proof of Theorem 3 is complete

5  Further comments and developments

The set of all A € R, for which m(z) has a boundary value having positive
imaginary part, defines an essential support for the absolutely continuous spectrum. From
Theorem 2 we see that all A at which Condition (A) holds lie in this essential support.
However, the characterisation of Condition (A) provided by Theorem 3 entails an
additional property (i), and leaves open the question of whether the set of A at which
Condition (A) holds is itself an essential support for the absolutely continuous spectrum.
Although in all cases which we have analysed in detail Condition (A) is found to hold at
almost all A € R, we are as yet unable to find a definitive answer to the question of
whether this will be true in general. We conjecture that the set X defined in Theorem 2,
is indeed an essential support for the absolutely continuous spectrum. To verify this
conjecture, it will be necessary to show that (i) of Theorem 3 holds, as a uniform limit in
x , for almost all A . As a first step in this direction, one may show that property (i) does
hold, for almost all ) ,in the x—o limit ; namely, we have, almost everywhere,
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lim ¢f"f(t,z)dt=0. (38)
e—o+ °
To verify (38), start from the identity

P ST

b

in which the integral has been evaluated by standard arguments involving Wronskians, and
proceed to the limit z; — z,.

Then eq. (38) is equivalent to
lim edm(z) _, (38)
€E— 0+ z
Using the Herglotz representation (4) or (4)’ for the m—function in terms of the
spectral function dp , we can restate (38)’ as)
. dp(t
1im j"’f—ﬂ&,:o. (38)"”
€= 0+ —o -
In the limit as z = A +ie — ), the integral in (38)’’ is governed by the behaviour
of the spectral function p(t) near t = A . In particular, if p(t) is differentiable at A,
we can integrate by parts and make the change of variable t = A + es . Substituting the
asymptotic form for the spectral function near A and using the fact that
-
/® (%fl-_]i')2 ds = 0 , we can verify that (38)’’ holds at all points of differentiability.
—m

Indeed, identities for spectral integrals may be used to show that e dm(z) has zero
Z

boundary value wherever m(z) has a (finite) boundary value.

It follows that property (i) of Theorem 3 is almost everywhere equivalent to (i)’:

lim €f" (f(t,z))2dt =0.
€e—<0+ X

This integral too may be evaluated using Wronskian methods. Thus
d g 0
eim (f(t,z))%dt = e{f(x,z) =5 1 (x,2) =1/ (x,2) 5 f(x,2)}
where the prime denotes differentiation with respect to x .
Let us define an m-function m_(z) , with corresponding spectral function p.(t) ,

for the differential operator in the interval [x,o) , where now the initial conditions (3) are
applied at the endpoint x rather than at zero. We take for simplicity the case a =10 .
Condition (i)’ may then be written

1im e(f(x,z))zj%%% - 0.

€— 0+
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If the measure dp is absolutely continuous, then dpx will have a density function

+

% Im mx+(t) , where m_ "' is the complex boundary value of m . In that case Condition

(i)',
with change of integration variable t = A + ¢s , becomes

1@ Im m(A+es) | f(x, A+ie)|2ds _ 0
= (s—i)2|f+(x,)\+es)|2 -

lim
€E—= 0+ T —w
This Condition will hold, in particular, if the m-function is continuous at A , if |f(x,z)|?

is uniformly bounded near z = A, for z in the upper half-plane, and if |f +(x,t)|2 is

uniformly continuousin t at t = A. (Note also, from the proof of Theorem 3, that to
establish Condition (A) it is enough to restrict attention to x in the range
0<x <N, where €(||v(-,2)l|)*="7")

These arguments, which relate asymptotic behaviour of solutions in the complex
lane more directly to local properties of the spectral measure p and related measures p,

are the first steps in the establishment of further links between asymptotics and spectral
behaviour. In particular, it appears that further progress can be made in the analysis of
potentials for which there is a uniform pointwise bound on solutions. This is an area of
special interest in scattering theory, and will be the subject of continuing research.
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