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On the Covering Property in Physical Theories
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Abstract. A class of quantum logics (orthomodular atomic lattices) is defined and studied. The
obtained results suggest that the covering property acts as a selection criterion for theories in the
sense that, given a set of orthomodular atomic lattices, those which may be theories for a fixed
set of systems may be selected by verifying if they have the covering property or not. A relation
between physical meanings of the covering property, lattice - algebraic operations and the
commutativity relation is also suggested.

1 Introduction

An important problem which appears when a physical theory is considered to be an
orthomodular atomic lattice having the covering property is to find physical
interpretations for its basic properties [1]. In this work we will define and study a
class of orthomodular atomic lattices - called in our text quantum logics - which
permits to discuss some interesting problems concerning the structure of physical
theories. We have in view the fact that the mathematical properties of this class of
quantum logics makes much easier the understanding ofdifficulties appearing in the
interpretation of the axioms of physical theories. To be more precise, the difficulties
which will be discussed refer to the interpretation of the covering property, of the
lattice-algebraic operations ("meet" and "join") and of the commutativity relation as
describing the empirical compatibility of "yes-no" experiments (tests). The quantum
logics studied in our paper suggest a possible connection between these objects and
also some ways for obtaining their physical interpretation. It is important to mention
here that orthomodularity and atomicity may be considered as being physically
meaningful properties of physical theories [2-9].This justifies the fact that we discuss
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the mentioned problems by starting with a class of atomic orthomodular lattices.

In Paragraph 2 we will define a class - denoted by T - of orthomodular lattices and
will prove some interesting results concerning it which will be the basis of our
physical discussion. In this discussion will be used also the following transparent
facts (part of them being, in a sense, proved):

(a) any observable - considered as an independent on any theory object - may
be described by an appropriate Boolean algebra [8];

(b) the only relation on an arbitrarily given orthomodular atomic lattice L
which might describe the empirical compatibility of tests ("yes-no"
experiments) represented by the elements of L is the commutativity
relation on L, [5];

(c) two observables which are empirically compatible (incompatible) must be
also compatible (incompatible) in any physically admissible theory.

Concerning point (c) we must notice that in its formulation we understand by
observable a given model ofthat observable, i.e. Boolean algebra. In other words,
if the Boolean algebra Bu is considered to be the model of the observable co, then in
any theory L the observable co must be represented by a Boolean sublattice of L
which is isomorphic to B„. At first sight the example of observables position and
impulse contradicts the statement (c) because the mentioned observables are
compatible in classical mechanics and incompatible in quantum mechanics. In fact
this phenomenon appears because these two theories use different models for the
observables in question, i.e. a classical model in classical mechanics and a nonclassi-
cal model in quantum mechanics [8].

In Paragraph 3 we will discuss the "physical" implications of the properties of the
quantum logics -elements of T - studied in Paragraph 2. The most important
conclusions of this discussion are the following:

(i) The commutativity relation cannot describe correctly the empirical
compatibility in all elements of T.

(ii) As a consequence of point (i) the lattice-algebraic operations have not a
clear physical interpretation in all elements of T.

(iii) The covering property seems to be a criterion for selecting the "good"
theories from a given family of quantum logics, i.e. those quantum logics
which may describe a given class of physical systems. This fact, if it is
true, appears to be related with the correct description of the empirical
compatibility by the commutativity relation in a quantum logic.
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2 A class of theories describing systems of two species of
particles

We will define first the class T of quantum logics which was mentioned in
Introduction. The elements of T are possible theories for describing systems of two
species of particles, so that we will use often the term theory instead of quantum
logic.

Let us consider n^ n2 two species of structureless particles. We characterize each of
the species IL, (i 1, 2) by an observable Bt - corresponding to the physical quantity
"number of particles of the species U" - which is a Boolean algebra isomorphic to the
Boolean algebra of all subsets of N {0, 1, 2,...}. We may write, for instance,
Bj {(A,i); A S N}, define the order on Bi by (A,i) <t (A'.i) « A S A' and the
orthocomplementation by (A,i)l N - A, i).

The Boolean product C BiXB2 is obviously a theory having Blf B2 as observables,
[8]. It is not difficult to observe that C is a theory which, like phenomenological
thermodynamics, works with physical quantities supposed to depend on the number
of particles of the species nt and n2 only, the values of other possible parameters
being fixed. For the sake of convenience we will identify C with the set of all subsets
of Nx N. We will consider also other theories which are able to describe - at least in
principle - systems of particles of the species n^ n2. These theories are strongly
connected with C in the sense that any such theory is isomorphic to a so-called
quasisublattice of C having B^ B2 as observables.

Definition 1. Any subset of C which is an orthomodular atomic lattice
with the order and orthocomplementation inherited from C, will be called
a quasisublattice of C.

If L is a quasisublattice, we will denote by a VLb, a Ajb, (a,b)KL the join, meet and
commutativity/compatibility of a,b 6 L S C in L, respectively [13]. The simplest
example of quasisublattice interesting for us is S {Ax N; AS N}|J{ NxA; A£ N}.
The elements of S which are of the type {n} x N or N x {n}, n6 N, will be called lines.
The elements of NX N will be called points. The set of all atoms of an orthomodular
lattice U will be denoted by 0(U). We define now the family of theories denoted by
T.

Definition 2. TET if T is isomorphic to a quasisublattice L Q C having
the following two properties:

(i) SSL;

(ii) for any a € (XL) there exists a line I such that a £ I.
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It is obvious that condition (i) states the fact that B1( B2 are observables of the theory
T. Concerning condition (ii), we may say that it has a more or less technical
character. Besides, for our purposes, it is obviously not necessary to consider
quasisublattices which are not elements of T.

It is interesting to see if there exists a physical motivation for considering an
example like T. And such a motivation exists. It is based on the fact that any test
consists in a set of logically equivalent propositions and a set of contacts (ideal
measurements) for measuring these propositions [5]. Taking into account this fact, we
might assume that not all elements of C correspond to tests, i.e. to measurable
propositions. For instance, we may have reasons to accept that it is impossible to
determine by the same experiment the exact number of particles of species Uu Ua

existing in a system. In this case the one-element sets {(n,m)}, n,m £ N, do not
correspond to tests and they cannot appear in a theory for systems of species Uu U2,
so that a theory from T - {C} might be used instead of C.

We will prove now a set of mathematical results concerning quantum logics which
are elements of T.

Proposition 1. ({n}x N, Nx{m})KL, if and only if {(n,m)}GL.

Proof. Suppose first that ({n}x N, Nx{m})KL. Obviously, {n}x N \ Nx{m} is
{(n,m)} or 0. The second situation is excluded since from
{n}x N ({n}x NAL Nx{m}) VL ({n}x N\( Nx{m}) x) we would obtain
{n}x N {n}x NAL(Nx{m}) \ that is {n}x N £ Nx(N-{m}), which is impossible.

Conversely, if {n,m} € L, we have {n}x NALNx{m} {(n,m)}. By using the notations
a {n}x N, b Nx{m}, c {(n,m)}, we define at aALc 1,b1 b Ac l.
Then: ax £ {n}x NfX NX N - {(n,m)}) {n}x( N - {m}),

bt £ Nx{m,rK NX N- {(n,m)}) (N- {n})x{m},
so that (aj.bi)!, (at>c)l and (b^c)!. Finally, since (a,c)KL, (c,c L)KL, we may write
*i VLc (a Ac 1)VLc aVLc a, etc. It results ({n}x N, Nx{m})KL,

Q.E.D.

By using similar technics, we may prove also

Proposition 2. If a £ {n} x N, a € L, (n,m) £ a, {(n,m)} £ L, then a and
N x {m} are not compatible.

Proposition 3. If a,b € L, a,b £ {n} x N, then a VLb a(Jb.

Proof. Suppose that a VL b - a)Jb a (n,m). If {(n,m)} G L, then we get the absurd
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conclusion that {(n,m)} £ aVL b and ({(n,m)}, aVLb)±. If {(n,m)} G L, then from
Proposition 2 we get that a VLb and Nx{m} are not compatible. On the other hand,
(Nx{m}, a)JL, (Nx{m}, b)l and we obtain again a contradiction. It results that
aVLb aUb,

Q.E.D.

Proposition 4. If a,ß € (XL), a,ß £ {n}x Nand of\ß * 0, then a ß.

Proof. Suppose that « $ ß and ß £ a. Then a VJ3 £ (XL) and, since L is orthomodular,
we can find 7 GL, (7,01)1 such that a VL> a VJ3. From Proposition 3 we get aljy
o4J8 and, since yf\a 0, we find 7£/3. On the other hand, af)ß 0, so that 7 & ß,
which is absurd. Consequently a ß,

Q.E.D.

Proposition 5. Any line has an unique orthogonal decomposition from
atoms of L.

Proof. Let A, A' £ (XL) be two orthogonal decomposition of a given line. If a G A,
then it is obvious that there exists a'G A' such that af"|aV0. From Proposition 4

we get a=a', so that A£A'.
Q.E.D.

Let us consider the theories C and S. IfTis considered an ordered by inclusion set,
it is obvious that C and S are the largest, respectively the smallest elements ofT. It
is also clear that, among theories of T, C has the smallest and S the largest atoms.
Finally, it may be easily verified that C satisfies and S does not satisfy the covering
property. These facts suggest that the smaller the atoms of a theory LGT are, the
higher is the chance of L to satisfy the covering property. The next theorem reflects
clearly enough that such an assumption might be true.

Theorem. Let L G "T be a theory such that there exists an atom a G (XL)
containing more than two points. Then L has not the covering property.

Proof. Consider a G (XL), « £ {n}x Nand (n,m), (n,l), (n,k) E a(m^l^k). The line
Nx {m} includes an atom ß such that (n,m) G ß. The element a Vj} includes strictly
the set or|j3. Indeed, the only atoms contained in a(j8 are a and ß and since a, ß are
not orthogonal, aVjjS a\Jß would mean that {a} (or {ß}) is an orthogonal
decomposition into atoms of a V^, which is absurd. It results that there exists p\ G

(XL), (ßltß)l, ßi £ a Vl/3. The relation (ß^a)! cannot be true since in this situation
we would obtain ß^- Qi. Therefore ß§\* *¦ 0 and, since ßt is contained in a line, we
have two possibilities:
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(i) p\£{n}xN;

(ii) ßx is included in a line which is parallel with Nx {m} and has a nonempty
intersection with a.

The situation (i) is excluded since ftfk« *0 =» ßx=a (Proposition 4) and we know that
(a,ß) 1. It results that j81 satisfies (ii), so that it contains exactly one point of a, for
instance the point (n,l). Since ßuß £ (Nxfk})1, we get ft V^ £ Nx {k}Y. This means
that {ßuß} is not an orthogonal decomposition of a Vja and an atom ß2 a (n,k),
ß2 £ a VjjS, (ß2,ß) 1 must exist. It results that ß ß V^ a a VjS and L does not satisfy
the covering property,

Q.E.D.

We will give now an example of such a theory whose atoms have not more than two
points and which has the covering property.

Let us consider the quasisublattice F^C having the following atoms: a {(0,0),
(0,1)}, ß {(0,0), (1,0)}, 7 {(0,1), (1,1)}, Ô {(1,0), (1,1)}, {(n,m)} for all n,m * 0,1.
Obviously, if aGF contains two different atoms from the set {a, ß, y, 6}, then
H {(0,0), (0,1), (1,0), (1,1)} £ a. The quasisublattice F will be defined as the set of
all subsets of Nx N which are of the form [ja, where cr £ (XF) is a set of mutually
orthogonal atoms. In order to prove that F is a quasisublattice, let us note that any
aGF may be written in the form a AIJP., where A £ H, Pa £ P m Nx N - H. For
proving the implication a G F =» a1 G F it is sufficient to consider the case a aUP».
Since a1 c/nP^; or1 tUP and P^= HUP. (P. P^= H), we get a1 7IJP. G F.
On the other hand, we may write a VFb (A VpBXJtP.UPJ, where a AIJP,,
b B|JPb, A VFB H if A^B and A VFB A if A B. It is almost obvious that
a VFb supF{a,b}, so that F is indeed a quasisublattice. It may be proved also without
difficulty that F has the covering property.

3 Comments

The theorem proved in Paragraph 2 suggests that a theory which correctly describes
the considered systems must satisfy the covering property. Indeed, it has been seen
that any quantum logic from T may describe, in principle, the systems constituted
from particles of two species. Therefore, it appears as necessary to find some
criterions able to select those elements ofTwhich are "good" theories in the sense
that they correctly describe at least some essential facts concerning the mentioned
systems. In our opinion the theorem from Paragraph 2 suggests that the covering
property might be such a criterion and we will adopt this hypothesis (it is known
that, in spite of some attempts to interpret the covering property, its meaning still
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remains quite unclear, [10]). Once this hypothesis accepted, we have to establish if
the covering property is able to select only "good" theories from T.

The example F constructed in Paragraph 2 leads to the conclusion that the covering
property is not a sufficient criterion for choosing a "good" theory from the family T.
In other words, there are theories fromT- i.e. orthomodular atomic lattices satisfying
the covering property - which do not describe any system of particles of the species
nlf n2. This fact results from the simple observation that the observables Blt B2 are
compatible in C and incompatible in F, which contradicts the acception (c) from
Introduction. Although such a result was to be expected, it is nontrivial. Indeed,
given T G Ta theory, it is, in principle, impossible to decide ifT describes a system
from the considered class, simply because we have no possibility "to control" all
these systems. Similarly, it is impossible to decide if the pair (Blt B^ (or another
arbitrarily given pair of observables) is compatible or not. Usually, in such cases we
take into account the available experimental information concerning the observables
in question and postulate their compatibility or incompatibility.

Our reasoning does not depend on these difficulties. Indeed, we prove that there are
two theories C, F G T, each of them satisfying the covering property and such that
at least one of them is not correct: if Blt B2 are supposed to be compatible (incompatible),

then at least F(C) is not correct. Besides it is clear, even if nonexplicitly stated,
that the images of the observables B^ B2 in theories of the family T are obtained by
using the same "physical rules", which confirms once more the correctness of our
conclusion.

In what follows the hypothesis that any "good" theory must satisfy the covering
property will be used for discussing some interesting problems concerning compatibility

relation and "meets" and "joins" in physical theories.

It has been seen that there are tests a,b G S £ C which are incompatible in S. On
the other hand, the tests a,b are obviously compatible in C. Taking account of the
point (c), it follows that Kg or Kc do not describe correctly the empirical compatibility.
Since S does not satisfy the covering property, we draw the conclusion that Kg is a
wrong description for the empirical compatibility. It is natural to ask ourselves what
is the origin of the fact that, although Kg is the only relation which might describe
the empirical compatibility on S, it is not able to do this. Since
(a,b)Ks <=» a (a Agb) Vs(a Agb1), it seems normal to accept that, in S, the join " Vs" and
the meet " As" are not physically meaningful for all pairs of elements of the theory
S.

This is an interesting and important conclusion, which deserves a special attention.
It is clear that the physical meaning of joins and meets of tests is in close connection
with compatibility. Indeed, if we know that the tests of a theory are empirically
compatible, then there are no problems to define for them a physically meaningful
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join/meet and admit that they are elements of any theory having those tests as
elements, [5]. In the other cases, the meaning of the existence of meets and joins
becomes quite obscure. In such situations it seems that the lattice operations " A" and
" V" are merely technically useful objects. Taking account of the relation which seems
to exist between compatibility and the covering property, we might assume that, if
a theory has the covering property, then the meets and joins are physically
meaningful objects.

Unfortunately this assumption cannot be true since we know that FCC, F and C

satisfy the covering property but in F there are incompatible pairs of tests so that at
least in one of the theories F, C the empirical compatibility is not correctly described.
Consequently, even if a theory has the covering property, we cannot affirm that its
meets and joins have a physical meaning. A possible solution of this dilemma is to
assume that any physically admissible theory - i.e. a theory which describes correctly
a nonempty set of systems - is a subtheory of a classical theory (a Boolean atomic
algebra), i.e. it is isomorphic to a quasisublattice of a classical theory (see Definition
1, where C may be changed by any other theory, classical or not). If this is so, then
it results that incompatibility is simply a consequence of the fact that we
unconsciously ignore certain tests when we try to describe physical systems in terms of
nonclassical theories.

In fact such a point of view means nothing but to consider, in a sense, the existence
of the so-called hidden variables. This very attractive hypothesis is not true. Indeed,
it has been proved that, at least in this language, hidden variables do not exist: a
well known result affirms that orthomodular lattices of projectors in Hilbert spaces
of dimension greater than 3 cannot be "embedded" as quasisublattices into a classical
theory [14]. We will present in Appendix a quite simple proofof this important result,
which uses other technics than the above mentioned work [14]. Since it is well known
that the Hilbert-space theory describes correctly a lot of experimental facts, it
becomes clear from this theorem that the problem of relations between compatibility,
existence of joins and meets and the covering property remains still open. Nevertheless,

it seems to be true that such relations exist and meets, joints and commutativity
become physical objects only in those theories which satisfy the covering property.

Appendix

Let L, L' be two theories. We say that L is a subtheory of L1 if there exists <p: L -* L'
a mapping having the following properties:

(si) a£b » vKa) <. *>(b);
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(s2) rf*1) » rfaft

(s3) if (aj)i6i is a family of mutually compatible elements of L such that
Va, exist, then V<p(a) exists in L' and <p( Wa) VyKa,).
i i i *

It is easy to prove that a mapping which satisfies (slMs3) is injective and "conserves"
the compatibility, i.e. (a,b)KL => (<f(a), yKb))KL..

Consider now L an orthomodular atomic lattice having the covering property. We will
assume also that L ^ {0,1}, is irreducible and satisfies the following requirements.

(tl) for any a G (XL) there exists a unique state p:L -* [0,1] such that
pia) 1;

(t2) if p is a state on L and a,ß G (XL), then p(a) p(/3) 1 -• a ß.

The unique state taking the value 1 on the atom a G (XL) will be denoted by 6a. The
following important lemma is true: for any a G L there exists ß G (XL), ß ^ a
such that «„(a) 6a(ß), [15].

We will prove now that L cannot be a subtheory of a classical theory. Indeed, let
te:L -»Ba mapping satisfying (slMs3) and B a classical theory. Let a G (XL) be an
arbitrarily fixed atom. Then there exists ß G (XB) such that ß ^ (pia). We see that
the composition bßo<p is a state on L which takes the value 1 on a, so that from (tl)
we get 6a 6ßo<p. Moreover, since all possible values of oß are 0 and 1, the state ô„ has
the same property. If ex' G ß(L), a' * a, then 6J.a') 0. Indeed
SJa') * 0 =» òa(<*') lsSa or*.Therefore, a * a' - Ô>') 0 ôa(a,x) 1^37 G

(XL), 7^au òa(y) 1 =» a y =» (a,a')l. By using this result we get immediately
(or,a)KL for all a G L and, since a * (0,1), L is reducible, which is impossible.

It is easy to verify that, given "K a Hilbert space, dim K ^ 3, the lattice of all its
projectors satisfies (tl), (t2), so that it cannot be a subtheory of a classical theory.
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