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Vol. 67 (1994) (c) 1994 Birkhduser Verlag, Basel

Correlation Functions of General Observables in
Dipole-Type Systems I:

Accurate Upper Bounds

By David C. Brydges' and Georg Keller?

Dept. of Mathematics, University of Virginia
Charlottesville VA 22903, USA

(24. I. 1994)
1.1 Background and examples

This is the first of two papers in which we will prove accurate upper and lower bounds
on the decay at large separation of truncated correlation functions of very general observ-
ables. The context includes the equilibrium statistical mechanics of dilute dipole gases at
equilibrium. We believe that it will extend to many other systems (the Kosterlitz-Thouless
phase of two-dimensional Coulomb systems, critical ¢4, d > 4, for example).

There have already been a number of studies of truncated correlations for these prob-
lems [16, 1, 2, 11, 12, 14, 9, 15], but these methods give rather weak bounds for correlations
of observables which are composite in the sine-Gordon field. Consider the following exam-
ple.

Example 1.1.1. A dipole is described by its position = in a d-dimensional container
A C R? and a direction given by a unit vector é € R?. The potential energy, including self
energy, of N dipoles, has the form

1
= > (& - 8,,)(te; - 8,,)Cl=; — =5), (1.1.1)
1<1,j<N

where £ is a length that characterizes the strength of the dipole and C(z — y) is the
potential energy of two charges at x,y. We shall take this to be the Coulomb energy

1Research partially supported by NSF Grant DMS-9102584.
2Supported by the Swiss NSF.
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modified at distances of order 1 or less so that there is no singularity at = y but C is
still positive-definite. Thus the Fourier transform has the form

2
Clp) = Xa(;), if p£0, (1.1.2)

where x € C™ and decays rapidly as p? — oo (see Section 1.4). For example x(z)
can be e™*. We assume that the container A is a hypercube whose side has length =
side(A) and impose periodic boundary conditions on C(z) at the boundary of A. We

define C(p = 0) = 0 to remove the zero mode.

By the sine-Gordon transformation [13, 17], which is reviewed in many places including
[3], we can write the grand canonical partition function for these dipoles at activity z > 0
and inverse temperature [, as

Z(A) = [ dpc(g)e v Bo9) (1.1.3)

where duc(¢) is a Gaussian measure on the space of functions ¢(z), which can be taken
to be C*(A) if x(p?) decays faster than any inverse power of p?.

V(A,89) = 2z [ de [ do(&)cos(y/BLé - 8¢(x)), (1.1.4)
A §d-1

where do is normalized surface measure on the sphere $%-1. A local observable, under the
sine-Gordon transformation, is mapped into a functional of ¢. For example, the density
n(z) of dipoles at = becomes

() = 2z jS do(é) cos(y/Bté - 9¢(x)). (1.1.5)

The expectation of a product of such observables at non-coincident points, z, € A, is equal
to

() = 57z [ due(@)e " [Ti(z.). (1.1.6)

The following theorem is an immediate consequence of our general result described in
the next section.

Theorem 1.1.2. Let d > 1. Let § > 0, 8£2 > 0. There exists® L, z(L,8¢?), C(6, L, SE?)
such that for all z € [0, 2(8, 3£%)], all z;,zs, A with side (A) € {L¥ : N € N} and side
(A) 2 L- |z — =l = L,

[(7i(z1)i(x2)) = (A(21)){f(22))] < C(8, L, BL) 2|21 — o 240, (L.1.7)

We will see that under the same hypotheses, the same upper bound holds for very general
even functions of d¢.

%We do not show dependence on d and .
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Let f(z1— ;) := (left-hand side of (1.1.7)) - ||z, — 2. This paper accomplishes most
of the work required to prove that when z is small depending on 8%, L and x;, z,, A are
as in the theorem, then there exists ¢ > 0 such that f(z; — x2) > cz?6%¢%, but we defer
these results to the next paper.

We became interested in this type of problem because the quantum non-relativistic
Coulomb plasma at equilibrium at long distances becomes a theory of effective dipoles.
This is argued (non-rigorously) in [5] where we produce a simplified model that is claimed
to capture this failure of screening. We produce this model by approximations which
include integrating out short distance structure. The result is that the original charge
density observables become complicated even functionals of ¢ so the results of the next
section are designed to include this model. We will give the proof that there is no screening
within this approximation in the next paper.

The previous work on correlations [12, 9, 15] would at best bound |{7i(z;)7(z2)) —
(f(z1)){f(x2))| by |lz; — 22|~ and would give no lower bound.

Example 1.1.3. Consider the observable (8¢)*(z) := (0¢(z) - 8¢(z))?. Under the same
hypotheses as Theorem 1.1.2, we can obtain, as a corollary to the theorem in the next
section, an upper bound by O (||a:1 — mzll‘z““'ﬂ). This will turn out to be a sharp upper

bound despite the dimension of (9¢)* being (Length)~2¢ so that two of them would naively
decay as (Length) 4. One* reason is that (9¢)* couples to the interaction cos(1/3£é-9¢) to
generate a renormalized observable containing (8¢)%. In principle by our methods one can
construct a polynomial of 4** degree in 8¢, N;(04(x)), such that the truncated expectation
of two of them will decay as ||z; — z;||~*.

1.2 The main result

Our notation is almost the same as that of the previous papers [6, 8, 10, 7, 9] of this genre.
Precise definitions of our terms are provided in Section 1.4. The following discussion covers
the main points, informally.

As in the earlier papers we start with a Gaussian measure dpuc(¢) defined on the Sobolev
space of functions H,(A)/{constants}. We choose an integer P > 2 and then choose s > 2
such that H,(A) D CP(A). The measure duc is characterized by its covariance whose
Fourier transform is

C(p) = —X—‘—j(—;)? for p#0, (1.2.1)

x is specified further in Section 1.4. At this stage, without loss of generality, we assume
o =1. A is a torus such that side (A) = L" for some N € N.

4(8¢)* also generates (8¢)? by a diagram with a tadpole.
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We consider perturbations of duc(¢) which can be written as a polymer expansion

1

il ) HK(X,,\I:¢) (1.2.2)
XnCA 7T
dls,;mgt.c

K is defined on a class of sets called complexes which are described in Section 1.4. The
argument U? abbreviates the collection of derivatives (8°¢(z)) for all multi-indices o with
1 <|al £ P. Vis a set of fields also specified by (z,a), 1 < |a| < P, but not necessarily
obtained as derivatives of a single field ¢. We require that K be defined for all ¥ in a
neighborhood of ¢ for some ¢. As a functional on C(A x {indices}), K(X,¥) is C*.
A derivative of order n is a signed measure on (A x {indices})*". We require that as a
measure it be supported in (X x {indices})**. Thus K(X,¥%) is “independent of ¢(z)”
for z ¢ X. If K(X, ¥) has these properties it is said to be regular and local.

As summarized in Section 1.4, the polymer gas (1.2.2) is an exponential relative to the
product (A o B)(X) := Y A(X ~ Y)B(Y). For this reason it is denoted by £7¥ =
Exp[0+ K. Ois a spec1l;f);unct10n on complexes independent of ¥. See Section 1.4.

We can think of log [ duc€zp[Q + K] as a generating function as follows: suppose

K = pK + 20; + 2305 + A 23012, (1.2.3)

where K, Oy, O;, 043 are regular and local, p, A;, A\; € C. Then we generate “insertions”

by derivatives with respect to Ay, Ay, e.g., at p =1, with 75 := %h:{,,

iz {log [ duce? ¥ W)} s = o [ ducE™* 0 {010 02+ 0n}()

(Z(A) [ dnce>* 00, (A))
(Z(A) fd‘”"g "o 0y(A )) (1.2.4)

where Z(A) := [dpc€zp[0 + K](A). Define
(Ol; OZIO}Q)A;I(,C = RHS of (124) (125)
(We will have hypotheses that imply Z(A) # 0.)

We say that K is I-type (interaction type) iff K is regular, local, even, Euclidean
invariant and real. We say O;, 02,02 are O-type (observable type) if they are regular,
local, even® and a-pinned. Pinning is the important property that encodes the idea that

5Results are also easily obtained for observables which are odd, or functionals of ¢ as well as 8%¢, 1 <
|| £ P.
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Os, @ € {1,2,(12)}, is a local observable. Oj is a&-pinned iff there exist two points z,, & €
{1,2}, such that VX, O,(X) =0if X — 80X F z, and O15(X) =0 if X — X Z {z, z2}.

Norms. K and O; are required to be finite in a norm || ||gr,z- For the precise definition
please refer to Section 1.4. To understand the content of our results it is helpful to know
that when ||J||¢r # is finite, then for all n € Ny, X, ¢ € CF,

0 a 1
—_.. ¢ < 1.2.6
2 I )| < (PaX s ) When (126)
(A
where || || is the variation norm of the measure taken pointwise in X, ¥¢. G(X, ¢) is a

weight that specifies how rapidly J is permitted to grow when ¢ (actually V¢) is large. It
is given by

G(X,9) = exp{ > [lorep+= |a¢|2} (1.2.7)
1<fal<s ax

for some k > 0, ¢ > 0. T'(X) is a weight which becomes very large when the set X is

either large in volume or highly disconnected. It is specified by two parameters A, @, of

which the important one is A. When A is large, I'(X) grows rapidly as the volume and

“disconnectedness” of X grow. See Section 1.4. For simplicity we set @ = 1.

Parameters. First there are the parameters: d > 1 (dimension of space), P = N° of
derivatives on which K, O; are permitted to depend, ¢ = a constant in the function
G(X, ¢), s = index of Sobolev space H,(A)/{constants} in which ¢ lives, x the cutoff in
the covariance. We suppose these have been chosen and we do not show how constants
depend on them. The remaining parameters are § € (0, 3), see Theorem 1.1.2, L € N
which specifies that side (A) = LY for N € N, A, Q = 1, specifying I, & specifying G,
and H. G, T and H are parameters in the norm || - ||grz-

Choice of parameters. V6 € (0,3), VL > L(§), VA > A(L), Vs € (0,(L)], VH >
H(L,A, IC), VI-type K with ”K”C‘,I“,H S p(L K, H) Y O- type Oc‘r with ]loa”(;,[‘,y < 00,
where k(L) > 0, p(L,x,H) > 0.

Theorem 1.2.1. There exists a choice of parameters as above and C(L, é) such that for
all A with side (A) € {L¥ : N € N}, all 2;,z, € A with ||z; — z2|| > 1 and with side
(A) 2> ||lzy — zo| - L:

{O1; 02|02)akc]l < ey — 22| X9 . C(L, 6)
g |
: {”ml - m2“_% ”012”6‘,[‘,}{ - H ”Oa"G,l",H} : (1.2.8)

a=1
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The power ||z; — z;||* could be replaced by ||z; — z,||" for any r > 0, fixed before the
parameters are chosen.

A similar theorem holds if O, O; are odd functionals of ¥, but ||z; — z2[|~%4% should
be replaced by ||z; — .|| ~@~9). Also observables can be permitted to depend on ¢ as well as
8¢, 1 < |a| < P, in which case the decay becomes ||z; — x3||~%¢~279) for even observables,
|21 — 22| ~@~2-9 for odd observables.

Proof of Theorem 1.1.2. We deduce the result from Theorem 1.2.1 by writing

o E o _ 92 P
n(zy)n(z2)e V(A,8¢) _ IR e s H o~V (2,8¢)
ACA
V(A,90) :==V(A,8¢) + 3 Aait(Za) Lasz, (1.2.9)

where A is a unit block as defined in Section 1.4 and without loss of generality z, ¢ A
for any A C A; if not, move A. Expand

N
ME7-141) = T L KX
A . X],...,XNCAjzl
disjoint \
= EMK(A), (1.2.10)
where (Xj,...,Xy) is summed over N-tuples of disjoint connected sets that are unions of
blocks A C A, and i
K(X,0¢) = [] (e-"(ﬂf"ﬁ) - 1) . (1.2.11)
AcX
Then
((@1)7(x2)) — (R(m1))(7i(2)) = (01; O2|Or2)ask 0 (1.2.12)

where O, = %[,\FOI”{, Oy = 5,\—?;—,\2|A€,=0f(, K = I'{'ha:o. It is easy to prove that there is
(B%)(H) > 0 such that for 822 € [0, (B¢%)(H)]

z—=0=|K|grmy =0(z) for G,T,H

as in Theorem 1.2.1 and that ||Oszller,z = O(z) (for @ € {1,2}), O(2?) else. See, for
example, the proof of Lemma 5.1 in [6]. It is clear that K is I-type, O is O-type,
therefore all hypotheses of Theorem 1.2.1 are implied by the hypotheses of Theorem 1.1.2,
and we obtain Theorem 1.1.2 from (1.2.12) and (1.2.8). m]
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1.3 Bilinear Formulas, Summary of Proof
The proof of Theorem 1.2.1 is accomplished by controlling the renormalization group map
RG. RG is a map, for § € Ny,

(A9 k0,09, c9) S, (AG+); KU+, 08, 06+, (1.3.1)

where AD) := L-9A, CU)(p) = x(p?)/(cWp?) for p # 0, KO is I-type, 09, a € {1,2,(12)}
are O-type for all j.

RG is induced by a map T using
KO+) = ,,.OT[I‘((J')]FI
o8 = 7 TIKD),, (1.3.2)
where 7 acts on f = f(A;, A2) by o f := £(0,0), 7of := (8/(8Xa)1)(0,0),

Tiof i= (82/(8A10X) £)(0,0), KW = uK V) + ¥ A,09.
A12 = A1A2. @ e '{1, 2, (12)}

T is designed so that
/ dp e €D (AD) = NO) . 8 (A9) f dppgay TR (AGH)Y (1.3.3)
where NU) is independent of \,, ng )(AY) depends on u, Ay and will be discussed below.

We iterate (1.3.3), starting with (A@; K© 09 C©®) = (A; K,04,C) as in Theorem
1.2.1, N times so that AW is a unit block. By setting p = 1 and applying 713 to the
resulting identity we obtain

N-1 ) _
(01;00|0)akc = 3 TP (AD)],cy
j=0

triglog / dpom €KY (Ao, (1.3.4)

which essentially reduces our task to analysis of ETlgﬂ?)(AU)).

T is constructed as a composition of maps F, S, B, 1, £; whose action on a local regular
polymer activity J is defined next.

F: EOFUI =y x 7, (1.3.5)

pr is convolution in field space by a Gaussian measure dyg;, to be further described
below. We shall need the first and second derivatives F) and F® defined by

.7'—(1)[.]] = b%lt\ﬂ)j:[A‘]]
82

}-(2)[._71, J2] = aA—a)\zlA=0f[/\1Jl + /\2.]2]. (136)
1
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They are given more explicitly by

FOU = ppiJ
FOT )] = ppg#* (JioJz) = (prg* i) o (pry * ), (1.3.7)

see Section 6.

S is rescaling defined by
S: S[J|X,¥) = J(L*X,T,). (1.3.8)
We define (8°¢)L(z) := L'~/ llgog (-}f-) This defines (¥%); and (¥); in an obvious way.

B reorganizes a polymer expansion on (scale 1)-polymers into a polymer expansion on
(scale L)-polymers. Thus it is defined by

B: Ezp[O,+BJ||(X) = Ezp[O:+ J|(X)
V (L-scale)-polymers X. (1.3.9)

O, and Ezp; are defined as were Exp = Exp, and O = O, but with (scale L)-cells (see
Section 1.4) replacing (scale 1)-cells. We shall need B(") and B® defined as first and second
derivatives of J = 0 in analogy to F() above. They are given by (see Section 4),

BO) = Y J(X)

X:X=U

> Ni(X1)Ja(Xs), (1.3.10)
X1,Xo

B[, B)(U)

where X, UX; =U, XinX, # ¢, XiN Xy = ¢, U is a (scale L)-polymer and for any
(scale 1)-polymer X, X is the smallest (scale L)-polymer such that X D X.

The operations &;, &;; remove relevant operators from polymer activities and are de-
signed so that
Ey:  ETH Z Ml gDyl (1.3.11)

with # = I or II together with: §;[J] is a field independent polymer activity chosen such
that
ENJ(X,v=0)=0, VX, (1.3.12)

;[J] is a polymer activity of the form

QA U¥) = —%50 [ as(08(z). (1.3.13)

d0 € R can be chosen so that certain low-dimensional parts® of J are cancelled on small
sets (a class of polymers defined in Section 1.4).

8&1 is applied to J := £/[K®), which is analytic in p, As. 80 is chosen to cancel (3¢)? in 79.J; hence §o
is independent of \,, analytic in p.



Brydges and Keller 51

The QY (AD) in (1.3.3), (1.3.4) is given by
OV(AL) = q;[K)(AD) (1.3.14)

Q;[J] in (1.3.11) with J = &[K ] is absorbed into a shift in the covariance C0) — SC0U)
and change of normalization of ducw in (1.3.3). This is why there is NU) in (1.3.3). Then

the covariance Cj; of the Gaussian measure pp; in F is chosen so that when oUt) .=
o) 4 §50)

SCY(p) = Cp.1(p) + (j‘}%ﬁ;y (1.3.15)

Then T := F oS o Bo &y o0& satisfies (1.3.3) as can easily be verified.

The main difference in this procedure compared with earlier versions, e.g., [6, 8, 10, 7, 9]
is that & is designed so that &[J](X,0) is identifically zero for all X, not just O(J?) on
small sets. This gives some neater formulas and is not much more difficult to handle (but
we could carry out the procedure with the original type of extraction as well).

From these formulas straightforward calculations permit us to calculate the image
TIKD), T := FoSoBo&yo&, to order O(p2, pa, A2). The corresponding formulas will
be useful in our next paper in which we obtain lower bounds so we summarize them here.
Given any analytic J = J(u, Aa), e.g., J = T[K©)], we define u, A, independent coefficients
(Nus (J)a by

J= ﬂ(‘j)u + Z )‘&(J)é + O(,uz, MAm /\i)
The next proposition refers to a linear projection R discussed in Section 3. It projects

a polymer activity J(X, ¥) onto a new polymer activity with no parts of dimension less
than or equal to d.

We find, by easy calculations, that

Proposition 1.3.1.
(T[I:f(j)])# = FO(N)y) #= wor o,
(TIE)1y = FOUI)a] + FOI), (D)2,
where, upon defining 50(-, ¥) := O(:, ¥) — O(-,0) and §K(-,¥) := K(-,¥) — K(-,0), J
satisfies
(N)u(,¥) = SoBWoRDEKU (., ¥)]
(j)or('aw) = SOB(I)[(SO[('J)(,‘I’)]
(N)iz(-,¥) = SoBYBEOY(, W)

~SoBM | 3 (50P (X, %) - 0F)(X2,0) + (01 & 03))

XiUX,p=-
XiNXz#¢

+5 o BD [60{(-, ¥),500)(-, w)] .
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Proposition 1.3.2. '
7129(1])(A(J)) = E TIZWI[K(J)](X)’
XcAW

_ 0
where 1, = m| a,—0) and

wKD)(X) = pKO(X,0)+ Y A:0¥(X,0)
A Y 09(x,,0)09(X;,0)

XjuX=X
XinXa#é

+O(12, Aoy A2).

See Section 5.3.

The first step in proving Theorem 1.2.1 is to repeat the arguments of [6, 8, 10, 7, 9] to
establish a crude bound o o
ITIED|| ;41 < OLHIKD);,

J
where || - [|; :== ||  lgoorr and GY) is determined by k%) = k> 27*" with «,T', H as in

0
Theorem 1.2.1. We use this crude estimate in conjunction with good bounds on bilinear
approximations to get better bounds. For example, starting with O¢*") = 7, T[KY)],_,
and expanding about p = 0, we obtain

10§l < T Eallj

1 rldda| 1 |dp|
2r S |A] 2 S fu(p — 1)

| ITTED) | 54115p=0, pa-

By choosing a large g contour and using the crude estimate we see that the second term
is O(| KD |;109|1;). Easy estimates on the explicit formula for the first term show that
T TED)allj+1 < O(L)|OD]|;. Since we choose ||[K©@||y small after fixing L and since
this will imply that ||[KY)|; is small compared to L%, the second term is negligible in
comparison with the bound on the first term. This type of argument, introduced in [7],
also permits all O(p?, pla, A2) terms in Proposition 1.3.2 to be ignored and reduces upper
(and lower) bounds to calculations within the bilinear approximations.

The introduction of the bilinear A\;A,O;, into the generating function is an important
ingredient in the success of this procedure. Good estimates on correlations of more observ-
ables would require higher order terms but we see no obstacles other than notational ones.
It would also be possible to analyze other types of observables, e.g. odd functionals, or
perhaps functionals of ¢ or 3*¢ for some || # 1. The only new issue, other than changing
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some dimensions, would be whether perturbation theory couples the observable to new
operators of lower dimension than the original observable (see Example 1.1.3).

Organization: Sections 2 — 4 introduce the operations &;, &, B. This is largely
already in previous papers but we have been more complete. Section 5 gives bounds on
the composition S o Bo &7 0 ;. Section 6 covers the F operation. Section 7 puts it all
together to get our main results. We have begun each section with a synopsis and generally
the synopsis is enough to obtain a good understanding of the rest of the paper.

1.4 Appendix on Notation

The order of topics is (with some cross references):

e Objects connected with geometry in R, particularly polymers;
e functions on polymers, polymer activities;

e functions on R?, particularly fields;

e functionals of fields;

e notation connected with observables;

e parameters and constants.

¢ Norms on R4

|| = lrg‘gilwpl;

ol = (3 wi)%-

e Cells: To each point & € Z¢ we associate a d-cell o which is the open hypercube

centered on & i
o= {meRd: |z — é&| < -2-}

A (d—1)-cell is an open face of a d-cell. Similarly there are (d — 2)-cells,...,1-cells,
O-cells where 1-cells are edges of d-cells and 0-cells are vertices.

e (-scale cells: Given £ € N, we can replace Z by £Z in the above construction. The
resulting r-cells, r = 0,...,d are by definition £-scale cells. Cells are 1-scale unless
we state to the contrary.
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Complexes: A compler X is an empty or non-empty union of cells.

Blocks, (A): The closure of a d-cell is called a block. We generally denote blocks by
the letter A.

Complex Activity: A C-valued function J(X) defined on all complexes X is, by
definition, a Complex Activity.

Some special Complex Activities, (1,0):

1 ifX=0
LX) == { 0 otherwise.

1 if X isa cell
HEE) = { 0 otherwise.

Circle Product, (o): Let J; and J; be complex activities, we define a commutative
product

(Jl o Jg)(X) = Z Jl(Y)Jz(X —Y)
YcXx

Under this product the set of complex activities forms an algebra with identity 1(X)
(defined above).

The Exponential, (£7): Let J(X) be any complex activity such that J(@) = 0. Define

£7(X) = ExpJ)(X) := 1(X) + J(X) + %J o J(X) 4.

This series terminates after a finite number of terms determined by X.

Polymers, X: X is a polymer if either X = @ or X is a union of blocks. We denote
polymers by XY, .... The reader should assume these letters represent polymers
unless informed otherwise.

| X}:=HHA: AcX}.

Some special polymers: A := {z € R? : |z| < lside(A)}, where side(A) = LV for
parameters L, N € N. All fields (see below) will be continuous functions on A with
periodic boundary conditions on dA. Therefore we refer to A as a torus.

Rescaled A, (AY)) : We set, for j € {0,1,...,log; side(A)},

AD = [77AO; A0 .= A

We give the remaining notation for the case AU=0) = A except for the discussion of

pinning of observables where the generalization involves more than replacing A by AY)
everywhere.
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e Special polymers (continued), small sets, (S): We say X is a small set, X € S iff

|X| < 2% and X is connected.

o The overlap graph Given a set {Xj,..., X,.} of polymers, the overlap graph is the
graph whose vertices are 1,...,n and whose lines are those pairs {%,j} such that
XinX; #0.

o Polymer Activities, (J(X), K(X)): A complex activity J(X) is said to be a polymer
activity iff J(@) =0 and J(X) = 0 whenever X is not a polymer.

e Fields ¥: Fix an integer P > 1. Let g := (py,...,p,) where 1 < p < P and
p; €{1,...,d}. Let |g| := p. ¥,(z) is a collection, indexed by g, of C(A) functions,
which are periodic on A. We write

V() = Wu(x) wheref :=(z;p)
U o= (Wu(x)),
where p and |p| range over all their domains. The point of this notation is partly

explained by considering the special ¥’s defined by: let ¢ € CP(A) be periodic. Then
define

\peﬁ(&) =0, - aup¢(x) when § = (z; p).
Given p, we define [du(§)f(§) := [dx Y fu(z).

wlp=p
e Norms on fields:
Pl = e, max [0}
12, = max|Zu()|
dist(¥) := inf [|¥—¥?|
dEM(A)

H,(A) is a Sobolev space. s = s(P,d) is chosen sufficiently large that H, D CP(A).

e Functionals on Fields: K is regular iff (a) K = K(X,¥) is a polymer activity. (b)
K is C* with respect to ¥, € C(A), viewed as a Banach space with supremum norm
(see below).

e Functional Derivatives: Since we require existence of (Fréchet) derivatives with re-
spect to ¥, the derivatives of a regular K (X, ¥) are regular Borel measures on (Ax

indices)*# where # = the number of derivatives. Let n = (ny,...,np), n, € Ny,
signify n, derivatives with respect ot (¥,(z)), || =p, € A, p=1,...,P. We
write

D(D)K(X, \p;gl,ls'-'agl,nl;"'a;gp,lﬁ"ﬂgp,ﬂ}?)
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for the regular Borel measure which is formally

P 1 (> & p” pe
,ETALEW(&”))K(X"I’) T B

and
P
In| =[] ne-
=1
Weak Equality, (=). Let K; and K; be regular. We say
K =K, < KI(X, ‘I”ﬁ) = Kz(X, ‘I’d’)

for all X and all ¢ € H,(A) (periodic).

Local: K(X, V) is local iff (a) it is regular, (b) Vn, D(n)K (X, ¥) is supported (as
regards the z part of the measure) in (X)*/?.

Even: K(X,¥) = K(X,-1¥), VX.

Euclidean Invariance: For all E € I0(d) with E(Z¢) = Z¢ we set xz = Ex mod
periodicity of A. Then for any polymer X, X := {zg : * € X} is a polymer. E
decomposes into a translation and R € O(d). We define

(‘I’E)m ----- up(mE) w— Rm..u', Tt R#p-#,’,q’u'l.---.u;(m)-

A regular polymer activity K is said to the Euclidean Invariant iff K(Xg, Vg) =
KX, 9)VX,VE.

Large Field Regulators, (G, g): A large field regulator g(X, ¢) is a function defined
for all polymers and all ¢ € H,(A) such that g(X, ¢) > 0 V.X. Further properties are
imposed and listed at the beginning of each section. The following specific regulator

Gu(X, ) = exp (n > [ leer+Z faxlaqblz)

a:l<|a|<s
obeys
Lemma 1.4.1. [[9],Appendix A] If s > s4(d), c > co(d), then Y& >0
(a) Gu(X,¢) 2Gi(X',¢) VXD X
®) Gux (U X,08) 2 TT6.(X,.9)
j
where 7 := 51;1\)[{3 : X; 2z}

(€) G.>1, Gu(X,0)=1.
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[The parameters ¢ and s can be set so that this regulator is consistent with all
conditions imposed in the rest of the paper.]

o Large Set Regulators, (y,T): A large set regulator ¥(X) is a function defined on all
polymers X such that 4(X) > 0. The following specific large set regulator I" appears

throughout:
INX):= A1X|6A(X), some A > 1,
where
64(X) = inf HOA([bl),
trees T on Xbe‘r

where 7 on X means that 7 is a tree graph whose vertices are the centers of blocks
A in X, whose edges are denoted by b € 7. If b = zy, then |b| := |z —y|. 84152
function on Ny such that

9.4(0) = BA(I) = la

Ba(s) - A9 < 6,4 ({%}) < Gu(s) A

for some @ > 1, where {z} := smallest integer larger than or equal to z. The
following lemma is easy to prove:

¢ Lemma 1.4.2. Let dist(X,Y) :=inf{|lz —y|: £ € X, y € Y}. Then
HTr=>y
(i) T(X UY) < T(X)T(Y)0a(dist(X,Y)).

e h and h: These will be used to measure radii of analyticity of functionals of ¥. We
set h:= (hy,...,hp), B, 20Vp=1,...,P. h® := [[hr. When h, = h, Vp, we

F 4
write h instead of h.

e Norms on K (X, ¥): for any polymer activity J(X)

1 T1ly == sup 3 J(X)7(X).
A x5A

For any regular polymer activity, K (X, ¥),
|D(n)K(X,¥)|| := var D(n)K(X,¥),
where var is the variation norm of the measure.

I(D(0)K(X)]lg := %:Sgp(g(X, ¢) I D@)K (X, ¥)al,

where A = (Ay,...,Ap)) and 1a(&,. .., &) =1 <= & = (z; ) with z; € A;, i =

. S
[D@)K|lg, = [(|D@)E()])lr
= Sup ) ¥(X)|D(n)K(X)|,
A x-A

"K”g,'r,h = E hn”D(n)Kllg-’Y'

n
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We write ||K||4,» when h = (h,...,h).

K(g,,h) := Banach spaces of all regular local polymer activities K with the norm
1K llgyn < oo.

I-type: A polymer activity K (X, ¥) is said to be I-type (I for interaction) iff K is
regular, local, even, Euclidean invariant, and real.

O-type: See below, under notation for observables.

Pinning: A polymer activity K(X) is said to be pinned at y;,...,y € A ~ U@A if
A
KX)#0=X5>5y, VX, Vi=1,...,r

a-pinning: a € {1,2}, a € {1,2,(12)}. Similarly y, € {y1,y2} where y;,y, € A ~
|J8A | and y12 = (y1,¥2). Ka(X) is said to be a-pinned iff K is pinned at y, for
50?113 Y1, Y-
After j iterations of the Renormalization Group: Kg)(X ) is defined on X C AW,
Given z;,2, € A© ~ UBA we say Kg) is pinned iff KCE;’) is a-pinned at y; 1= mf—,’) =
A
L_ja:&.
For A, Az € C, set Aq1g) := A1 Ag, and if F is a sufficiently differentiable function of
A1, A2, then
’T()F = F(A] - 0, Ag = 0)
0
F = | =—F|(A\M=0, 2=
i ( W ) (A1=0, A2=0)

62
s —_— — A =

O-type: A polymer activity K is O-type (O for observable) iff K is regular, local,
even, a-pinned.

Parameters: Choose and fix once and for all
(a) d>1
P>2
c>cy(d) (in Gy)
s > max{so(d), s(P,d)}
(b) n > e (will appear in large set regulators).
(c) x € C*|[0,00) such thatngl) 0<x<1 (2 forz>0, Lx(z) < —ix(z)(1-
x(2)); 3) J5°dz =" |(£)" x(=)| < o0, ¥n,m > 0.
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[This x is the high momentum cutoff in the covariance

C(p) = x(p*)/(#*0) 1p20(p)-
A possible choice is x(z) = e™*.]
See below for conventions concerning constants.
Choose z;, 2, € R% ~ U OA with |z, — 23| > 1 (without loss of generality).
A

e Additional parameters set in the proof.

Le{23,...}

AQinT

K in G,

H (specific instance of hin || |lgrs)

J € Ny defined by L' < |z, — 25| < L7,

N eN, N > (J+1), determines A = A, side (A) = L" (thus N large enough
so that z, € A®),

e Constants: Constants occurring in the proof are denoted by C(-) where - is a list of
parameters which must be fixed before C(-) can be considered “constant.” We do
not include in this list parameters occurring under (a), (b), and (c) above.

2 Extraction I (&)

The purpose of this section is to define and study the operation K — &;[K] discussed in
‘Section 1.3. See Lemmas 2.1 and 2.2.

Lemma 2.1. Let K be a regular polymer activity on A. Assume that there are g,v,h,

with a, > e, such that

log(a,) —1 1. : (2.1)
log(a.)

Then there exists a regular polymer activity Q;[K] satisfying

”K”gmh <€ =

eMIKIX) — £0+K (X = 0), VX C A. (2.2)

Q,[K] has the following additional properties:
(a) §4[K] is analytic in K on U, (0) C K(g,7, h).

(b) 6\1;91[K] = (.
(c) K(w¥=0) e R= QK] eR.
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(d) If K is invariant, then so is ;[K].

Proof. Under the hypotheses of the lemma, the convergence of the Mayer expansion for
EOHK(X, ¥ = 0) is an immediate consequence of Theorem 3.4 in [4]; indeed (cf. (3.10a) in

[4])

1
Qx = Y gsup| 3 |K(Y,¥=0) [
YcX

d>0 YSa
< <X o (S IDOKW),-YF)
d>0 YoA
< 3 Jow (S IDOKW, ) - sup (oM171))
d>0 YoA Y|

a _
< K |lgqn - Z (J e d) - (log(a,)) d<1, VXCA,

d>0

where the last inequality follows from dd < €, from a, > e and (2.1). Therefore, we define
Q;[K] by the Mayer series

Q[K](X) = z% 5 @ K(X,, ¥ = 0)) T(Xy ey Xo) 2.3)

n>1 """ Xp,.,XpCX

(where ¥.(X;,...,X,) € R is defined in [4]). Q;[K](¢) =0, 64;[K] = 0, and so §;[K] is
a regular polymer activity; by its very definition §2;[K] obeys (2.2); and finally, properties
(a), (c), and (d) are easily inferred from (2.3). o

Lemma 2.2. Let K be a regular polymer activity on A obeying the assumptions in Lemma
2.1. Then there exists a unique regular polymer activity £;[K] such that
€D+K(X) - en,v[K](X)gDH.‘;[K](X)- (2'4)

&1 K] also satisfies

(a) &[K] is analytic in K on Ug, (0) C K(g,~, k).
(b) &[K](X,¥ =0) =0.
(c) K €eR= &[K] € R.

(d) If K is local, resp. even, resp. invariant, then also &;[K] is so.
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Proof. In order to prove (2.4) (and simultaneously (a)-(d)), we use induction in | X]|.

|X| = 0: According to our conventions, if we want &£;[K] to be a polymer activity we
need to define £;[K](¢) := 0. Luckily, this definition is consistent with (2.4) at X = ¢ and
with (a)-(d).

|X| > 0: The induction hypothesis is that we have found a unique regular &[K] on all
polymers Y with |Y| < |X| such that (2.4) and (a)-(d) hold on all these Y’s. Induction
step: Since E7+4IKI(X) =14 & [K](X) + - -+, where the omitted terms, indicated by - -,
are (by the induction hypothesis) well under control, there is evidently a unique regular
&1[K](X) such that
ETHEIKI(X) = e UIKIX) gO+K (X)),

hence (2.4) holds at X. At the same time this argument tells us that &[K](X) obeys
(a)-(d) because ,;[K] satisfies (a)-(d) in Lemma 2.1. O

3 Localization, Extraction II (ﬁ(’"), ’R("'), Err)

3.1 Summary

The first purpose of this chapter is to construct, for each r € 1Ny, linear complementary
projections £, R() defined on any polymer activity J such that £"[J](X,4?) is the
integral over z € X of a polynomial in derivatives of ¢(x).  L£"[J](X) vanishes if X is not
a small set; £(V[J] has scaling dimension less than or equal to r. R(")[J] under rescaling,
z — z/L, decreases in norm as L% or better. These properties are summarized in
Theorem 3.1.1 below.

We have given the construction of £ and R in some detail because previous dis-
cussions, e.g. [3], contain “errors of omission.” The main point is that the remainder R()
is constructed by integrating derivatives of fields along paths: to construct R™[J](X, )
such that (1) dependence on % is localized in the set X (2) lattice Euclidean invariance is
preserved requires some care. Furthermore, the projection properties of £ and R") are
new results.

The second purpose of this chapter is to define an extraction £;; with the properties
that
ED+K(A, ,w(b) — eQ”[K](A,qp‘f)gEH-fn[Kl (A, 'l,bd)),

where LU [€;[K]] = 0, and Q11(A,¢) = Y LO[K](X,%). In particular, if K is lattice
XcA
Euclidean invariant and has no field independent part (because of the & extraction), then

Qu(A,v?) = 160 [,(8¢)*(x)dx for some éo.

In order to read the rest of the paper the essential parts of this chapter are given in
Theorem 3.1.1 and Section 3.4, where &7, € are defined and their important properties
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are listed.

Theorem 3.1.1. For each r € ;Nj there exist linear projections L0, R K(ge, v, h)
— K(ge,7, h) for all e > 0, v, h > 0 such that

(i) £", R() are complementary projections: £ +RM = Id, LORM =REILWD =
(ii) Given J € K(ge,7,h) there exist coefficients a,[J](X) such that
LONX ) =E T allX) [ et g(@)- -8 4(a)

m =,

,,[J](X) =0 if X is not a small set,

where” 1 < || < || < -+ < || and the sum is over all g with

Z(—~1+!n,l)

(iii) Suppose J(X) =0 whenever X ¢ S. For alle >0, v, h >0, £> 1,

o IV Ll AN
IRV [T geirh, < Cr)e72 H’W 1T Mg

where

h,:=h- (z—%,r%-l,...,e—%-”“).

(iv) If J is lattice Euclidean invariant, then so are £[J] and R"[J].

3.2 Localization (£,, R;)

We localize a polymer activity which is a polynomial in the fields by “moving” the fields
to a common point which is then averaged over X, the support of the polymer activity.
The difference between the polymer activity and its localized form is written in terms of
integrals along paths joining the positions of the fields to the common point. These paths
are chosen carefully so that

(1) the localization operation is a projection;

(2) the formula for the difference is Euclidean invariant and still supported in the same
set X.

"The m = 0 term, being equal to ay[J](X)|X|, is included in the sum over m.
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We now turn to the construction of these paths although only one endpoint of the path
plays a role in the localized polymer activity which will be the first topic.

Construction of paths on small sets: For each small set X, and for each pair {«, 8} of
cells in X, consider the set of continuous paths lying inside X connecting the centers &, B of
a and 3. The minimal length paths of this set of paths are polygonal; let v;({a, 8}; X), i =
1,...,n(X,a,B) be the set of them. Next, for each pair of points {z, y} in X we define

the polygonal path ({z,y}; X) := [z, a(z)] Un({a(z), aw)}; X) U [a(s),s], where a(a)
is the cell containing x and where [x y] is the straight line connecting x to y.

Definition 3.2.1. For each small set X and each pair of points z,y € X, let yx,,(t), t €
[0,1], be the parametrized and piecewise differentiable chain®

Yoy = (X, a(x), a(y)))—l Z VX . (t)

i=1,...,n(X,a(z)a(y))

where

(8) {1x2pi(): t€[0,1]} = v({z,y}; X);
(b) ’YX,z,y,t'(t = O) =, 'YX,J:,y,i(t = 1) =1,

(c) if, for given ¢, vyx ,,.:(t) is within a linear segment of ~;({z, y}; X), then the velocity
|¥x,z.,:(t)| is given by

VX z,.i(t)| = length of v;({z,y}; X).

We note that according to this definition

’YX,Z,y(t) = 'YX,y,a:(]- - t) (321)

Definition 3.2.2. We say that the regular polymer activity M is a local monomial of
degree deg(M) = m > 1 if there are p;,...,pn € Nwith1 < p; < ps < --- < p,, such
that

MR = { ({ AM(X,E) (&) - U(En), i;i (322)

where £ = (£,,...,&») with |p;| = p;, and where the z-part of the support of the regular
Borel measure dM(X, &) obeys

x —supp dM(X, &) C (X)™, X e€S. | (3.2.3)

8A chain is a formal sum of parametrized paths.
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The dimension of M, dim(M), is defined as

dim(M) := fj (g -1+ pr) : (3.2.4)

r=1

A local monomial M of degree 0 is by definition a V-independent polymer activity sup-
ported on small sets; moreover, dim(M) := 0.

Any polymer activity P which has the form P = Z M,, each M, a local monomial, is
r=1
called a local polynomial.

Definition 3.2.3. The local monomials M, M’ are called equivalent, M ~ M’, iff

(a) deg(M) = deg(M') = m,
(b) if m > 1 (M* has p},...,p*): pi=pl, Vi.

We will write E,, for an equivalence class of local monomials of degree m.

Fix E,,; assume that M; € E,, i € I, |I| < oo; then M := Za.,-M,-, a; € C,
iel
belongs to E,, as well, and, if m > 1, then dM = )_ a,dM;. Every local polynomial

iel

Py =) ajM], M' = (M]);er, can thus be written P = }_ > (Pw)g, where (Pw)z, =
ier m=>0 E,,
‘a; € E,,. If we have another decomposition of Pyy as Py = Pvr = z a; M,
M’,’?E]Em iel”
then obviously Y Y (Pw)s, = > >_(Pmr)5,. However, since
m>0 E,, m>0 E,,
ZZMEm =0= ME,-,, =0, VEm,
m>0 E,,

we see that (Pvy)g, = (Pwr)g,,. Moreover, M =0 = dM =0.

Definition 3.2.4. Let M be a local monomial. We define the localizing operator L by
L[M] := M, if deg(M) = 0; (3.2.5)

(0, ifdeg(M)>1AX ¢S,

iy Jx A*2M (X, ¥ 0 yx ., )(t = 0))
LIM|(X,¥) := ¢ (3.2.6)

B 1
= [AMX )5 [ FoWu(2) - B (),
| ifdeg(M) >1AX €S.
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Corollary 3.2.5. (a) L[M] is a regular, local polymer activity, supported on small sets;
in particular, L[M] is a local monomial.

(b)If M € E,, and M = Za.,-M,-, M, € E,, a; € C, then L[M] = Za.,-L[M

el i€l

Definition 3.2.6. Let P be a local polynomial. Decompose P = Pay = 3 a;M;. Define

el

Lye[P] :==)_ a; - LIM]). (3.2.7)

el

Corollary 3.2.7. Let M’, M" be any two decompositions of P. Then Lyy[P] = Ly [P).

Proof. Use Corollary 3.2.5(b) and the remarks after Definition 3.2.3:

Im[P] = Ya - LIM]=YY Y a LM

el m>0 E, i€l

M|eEn,
= 2 2L Y e M
m=0 Ep t‘€1
M!€Ey,
= Z{J;L[(PM)EJ
= ¥ Y L{(Pw)g,) == Lm[P].
m>0 E,

a

Definition 3.2.8. Let P be a local polynomial, and let M be any decomposition of P.
Then

L[P] := Ly|P]. (3.2.8)

Corollary 3.2.9. (a) L[P] is a regular, local polymer activity supported on small sets;
L[P] is a local polynomial.

(b) L is a linear operator.

(c) P is even/real/invariant = so is L[P)].
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If m = deg(M) equals 0, then L[M] = M; if m > 1, however, we have, for X € S,

M(X,¥) - LIM](X,¥) = |X|f &z {M(X, ¥ 0 yx, )t = 1))

== M(X, v O'YX.z,(')(t = D))}

1 1 d
- = [z [ atoM (X, Torxan(t)  (329)
= S MO(X,v0),

1=1

where® U0 = (‘I’(El), s v W13 av‘pm(xi)’ U(&it1), -5 ¥(&m)), and

M(')(X’ \I;(’)) — %fxdd‘z /: dt/dM(Xat) Z(’YX,z,z.(t))V

) (H ‘Ijll-r ('YX,z,z,- (t))) ' 81!“1’14 ('YX,z,z.- (t)) - (3210)

r#i
Define now, for X € S, M%) (X, ¥) b

M9 (X, ¥) : ] dM(X, &) — X f d*z fo 1 dt ) (Yx,2, ()

' (H ‘Ill‘r ('YX,z,::r (t))) * \I’p,v,u ('YX,z,z;(t)) - (3211)

r#i

In passing from (3.2.10) to (3.2.11) we have replaced 8,¥,, by ¥, ,; these are only equal
when ¥ = ¥?, which is the reason for the appearance of = in Corollary 3.2.11 below.

It follows that M®(X,-) is a bounded linear functional on C((X™)x (index space)).
Hence, by the Riesz representation theorem, there exists a regular Borel measure dM® (X, ¢'),
supported in X™, such that

MO(X,0) = [aMO(XE) (E)-- U, (3:212)
and where &' = (¢}, ...,£,,), having || < |@, |, is obtained from
(‘Ela sia ,Ei—h (3;17 (“'isv))a €i+17 WEE 16‘"‘1)

by a permutation m € S, to put the arguments in the order imposed in Definition 3.2.2.
MG (X, ¥) thus is a local monomial, of deg(M®) = m and dim(M®) = dim(M) + 1.
Finally, we define the local polynomial R[M] by
0, X ¢S or deg(M)=0
RIMIAE) = { 3 MO(X,¥), X €8 and deg(M) > 1.

i=1

(3.2.13)

9For 7 a chain, v := Za;y;, we define fol f(x(t))dt := Za; fol Flw(t))dt.
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Corollary 3.2.10. (a) If M € E,, and M = Za,'M,', M; € E,, and a; € C, then
i€l
R[M] = ZaiR[Mi]-
i€l

(b) M even/real/invariant = R[M] enjoys the same properties.

Just as we did for L, we now define Rp[P] and show that Corollary 3.2.10(a) implies
Ry [P] = Ry [P]; hence
R[P):= Ry[P] = Y a;R[M]]. (3.2.14)

il

Corollary 3.2.11. (a) R[P] is a local polynomial.
(b) R is linear.
(c) M=L[M] + R[M].

Definition 3.2.12. The localization operator, L., r € Ez“, on local polynomials is defined
as follows. For a local monomial M

[r—dim(M)]
L. M= Y LR [M]), (3.2.15)
k=0

where, for z € R, [z] := max{z € Z : z < =} (and hence L,[M] = 0, if dim(M) > r); and
for the general local polynomial P

L.IP) = L, [P| = ¥ ail.[M]); (3.2.16)

iel

as indicated (and as readily checked) LoulPl =L
does make sense.

v [P and so the definition (3.2.16)

Corollary 3.2.13. (a) L,.[P] is a regular, local polymer activity supported on small sets;
L.[P] is a local polynomial.

(b) L, is a linear operator.
(c) If P is even/real/invariant, then the same holds for £.[P].

Definition 3.2.14. M will be called localized if there is a local monomial M’ with
M = L[M']; similarly for localized polynomials.
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Lemma 3.2.15. If M is localized, then L[M] = M and M® =0, 1 < i < m. Thus
R[M] =0.

Proof. If M is localized, then M has the form (X € §)
MX, %)= Y M(X,p)- fx &z, (z)--- T, (z), (3.2.17)
By e sthey

as can be seen in (3.2.6). This immediately implies M = L[M], so let’s turn to the second
assertion.

Fix X € §. From (3.2.17) and (3.2.11) we infer that (p = (py,...,4,,))

: 1
MO(X, f) = mMEm) - FX fom), (3.2.18)
v
where
g d, gd,. (.
FX,fmv) = [ at [ aad's(ixaalt)),

'fpl,...,m_],(p,-,u),‘qﬂ,...,lgu (’YX,z,a:(t)a sy 'YX,z,:c(t)) s (3219)
Performing the change of variables t' :=1—1t, ' := 2, 2/ := z on (3.2.19), and using
(3.2.1) we see that F(X, f,p,v) = —F(X, f,m,v). a

Proposition 3.2.16. The localization operator L, is a projection operator, i.e.,

(L) = L,. (3.2.20)

Proof. Use equations (3.2.15), (3.2.16), together with Lemma 3.2.15 and the linearity of
L R. O

Remark. According to our conventions in Section 1.4 we restricted ourselves to fields ¥,
with |p| < P. When defining M (X, ¥) in terms of M (X, ¥®) (cf. (3.2.9)-(3.2.11)) we
have of course to assume that ¥, , still belongs to our set of ¥’s, i.e., that |p| +1 < P.
As a result, the remainder R[M] can only be defined if p,, < P — 1 (cf. (3.2.2)).

It follows from (3.2.15) and Corollary 3.2.11(c) that, for r > dim(M),

[r—dim(M)]
A-L)M] = M-LM - 3 LRM)]
k=1
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[r—dim{M)]
= R[M] - LIR[M]] - Z L[R*[M]]

[r dlm(M)]
= R'[M]-LR}M] - Y
k=3
RUHr—dm@DI[pr), (3.2.21)

Definition 3.2.17. For r € %Iﬁ we define R, on local monomials as

R1+[r-—dim(M)] [M], r> dlm(M)
RplM] = { M, r < dim(M), (8:2:22)
and extend to local polynomials by
R.[P]:= Z a; R, [M;]. (3.2.23)

iel

Note that (3.2.23) is in fact independent of the decomposition of P. Clearly, R, is
a linear operator, R.[P] is a regular local polymer activity supported on small sets, and
R.[P] is even, resp. real, resp. invariant, whenever P has such properties.

Due to (3.2.21)-(3.2.23) and the linearity of (1 — £,) we obtain

Corollary 3.2.18. For any local polynomial P
(1 - £,)[P]=R.[F]; (3.2.24)
moreover, due to Lemma 3.2.15,

LR, =R,.L, =0. (3.2.25)

3.3 Bounds on R

Proposition 3.3.1. Let M be a local monomial of degree deg(M) and dimension dim(M)
with measure dM (X, £). Define

hy = h. (€742 ¢-421 g9 (3.3.1)

ldM |, = sup xz:a v(X) Var(dM(X)). (3.3.2)
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Then, for any e >0, v, A >0, £>1, and r > 0,

£d—2+2P

eh?

D
IR (Ml < €2 - C- (1+ ) wetoyanay,, (333)

where C depends only on 7, d, deg(M), dim(M), and D := dim(M) if r < dim(M), r+1
if r — dim(M) € No, 7 + } otherwise.

Proof. For n = (n4,...,np), n; € Ny, we put

dim(n) = Y-y (3+5-1).

¥=l

"J”g,v,h;n = ”D(n)‘]”gﬁhn’ ”J”grr.h;D o Z "J“y.'r,h;n'
ndim(n)=D
By construction of R,, (D(n, &) R.[M])(X,¥ =0) =0, Vn with dim(n) < D, therefore,
by Lemma 4.3 of [6],

P D
IR Ml < Co (14 5) 1Ry, (5.3

where ¢ = d + 2P — 2. By the construction of R,, R,[M] is a sum of monomials of
dimension D, therefore (c.f. (3.3.2))

q D
Co (1+i) S I D(@)R[M]]), b}

2
eh n:dim(n)=D

= ¢ D¢ (1 ¢ )D |n|
= 0 (14— E ID@)RM]| A, (3.3.5)

2
eh n:dim(n)=D

il

By the definition of R,, (3.2.22), (3.2.13), || D(n)R,[M]|, £ C||dM]||,. Since |n| = deg(M),
we obtain (3.3.3) by combining these estimates with (3.3.5). ]

Definition 3.3.2. Let K be a regular, local polymer activity. Then, the regular polymer
activity Ty[K] and the local polynomial T [K] are defined, for s’ € Ny, by

T,[K|(X,T) = Z %(%) K (X, 9)}so (3.3.6)
TSK)I(X,¥) = Tu[K|(X,¥)-1(X €S). (3.3.7)

The next proposition is similar in proof to Lemma 4.3 of [6].
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Proposition 3.3.3. Let J be any regular polymer activity. Then, for all € > 0, v,h >
0,a € (0,1] and & > 0,

’ c,a s’+1
” (1 - n‘)[J] "gn')"sa‘h S 3 ° as 1 V (8’ + 1)! ( ‘\/Eah) ||J||§n7rh' (3‘3‘8)

Proof. It is easy to verify that D(n)(1 — Ty)[J] = (1 — Ty—jn))[D(n)J], where T := 0 if
§ < 0. For ' > |n|,

_ g)o-lnl [ g\ IR |
(1 T, |n| f dt 1 t)lnl (:t) (D(n)'])t:
where (F),(¥) := F(t¥),
— ¢)¥-nl m! |m o]
_/ - ((13 —tlnl)' ) /(D(m)J H W(E;).
|m|—s+l

We take the || ||, , norm of both sides using ||(F):[ls, = [|Flg>

IME(E)] < y/lm — n](Co/Ve)™ (1 — ¢8) 22, _g,

and g, = Get29e(1-12), Obta'ining

DA~ Ty € X DHIDEm)I

|gn'7

m>n
|m|=s"+1
|m—n| (1 _ t s — |n|(1 _ t2) |m—n|/2
m — dt .
| ( ) A & — Jal)!

We estimate the integral by 2(|m —n|!)~! using 1—-¢* < 1—¢, & — |n| = |m—n|—1. Then
apply Y_ (ah)® to both sides obtaining

lnj<s’
> (ah)*|D(0)(1 ~ To) [l
n:n|<s’
m! Pyt C, |m-n| ol 1B s
: 2m:ln§sf+1 ngn —J“m—n” 2 (ﬁ) (k)™ ¢ | D (m) ||, r-

We use (jm — n|!)~%7 < (jm — n|!)~'y/(s' + 1)! and the binomial theorem to continue with

C, s'+1
<ofEriat (1+20) X D@,
m:m|=s'+1

p C, s'+1
<ol (14 2] Wl
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We combine this estimate with

Y. @) D)1 -Ty)[Nar = Y (eh)*ID(0)J]g,
n:n|>s' n:|n|>s'
< oM Jlgyn
to obtain the result of the Proposition. a

Definition 3.3.4. Let K be a regular, local polymer activity. We define, for r € Ezﬂ, the
localized part of dimensionr, LN[K], of K by

LOK] = L,[T55,4(K]). (3.3.9)
The remainder of dimension > r, RM[K], of K is defined by

ROK] = (1= T5, ) (K] + Ro[T5, g (K] (3:3.10)

Corollary 3.3.5. £ and R®) obey

(1 - LYK]=RV[K] (3.3.11)
(£)? = £ (3.3.12)
LORD = ML) — 0. (3.3.13)

Proof. Use (3.3.9), (3.3.10), and (3.2.24) to verify (3.3.11). (3.3.12) follows from
L ATIIC TS ) = ()T )]

and from (3.2.20). Use (3.3.9), (3.3.10), and (3.2.25) to prove (3.3.13). a

Proposition 3.3.6. Let J be a regular, local polymer activity such that J(X) = 0
whenever X ¢ §. Let h, be as in (3.3.1). Then, for r € %‘l, there exists C(r) such that for
alle >0, 4, h>0and £> 1

, 1 ﬂ%"’P_le C(r)
IR [Tl gym, < €777 - C(r) - 1+W NN Tl g e (3.3.14)

Ifeg. Jisevenand r € cEiNo NN, d > 2, then the factor 3 improves to £7771,
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Proof. According to (3.3.10), and because (hs); = h-£- "/ < h-£7% for £ > 1 and since
TS[J] = Ty[J), we have

IROWU,rm, < ||(1—:1-‘[2r/d])[']]”g(mrgh

+“RT{1‘E§1"/J][J]] g(ﬂ"ht' (3.3'15)
Due to (3.3.8) we get
_d(or ,
Il - ﬂz’/dl)[']]"gm,rgh < /A o'(y)
f C [2r/d]+1
( \/' h) * ”']”gh'f:h' (3'3'16)
It is easy to check that, for r € —2‘1, g ([ZT] -+ 1) > 'r+l' obviously, for r € 4 -No, g ([2—7] + )

= 7 + 4. Next, we decompose T‘s 2r/aq)[J] into inequivalent (c.f. Definition 3 2.3) monormals
to each of which we apply (3.3. 3) By the triangle inequality we obtain

. gd-2+2P ¢"(r)
IR M < 07400 (14 ) Wl (@37
This, together with (3.3.15) and (3.3.16) leads to (3.3.14). O

3.4 Extraction II (&)

In this section, K will stand for a regular, local polymer activity which is analytic in
U, A1, Az in a neighborhood of 0, and 7 K is supposed to be even.

Definition 3.4.1. Assume that P > 2. The regular, local, even polymer activities wy[K],
Q1| K] are defined by

wir[K] == L9[n K] (cf. (3.3.9)) (3.4.1)

and

Q0 [K)(X) = YZXWH[R](Y)- (3.4.2)

Obviously, wII[K] and QH[I{' | are analytic in g, A1, A2 around 0.

Corollary 3.4.2. If 7K is real, resp. invariant, then the same holds for wy[K s QH[ ]
Moreover, L(d)[w”[K]] = w”[K] TOK( Uv=0)=0 = wu[K]( =) = QH[K](
0) = 0.

Proof. Use (3.3.9), the fact that TS preserves reality /invariance, and Corollary 3.2.13(c) to
check the first part. The second part follows from (3.3.12). The third part is
obvious. O



74 Brydges and Keller

Lemma 3.4.3. There exists a unique, regular, local polymer activity £;,; [I~{ ] such that for
al X CA ) ) )
EMK(X) = KX g0+Ey K (XY, (3.4.3)

&,,[K] enjoys the following properties:
(a) &;[K] is analytic in K; in particular, it is analytic in g, Aj, A; in a neighborhood of
0.

(b) If K is even, then &};[K] is also even. If 1K is I-type, then so is 7€}, [K]. If 7aK
are O-type, then so are 7;&};[K].

(c) If K(-,¥ =0) =0, then &,[K](-,¥ = 0) = 0.
(d) 7€y [K] = & [nK].
(e) If K is even and obeys K(-,¥ = 0) = 0, then
T3(€},(K)] = Ty[K] — wi[K], (3.4.4)

and therefore )
L& K] = 0. (3.4.5)

Proof. (a)-(d): cf. proof of Lemma 2.2 and use Corollary 3.4.2.

(e): Act with T, on (3.4.3); use evenness of K, §;; and of &; and K(-,¥ = 0) =
Qu(-,¥=0)=E&,(:,¥ =0) = 0; employ (3.4.2) and induction in |X| to obtain (3.4.4).
(3.4.5) follows from (3.4.4) and from (3.4.1) and Corollary 3.4.2. -

Definition 3.4.4. The regular, local polymer activity &;[K] is defined as (cf. (3.3.10))

EnlK] := (1 — 7)€, [ K] + RD[n&, K] (3.4.6)

Lemma 3.4.5.
(a) & I[I~{ ] is analytic in K; in particular, £;;[K] is analytic in s, A;, A, in a neighborhood
of 0.
(b) If K is even, then &,[K] is so.
(c) If 7K is I-type, then so is TOEII[K]. 70811[1?] sy E;;[Tgf(].
(d) 7a€n[K] = 7:E;[K); hence, if 7, K are O-type, then so are 7,&1;[K].
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(e) K(-,¥=0)=0= &Ey[K](-,¥=0)=0.
(f) If K is even with K(-, % = 0) = 0, then
EnlK)=&;,[K). (3.4.7)

Proof. For (a)-(e) use Lemma 3.4.3. (f) is verified by applying (3.3.11) and (3.4.5) to
(3.4.6). O

Remark. It is possible to find for any r (assuming P sufficiently large) a pair of polymer
activities wy;, &}; such that (3.4.3) holds with £[r&};] = 0 and wy; a local polynomial.
The definition of £;; (3.4.6) carries over directly to this more general case. Hence, instead
of taking r = d as we did, we could have chosen r > d which, however, would have resulted
in “oversubtractions,” i.e., in extractions which are technically not really necessary for the
purposes of this paper.

4 Extraction and Reblocking Lemmas (B)

In this section we have collected some basic estimates used to control the extraction of small
sets and reblocking of polymer expansions. Similar results have appeared in [6, 8, 10, 7, 9].
In particular, the simplifications arising from the use of analyticity originate in [7].

Notation. The polymers and complexes in this section are assumed to be unions of cells
associated with a lattice of lattice constant 1 or L, distinguished with the epithet 1-scale
or L-scale when both are in use. The default is 1-scale. The norms refer to large set
regulators -, ,, 7L given by )

HWX) = a¥lg(X), a>1;
W(X) = g ¥y(X), n>1

41 is not «, with n = L, but instead denotes the L-scale version of «; its argument is only
permitted to be an L-scale polymer X

v (X) = aiX|L9a,L(X),

where | |; := N° of L-scale blocks in X and 6, ;(X) measures the length of the tree graph
on scale L. The large field regulators g(X, ¢), f(X, ¢) in this section can be arbitrary
functions defined on polymers such that

9(X,9) > g(Y,¢), f X DY,
(g(L_J X;,9))" > Hg(X,-, ¢), where 7:= Sgpl{j : X; 3 z};

J J
g(X! ¢) > 0’ VX:qu
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and the same properties are supposed to hold for f(X, ¢).

Definition 4.1. Let Ji,...,J, be polymer activities. Define, for non-negative integers
T1,T2,...,Tp, & New polymer activity

i) 1 Bk

VI, . I(X) = — o= > T IT Je(Xes), (4.1)
7! 7! (rvep) (X k=1 j=1
gfl ..... (X) =5 J.._.

(c)} where

(a) UXy,; =X.

(b) The overlap graph on (Xy1,...,X,,,) is connected.

(c) Further restrictions on which sets can overlap, to be described below.
(d) If r; =0, for some j with 1 < j < p, then we interpret V [Jlr‘, 3 8 ,J;”] as

Ti-1 Ti41 T
U [ o 1 S 4

7 2

Easy consequences of (4.1) are:

V[ =0, V[J]=J (4.2)

Proposition 4.2. Let J,w be any polymer activities, and let £[J] be defined' by

£D+£[.I] — erSEH-J’ (4-3)
QAX) = D wY). (4.4)
Ycx
Then
£ =€ R = ¥ V[T, R, (4.5)
r,s>0
where
R(X) :=e¥ 1, (4.6)

and condition (c) in Definition 4.1 is that the J-polymers Xj,..., X;, are disjoint and
the R-polymers Xy, ..., X, are distinct (i.e., Xp; # Xor if 7 # k).

This proposition is implicitly within [8, 6] so we sketch the proof.

10£[J] depends on w as well but we do not make this explicit.
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Sketch of Proof. Following [6], Section 2,

e~ MX) — H e(Y) — H (1+ R(Y))

YcX YcX
®© 1 N
- Y& > IEW),
N=0"""Y;,.,YNCX j=1

where (Y7, ...,Yy) are distinct polymers. Therefore
11

N,M : E H,...,YNCX Zl ..... ZMCX

R(Y;) ﬁ J(Z), (4.7)

e—ﬂ(}{) . 8D+J(X) -
N

j=

where (Z,,...,2Z)) are disjoint polymers. Now we perform the sum over (Y},...,Yy;
Zy,...,Zy) subject to the constraint that components with connected overlap graph of
(UY;) U (UZ) be Xi,...,Xp, and then sum over (Xi,...,Xp) and P. Comparing the
result with (4.3) we obtain

22

ol ®

E[T)(X) = Y IR H 1(Z0), (4.8)

Y1y Yai 214002 j=1

where the sum is over all (Y7,...,Z,) such that the union is X and the overlap graph is
connected: the sum over Xj,...,Xp and P becomes the polymer expansion for £+,
Equation (4.8) is the same as the claims (4.5) and (4.6) of the proposition. O

Proposition 4.4. Let £[J, R] be as in (4.5). Givenn > 1 there exist constants Cy1,Cy2 > 0
such that !

[Tl |1 Rl v < Caa (4.9)
=
(i)
I, Blllgsr mph < Caz {l T lgovn + [ Bll 5} (4.10)
where g, f,~ are arbitrary regulators, h > 0,
7 :=sup |{X : X 5z, R(X) # 0} (4.11)
TEA

(ii) The map J,R — &[J,R] is analytic as a map from K(g,v,h) x K(f,7v,h) —
K(gf",7, k) on a neighborhood of the balls || J]lg41 | Bl 40 < Car-

We omit the proof: the bound (4.10) is a simple variation on Lemma 5.1 in [6]. The
essential point in the proof is that at most = R-polymers can overlap with a given cube

1n Section 5 we are going to assume that Cy; < 1 in order to avoid distinguishing among several cases.
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A and at most one J-polymer can simultaneously contain the same A. Therefore the
worst growth in ¢ that can occur within any given cube A is less than g(A, ¢) (A, ¢), as
claimed by the choice of regulator on the left-hand side of (4.10). The large set regulator
4(X) has to become a little weaker v — 7, to control the combinatorics of the sum over
all ways in which the overlaps of the R and J polymers in £[J, R] can occur.

To prove the analyticity, replace J and R by J + aJ; and R + SR, respectively and
note that Cy, can be chosen so that the sum on the right-hand side of (4.5) is uniformly
convergent for |a|, |3| sufficiently small. Each term under the sum is analytic in «,f,
therefore the sum is analytic in a, 8. This implies £[J, R] is analytic in J and R.

From the formula (4.5) and Proposition 4.4 we immediately deduce

Corollary 4.5. Suppose that, for u, A, in a neighborhood of zero, J and R are analytic
in p, Ay and J € K(g,v,h), R € K(f,v,h). Expand

J o= pdut+d A Jat O pha, Xg)
R = p-R,+> As+ Ra+ O(p?, pha, A2). (4.12)
Then

ELRI(X) = p-(Ju+ R)(X)+ 3 Aa(Ja + Ra)(X)

a
¢ 3

Akl Y BRXDR(X)+ Y (A(X)R(X) + (1 2)

.

XjuX=X X1UX=X
X1r1x2?£¢ Xlﬂx27é¢'
\ Xy J
+O(, pAa, A). (4.13)

Definition 4.6.

(i) For X any 1-scale polymer we define X := smallest L-scale polymer containing X.

(ii) For J any polymer activity defined on 1-scale polymers, let B[J] be defined on L-scale
polymer U by :

BUIW) =Y+ ¥ T1J(X)), (419)
=1 gy i=1

wilere g,({f) = {(X1,...,X:) UX; =U, X;NnX; = ¢ if i # j, the overlap graph on
(X1,...,X,) is connected}.
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(iii) With J,U as in (ii), let BM[J)(U) be the r = 1 term in (4.14), namely

BYJ(U) = Y J(X). (4.15)

X:X=U

(iv) If Jy, J; are L-scale polymer activities, then (cf. (4.14))

BAJ,, L)(U) = Y 12[ Ji(X;). |  (4.16)
a(U) =1

Because of the pairwise exclusion (i.e., X; N X; = ¢, for i # j) enforced by ‘g,'('U ), the
sum over r in (4.14) runs at most up to r = |U|;. Therefore:

(a) J is regular/local /even/analytic in p, A, in a neighborhood of zero = also for B[J].

(b) B[J] = B[rJ]. moJ is I-type/7sJ are O-type = also for 7oB[J]/7sB[J].

The B is defined so that whenever X is an {-scale complex for £ =1 and L,
€D1+J(X) = £OL+BlJ] (X), (4.17)
where O0,(X) = 1if X is an L-scale cell, zero otherwise.

Proposition 4.7. Given n > 1, a regulator v with a > n(zd) and a polymer activity
J € K(g,y, ), then there exist Cy3(L) > 0 and Cy4 > 0 such that'?

(i)
1T Nlgmh < Cas(L) = 1B llgrpk < Caa L+ | T gy (4.18)
(ii) B : K(g,7yh) — K(g,71,h) is analytic on a neighborhood of {J : ||[Jgy,r <
Cis(L)}.

Given 1 > 1, a regulator 4 with a > 7®? and J, J;, J; € K(g, Y4, B), then

(iii)
dtt a’l, fJ(XeS)=0
1B < 1Ly { 5 (419)
(iv) if J is pinned at y, then
-1 .
gd+1 a -, 1fJ(XES)=0
1By <1 Wl { 5 S (4.20)

2In Section 5 we will assume, for the sake of simplicity, that Cy3(L) < Cy1.
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(v) if J; is pinned at y;, J; pinned at y,, then

else.
a=1

2 =1 3 _ >
IBOW, L]l < 7 (H ||J.,||g,,,,,,h)-{‘1‘ e w24 o)

The proof of this proposition requires the following lemma, a slight generalization of
Lemma 3.2 in [6].

Lemma 4.8. Let n> 1 and a > n(zd), and recall that L > 2¢. For all polymers X

1, ifXeS

s < (2d+1) .
1L(X) < 0 (X) {a—l, if X ¢ 8.

(4.22)

Proof of Proposition 4.7. We begin with (iii): for any functional derivative, denoted
by subscript n, we have, by (4.15),

ID@)BO I llgq, <sup - D0 1 (X)ID(m)I(X)]l,,

L UsAp X:X=U

where Ay is an L-scale block; by Lemma 4.8,

< "sup Y %(X)D@)J(X),

AL x.%-4A;
d+1
< 2+sup > > wmX)D@)I(X)],
AL ACA; XDA
a+ +
< 7" Ltsup 3 4,(X) | D(n )J(X)lg = 0*" LY D(0)J gy
XDA

If J vanishes on small sets, then by Lemma 4.8 we can have an additional factor of a~! on
the right-hand side. Summing both sides over n times h™ proves (iii). The proof of (iv),
(v) is similar (in (v) we use L > 2¢). For part (i), note that, by the same arguments as in
the proof of Lemma 5.1 of [6], the terms with > 2 in (4.14) are bounded by O(||J]3 ,,),
so (iii) = (i). Part (ii) follows from (4.14) also.

Proof of Lemma 4.8. (a) X € S: Then X, X are connected, |X| < 2¢, hence v.(X) =
aixl S alxl g n(zd)(an_l)le S n(Zd)Fyu(X)‘

(b) X ¢ S, X connected: Induction hypothesis: v,(Y) < n(zd}'y,,(Y), VY connected
with |Y| < | X|. Induction step: since X connected, |X| > 2¢ and L > 2¢, there exists an
L-scale block Ay with |A; N X| > 2; therefore we can write X = X; U X; where X, X5
are connected, | X;NAL| > 1, [ XonAL > 1, )2'1 N }2’2= @; obviously | X;|, |X2| < |X] (so
we may apply the induction hypothesis), and |X;| + | X,| > |X| + 1, thus 7,(X) = ol <
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a~laXilal®al = a1y, (X))y0(Xy) < a '@, (X1)7,(X2) = a™ 9@, (X). This implies
the inductive hypothesis for | X|, but note that it is also the bound (4.22).

(c) X ¢ S, X disconnected: this case is reduced to the cases (a), (b) as in [6]. a
From Definition 4.6 the following is immediate.

Corollary 4.9. If J is analytic in u, A, for g, A, in a neighborhood of zero, and if we
expand J =p - J, + ZAa Ja 4+ O(4?, pAa, A2), then
BU) = u- BV + F e B

+ Mg BAJy, T
+ O(4?, pha, A2)- (4.23)

5 The RG step. Part I: Bounds on
Extraction/Reblocking/Rescaling

5.1 Survey of results

For the benefit of the reader we start with

5.1.1 A brief recapitulation of relevant notation/conventions

For given “rescaling length” L, L € {2,3,...}, given “separation parameter” J, J € Nj
such that L’ < |z; — ®3| < L’*! where x;,x; are the points where the observables are
pinned at, and given finite volume cutoff N, N € N such that N > (J + 1), the d-torus

A© is defined by A©® := [“—’2‘1,%]‘{. The j-times (0 < j £ N) rescaled volume AY)

; _ _iyd . :
is AU := [—_—I—’%i-f-, I‘(’; ﬂ] , and 2U) := L7z, do, by assumption, not lie on unit block

boundaries (because we make this hypothesis for z® = ).

For measuring the size of polymer activities on AY) we will rely on the specific large
field regulators G5 and GY),

Gs(X,¢) = exp (6{ 7, ||3‘¢||§(+%||3¢”gx})a 6§20, (5.11)

1<|u|<s

GY) = Gu, (5.1.2)
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and on the large set regulator T',,

T,(X) :=p (X)) = p X1 AXlga(X), A>1, (5.1.3)
(84(X) has been defined in Section 1.4, and we write
T, (X) = (Ar,)*1- 64(X) (5.14)

(so that Ar = A).

The parameters d (dimension), P (# of fields ¥,), c (the constant in Gs), s (the
“Sobolev index”), and the purely technical parameter 7 (to appear as I';, T';2, T';s, T1)
should be considered to be fixed once and for all. We impose only that

d>1, P22
and
c> a(d), s3> sod,P) (5.1.5)
ensuring that G obeys properties listed in Lemma 1.4.1 and for technical reasons
n>e. (5.1.6)

Our convention concerning “constants” is: Any dependence on parameters other than
the fixed d, P, ¢, s, n will be indicated explicitly.

5.1.2 Results

For K, O polymer activities on A, and C' a covariance, we write (O);x,c,
(O)nxe = (Znxc)™" [ duc(@)(E™X o O)(A, ¥*) (5.1.7)
ZA;K,C = /dﬂ €D+K A \I"/’)

for the expectation of @ w.r.t. the interaction K. Also, the truncated expectation of
0,0, “subject to the connected part O,5”, denoted by (O;; O2|O12)ak,c; is defined by

2

(01; 02| O12)pik.c i= (010 Oz + O)akc — [[{OQadrskc- (5.1.8)

a=1
The objective of Section 5 is to prove the following main result which summarizes Propo-
sition 5.5.5 and Theorem 5.5.9.

Theorem 5.1.1. Let k%) > 0, € > 0, and assume that L, A, H are large enough!®. Let
K be an I-type polymer activity on AY) whose norm | K@ |6 is small enough, and
let 0(’) be O-type polymer activities on AY) (pinned at a:(")) with
|0 lew rx < 0. Let C% be a covariance on H,(A?)/{constants}. Then, for 0 < j <
N-1:

13For more precision, see Theorem 5.5.9.
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(i) There exist I-type resp. O-type polymer activities SK resp. S 09 on AGHD (where
SKU) is defined by SKU := (rescaling) o (reblocking) o (extractionII)
o (extractionI)[KY)]) and there is a covariance SCU) on H,(AU+1)/{constants} such
that, if ZAU);K(:‘),C(n # 0,

(Op; Og)log))/\m;]{(i),co) = (SO?); SO&")lSO%))AG“).SKm sct) + Q%)(A(j)), (5.1.9)

() G)

where Ql is a polymer activity on AY) pinned at z;’ and z3

(ii) Let (GY)G,);-1 be the large field regulator (5.5.15) (see below) on AU+, For any
6 > 0, if L is large enough, we have

ISKV N\ orgy,iron < L7HPIKDlgorrm
I SOS) ”(GG) Ge)p-1.0y1 2H £ Lk “0,9) ”GG),P,H

IA

& - 2 o
||SO§12)||(c:(i)G()L_1 £, -1,2H < {”O%) ”Gm,F,H St H ||O¢(f ) ”G’(ﬂ,F,H}
a=1
L™%% 0<j<J-2
L—2d+6 J s J e
L9 J<j<N-1

In Section 5.2 we list, for easy reference, those hypotheses (on A, L, | K|z r 5, - - -) which
are assumed to hold in Sections 5.3-5.5 where Theorem 5.1.1 (and much more) is proven.

5.2 Hypotheses needed in Sections 5.3-5.5

In all of Sections 5.3-5.5, the hypotheses (1)-(4) below will tacitly be assumed to hold; in
particular, except from the statement of our main result (Theorem 5.5.9) they won’t be
mentioned in the statement of our lemmas, corollaries.

(1)
L > max{3,2%}. (5.2.1)

(2)
A > max {nzdﬂ, L‘”%} . (5.2.2)

(3) K is an I-type polymer activity on AY) whose norm | K9||¢e p y is “small enough.”
By this we mean that there exists an upper bound UB®) such that

IKP g < 5UBY, 523

with

j : logn—1) Cyy
r7TBY) < o C.n
UBY < Csp(L) := min {ep, 5 ( oo ) C’516
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Cia Cua(L)
Cs2’ Css

The constant er has been defined in (2.1). The other constants may be looked up
according to their subscripts.

(L 05.7(L))—1} . (5.2.4)

(4) O,(—,j). are O-type polymer activities on A?) (pinned at wf—;’)) with finite norm, i.e.,
0@ lgw,rm < oo

Definition 5.2.1. The regular, local, even polymer activity K is defined by

KD = p. KD+ ¥ 2, - 09, for p,\, € C. (5.2.5)

Remark. As mentioned in Section 4, we will assume w.l.g. that the constants C,; and
Cy3(L) obey
Caa(L) £ Cyy £ 1. (5.2.6)

5.3 Extraction I (&)
5.3.1 Existence

Recall the definition of K (5.2.5) and of the upper bound UBY in (5.2.3,5.2.4). The
triangle inequality tells us that, if

UBW /5
1Ko’

UBY) /5
109N o r
UBY /5
10D cor .1

we have ||I?(j)||cm’r,ﬁ < $UBY). Because of our hypothesis (5.2.3) on K0, the disk of p’s
specified by (5.3.1) contains the point p = 1. According to (5.2.4) we have UB®) < er, er
defined in (2.1), and obviously Ar > e (cf. (5.1.6) and (5.2.2)). Hence we may apply
Lemmas 2.1 and 2.2 to the regular, local, even polymer activity K and obtain

lp| < | Aa| <

y

[Aq] [A2] £ . (5.3.1)

Lemma 5.3.1. For y, ), as in (5.3.1) the polymer activities (;[K")] and &£[K)] exist,
are regular, local, even, and analytic in u, A,. Moreover

(a) 7 [KD] = Q[uKD)] and 7&[KY)] = &[pKY)]; these polymer activities are, for
i € R, of I-type (cf. Section 1.4).
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(b) 72 [KD)] and 75&,[KY)] are of O-type (cf. Section 1.4).

Proof. Properties (a), (b) for €, follow from (2.3) and from the fact that 7 K0 = uK0)
is I-type for real u, and that 7, KY) = O(’) is O-type. And now we use induction in |X| to
check (a), (b) for &;. O

Definition 5.3.2. The regular, local, even polymer activity w;[KY)] is recursively defined
by
w[K9)(X) = 0 [K9)(X) - b w[KD)(Y). (5.3.2)
C
#

Combining (2.3) and (5.3.2) one sees that w;[K()] has the Mayer expansion
w[K9)(X) =3 ;11—, ) (II K9(X,, ¥ = 0)) B X e K (5.3.3)

1121 * X]l"'l'X r=1
UX,=X

5.3.2 Bounds

Lemma 5.3.3. For pu, A, as in (5.3.1) w;[RU)] is analytic in u, A, and obeys
w[KD(X) = p-KY(X,0)+ Z,\ oY) (x,0)

M 3 09)(}{1, 0)09)(X,,0)

X\UXe=X
XiNXq#0

+O(u?, pAa, A2), (5.3.4)

lwr ENgr,n < Csa - IKDgopm Yg>1, h>0M (5.3.5)

Proof. (5.3.4) is obtained from (5.3.3).

Concerning (5.3.5) we first note that I',(UX,) < J]T,(X,) if the overlap graph on

(X1,...,Xy) is connected, because I, has a parameter Ar, > 1 (cf. (5.2.2)). Now, for any
921, h2>0,

lwrENgr,n = 1DO)wi[K]llyr,
= swp 3 L(XWrRN(X)] < X L
XDA n>1

g > 1 means: g(X,¢) > 1, igfg(X, #) = 1. W.Lg. we assume that C5, > 1.
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where

T, = lsup > Y (KX, e =0)- F,,(X.-)) 3L 2O S &1

' (
NP A xSA XipXa: \r
UX,=X

where we used (5.3.3), the fact that ¥ (X;,...,X,) = 0 unless the overlap graph on
(Xi,...,X,) is connected, and the submultiplicativity of T', mentioned before. The proof

of Theorem 3.4 in [B1] reveals that I, < 1Q" with

Q = X g ( X 1RO =0)) 1,00 - I

d>0

-, ~ 1
< ”K(J)”GU),F,H : Z(logn) . < '2',
d>0

because, according to (5.3.1), |[KD|| gy < $UBY with UBY) < l(logn —1)/logn (cf.
(5.2.4)); cf. also the proof of Lemma 2.1. a

Lemma 5.3.4. For &{KU)] we have
ERD)(X,¥) = p-(KO(X,¥) - KU(X,0)) + 3 Xa(09(X, ¥) - 0P (X,0))

e Y {00, v) - 07(X,,0))07(X3,0)

X1UXy=X
XlﬂX;)#ﬂ
+(1 = 2)} + O, pda, A2), (5.3.6)
I (Ellgorp .0 < Co2l EDlgor r.1r- (5.3.7)

Proof. (2.4) and Proposition 4.2 imply that &[KY)] = E[KY, R], RX) =
e~wiKOX) _ 1, (5.3.4) shows that

R(X) = —(r.h.5.(5.3.4) + M0 (X, 0000 (X,0) + O(2, pha, M),
which, together with Corollary 4.5, yields (5.3.6).

As regards (5.3.7), we proceed as follows: Because of (5.3.5), and because

. 4 .
IED g pm < gUB(J) <1
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(cf. (5.2.4)) we can estimate, for any g > 1, h >0,

1o = s 3 1,001 T S k01014

X>A k>1

< sup Y S (0,C01wlROI0D

XDAk>1

< Y (ol B o,

k>1
< Csp-e%. ||K(j) "GO‘),P,H- (5.3.8)

Hence, (5.2.3,5.2.4) tells us that ”R“GU),I",,,H < C4,; since (5.2.3,5.2.4) also implies that

I|K (j)”G(f),I‘,,,H < Cy1, we can apply Proposition 4.4 and (5.3.8) to get

b5} [j.;'(j)] llca L ”g[f{(j), R] ”GU)IT,I‘,'Q H
< Caa{l+Cs1-e%} - |KED| oo p g

5.4 Extraction II (&)
5.4.1 Existence

Combining Lemma 5.3.1 with Corollary 3.4.2 and Lemma 3.4.5 (and the fact that
EKD)(-, ¥ = 0) =0) and (3.4.3), we arrive at

Lemma 5.4.1. Let p, A, be as in (5.3.1); under this condition, the polymer activities
Qp[E[KD))) and &£;7[&;[KW]] exist and are regular, local, and even, and they are analytic
in p, A,. Furthermore

(a)
UENRIN(,0) = EnlE[KN)(0)=0. (541)

(b) QulE[KD)] = Qu[&[uK )] and 7€y (KD = E[Elp - KD); these polymer
activities are of I-type, if u € R.

() ma€nl&r[KVY]] are O-type.
(d)

gD+81|f{m] =eSurlér [R(j)]]gD+£I! [Er[E9) (5.4.2)



88 Brydges and Keller

By Definition 3.4.1, if X € § then

wnlEKON(X,9) = [ d2,(:)0,() - w@(X) (54.3)
, 1 y
wX) = 5 [IDln = 2NENKONX,C =05, ), (w0): (544
Therefore
QuE[KDM)(AD, ¥¢) = - ¥ 5-5‘;92@)- / d?28,0(2)8,¢(2),
AcA® 2 -
where

—6033([).) =8%, wffu)(Y)
YDA

Invariance of £[KY)] (cf. Lemma 5.3.1) implies that
§09)(A) = Ry,R,,605), (AE)
for all lattice symmetries E (cf. Section 1.4), and hence

600)(A) = 60 - §,,, 601 indep. of A.

Collecting everything we thus have

Corollary 5.4.2.

UEKONAD, 04) = 2 809 [ a*2(8,0)(2), (5.4.5)
with 5
bol) = _Z > N wEB(Y), any fixed A € AY), (5.4.6)
e
€

where wf{) has been given in (5.4.4).

5.4.2 Bounds

Lemma 5.4.3. For p as in (5.3.1), wy[£;[KY)]] is analytic in p and satisfies
wnl€[RO]) = p - LKD) — KO(, @ = 0)] + O(u2), (5.47)
and, for any € > 0,

1
e H?

lwrrlE RN lorpn < Cos (14— ) -l 1K gor-  (548)
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Moreover,

|60Y)| < Cs.q - 7 ”K(J)”GO’),[‘,H- (5.4.9)

Proof. Analyticity in g of wy[€;[KY]] has already been noticed in Lemma 5.4.1. And
Eqn. (5.4.7) follows from (3.4.1), Lemma 5.3.1(a) and (5.3.6).

Apply Lemma 4.1 of [6] to wy[£;[K?]]. As a result, one obtains (5.4.8) (use also
(5.3.7)).

(5.4.9) is an immediate consequence of (5.4.6) and of (5.3.7). o

Lemma 5.4.4. For pu, A, as in (5.3.1)
Eul&I[EM(X,¥) = p-ROKO(X,¥) - K9(X,0)]
+3 ha - (09 (X, 0) - 09 (X, 0))

“ax Y {0Px,v)
XjuXxX=X

X]ﬂXQ#ﬁ
- 0)(X,,0)) 08 (X5,0) + (1 e 2)}
+O(p?, pAa, A2). (5.4.10)
Define 7(S) by (cf. (4.11))
7(8) ;= maxmax {X € §: X > =}, (5.4.11)
Na] .’EEA(J)
and assume that € > 0, H, UBU obey
2- 05'3 () ‘T(S) -
. < . 5.4.12
Cr UBY < |1+ —35 ( )

Then

||g,,[£1[ﬂ’(j)]]||G(,.)G“P’F,H < Css- | K gora

+pl| KD g~ | 1+ ! > 14 75) (5.4.13)
I E o - Css O+ olH H? | =

Proof. By (3.4.6), £[&;[KY]] is a function of &,[€:[KY)] which, according to (3.4.1)-
(3.4.3) and (4.3)-(4.6), is a power series in £[K)] and

B e (e*wr{&[km” _ 1) .
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We begin by analyzing R.
R is independent of A,, thus by (5.4.7),
R = —(r.h.s(5.4.7)) + O(u?). (5.4.14)

As a prerequisite to bound R we need

Corollary 5.4.5. If K, K, are regular polymer activities, then, for any gy, g2, 71, 72, h,

”K1K2"glggmw,ll = ”Kl "911')‘2:11 ) ”K2"92,'n,h~ (5'4‘15)

Proof of Corollary. Use the definition of the norm (cf. Section 1.4). O

Thanks to (5.4.15) and because (T,2)} < Tz, (Gs)? = Gsja, we get

1 s k
”R"G,/,.(S),F,,Q,H p Z 767-! (“wll [81 [K(J)]] I Ge/irr ()T y2 ,H)

k>1

so that (5.4.8), the bound "k <e* and |u| |KED||gora < U

S ; 7(8)\ eCs. Nk
< Coa (14 S5 KO loorn- £ { (14 ﬁg)) ;3-UB°>} ,

k>0

which, together with the conditions (5.4.12) and C,,; < 1 implying that { } < ~21-, yields

(5)
eH?

<2-cCsa (14 22) il 1Ko (5.4.16)

Next, we take a look at &,[&/[KY]] = £[&[KY], R]. Due to (5.4.14), (5.3.6), and
Corollary 4.5, we find
EnlEK(X, ) = p-(1- LK (X, ¥) - KO(X,0)]
+Z,\ (09(x,¥v) — 09 (x,0))
“ake Y {00 (x0,9)
X1UXe=X
X1NX,#0
— 09(%,,00)08(X,,0) + (1 2)}
+0O (12, pAa, A2); (5.4.17)

combined with (3.4.6) and Theorem 3.1.1, part (i), this yields (5.4.10).
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(5.3.7), the standard bound ”f{(j)”c(i),r,n < tUBUY) (cf. (5.3.1)) and (5.2.4) guarantee
that IIS][KU)]“G(J')’P’F’H < Cyy- (5.4.16), (5.3.1), and (5.4.12) imply that for any 7 <
7(S5), |IRllG,,rz2.n < Cu1. Thus we may apply Proposition 4.4 and get

||5}1 [51 [R U)]] ”G'(J')G‘,F,F,H

2 g (S ;
< Ciz {C's.zllK(")”co),r,H +2eCss - (1 + eETP)) -yl - "K(J)”GU),I‘,H}

_ (S .
< Gss- 18w+ 1+ 53) - bl 1K o} (5.4.18)

Abbreviate £;[£;[KD]] by &£};. Write 1&}; = 10&};-1(X € S) + &) 1(X ¢ S). Using
(3.4.6) and (3.3.10) we have &; = (1 — 1)&); + 10&; - (X ¢ S) + RO [né&}; - 1(X € S));
hence, using Theorem 3.1.1(iii) with £ = 1, € — &U) + ¢, we obtain

||£11”GU)G¢,I‘,,3,H < HE}IHGG)GHP,;,H

C C(d)
+||T0€11||GU)G¢,[‘”3,H (1 +C(d) - (1 u m) ‘

Combining this with (5.4.18) we arrive at (5.4.13). a

5.5 Reblocking, Rescaling (S)

In this section we assume that 7 < N.

5.5.1 Existence

Definition 5.5.1. Let J be a regular polymer activity defined on L-scale polymers. The
1-scale regular polymer activity S[J] is defined by

S[J)(X, ) == J(XL, VL), (5.5.1)

where X; := L?X, (¥1)u(z) := L~ -W@, (L 'x).
Corollary 5.5.2.

(a) J is local/real/even/invariant iff S[J] is so.

(b) J is pinned at z iff S[J] is pinned at L™'2.
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(c) For any g,7,h,
”S[J] ”9,%’1 = “‘]”g[,,‘n;,hLa (5.52)

where «; has been defined in Section 4, hy in (3.3.1), and gz is given by

9L( X1, #1) := 9(X, ¢)

Definition 5.5.3. For p, A, as in (5.3.1) we define the regular, local, even polymer activity
SKY on AGH) by

SKY .= S0 Bo &y o0 &[KY), (5.5.3)
where the reblocking operation B (resp. some of its properties) has been described in
Definition 4.6 (resp. in Proposition 4.7 and in Corollary 4.9). Evidently, Skw is analytic

in p, A, and we set
SK(J) — ToSkU)|#=]
09 = 1,8KY|... (5.5.4)

In addition,

912 (Q + Q7 0 &)[EW)
OV = Q9 0P =00, (5.5.5)

Corollary 5.5.4. SKU is I-type; SOQ) are O-type, pinned at L=U+Dgs.
Recall the notation set up in (5.1.7) and (5.1.8).

Proposition 5.5.5. Let C) be a covariance on H,(AY))/{constants}. Define SC?) on
H,(AU+D)/{constants} by

[ dhsco(@)SIFIAY, w9)

J dpci (¢)eQrroti KAL) pAG) g#)

[ dpoi) (@) eurofilKD)AD,¥4) (5.5.6)

Assume that Z,) x5 oty # 0. Then we have

(09,0910 0x000 = (SOP; SOP SO wn.5x00 509
+0(A9). (5.5.7)
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Proof. Because, by hypothesis, Z,u.x¢ ot # 0 it is immediate that, for |A,| small enough,

Jdpci(d)E EH’KG)(AU), U%) at p:= 1 is nonzero and at least C® in ),. Consequently,
(07; 09109 s,k 0,060 = Tialog ( f dpce (9)E7E (A, ‘I’¢')) :

Now recall that £7+KP e goténcti K9 (of (5.5.5), (2.4), and (3.4.3), (3.4.7)), and that

E0+EoE KD — g0u+Botnoi KD (gee (4.17)). Using also that U) = Q) + Q7 0 &, where £

is W-independent and Q;; o & is A,-independent, and (5.5.6), (5.5.3,5.5.5) we finally get
(5.5.7). O

Corollary 5.5.6. Assume the covariance C) on H,(AY))/{constants} is given by

j ] 1) | — 1 T— X(.p)
CO(z,y) = CY(z —y) := [AD|TT Y ¥ y)pz 5 (5.5.8)
pe(AD)
p#0

where x > 0 is as specified in Section 1.4, and o) > 0. Then,

: : : 2/ L?)
SCU)(z — y) = |AGHD|1 £iP(z-Y) _ x(r/ ‘ (5.5.9)
( = | PE(/%’I))" p? - (o) + 800 - x(p?/L?))
p#0
Proof. Use (5.5.6) and Corollary 5.4.2. O

5.5.2 Bounds

Lemma 5.5.7. For p, A, as in (5.3.1)

SKY = 4.S0BORWVKO(., w) - KO(.,0))

+3 s - S o BOOY(., ¥) — 0F(-,0)]

+XM1A2 ¢ =S o BM >, (09 (X;, )
X1NXg=-
XlnXg#ﬁ

— 09(X,,0))0(X;,0) + (1 « 2)
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+ 8 0 BA[OY(-, &) — 00)(-,0)), (OF(-, ¥) — OF(-,0))]

+O(L, tAa, A2). (5.5.10)
If e > 0, H, UBY) satisfy e.g., the conditions (5.4.12) and
4Css . r(S)\
UBY < [1+ =2 5.5.11
i _,( + 6H2) ( )
and if k), H obey
k9. H? > 1, (5.5.12)

then there exists Cs7(L) such that

e ()
||SKJ ”(CU)G‘)L_I L -1.2H < Cs4(L), (5.5.13)

where the large field regulator (GY)G,);1 is defined in accordance with (5.5.2), i.e., such
that

(GVG) ) = GYIG.. (5.5.14)

Remarks. (1) It is easy to check that (cf. (5.1.1), (5.1.2))
(GYG) (X, ¢)

= exp ((nb‘) +9) { > LMol + Z"l.“;“a(ﬁ"?ax}) . (651
lul=1

(2) The regulators (GYG) - = (Gyi)pe) 1 and T, are weaker than Gy, and T'. The

fact that S}{O) can be usefully bounded w.r.t. the stronger norm
)l (GG, 1 T, 1 ,2H will be employed later on to control the result of the fluctuation
integral w.r.t. the weaker, but sought-for, norm ||( - )ll¢ g, 0.z

(3) We assume w.l.g. that Cs7(L) > 1.

Proof. Use (5.5.3), (4.23), and (5.4.10) to check (5.5.10). The bound (5.5.13) emerges in
the following way: By (5.5.3), (5.5.2), and (5.5.14), and because L > 4 implies 2H; < H,
we have

P (j) ~ q .
ISKE™ w6, 5,1 20 < I BEH[EIK (’)]]]||cu>c€,(rn_l),,,n-

Because of (5.4.13), (5.3.1), (5.2.3,5.2.4), and (5.5.11), (5.5.12), we conclude that (r.h.s.
(5.4.13) < C43(L). Hence we may apply Proposition 4.7(i), with § — n* and v — T,
(note that Ar _, > (7)) due to (5.2.2)), to continue with

< Cua- L Cys(L). a



Brydges and Keller 95

Lemma 5.5.8. For g, A, as in (5.3.1), write
SK? = - SK? + 3 As - SED + O(2, phas N2).

If k9, H, L obey

K0) . g2 > [P (5.5.16)
then (recall that J € Ny has been defined by L' < |z; — x| < L7H)
-~ (j) 1 o
ISK, ey, r,aon < Css- L8 |1ED o rm (5.5.17)
~ (]) _ 3
”S'Ka "(GG)GJL—I,F,,-L?H < Gsg- L ®s ”0.:(3)"0'0'),1“,}1; (5-5-18)

IA

2
2kt ; ;
15K Dlcos, st am < Con {10@ Moo + TLIOPNoosn

a=1

L ifj=J-1 (5.5.19)

L %3 if0<j<J—2
L% fJ<j<N-1

[In the last equation a stronger decay can be obtained by choosing A larger in T'.]

Proof. (1) We begin with the proof of (5.5.17). The explicit formula for Skf) can be
looked up in (5.5.10). Write AK®) := KO)(-,¥) — K0)(-,0) and AKS = AKD - 1(X €
S), AK[(:J) = AKU)—AKé’). With this notation, with (5.5.2) and the linearity of R, B®
we have

r7.-()
” SK;A ”(GU)G.-)Lq £Ly-1.2H

=z 2, ”BO)[RM)[AKg)]]|IGU>G..,(P,,_1)L,2HL- (5.5.20)
p=5.C

(1a) 8 = L term in (5.5.20): Due to (3.3.10) we have R(d){AKg)] N AKE); i
(£19) (with 4 2 o), and. tesoll thet A, > L3 (cf. (5.2.2)), that GG, > GO and
that 2H; < H to get

IBOROAKY Neoc,r, .yam, <7

d+1

_1 i
«L7% ”AKL(:J) lcorm-

We continue with ||AKE)||9,7,;, < JAKD)| 40, and with [JAKD | g5 < 2| KD||g 5 for any
¢ > 1with g6 =0) =1,

(1b) B = S term in (5.5.20): Apply (4.19) and GYG, > GY), 2H, < H, with £:= L/4,
to obtain

IBOROAKowe, g, <77 L IRIBK o pm,-
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Use Theorem 3.1.1, part (iii), and (5.5.16) and ||AKg)||Gg),P’H < 2| K9 go)p g to arrive
at (5.5.17).

(2) Proof of (5.5.18): We use the same notation as before. Then, according to (5.5.10),
(5.5.2), and (4.20),

- (7) 1 i
ISKS e, m,om <17 - 180Plgo ra,-
Apply Lemma 4.3 of [6] to proceed

£d+2P—2

d

and use (5.5.16) to obtain (5.5.18).
(3) Proof of (5.5.19): Notation as before. Use (5.5.10), (5.5.2) to see that

(i) i
||SK12 ”(GUJG’E)L_I T-1.2H < ||B(1)[Aogjz)]”(:w,(r,,_l)L,H,

N B Z AOEj)(Xl) ) O§f)(X2,0) + (1« 2)
X1uXy=
XiNXa#¢ GO(T,-1)1,He
+ |B®a0Y, A0Y| lew 1.1, @52

(3a) 0 < j < J —2: Then |z¥) — 2¥)| > L7~7 > L2 > 4L > 2%; hence AOY (X € S) =
0, > AO?)(X]) . Og")(Xg, 0) = 0, and upon application of (4.20), (4.21) we get

XiUX,=XeS
XiNXz#4¢

< " (A L) {I120R N co r m,

. 2 .
+{1A0P | co i, + (1= 2} + ] llAOS’llcm,r,H,} :

a=1

And now we apply once more Lemma 4.3 of [6] (to generate a decay factor L~%), and
(5.2.2) provides us with an additional (in principle arbitrarily strong) decay factor from
(Ar,.,)"" so that (5.5.19) can be established.

(8b) 5 = J — 1: Since |:c?) — a:gj)| > L > 2¢ the B(V-terms on the r.h.s. of (5.5.21)
can be bounded as before. When estimating the B®-term, however, (4.21) yields only a
factor 1 (instead of (Ap”_,)'l); this loss is compensated by applying Lemma 4.3 of [6] to

both factors in [] A0 ¢o ra,-

a=1,2

3c) J £ 7 < N —1: Proceed as in (3a); but instead of the factor (Ar )~ we only get
n 1

1 because |z — z{)| is too small. ]
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Without loss of generality we will assume that
2. Cyg < 4556 (5.5.22)
(cf. (5.4.8), (5.4.13) and (5.4.12), (5.5.11)). Define C59(L) by (cf. (5.5.11))
Cso(L) := 2 - 4% /Cy3(L). (5.5.23)

We now collect the results of Lemmas 5.5.7, 5.5.8. For the sake of clarity of our

statement we will, for the first time in this section, explicitly state the hypotheses (1)-(4)
of Section 5.2.

Theorem 5.5.9. Assume that L, A, H, k9, ¢, UBY) and | KW || g 1 4, I|Og)||cu),p,g satisfy
the conditions'®

(a)
L>2%", (5.5.24)
(b) d+2 1
A> max{n® , L%},
(c) ‘ ; |
(”K(J)“GG),F,H)‘ < UB(]) < Cﬁ.O(L)a (5'5'25)
(d) |
1O fewr .z < o0y V15,
and
(e) |
k) . H? > L2 (5.5.26)
()
Cso(L) - UBY < min{1 i (5.5.27)
5.9 >m ) T(S) ’ s

where Cso(L), Cs9(L) have been defined in (5.2.4), (5.5.23).

Then the I-type polymer activity SK©) and the O-type polyn.ler activities S Og ) (cf.
(5.5.4)) obey the bounds

ISKD ey, aon < Coio L% |K9 o p (5.5.28)
180 o6y, 1k, v on < Csao L7 10PN 6o v (5.5.29)

1*We wish to remind the reader that conditions (a)-(d) (or, rather, the somewhat weaker forms (1)-(4) in

Section 5.2.) have so far always been assumed to hold, but according to our rules we didn’t mention them
explicitly.
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. 5 2 -
1500903, < Coro- { 10PN+ 11 ||ofz>ncm,p,ﬁ}

a=1

L™ j=J-1 (5.5.30)

L¥3, 0<j<J-2
L4, J<j<N-1.

Proof. First of all: Note that (5.5.24) = (5.2.1); (5.5.25) = (5.2.3,5.2.4) because UBY) <
3; hence the hypotheses in Section 5.2 hold; (5.5.24) and (5.5.26) = (5.5.12); (5.5.27) =
(5.4.12) and (5.5.11); hence we may apply Lemmas 5.5.7 and 5.5.8.

We will write |[KY)| instead of ||K(j)][cg),r,ﬂ, and similarly for ||(’)((,J)||

Define & := } [KD|%, 6, := : ”(,)m |4 Due to (5.5.25) and UBY < 1, we have 6 > &
(the important point is that & is strictly larger than 1, uniformly in ||K@|; the precise
value of the lower bound for &, here % is irrelevant). Thus, the curve Cs, :={p € C: |u| =

8o} enclosed the points 0 and 1 and is, by (5.5.25), contained in the disk (5.3.1); moreover,

max
HECSE,

<1 < -
M"ll— +60—1 (_3)

is bounded from above, uniformly in |KY||. Evidently, for A; = 0 the curve Cs, = {2 €
C: |Ag| = 6,} is contained in the set (5.3.1), and similarly for Cj,.

(1) Proof of (5.5.28): Because “11 (1 + ——) (and thus = i+ #—12 + ’—‘—2(;—_1)—), and
since SK obeys SRU)Iy:AQzD =0 (cf. (5.5.10)) and SK# = ;,,%SKU)@:AFO (cf. Lemma
5.5.8), we have the following contour integral representation for SK:

| d
SKO = (2mi)! f . o2 1SK o
Csy

- d
= SKY 4+ (2mi)™! f = = ( ) SEY|, . (5.5.31)
Cs, I -1

Applying Lemmas 5.5.7 and 5.5.8 we obtain
|ISKU)||(GO)G¢)L_1 T, 1 2H < Csg- L77||KD)

+ Cs7(L)- (60) max

HeCs,

_H
ln—1||’
which, together with (5.5.25) (implying that |[KW)|% - Cs+(L) < L™1), leads to (5.5.28).

(2) Proof of (5.5.29) for o« = 1: Again by —1 1 =+ #(ﬂ Ty
; o dA du )
SO = (2mi)>? - 4 K™ o=
1 ( 7”') G, (Al)z Cay 1 — IS |z\2—0

o 2 dA dp
= SK 2 SK -0} 5.5.32
1+ (2mi) C, (A1)2 f;"éo u? \ p— 1 |)\2 0 ( )
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and now we employ once more Lemmas 5.5.7 and 5.5.8 and (5.5.25).

(3) Proof of (5.5.30): Apart from the fact that the contours Cs, now have to be chosen
more carefully, the proof is completely analogous to (1), (2); hence we content ourselves
with pointing out a possible choice of circles Cs, (Cs, stays the same as before). Set

2
5194

K|t

(3a) by, by > (bi2)?: Then we define the radii &;,8; by (8a)" := by.
(3b) (b12)? > by, b, : Here we set (6,)7" := (byp)?.

(3¢) b > (bio)? = by : = (6)71 := by, (65" := max {by, b2}.

(3d) by > (b1z)? > by 1= (8,)7F :=by, (6)7" := max {b;, 32}

This choice of 6, is useful because it (and (5.5.25)) guarantee that

(1) A1, Ap with |A,| = &, belong to the set (5.3.1),

(i) 67167 < const - [|[KO|2(|0F| + T 109). O

As a conclusion we see that the bounds (5.5.28)-(5.5.30) have been obtained by

(i) a careful estimate on the leading order contributions Skf), S~Kg) (cf. (5.5.31),

(5.5.32)) which are first order, resp. zeroth order in K, as given in Lemma 5.5.8;

(ii) a rather simple estimate on the higher order remainder (represented by the contour
integrals in (5.5.31), (5.5.32)) for which only a suitable choice of contours, the unde-
tailed “nonperturbative” bound (5.5.13) and a sufficiently small |[KY | qu rpy were
needed.

6 The RG step. Part II: Fluctuation integral (F)

6.1 Summary

For a relevant collection of notation/conventions, the reader is referred to Section 5.1. In
order to avoid misunderstandings, however, one important remark has to be added: In
contrast to Sections 2-5, in Sections 6 and 7 the momentum space UV cutoff function x
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(cf. Section 1.4) will enter the game. x has been chosen once and for all and dependence
of “constants” on x will not be indicated explicitly (just as we did so far and continue to
do with d, P, ¢, s,7).

Making use of the results of Section 5, that is of Proposition 5.5.5 and Theorem 5.5.9,
the main goal of this chapter is to prove the

Theorem 6.1.1. Assume that L, A, H are large enough'® and that «¢) > 0 is small
enough. Let KU) be an I-type polymer activity on AY) whose norm | K (j)”Gn(i)’F’H is
small enough, and let OY) be O-type polymer activities on AU) (pinned at L~7z;) with
nof-j’||ckm,p,;, < 0o. Let j obey 0 < j € N —1; and let, for £ = j,j + 1, C® be the
covariance on H,(A(®))/{constants} whose Fourier transform, C)(p), is given by C)(p) =

x(®*)/(c®-p*), p #0. Assume that o > 1 and that |o() —gU*1)| is small enough. Under
these conditions we find:

(i) There are I-type, resp. O-type, polymer activities K0+, resp. O¢*Y on AU+ such
that, if ZAO‘);KG),CU) # 0,

(09; 0f )IO%)>AU);KU),CU) = (oY oY +1)|Og+1))AU+1);KU+1),C(J'+l)
+08)(A9),

where Q%) is a polymer activity on AY) pinned at L~7x;, L7z;; moreover,
ZA(,5+1);K(1+1),C(,~+1) == 1)

(ii) Assume that e > O(H™%-(| K| ¢ m,p,H)%). Then, for any § > 0, if L is large enough,
LU+) and OY™ obey the bounds

. 4 .
IK9 D6y o < L77 |KDg o rm
1096 o < L N0Pe gy rm

1046, on < {||0§]2)||cxg),r,H+HHOS)”GKG).F,H}

a=1
L2413, 0<j<J-2
LM j=7-1
L J<j<N-1.

The contents of Sections 6.1-6.5 are mostly independent of the previous sections, and a
vague familiarity with Sections 2-5 is sufficient to understand Section 6. In Sections 6.1-6.5
we assume that j < N, and that C%,CU*Y) are as in Theorem 6.1.1, i.e., for £ = j,5 +1,

2
CO(z—y):=|AOT 3 ) ’(‘é” )2. (6.1.1)
pe (A(e))* g\ -p
p#0

16Cf, Theorem 6.5.4 for more details.
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6.2 Deforming the covariance

Definition 6.2.1. For given ¢0) and 6§00), we set (cf. Corollary 5.5.6)
aUt) .= 5U) 11550 (6.2.1)
For £ € [1, L] we define the covariance CZ) on H,(AU+D)/{constants} by
x(p* &)
pao (=700 5 (1-x (7 B)]

where 7 could be “any” function with (1) = 1 and n(L) = 0; for the sake of simplicity
we choose 7 to be linear, i.e., () := (L —£)/(L — 1).

Cp) =

(6.2.2)

Corollary 6.2.2. C9 = sc@, ¢9) = cG+). 1f ¢ > 0 and oU*+) > 0, then C > 0, V2.

Proof. The first two identities are obvious (c¢f. (6.1.1) and Corollary 5.5.6). To prove
C'tp) >0: Use 0 < x <1 (cf Section 1.4); if 660 < 0, then 60 [aUtD) < 0; if 66 > 0,
then oUtD) = ¢\) 4 §5) > 86U thus (fg%) <1. O

Definition 6.2.3. For 1 < ¢ < ¢ < L we put

cd=cP - . (6.2.3)

Corollary 6.2.4. If L > 2, ¢U*) > 0 and |§g%’7

< 1, then

¢ > o. (6.2.4)

Proof. The idea is to show that %C? ) < 0 which implies that C(;’% =~ df”ﬁcg) > 0.
Since
~1

. _ o) 2
40 = (aw{l_w(z) - gm(l—x(w))})

£ (%.X(m),, {1_W(e)jgff)}_ 1 6aﬁ>,x(w)-(1—x(w)))

2 L —1g0+D) x

z=p? ,az_

the above hypotheses, and the condition that x'(z) < —1x(z) - (1 — x(z)) for = > 0 (cf.
Section 1.4), lead to the result we sought. O
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Definition 6.2.5. The symbol pg, % is defined by

(18, = F)( f dny (§)F (W + V). (6.2.5)

Definition 6.2.6. For £ € [1, L] we define the large field regulator (Gs)s/. by

o /g 2mD) 1 |
(Golu(X, 6) = exp (6 { > (7)) e+ ;Znaasn%x}) . (626)

lui=1
This definition is consistent with the definition of (Gs) ;-1 given in (5.5.14) (cf. (5.5.15).

Evidently, for £ = L we have
(Gs)1 = Gs. (6.2.7)

Lemma 6.2.7. Assume that o0+D) > 1, —5%— .Let s>2, ¢>0, L>2. Then there

are Ce1(L) > 0, Kmax(L) > 0 such that for all thh 0 € k £ Kpax(L) and all £, ¢ with
1<¢<?¢ <L

(M(tf])z * (Gy)(X, ¢) - £ CarL)IX]
< (Goey(X, ¢) - (£)C DXy X ¢ AU g, (6.2.8)

Proof. (6.2.8) follows if we can prove that

??Z (1) * (Cepn) (X, ¢) - £EHXT) > 0 (6.2.9)

for some suitable function v(k) (which, as we claim, can be chosen to be linear homogeneous
in k); and (6.2.9) in turn is true if

9 v(k)-|X]|

(Gan(x. o)™ {388+ 5+ L Gk 20 vk, G210

where

A= [ dedtygiCiie - g iy

The Lh.s. of (6.2.10) is a sum of ¢u-dependent and of ¢-independent terms, and we want
to achieve the inequality (6.2.10) for both types of terms separately.
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(a) The ¢-independent terms: They are given by the L.h.s. of the next inequality and
can be bounded as

58%108(Gx )+ LI > o n)- (13141220 1 Wiz,

where

b(L) :== > sup

1<|uj<s It

using |0X| < 2d|X| we thus can set v(k) = Cq1(L) - & in order to arrive at (6.2.10).

(027 308 =)

(b) The ¢-dependent terms: Those originating from Z(Gx)y . are of order x and can
be used to dominate, for small enough &, the remaining ¢-dependent terms (which are of
order x?) if we employ Young’s convolution inequahty and if, in order to bound the terms
of the form &2 [y d®z [, dd'y('?;‘qﬁ(a:)a;‘lrﬁ( )oueu 2 C(’)(m — y), we integrate by parts in z to
produce boundary integrals. O

6.3 A general existence theorem

The result in this section, Lemma 6.3.2, on the existence of F will enable us to define
KU+, O(J *1) in Section 6. 4, but it is very weak. Much better bounds will be obtained in

Section 6.5 by estimating the flow equation obeyed by the activities FrK ) 1<V <L,
as in [6]. Lemma 6.3.2 could also be proved using the flow equation.

Let K, be a regular polymer activity on A, analytic in p, A; and obeying | K llgy,1,6 < 00
for p, As in a neighborhood U of zero. Let g, be a large field regulator and g, represent
a Gaussian measure with mean 0 and covariance C;; with

H21 % g1 < g2 (6.3.1)
Definition 6.3.1.
1T = max max ||| (6.3.2)
where
1T,] == max |0, ()] (6.3.3)

Finally, we set
dist(¥) := igf | — @9 (6.3.4)
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Lemma 6.3.2. There exists a unique polymer activity K», regular for all ¥ with dist(¥) <
h, such that ) )
ETUX, W) = (o * ETH)(X, T) (6.3.5)

for all X C A, and ¥ with dist(¥) < h. Moreover:

(a) K, is analytic in p, As in a neighborhood U of zero.
(b) K, is local/even/real = the same holds for K.

(c) K, and ph12 are invariant = K, is invariant.

(d) 70K, is I-type and p, o-invariant = 10K, is I-type.

(e) 1.K, are O-type = 72 K> are O-type.

Sketch of proof. If we show that, for dist(¥) < h, the integral I(X, W) = (po *
EPHKN) (X, U) exists, is regular, and exhibits properties analogous to (a)-(e), then, using
I(0,¥) =1 and induction in | X]|, the claim for K, follows.

Fix ¥ with dist(¥) < h; we will show that I(X, V) exists. First, since dist(¥) < h
there exists ¢’ such that | ¥ — ¥¥|| < h. Write ¥ = ¥¥ + A and perform the Taylor
series expansion of £7+¥1(X, ¥ + ¥¢) in A around A = 0. In this way, and applying the

2

inequality ||J; o Jallg1n < |A* - [] I Jillg,1,n, We obtain

i=1

sup(g1(X, ¢ + ¢)) € (X, U 4+ 09)| < |A| - eAHIKillaaa,
¢.¢'
Therefore, applying (6.3.1) yields

|I(X,¥)] < j dpic,, (8)91(X, ¢ + ) (a1 (X, 6 + ¢')) 7 |€7HF (X, T + T9)]
< go(X,d) - |A] - MK llgn,

In a similar way one can prove regularity and analyticity in u, As; and now the (analogues
of the) properties (b)-(e) follow immediately. o

6.4 Definition of KU+D, og+1)
Definition 6.4.1. The regular, local, even polymer activity f';K(j) on AG* is defined by

FEY = p- SKD + ¥ A, - SOY, for p, As € C. (6.4.1)
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As a consequence of Proposition 5.5.5, Theorem 5.5.9 and Corollaries 6.2.2, 6.2.4, and
Lemmas 6.2.7 and 6.3.2, we find

Theorem 6.4.2. Let 0 < j < N — 1 and assume:

(a) Hypotheses of Theorem 5.5.9,

. 1 |66@] 1
(G+1) 5 = -l
(C) &9 +ex "max(L) (643)

Then:

(i).For all £ with 1 < £’ < L, there exists a unique regular, local, even polymer activity
FuK m, regular for all ¥ with dist(¥) < 2H, analytic in g, A, € C, such that

gEH—TJKG) —_ (ﬂéjf,)l * £D+.'F1-KG)) . (6.44)

(ii) KU+ is I-type and OY*" are O-type (pinned at L~0+Vzx,), where

KUt .= TofI:K(j)|u=1

odt = FKY,., (6.4.5)
(iii) Assume also Zparx6 o0 # 0. Then Zygay g oo # 0 (and vice versa) and

(Ogj); Og)log)h(i);]((i),c(i)
= (09 0F +1)IO%H))AUH);KGH),CUH) + 08 (AD). (6.4.6)

6.5 Bounds on KU+) oY+l

Recall the definition of the function 84 : Ny — R, (cf. Section 1.4), which is involved in
the definition of the large set regulator T. It is easy to verify that for n € N,
Ba(n) < A9 . n@loe(4) (6.5.1)

If C: A x A — C is sufficiently smooth we set

ICll, ==sup 3 v(AUAY-C(A,4), (6.5.2)
ACA AlCA
where
C(AA) = sup |048L C (z, 2')). (6.5.3)
1<|p#| <P

z? € A*
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Corollary 6.5.1. Let Ut > %, fg—% < ;11-. There is Ce2(L, A, Q) such that
L 8 i CG.Z(Ls A! Q)
¢ | —c e AL 6.5.4
/1 nae' Mo, ~ 16 (6.5.4)
Proof. Use (6.5.1). The details are left to the reader. O

Next, we note that if p,\, are as in (5.3.1), and if L2 > Csyq, then (cf. (6.4.1),

(5.5.28)-(5.5.30) "

H]:]K “(GNU).,..-)IIL’F,,—I 2H S UB(J)a (655)

because g_g_@_ <1 (cf. (5.2.4)). Therefore we get

Lemma 6.5.2. For pu, A, as in (5.3.1), and under the conditions

(a) hypotheses (a)-(c¢) of Theorem 6.4.2,
(b) L > (Cs10)?,

(c) H? > UBY . Ces(L, A, Q),

(d) LOmDETH <,

we find that -
|FL K l g, rr < 1.

Proof. Use Theorem B of [6] or equivalently Theorem 7.1 of [3] in conjunction with
Lemma 6.2.7, (6.2.7), (6.5.5), and (c) of Corollary 6.5.1, and the fact that UBY) <1. O

Lemma 6.5.3. Expand

-G -G ~ 5D
fLKU) = (fLK(J))u +2 Aa (-TLK(J Ja + O, phas Aq)-

a

If we impose:

(i) conditions (a) and (d) of Lemma 6.5.2,
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(11) H2 ,_>__ L% . 06.2(L1 A, Q))

then

~ ) ;

” (fLK )#”G,‘(_,-)“,F,H < ”SK(J)”(GA(JM‘)UL,P,,—! 2H (6‘5'6)
=)

|| (fLK )a ”GI:(J’)-H’F’H S ”SO "(G (J').H)I/L’rn"l 12H (6'5'7)
~y-(7)

" (‘FLK )12||G~(_,")+€,I‘.H = ”3012 ||(CK(_,1+E)1/L,F,,—1,2H

+L_% ) H “S(Og)”(G‘(_q)_,_‘);/z;,r‘,,—lﬁﬂ' (6.5.8)

Remark. The factor L% in (6.5.8) is gained thanks to condition (ii). We chose this power
of L in order to match it to the % appearing in L1 in (5.5.30).

Proof. (a) Due to (6.4.1), (6.4.4) we have (f;K(j))F = (u([i)l * SKU)). Therefore, making
use of (6.2.8) and assumption (d), the proof of (6.5.6) runs as follows:

| (FEY), le e, (6.5.9)
= Y H%sup Y T(X)sup(Gu(X,9))"
n A4 XoA ¢
(JA

D) (FLE (X, 9%) - 1a]

IA

Z Hu Sup Z P(X) Sup(GnU)+e (X’ ¢))_1
n A XoA ¢

; A
JEZAGICRIAC SRR (e SR

ID()SKY)(X, ¥ + ¥¥) - 14|

IA

S H"sup 3 T(X) -0 ID@)SKO Xl 9,
X>A

= 15Kl g, pur,

(b) In precisely the same way one proves, for 1 < £ < L, that (FLK U)) (pt, 1% S00))
and that, for z € {0, 1},

a G) a\’ ;
(BH) " (E’K )a "(G,‘(J),,.‘)l‘/L’(F)t'/LsH < (ﬁ[’) "SO&J) ||(G,€m+‘)1/n,1",,—l - (6.5.10)
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where .
(x9) +€)-Ce.1 (L) | X]|

(O)eys(X) :=T(X) - (7) ,

thereby establishing, among others, inequality (6.5.7).

( ) Proof of (6.5.8): As is evident from (6.4. 1) and (6.4.4) we have (.7-'L~KU))12 = (,u,(L’)1 *

)—l—(u(’) +(SOD o 5097))— (u(’)*(SO(J)) (,u )+ SOY)). This formula can be rewritten
as

L 9
(FiEM) 1 = (uf) + 50D) — ]1 dec% {68 (U] » S0P o (ud) + 5O0P))} . (6.5.11)

The first term on the r.h.s. of (6.5.11) can be estimated as before. As regards the
2" term on the rhs. of (6.5.11): Writing AY) := [dizdiz’ 3 3"(9“ CO(z —

1<|p#|<P

we have (cf. (6.2.3)) 2(u¥) * F)(X,¥) = 1A (uf), + F)(X, ¥) and

oL "

z) 6 6
5\1@(:.:) 50 ()

240} + F)(X, ¥) = ~AQP () + F)(X, ), hence

(2 term on r.hss. of (6.5.11)) f de u), + [(FE D))o, COUFED))e), (65.12)
where
((J)e, C(J2)e] f diads Y HOC(z, o)
1<|w#|<P

0 d
' (w,.(x) Jl) ° (wm')h) '
The r.h.s. of (6.5.12) can be bounded in much the same way as (f;K{j)),,, using (6.5.2),
(6.5.3), and (6.5.10). We obtain

L8
lehs. (6.5.12)]c, ra f1 d@”azcgl)

d .
. H 5;1_”SQ('])”(G,cu)ﬂ)n/L,F,,_l H- (6.5.13)
Next, we use (6.5.4) (which is guaranteed by condition (a)) and the fact that for any J

1 1 2
= dh——= |||l -p £ = - ]|, 2,
SV = 3 B g s < - 1

so that (6.5.13) may be continued as

Coa(L, A, Q _
< %__)- H ”SOc(r]) ”(Cx(,')“)l/;,,l"ﬂ-l 2H -

Taking into account the condition (ii) we thus arrive at (6.5.8). a
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In Lemma 6.5.2 we established, for g, ), as in (5.3.1), a nondetailed upper bound on
|FLK U)||G &, D> and in the previous lemma we showed that there is an easy way to

obtain useful estimates on the interesting leading order parts of F, LK . We now combine

these pieces of information with the analyticity J:LK in p,A, (cf. Theorem 6.4.2) in
order to bound KU1, OE;’ ) The method is exactly the same as the one applied in the
proof of Theorem 5.5.9 and hence we omit all the details here. As a result one obtains

Theorem 6.5.4. Assume that 0 < j < N — 1, that the covariances CY), CU+!) obey
C9(p) = x(p*)/(o®@ - p?) for £ = j,j+1 and p # 0, and that the following conditions hold:

(a) Hypotheses of Theorem 5.5.9

50(.17
4

4

(b) oD > 7,

(€) 69 + € < Kpax(L)

(d) L > (Cs.10)?

(e) H? > Lt - Cea(L, A, Q)
(f) LOW69+a <

Then the polymer activities K0+), OY*Y obey

1B e, rr < Cos- LK Dlg_g0m (6.5.14)
|og+y le g, rn < Ces- L~09¢ D H (6.5.15)
104 e 5, 5 < Coa {10R N+ I 109lc s, m}
a=1
L %3 ifo<j<J—2
L, ifj=J-1 (6.5.16)
L4,  ifJ<j<N-1

7 Conclusions

In this final section we will evaluate the information gathered in Theorems 6.4.2 and
6.5.4. In Section 7.1 we will show that the so-far unspecified parameters L, A,..., can
indeed be fixed in a way which is consistent with the conditions mentioned in Theorem
6.5.4, and so that the RG transformation (K0, 09, 1)) — (KU+D, ¢, CG+)) can be
iterated. And in Section 7.2 we will prove our upper bound on the correlation function
(O(O) 0(0) |012 )A(°> ;K@ ,c) -
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7.1 Iterating the RG transformation

Recall, first of all, that the parameters d, s, c, P, 77 and the UV cutoff x have been fixed (cf.
Section 1.4). These being given, we now give one possible method to choose the parameters
L,A,Q, H kY, e. Note that, in what follows, all the choices made in item (n) depend at

most on those made in (1),(2),...,(n — 1) (and on d, s,c,..., naturally).
(1)
(a) Choose é with 0 < § < :‘]7:- (7.1.1)
(b) Choose @ > 1. (7.1.2)

(2) Choose L > L,;,, where

Lyin := max {2d+], (05.10)2, 2(}__6), (Cs.s)%} . (7.1.3)
(3) (a) Choose
A > max{n®", L+1}. (7.1.4)
(b) Choose £© with 0 < k@ < {0 | where
.1
K0 = min { ~nia(L), logy (m)/(2 - Coa(L))) (7.1.5)
and define .
] .
kD = k0O p (7.1.6)
i=0
and
€= =£0.27771 (7.1.7)

(4) Choose H > Hy;,, where

L4+2P-2\ 2 .
H,;, := max (W) (LY - Cea(L, A, Q)7 Y. (7.1.8)

Recall that, given z;, 2, € R? with |z; — z3| > 1 and given L, the parameter J € Ny
was defined by L’ < |z; — 23| < L7*!. Furthermore, given L, the initial torus A is

determined by N € N (as A©® = [—%, %]d).

Definition 7.1.1. For ¢ € R we set

p(L, H, xO) o) := min {(Cs.o(L))4, (min {1’ 2—7’(5
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Clearly, p(L, H,£®,0) > 0 iff o > 1.

Theorem 7.1.2. Choose the parameters L, A, Q, H, kY, € as in (1)-(4) above. Fix z;,x,
and let N > (J+1). Let C® be the y-regularized inverse Laplacian on A©® with dielectric
constant 0 > 1 1" Let K©® be an I-type polymer activity on A® obeying

||K(0)||Gﬂ(ﬁ,,r,y < p(L, H,9, 6y,

and let O be O-type polymer activities on A® with
”OC(’!O)“G,:(OJ INH < .

Then we can iterate the RG transformation (K@, 0 c@®) — (KO, oM cy ... (N -
1)-times. For 0 < j < N, the x-regularized inverse Laplacian on AU), CU), has dielectric
constant

g=t 1
) = 5o > =
o g +§ a2 5’

where 60 has been defined in (5.4.6), and K@ ©Y satisfy the bounds (recall that &
obeys 0 < § < 3 (cf. (7.1.1)) ‘

1K yrw < LFEOKDg ry (7.1.10)
Hog)ncxe),r,n < L'j(d"s)IIOf,O)Ilc;x(o),r,H (7.1.11)

10 Ne grn < L2 {L-G10Q)6 , rn

2
+ ] 1109 ||G,(u),r,H} ,if0<i<T-1, (7.1.12)
=] .

a

10PNe grm < LHEO-@0GD. o AL ENIDOP| g rn

2
+ 11 ||<9£,°>||cx(u),r,ﬂ} ,if J<j<N. (7.1.13)
a=1

Proof. The proof is carried out by induction in j, using Theorem 6.5.4 and the bound
(5.4.9). It is very easy to work out the details and hence we leave this task to the reader
(in particular, one sees that C;; < 4). a

"We need o(® > % because of condition (b) in Theorem 6.5.4. Actually, any strictly positive lower bound
would have been acceptable as well (e.g., ¢(® > 10729), but for the sake of simplicity we chose % throughout
Section 6.
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7.2 Bounding the correlation function

Remember the definition (5.5.5) of the polymer activity Q%).

Lemma 7.2.1. Hypotheses:

(a) Conditions as in Theorem 7.1.2, but we strengthen (7.1.4) by

(b) A > max {nzm, Lz‘“'%} .

Then we find, for 0 < j < N:

QP (A < iml—a:zr”-cn(L)-{m—zﬁ-||<9§3’||c,=@,,r,n

} {L”j, 0<j<J-1

0)
+ H ||O ||C o H L25.L(d~5)(j4.1), J<j<N.

a=1

(7.2.1)

Proof. (1) According to (5.5.5) and (5.3.2):

QDAY = rpU[KO)AD) ey = 3 maawr [KO)(X) s
XcAal)

is pinned at m(J) and a:gj), so the sum Z really extends only over those X which contain
Xcal)

both mgj) and :ngj). Let zr:= min TI,(X), and assume that z obeys 1 < z < zr. Then
X:)?Bzgj),xz

90(AD)] < Y | [KO)(X)| at p=1
XcA®
)o(azsj),a:g}
<z Y g |mw[K9)(X)] at p =1
XcAD

PERONT)

< 27w [KD||,pom at p=1, forallg>1, h>0.  (7.2.2)

(2) If j > J we put z := 1. Otherwise, if j < J, we set z := zp; since Ar, > 24t
(and therefore (Ar,)X! > |X|%*1), and since 4(n) > A&} for n € N (cf. Section
1.4), with A > L**3 (implying that 64(n) > n2¥*1), one concludes (exercise!) that
2> |:ng) _ mgi)12d+%'
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(3) For p, A, as in (5.3.1), w;[KY)] is analytic in g, A, (cf. Lemma 5.3.3); choosing the
contours Cj,, Cs, as in part (3) of the proof of Theorem 5.5.9 we have

TKZWI[RU)]|p=1 = T12wI[R(j)]p=0

s [ dA Do [ duf .
CON R T - e DI

Applying (5.3.4) to the first term on the r.h.s. of (7.2.3) we get

2
17120 (BN ucollgr,m < 10N 6o rar + T 10Dl gor p -

a=]

The contour integral is estimated using (cf. (5.3.5), (5.3.1)) [lwi[K O|lg,r, b < Cs.1 and (cf.
(5.5.25)) I1K9|gorpm < 1.

(4) Finally, we combine the results of (1)-(3) with (7.1.11), (7.1.12, 7.1.13) and with
L~ < L. |z — z|7! to arrive at (7.2.1). o

Lemma 7.2.2. Let C, be the covariance on H,(A™))/{constants} whose Fourier transform
is C,(p) = x(p¥)/(c-p*), p#0,and ¢ > o’ > 0. Let s > 1, ¢ > 0. Then there are
Cr3(0") 2 0 and &, (¢’) > 0 such that for all & with 0 < & < k], (0'), all £, ¥ with
0<t<t <landalle>o"

(Bew-nc, * Geet) (A, 9) - 5O < G, (A, ) - ), v g, (7.2.4)

Proof. Analogous to the one of Lemma 6.2.7. a

Definition 7.2.3.

1
: = K == 7.2.5
Bowe = K (7' =5) (7.2.5)
1
Crs = Cqs (0" = 5) . (7.2.6)

Theorem 7.2.4. Under the conditions listed in Theorem 7.1.2, but restricting A, k®,
IK@| g o7 even further by replacing

(a) (7.1.4) by A4 > max {727, L%+4} | (7.2.7)
1
(b) the r.h.s. of (7.1.5) by min{r.h.s.(7.1.5), §nillu}, (7.2.8)

(c) the r.h.s. of (7.1.9) by min{r.h.s.(7.1.9), %e—%‘“"%}, (7.2.9)
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we find that Zyo.x0 co # 0 and that
|(O§0);Ogo)w&g))z\(o);mo),cm)I < |lwy — 22|72 - Cr4(L, 6)

_1 2
{nwl = 2] - |OQ6 vt + TT 1O 0 ¢ - (7.2.10)
a=1

Remark. Instead of |z; — ,||~% we could achieve ||z; — x5~ for any fixed r > 0 by
choosing A, H sufficently large and |K©||¢ «.T,# sufficiently small.

Proof. (1) By Theorem 7.1.2 we have o™ > 1 and, by (7.2.8) and (7.1.6), ™ < k[,

hence we may apply Lemma 7.2.2 to see that f dpcw ()G (A, ¢) < erMCrs < 20 073.
As a consequence, using (7.2.9) and (7.1.10), we get

Zym.gmew = 1 +fduc(~)(¢)K(N)(A,\I"”)

> 1- [ dugen(#)Gun(8,9) - 1K™l g
1

> 1 7.2.11
z & ( )

In particular, we see that Zym.xm cwy # 0, and therefore, by induction in j starting at
J=N, Zyo,xo o #0forall0 < j < N.

(2) Abbreviate (-)sm.xm cm by (-)n. Using (5.1.8) (and the fact that A®™) is a single
block) and (7.2.11), Lemma 7.2.2, (7.1.5) (telling us that 2k < k., (L)) and (7.1.11),
(7.1.12, 7.1.13), L™ < |z; — xo|™! - L, we obtain

oM, oM |o% )

237 (2 [ drem( @O (0,99~ T1 [ dhcon(@)0L(8,9%))

xO).
< 4-e 07.3{“0 ||G(~)PH+H||O(N)||G(MPH}

< CLu(L) |z — x| 2@0) . [~N-I)d-)

- {m — ool - 10Q N6 et + T110O6 0 m} . (72.12)

(3) By our hypotheses, the conditions of Theorem 6.4.2 are fulfilled, and Z; # 0 (ac-
cording to (1) above). Hence we may apply (6.4.6), (7.2.1), and (7.2.12) to get

(O, 00Dy < Zlﬂ (AD)| + (0, oMo u |
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< my — xo|"HD . Y (L) (7.2.13)
2
{1081c 1121~ 2 + 110Dl 10
a=1

J-1 N-1
; [Z |21 — 22| BL% + Y |&y — ag| X LHI-4-0G-T) 4 [-E-HWN- J)] ,
j=0 j=J

which, upon taking into account |z; — z2|™' < L™ and |z; — x| < ||&; — 227! - VA (cf.
Section 1.4), immediately yields (7.2.10). U
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