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(5. I. 1994)

Abstract. We prove a theorem which generalizes Poisson convergence for sums of
independent random variables taking the values 0 and 1 to a type of “Gibbs
convergence” for strongly correlated random variables. The theorem is then used to
develop a lattice-to-continuum theory for statistical mechanics.

0. Introduction
The Poisson Convergence Theorem (Corollary 1.1 below) has a statistical mechanical
interpretation. Let A be the intersection of a fixed rectangle in R4 with the d-dimensional lattice
n—1 Z4d regarded as a subset of R4. For each site m € A associate the Bernoulli random variable
X5, which takes the value 1 if a particle is present at m (with probability pZ ) and the value 0
otherwise. The distribution of the collection { X7, }of independent random variables may be
thought of as the Gibbs distribution for an ideal gas on the lattice A. If we let n approach
infinity, so that the lattice spacing decreases to zero, and if we maintain for each n approximately
the same average density of particles in A, then the Poisson Convergence Theorem says that the
lattice ideal gas distributions converge weakly to the standard Gibbs distribution for an ideal gas
in the continuum.

On physical grounds, one expects that a similar convergence result holds for interacting
particles. This would amount to a generalization of the Poisson Convergence Theorem for



Chayes and Klein 31

certain sums of strongly correlated (essentially Gibbs distributed) random variables. The main
parameter now becomes a kind of “chemical activity” z; instead of p,. In the case of
independent random variables considered in the Poisson Convergence Theorem, z, = p;(1-
p? )1 and an analysis based on these quantities produces an estimate on the rate of convergence
that is sharper than the standard fare when the sum of the z!, = p7 (1-pZ)-! is less than 2.

Our generalization, in the form of Theorem 1.1, allows us to develop a lattice-to-
continuum theory of classical statistical mechanics including some results for the infinite volume
case, i.e., a lattice-to-continuum theory for the thermodynamic limit. In particular we find a
potentially useful criterion for the existence of a first-order phase transition in hard-core
continuum models in terms of related lattice models.

In Section 1, we introduce notation and state and prove our generalization of the Poisson
Convergence Theorem. Section 2 is devoted to applications to statistical mechanics.

1. Gibbs Convergence

d
Let AcRdbea rectangle with volume |Al. For each integer n, letd(n) = 1__[di (n) where each d;
i=1
d(n)
is an increasing positive integer valued function. Let |Alz, = EZ; where z_ > 0 for each m

m=]

and n. Assume that the collection { z], } is chosen so that A may be partitioned into a regular

z

array of d(n) subrectangles { S, ..., S, }with vol. of (S],) = v(S}) = —. For each m and n, let
Zn
q, € S;. We will consider a sequence of functions (fi) satisfying:
Condition 1.1
a. fo=1
b. For each k > 1, fg(xq, x2, . . . , Xk) is a nonnegative function, Riemann integrable on Ak,
satisfying:

1. fx is a symmetric function for each k, i.e.,

fk(Xo(1)s X6(2)s - - - » Xo(k)) = fk(x1, X2, . . ., Xk) for any permutation o.
ii. There exists a constant C such that fx(xy, X2, . . . , xi) < Ck for allk > 0.
. fx(x1, X2, . . . , Xp) = 0 if xj = x; for some i # j.

Remark 1.1 Condition iii above restricts fx on a set of Lebesgue measure zero and is therefore
not necessary in what follows. We include it because it simplifies some of the discussion below
and because it is satisfied by our applications of Theorem 1.1.
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Theorem 1.1 Let X7, 1 <m < d(n), be random variables each taking only the values O and 1
with density function

d(n)

P{X] = a1, s Xy = adm)} =< £(Q5--05,) Hl(ZZ.)"“ (L.1)
where each aj =0 or 1 and the indicies on the right side are determined by
k= d(zn:am= iaim. Assume
" " zZn —-—z>0 and max T 0 (1.2)
Define
Sp=X{+-+ X, (1.3)

Define a nonnegative integer valued random variable S by the density function,

zk

£ (xe0%,) dx;---dx,

PS=k) = ,,k' % (1.4)
2 j £, (XX, dXgeedX,
=0
Then Sy = S, i.e., Sy converges weakly to S.
proof.
PSa=k)= Y P{X]=aj, .. Xj,=2am} (1.5)
2y +tagm =k
(z )k n n k n
f.@qi a5 | vESE) (1.6)
Z(n) {iy sy )C(1,2,....d(n)) * g "

where Z(n)~1 is the constant of proportionality in (1.1). By Condition 1.1,

(Z )k d(n) d(n)

k
e RRD R ACHEp] § KO

P(Sn=K) = 1 i T T (1.7)

y &) >z 3 £ ] )r[v<s“
k=0

=l =l

The numerator in (1.7) is a Riemann sum converging to the numerator in (1.4). The convergence
of the denominator in (1.7) to the denominator in (1.4) follows from Condition 1.1 and the
Lebesque Dominated Convergence Theorem. il
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Corollary 1.1 (Poisson Convergence Theorem) Let {d(1), d(2),...} be an increasing sequence of
positive integers. For 1 <m <d(n), let X" =1 with probability p; and X} = 0 with probability
1-p,. Let { X7, ..., X{.,} be independent. Assume

d(n)

Y ph ——==—z>0and (max p — 0. LetSp= X[+ - -+ Xj,. Then
mel m n

k

P(Sp = k) ——> ez i ‘ (1.8)

proof. Let A =[0, 1] cR. Define z = p? (1-p2)-1. Then (1.2) holds. Also,

d(n)
d(n) H(Z )y d(n)
P{X] = a1, ... Xi,=adm)} = [[[2.P% + 1 -2, )1-po)] = &5— o [] L)
m=l [Ta+zy =
m=1

where aj =0 or 1. Choose the q], € S, to be distinct, but otherwise arbitrary, and
fn(x1, X2, . . . , Xp) = 1 whenever the points {x;} are distinct (and otherwise
fa(x1, X2, . . ., Xp) = 0). By Theorem 1.1,

zk

PTLY e 2

P(Sp=k) ——— KL e (1.9)
YE[ 1 dxdx, '
azo n!J00

since fn(X1, X2, . . . , Xp) = 1 almost surely. §

Remark 1.2 Our method of proof provides an estimate for the rate of convergence for Corollary
1.1. For simplicity and with no loss of generality, let d(n) =n. Since f, <1,

(Z ) z z k(qll ’qlk)nv(sn ) < Mnl (Z ) (1‘10)

ip=l  iy=1 m=]

Replacing f, by 1 on the left side of (1.10) and subtracting the volume of all subrectangles along
any diagonal of [0, 1]k gives

Z) & 3 s @ (e (zY
_k_'z...sz(qh ol )Hv(s )2 e [ (2]2(-—” (1.11)

*ogp=l =l m=1

for k 2 2. Straightforward manipulations then give,



34 Chayes and Klein

o @)
P(Sp =k) < k! , (1.12)

[I i} ((:3 1)!][1 R )2]

k n n 2
P(S, =k) > e %-')—[1-(;) (Z—] ] (1.13)

fork 2 2. In the case that z, = 2121 =z, by (1.13),

m=1

and

k-2

P(S =k)—P(Sp=K) _% wz(kl 2)'2( oy (1.14)

for k 2 2, and otherwise the left side is <0. If A = {k : P(S =k) - P(S, =k) 20}, then

- _ = n 2 . n 2 .
; [P(S=k)-P(Sp=k)] < Z; > (k 2),2( ) < ;(Z, ). (1.15)
Therefore, the total variation norm,
i IP(S =k) = P(Sp =k)l < i(z?)z (1.16)
k=0 i=1

By contrast, using different methods, C. Stein [S], eq. (43) pg. 89 (see also Chen [C], Hodges
and LeCam [H-L], and Durret [D] ), has shown that if ) p} =z, then

i=1

oo

Y IP(S =k) - P(Sp = k)| < 2 min(z1, 1)i(p;‘)2 (1.17)

k=0

Therefore, when Zz =z and (1- max p] Y2 < min (2, 2/z), our estimate is sharper than
_1 m n

(1.17). We note that Zp‘l‘ =z and Zzﬁ, = z are mutually exclusive and our estimate (1.16) can

i=1 m=1

also be derived using the methods of [H-L].

2. Lattice to Continuum Statistical Mechanics
We begin with a description of the finite volume continuum theory of classical statistical
mechanics.
For a Borel measurable subset A — R4, let X(A) denote the set of all locally finite subsets
~of A. X(A) represents configurations of identical particles in A. We let & denote the empty
configuration. Let By be the o-field on X(A) generated by all sets of the form {se X(A): Is N B|
= m}, where B runs over all bounded Borel subsets of A, m runs over the set of nonnegative
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integers, and | - | denotes cardinality. We let (Q, S) = (X(R9), Brd). For a configuration x € Q,
letxp=xNA.

A Hamiltonian H is an S measurable map from the set of finite configurations Qg in Q to
(-o0, o0] of the form

Ix]

Hx) =Y, D.on() @1
N=2 TN

where the function ¢n on configurations of cardinality N is an N-body potential. The
configuration x in (2.1) is coordinatized by x = {x1, X2, ... , X|xi}. For xe X(A), we will
sometimes write Hy (x) instead of H(x). Define the interaction energy between x € X(A) and
s N AC by

W)=Y Y o) (2.2)

N=2

yNxeQDeyNs
lyl=N,ycxvs

where we write xvs to mean the configuration x U (s N A°). We will sometimes write
W(x | s) when x and s are located in disjoint regions. Define
Hp (x1s) = HA(x) + W (x]s) (2.3)
For a bounded Borel set A, let IAl denote the Lebesgue measure of A. The symbol | | may
therefore represent cardinality or Lebesgue measure, but the meaning will always be clear from
the context. For eachie Zd, let
Qi={re R&:k-12 <ik <K+ 12, k=1,....d}
so that the unit cubes {Q;} partition Rd. Define Ixjl=Ix | =Ix N Qjl.
We assume that H satisfies the following:
Condition 2.1
a) H is translation invariant
b) H is stable, i.e., H(x) = - K Ix| for some K = 0 and all xe Qf
¢) H(x) is lower regular. For any A and A which are each finite unions of unit cubes
withx c Ajand s c Ay,

Wxls) 2= Y Y i Ixi sy

ieAjeA,
where K > 0, A > d are fixed.

d) H(x) is tempered. There exists Ry > 0 such that with the same notation as in part ¢,
assuming A1 and A3 are separated by a distance R, or more,

W(x|s) SK Y Y Il Ix{ s

ieA; jeA,
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e) exp{—Pn(X1, . . . , Xp) } is Riemann integrable in any closed rectangle of Rdn for
alln=>2.

Temperedness and lower regularity allow W(xls) to be defined when s is an infinite
configuration of particles. We assume in this section that the configuration s is chosen so that
W(x | s) is finite.
Let XN(A) be the set of configurations of cardinality N in A and let

T: AN — XN(A) be the map which takes the ordered N-tuple (xi, . . . , XN) to the (unordered) set
{X1,...,xN}. In a natural way T defines an equivalence relation on AN and XnN(A) may be
regarded as the set of equivalence classes induced by T. For n =1, 2, 3, ..., let d"x be the
projection of nd-dimensional Lebesgue measure onto Xn(A) under the projection T: AN —
XN(A). The measure d°x assigns mass 1 to Xg(A) = {J}. The unnormalized Poisson measure
on (X(A), Bp) with parameter z, interpreted here as fugacity, is given by

v, (dx) = Z%d“x (2.4)
n=0 ***

If AN A= where A and A are Borel sets, then (X(A), Ba, vA) X (X(A), Ba, vA) may be
identified with (X(A U A), BAUA, VAUA) Via XA X XA = XA U XA.
The grandcanonical partition function in A with boundary configuration s is defined by

Z,(s)= j exp{-BH(xIs)}v, (dx)= i%jl\ exp{-BH(x,,...,x,Is)} dx,---dx, (2.5)
n=0 %+

X(A)

where B in inverse temperature. The pressure p(B, z, A) for the Hamiltonian H in A is given by

In Z(D)

Bp(B, z, A) = T

(2.6)

For a a bounded Borel set A in Rd and a configuration s in AC, the finite volume Gibbs state
with boundary configuration s for H, >0, and z is

exp{-BH(xls)}
Z,(s)

The probability that there are k particles in a Borel subset I' of A may be determined by

integrating the characteristic function for the set { x < A: Ixn I'l = k} with respect to GA( dx | s).

6, (dxls) =

v, (dx) @2.7)

We now describe lattice theories of statistical mechanics in finite volume in a form
suitable for Theorem 2.1 below.
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d
Let {S2 } be a partition of R4 by translates of H((),-l-] by linear combinations of the
n

i=l

) ) ) m
standard basis vectors with coefficients of the form — where m € Z. For each m and n choose
n

apoint g, € S and define Q(n) = {q}}. For example, Q(n) = lZd c R4, Let A be a Jordan-
n

measurable set in R4 (i.e. A is bounded and the boundary of A has Lebesgue measure zero).

Remark 2.1 The Hamiltonian H(x) restricted to Q(n) NA can be rewritten in a form more
commonly associated with lattice models. Let the integer n be fixed. For each lattice site
q.,€ Q(n) associate the occupation variable (or “spin” variable) sy, which takes the value 1 if a
particle is present at q,, and takes the value 0 otherwise. Let s denote the configuration
(81, --- » Sd(n)) in the rectangle Q(n) NA such that sj = 1 if and only if j € {iy, ..., ix}. Then we
may identify
k
H(s) = H(q] ,....q;, ) = E Z.Ihjz.__jmsjlsh---sj

m=2 jy<jp < <j

where Jj;.iz"'jm= (pm (q;‘l "”,q;m )‘

The grandcanonical partition function ZA (n, s) for the lattice gas on Q(n) NA with the
Hamiltonian H given by (2.1) restricted to Q(n) NA, inverse temperature 8, and fugacity z is
given by '

IQ(n)NAL 5 k
ZA(n,8)= 2 ('T) ZCXP{‘BH(Q?, - 18)} (2.8)
k=0 NI/ ygn gt tcQmnA

The grandcanonical pressure is then,

_ In Z(n,@)
BPn(B, z, A) - 1Q(1’l) A Aln-d

The finite volume Gibbs state is defined on the measurable space ({0, 1}QM NA B (n)) where
BA(n) is the o-field consisting of all subsets of {0, 1}QM NA  Elements of {0, 1}QM NA may
be identified in an obvious way with subsets of Q(n) NA. The finite volume Gibbs state
OA( 1s)p with boundary configuration s is given by

G, (Bls), = 2 exp{—BH(ql S)}( __Z.d_ )Iql 5105

£ Z,ns) \n

where B e BA(n). The probability that there are k particles in a subset I' of Q(n) NA may be
determined by integrating the characteristic function for the set { x € Q(n) NA: IxN T'l = k} with
respect to GA( dx | s)g.

(2.9)
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Definition 2.1 Let Ac Rd be Jordan-measurable. The sequence of lattice Gibbs states

{oA( Is)p} converges weakly to the continuum Gibbs state GA( | s) if for any Jordan-measurable
set I contained in A, the probability according to 6A( | s), that there are exactly k particles in
Q(n) NI" converges to the probability according to 6A( |s) that there are exactly k particles in I,
as n approaches infinity.

Theorem 2.1 For a fixed Jordan-measurable Ac R4, as n — eo,
a) the lattice partition function Z (n, s) converges to the continuum partition function
ZA(s).
b) the lattice pressures pp(B, z, A) converge to the continuum pressure p(p, z, A)
c) for any s, the lattice Gibbs states oA( | s) converge weakly to the continuum Gibbs
states GA( |s).

d
proof. Let A = H[ai,bi] be a closed rectangle with integer vertices a; and bj containing A. For

i=l

convenience relabel {q,, } sothat Qm) N A ={qy, ..., Qg }-

a) Define random variables{ X, } associated with the lattice sites { q;, } taking the values 0 and 1
d(n)
with distribution P{ X} =ay, ..., X3,,=an} = £,(q],....q}. ) [ [ (z5)*" where
m=]1
z,=zn4 and f,(q},....q} )= X, (@ ....q] Yexp{-B H ((q} ,-...q],)Is)} and where ¥,.is the
characteristic function for AK and k is determined as in (1.1). Then fi satisfies Condition 1.1. If
we define as in Theorem 1.1 S, = X7+ - - - + X{ _/, then by Theorem 1.1,
ZA(n,s)=P(Sp=0)"1 5 PS =0)-1=2Z4(s). (2.11)
b) This follows immediately from part a and the continuity of the logarithm.
c) Let I" be a Jordan measurable subset of A and let m be a nonnegative integer. With the
notation of Theorem 1.1, let z! = zn—4 and

£,(q 595, )= Xpmyarpyen A5 565, Dexp{-P H(q;.....q5, 19},
where ¥ .. — (q; ,-...q;, D=1 provided g ,....q; }NAl=m and
i{q; ,..-.q;, }NAN] = k — m; otherwise ; JE—— dq; ,.--,q; h=0.
The collection {fx} satisfies Condition 1.1. By Theorem 1.1, P(S, = 0)-1 — P(S = 0)-L.
Combining this with part a shows that,

IQ(n)NAl z k
ZA (na S)_l 2 (F) sz (Q: ,---,Q?, )
LH

k=0 ,...,q?k 1€Q(n)NA

converges asn — oo {0
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o k
z
ZAOT Y o f o) e,
k=0 ™

In other words, the probability according to oA( | s), that there are exactly m particles in
Q(n)NI" converges to the probability according to oA( | s) that there are exactly m particles in I,
as n approaches infinity. il

We now show how the finite volume lattice approximation of the continuum pressure
may be extended to the infinite volume case, i.e., after taking the thermodynamic limit. For
simplicity we assume that our Hamiltonian H is given by a pair potential with a hard-core of
radius R. This has the effect of limiting the number of particles which can accumulate in any

unit cube Q;j in R4, The lattice and continuum infinite volume pressures are given respectively
by
In Z,(n,)

=B 13 _
Pa(B, 2) =B~ lim Q@) AR (2.12)
and
p(B, z)=p-1 lim % (2.13)

where limit may be taken via an increasing sequence of cubes centered at the origin.

Theorem 2.2 If H is determined by a pair potential with hard-core radius R satisfying Condition
2.1, then limpy(B, z) = p(P, z) for each B, z > 0.

proof. Let A be a cube centered at the origin containing an integer number of unit cubes of the
form Q;. Let A be partitioned into cubes {Ax)} of equal size and integer dimensions. The size
and number of these cubes will be determined below. Assume that A is large enough to make
the partitions we describe below possible. With this notation we may write,

ZAD) = j [T expt-BH(x N A Jexpl-4BW(x N A, Ix N A])}v, (dx) (2.14)
k k

From the hard-core assumption and Condition 2.1c,

WENAIxNA})2-N’K D Ylli-jr* (2.15)

i:QcAy jQ cAf

for some integer N, and the bound on the right side is the same for all k. Therefore,
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i:QcA, 3:Q cAL

ZAD) < chp{2 N’K 2 2”1 jir } jHexp{—-BH(x NA )V, (dx)

—Hexp{ N’K Y Yli-jir *}Hz @) (2.16)

Qi CA, j:Q;cAf
because of the product structure of vo. An inequality analogous to (2.16) holds with ZA(&) and
Z, (D) replaced by ZA(n, @) and Z, (n,D) respectively.

To obtain lower bounds for ZA () and Za(n, &), we partition A differently. Necessarily,
the hard-core diameter 2R of the Hamiltonian H is less than Rg, where Rq is the constant
appearing in Condition 2.1d. Define x € A to be a “corridor point” if x lies within a distance
3R of some Ak not containing x or within a distance +Rg of A€ and let C be the collection of
all corridor points. Then A is partitioned by the sets C and a collection { Bk} of disjoint cubes of
equal size with each By a proper subset of some Ax. Any two cubes Bj and Bj are separated by a
distance of at least Rg. Let D¢ denote the event {xc A: xNC = &}, i.e., there are no particles in
C. Then

Za@) 2 I exp{-BH()V, (dx)

= j [T expt- |3H(x AB )}Hexp[ LBW(x "B, Ix "B}V, (dx) @.17)

C

By Condition 2.1d and the fact that Bx < Ay,

W(xNBIxNB)SN’K Y Y lli—jir (2.18)

i:Q;CA jQ;cAg

It follows that

i:QicAy jQ;cAf B k

ZAD) 2 chp{—ENzK Y Dli-jir }jncxp{—ﬂﬂ(ank)}vA(dx)

iQ;cA, jQJCAt
An inequality analogous to (2.19) holds with ZA(J) and Z, () replaced by Za(n, &) and
Z,, (n, D) respectively.
Combining (2.16) and (2.19) gives for any k,

1 1
-l-A—Iln ZAD) - —A—Iln Zpa(n, D) <
1

—InZ (@)—mln Zy, (n, D)+ —BNZK Y, Y-t (2.20)

!Akl lQJCAkJQJCAt

—chp{——NzK Y, i }HZBK(Q) (2.19)
k
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Taking the limit as the cube A increases to R gives
Bp(ﬁ$ Z) - BPn(B, Z) <

IB, I 1 5 "y
A (D) = ——In Z; (n ®)+—BNK hi—jir* (2.21)
| | A, IB I ° .Q.EE“A.,QchAt
Now given € > 0, choose fixed Ak and By large enough so that :
—BN’K Y Dli-jit<e (2.22)
'A ! iQicA, j:Q;cA}
B, |
>1-¢ 223
™ (223)
1 1
|—InZ, (8) - —In Z I 2.24
A" oa () =g in 7, @)l <e (AL
For such fixed Ax and Bg choose n sufficiently large (using Theorem 2.1b) so that
1 1
l—InZ, (J) -—InZ, (n,d)I<e 2.25
B, " 25 @)~ 2y, (0.0) Ll

Combining (2.21) through (2. 25) gives,
Bp(B. 2) - Bpa(B, z

Hence,

A I (2.26)

BR(B. )~ Boa(B, 2) SeIn Z, (@) + 3¢ @27)

k

Since { ﬁ—iln Z A, (D) }is a bounded sequence for all Ag with integer vertices, it follows that
k

liminf pn(B, z) > p(B, 2) (2.28)
An analogous argument shows that limsuppn(B, z) < p(B, z) which establishes the theorem. i

A probability measure ¢ on (€2, S) is a continuum Gibbs state (or infinite volume

continuum Gibbs state) for H, B, and z if it satisfies the DLR equations, i.e., if
o (I f(xvs) op(dx | s)) = o(f) (2.29)

for every bounded S-measurable function f from Q to R and every bounded Borel set A. The
definition of infinite volume Gibbs states for the lattice models we consider is completely
analogous. '

For any of the grandcanonical lattice or continuum models we consider, a first order
phase transition is said to occur if the (infinite volume) pressure fails to be differentiable as a
function of the chemical potential p = B-llog z at some point (Bg, Mg). In case the pressure is not
differentiable with respect to p at the point (Bg, Ho), there exist two translation-invariant Gibbs
states whose expectations of the number of particles in a unit cube are equal respectively to
Dp(Bo. ho) and D+p(Bo, no), where D+ (resp. D-) denotes the right-hand derivative (resp. the
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left-hand derivative) with respect to |, and where p may be either the lattice or continuum
pressure, which we now regard as a function of B, u instead of P, z (see, e.g., [K-Y] and the
references contained therein). The quantity D+p(Bg, no) — D-p(Bo, Ho) is therefore the gap
between the high density and low density states of matter which can co-exist in equilibrium at
the values Bo, lg of the inverse temperature and chemical potential.

The following theorem may be useful in proving the existence of first-order phase
transitions for continuum models of statistical mechanics.

Theorem 2.3 Assume that the Hamiltonian H is determined by a pair potential with a hard-core
and that it satisfies Condition 2.1. If each element in a subsequence of lattice pressures (on
lattices of the form Q(n)) exhibits a first order phase transition at B, i, with the gap between the
high density and low density states bounded below by a positive number, and (By, Hn) — (B, W),
then the continuum pressure exhibits a first order phase transition at B, y with the same lower
bound on the gap between high density and low density states.

proof. It is routine to check that if (Px(t)) is a sequence of convex functions defined on a open
interval I of the real line and (Px(t)) converges pointwise to a convex function P(t) and txy—tpe,
then Pg(tx) — P(tp) and

D-P(tg) < Ii{rl inf DP(ty) < lirkn 15up D*Px(tx)< D*P(tp). (2.30)

(Here D* P (t9) and D~P (tg) denote respectively the right and left hand derivatives of the
fuction P at t.) It follows that lim pp(Bn, 1) = p(B, 1) when By— B, and that

Dp@B,. W < Hﬁ@f Dpn(Bn, Un) < liT_)SgPPD'FPn(Bn, Hn) <D*p(B, p) (2.31)

when pup— W, where the one-sided derivatives are again taken with respect to Ll
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