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A new framework for old Bell inequalitiés

By B.S. Tsirelson

School of Mathematics, Tel Aviv University,
Tel Aviv 69978, Israel, e-mail: tsirel@math.tau.ac.il

Abstract. Three topics are shown to be closely connected, one belonging to the foundation of
quantum theory (Bell-type inequalities), the second to statistical physics (inequalities for parti-
tion functions), and the third to probability theory (inequalities for one-dependent processes and
two-block factors). To this end, Bell-type inequalities are reformulated for a new space-time ar-
rangement.

1 Introduction

The traditional framework [1] for famous Bell inequalities is a correlation experiment on two
noninteracting subsystems of a composite physical system. A correlation function

(ArBi)

depends on two local parameters k,[; the first parameter k determines a local observable
Api on the first subsystem, while | determines B; on the second subsystem. Supposing the
observables to be two-valued (A, = +1, B; = +1), we have, for example,

(A1B1) + (A1B;) + (A3By) — (A2B,) < R, (1.1)

where R = 2 for classical systems [2], when all four observables commute, while R = 2v/2
for quantum systems [3], when AxB; = Bj A, but in general A1 A; # AzA;, B1B2 # B2 B;.

This traditional framework is depicted by Fig. 1(a). The outcome A results from the
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Figure 1: Graphs for the two frameworks: old (a) and new (b).
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Figure 2: The two frameworks for classical systems.

classical input k and the first subsystem; B, — from ! and the second subsystem. The
correlation function is defined as ci; = (AxB;). The new framework presented here is depicted
by Fig. 1(b). Four outcomes K, A, B, L are considered; their joint probability distribution
determines a conditional expectation ¢,y = E(AB|k,!) playing the role of the correlation
function.

The proposed framework enables us to find the unexpected connections of Bell inequalities
to some topics of statistical physics and probability theory, and to shed additional light on
the problem of “free will” in choosing k&, I.

In order to explain the difference between the two frameworks, the well-known proof of
the classical CHSH inequality (Eq. (1.1) with R = 2) within the traditional framework will
be repeated in brief, and a similar inequality will then be proved within the new framework.

2 The classical inequality within the old framework

A two-valued observable A, is supposed to be a function of k and of a classical state A of
the whole system (a set of classical variables, possibly hidden); and similarly for B;:

AX) =11, ByA) ==1.

See Fig. 2(a). A statistical distribution of outcomes is supposed to result from a classical
probability distribution u for A:

(4B)) = [ AN)BN) w(d)) . (2.1)
But for each A we have

A1(N)B1(A) + A1(\)Ba(A) + Ax(A)Bi(A) — Ax(A\)Ba(A) < 2 (2.2)
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(a finite number of possible combinations of +1’s can be exhausted “by hand”). By inte-
grating Eq. (2.2) we obtain the well-known CHSH inequality [2]

(A1B1) + (A1Bs) + (AsBy) — (A:B,) < 2. (2.3)

3 The classical inequality within the new framework

Three local classical states A, Az, A3 are supposed to exist, and four observables K, A, B, L
are supposed to be some functions of Aj, Az, A3, their dependence being restricted by the
considered graph, see Fig. 2(b):

A(Al,Ag)zil, K(Al):lor2,
B(Az,Ag) =B i | ] L(A;;) =1lor2.

A statistical distribution of outcomes is supposed to result from some classical probabil-
ity distributions gy, p2, s for Aq, Az, Az, respectively, with A1, Az, A; assumed statistically
independent. The correlation function is defined as

[ (@) [us(@s) [ ha(@ra) A, 22)B(Aa, Xa)

P _ — =A1(k) As(D) )
= FABH =dp =) (A (R) - o(Bs(0) (1)

where
A]_(k) = {A]_ s K()\l) = k} s A3(l) = {A3 g L(A3) = l} g
The following new version of the CHSH inequality will be proved:
ciitcizten —c<2. (3.2)
To this end, define functions A;, As, By, By of A, as follows:

[ m(@n)40u, %)

Ak(Az) - Al(k)

O (3.3)

and similarly for B;. Clearly
o= [ A2 Bila) wa(dha) (3.4)

which leads to Eq. (3.2), just as Eq. (2.1) leads to Eq. (2.3). Although A; and B, are now
no longer two-valued, but only satisfy

|[Ae(A2)] <1, |Bi(X)| <1,

it is well-known (and easy to see) that this is not an obstacle. A further proof, dispensing
with such an enlargement of spectra of A, By, will be given in Sect. 8.
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Figure 3: The old framework for quantum systems.

4 The quantum inequality within the old framework

A two-valued observable A, is now supposed to be an operator on a Hilbert space H;
describing the first subsystem of a composite quantum system; and similarly for B;, H,:

Ak:H]_—)HI, Azzl,
B13H2—>H2, Bl2=1

See Fig. 3. A statistical distribution of outcomes is supposed to be determined by a density
matrix W on the space H = H; @ H; describing the whole system:

(ArB) = Tr((Ax ® B)W) . (4.1)
Being arbitrary, W may correspond, in particular, to an entangled state vector.
The following operator inequality is well-known [3]:
|41 ® By + A1 ® By + A; ® By — A, ® Ba|| < 2v2 . (4.2)
Multiplying by W and taking the trace, we obtain [3]

(A1B1) + (A1Bs) + (A2 B1) — (A2Bs) < 2V2. (4.3)

5 The quantum inequality within the new framework

Three non-interacting and non-correlated quantum systems are supposed to exist at the
beginning. Each system decays into two subsystems (generally, correlated), and some pairs
of subsystems then merge according to the considered graph, see Fig. 4. Four observables
K, A B, L are supposed to be operators on corresponding spaces:

K:H, —» H;; A:H,® Hy - H, ® Hs ;
L:Hg — Hg ; B:.H,® Hi — H, ® Hs .
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Figure 4: The new framework for quantum systems.

They are supposed two-valued:

Spec(A) C {—1,+1};  Spec(K) C {1,2};
Spec(B) C {—1,+1}; Spec(L) C {1,2}.

The initial state is described by three density matrices: Wi; on Hy ® H,, Waq on Hz @ Hy,
and Wye on Hs ® Hg. A statistical distribution of outcomes is determined by the standard
formalism in the space

H=H,®H,®H; ® Hi® H; ® Hg .

That is,
Tr((lk(K) ® lz(L))W) ; '

here 1,(K) is the projection operator onto the eigenspace of K, corresponding to its eigen-

value k, and W = W1z ® W34 ® W56-

cu =E(AB|K =k, L =1)=

Clearly, Eq. (5.1) is a quantum counterpart of Eq. (3.1). The following inequality (the
quantum counterpart of Eq. (3.2)) will be proved:

c11+ c12 + 21 — 22 < 2V2. (5.2)

To this end, introduce a quantum counterpart of Eq. (3.3) as follows. Define a Hermitian
operator A; on Hj3 by the condition

Tr((1e(K) ® A)(W1, ® Ws))

Tr(AxWs) = Tr(1(K)Wi2)

(5.3)

for any density matrix W3 on H;. Of course, we suppose that Tr(1x(K)Wiz2) > 0. The
existence of such A, follows from standard arguments; in particular, for a finite dimension
it follows immediately from the obvious fact that the right-hand side of Eq. (5.3) is a real-
valued linear functional of W;. Being the conditional expectation of A, this functional lies
within [—1, +1] for any Wj; hence, ||Ak|| < 1. Similarly, this holds for the operators B; on
H4.
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Now we need the equality

Chi = TI’((Ak ® Bz)W34) ; (5.4)

It is evident when W3y, is a product W3 ® Wy; but how do we generalize Eq. (5.4) for an
arbitrary Wa,? Due to linearity!' Both sides of Eq. (5.4) may be considered linear functionals
of Wi4. Hence, their difference may be written as Tr(CWs,) with some Hermitian C. We
have Tr(C(W; @ W,)) = 0 for any W3, W,. Taking them to be one-dimensional, we obtain
(%3 ® 4|C|1Ps ® 14) = O for any vectors Y3 € Hs, P4 € Hy; this is possible only for C' = 0.

Obtained Eq. (5.4) leads to Eq. (5.2), just as Eq. (4.1) leads to Eq. (4.3), since Eq. (4.2)
remains true when the condition A = 1, B} = 1 is replaced with ||4Ax|| < 1, ||Bi]| £ L
Another proof, dispensing with the enlargement of spectra of A, B, will be given in Sect. 8.

6 Violating the classical inequality

It is well-known [2] that the classical CHSH inequality (2.3) can be violated by means of a
pair of spin-1/2 particles in the singlet state, and the quantum inequality (4.3) can be turned
into an equality. It will be shown here that the same holds within the new framework: the

quantum inequality (5.2) can be turned into an equality, thus violating the classical inequality
(3.2).

The famous spin singlet state

i

1
oy B _ 6.1
] 7 11T) ﬂl 1) (6.1)
has the following correlation property:
(02 ® 0g)y = —cos(a—B),
where 0, = 0z cosa + oysina. Taking A; = 09, Az = 03, B1 = —0Onjsy Bo = —0_r4, We
obtain
(A1B1)y + (A1Ba)y + (A2B1)y — (A2Ba)y = 2V2 . (6.2)

Now consider an experiment of the kind shown in Fig. 4. Take Wiy = Waq = Wse = |¥) (9]
with 9 from Eq. (6.1), and let

3+ 140 1—0o
K= 2 5 A= 9 ®A1+ 9 ®A2:
3 1-—
L= -'2—0., B:BI®I+G+BQ® 20;

1Of course, we cannot approximate an arbitrary Ws4 by means of linear combinations of products W@ W,

with positive coefficients. But here negative coefficients are acceptable, too. This is why the approximation
is possible.
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Figure 5: The framework investigated in probability theory.

any o, may be chosen for o, for example, ¢ = ¢ = o,. So, first and third singlets (Wi,
and Wie) are used simply as classical signals, while the second singlet (W34) implements
quantum correlations. The first pair (W;;) may be thought of as being either 1, or .,
where (6 ® 1)y, = -1, (1®a)y, = +1, (¢ ®1)y, = +1, (1® )y, = —1; indeed, only
these commuting operators are used on H; ® H; to form K, A. In the case of 9, we have
K =(3—1)/2 =1, and A amounts to 11 @ A; + 31 ® A, = A;; in the case of 1, we obtain
K =2 and A = A,. The same holds for L and B. Clearly, the correlation function coincides
with that used in Eq. (6.2); in particular,

ci1 4 ez + ¢ — ca2 = 2v2.

7 A connection to probability theory

The inequality (3.2) constrains a joint probability distribution for a quadruple (K, A, B, L)
of random variables, provided that the distribution emerges from some distribution of inde-
pendent random variables A;, Az, A3. These A1, A2, A3 may be called “hidden” in contrast to
the “observable” variables K, A, B, L. In accordance with the given graph (see Fig. 2(b)),
each hidden variable influences two adjacent observable variables.

Interestingly, the problem of finding constraints, resulting from the existence of such
hidden variables, is studied in probability theory [4, 5, 6], but its connection to Bell-type
inequalities is recognised for the first time.

A stationary random sequence {A,} is called a two-block factor, if it can be represented
in the form [4]

A, = f()‘n—lv Aﬂ) (7'1)

via a sequence {A,} of independent identically distributed random variables (see Fig. 5). A
clear restriction to such {4,} is the fact that A, ,; is independent of A,_;, and moreover, the
sequence {..., A,_2, A,_1} and the sequence { A, 11, Ant2, ...} are (statistically) independent
for each n. This property is known as one-dependence. The main result of Ref. [4] is the
existence of a non-evident constraint for all two-valued stationary two-block factors. In other
words, there exists a two-valued stationary one-dependent sequence that is not a two-block
factor.

We will see that a close result can be obtained by means of inequality (3.2). First,
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Eq. (7.1) may be generalized for the non-homogeneous (=non-stationary) case:

An = fn(An—la Aﬂ) ’ (72)

that is, f, may now depend on n, as well as distributions for A,, and A,,. The domain of n
may be finite, n € {1,2,..., N}, or infinite. Accept Eq. (7.2) as a definition of a two-block
factor, while Eq. (7.1) — of a homogeneous (or stationary) two-block factor.

The conditions imposed on the quadruple (K, A, B, L) in Sect. 3 mean exactly that it is
a two-block factor of length N = 4, with two values. Hence, Eq. (3.2) constrains any two-
valued two-block factor of length 4. When a given two-block factor {A,} is not two-valued,
and/or of length > 4, we may still apply Eq. (3.2) to any quadruple of the form

91(An), 92(An41), 93(Ans2), 9a(Anyis), (7.3)

where 91, g2, g3, g4 are arbitrary two-valued functions. Indeed, the quadruple (7.3) is again a
two-block factor.

Unfortunately, explicit inequalities are cumbersome. For a two-block factor (A;, Az, As,
A4) with two values 0 and 1 we have, for example,
1— A;1)(24; — 1)(24;5 — 1)As)
((1— Ay)Aq)

cn = B((242—1)(24; — 1)|A; = 0, A, = 1) = {(

1 1
= 104 Ay (—4(A; A, AsAy) + 2{ A1 A5){As) + 2{A;) (A3 As) — (A1) (As)
+4(AzA3A4) — 2(A3){As) — 2(A3A4) + (Ad)) ; (7.4)

disconnected products are factorized due to one-dependence. Similarly cgg, ¢10, and c¢;; have
to be found, and substituted into inequality (3.2) or into the more general one:

|coo + o1 + c10 + 11 — 2¢x| < 2. (7.5)

It would be difficult to find these inequalities without the mediation of Bell’s inequality! It
will be shown in Sect. 8 that the above inequalities are the best possible. They are true
boundaries for the class of two-valued two-block factors within the including class of two-
valued one-dependent processes described by means of 10 averaged connected products (Ay),

(Az), (As), (Ag), (A14,), (A2A3), (AsAy), (A1 AzA3), (A2A3As), (A1 A3 A3A).

The conditions imposed on the quadruple (K, A, B, L) in Sect. 5 may be generalized as
follows. A random sequence will be called a quantum two-block factor, if its joint distribution
can be represented as the joint distribution of a sequence {4, } of commuting observables in
the situation shown in Fig. 6. That is, a sequence { H, } of Hilbert spaces has to be given, 4,
acting on H,,_ 1 ® H,,, and probabilities determined by the tensor product of some density
matrices W, acting on H,, ® Hj,.1. Due to locality, we avoid dealing with infinite tensor
products; it is enough to consider joint distributions for all finite regions.

Sect. 6 gives an example of a quantum two-block factor (K, A, B, L) which is not a
classical two-block factor. (After introducing the term “quantum two-block factor” it is
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Figure 6: A quantum two-block factor.
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~
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Figure 7: A homogeneous example of a quantum two-block factor.

natural to add the word “classical” to the old term.) A homogeneous example can be
obtained as follows. Take an infinite sequence of independent quadruples (K, A, By, Ly, ) for
n=...—2,-1,0,1,2..., each quadruple being a copy of the above-mentioned (K, A, B, L),
and define a multi-component random sequence {X,,} as follows (see Fig. 7):

Xﬂ. =i (Krn An+1, Bn+2, Ln+3) .

Alternatively, the four two-valued components can be converted into one 16-valued compo-
nent, for example,

n 1 Bn
_1+A+1+2_ + Dnt2

X,=8(K,—-1)+4

+ Lpya - (7.6)
It is easy to see that {X,} is indeed a quantum two-block factor, but not a classical two-block
factor, since it violates the constraint Eqgs. (3.2) and (7.3).

So, the presented theory provides us with a “quantum” proof of the following result
from purely “classical” probability theory: there exists a one-dependent stationary random
sequence which is not a (classical) two-block factor. Note that the above-mentioned result of
Ref. [4] is stronger, since a two-valued example is constructed there. No “quantum” proof of
it is known. It is also unknown, whether any homogeneous one-dependent two-valued random
sequence i1s a quantum two-block factor, or not. For the 16-valued case a counterexample
can be constructed by using Egs. (5.2) and (7.6).
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8 Are the two frameworks equivalent?

New inequalities (3.2) and (5.2) were derived from old inequalities (2.3) and (4.3). The
question arises, whether all “new type” constraints (ensuing from the new frameworks) are
derivable from “old type” constraints, or not.

An affirmative answer will be given, and not only for the two-valued case but also for
the general case. The answer will be formulated in terms of the following two definitions.

For simplicity, we restrict ourselves to the discrete case, supposing all observables to be
integer-valued.

Define an old-type classical probability set as a family {p2®} of numbers given for all
integers k,l, ¢, b, admitting the following representation:

it = i : A(}) = a, Bi()) = b} (8.1)
with some functions A, B; on some set A carrying a probability measure p.

Define a new-type classical probability set as a family {prasi} of numbers given for all
integers k,l, a,b, admitting the following representation:

Prabl = (11 @p2®@p3){(A1, Az, As) : K(A1) = k, A(A1, A2) = a, B(Az, A3) = b, L(A3) = I} (8.2)

with some sets A;, Az, A, carrying some probability measures puq, p2, g3, respectively, and
some functions K on Ay, Aon A; X Ay, Bon A; X Az, and L on Aj.

Suppose we are given both an old-type classical probability set {p%} and a new-type

classical probability set {prani}. We will call them corresponding (to each other), if the
identity

Phabl = PPy PHI (8.3)
holds for some sequences {p,}, {p|'}, each summing to 1. It follows from Eq. (8.3) that
P =D Pkabl, Pl = D Phabl (8.4)
a,b,l k,a.b

and hence {prou} determines {p*} uniquely provided that all p), p) obtained from Eq. (8.4)
are non-zero. On the contrary, {pf®} contains no information about {p}}, {p|'}, and does
not determine {prau}.

Theorem 1 Let {prani} be a new-type classical probability set. Form {p.}, {p|'} according
to Eq. (8.4) and suppose they all differ from zero. Then the numbers

ab — pkﬂbl
Dt = 7
&Pl

form an old-type classical probability set.
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Theorem 2 Let {p?} be an old-type classical probability set, and {p,}, {p|'} be two se-
quences of non-negative numbers such that 3 p;, =1, Y pf = 1. Then the numbers

11_ab

Pkabl = PP Py

form a new-type classical probability set.

Proof of Theorem 2 is straightforward: take A\; = k, A3 =1, A; = X, A(A1, A2) = Ar(R),
and B(Az,A3) = Bi(}).

Proof of Theorem 1. Asin Sect. 3, introduce A;(k) = {A; : K(\;) = k}, then p1(A1(k)) =
Pi. Fix some nonatomic probability space (£2;, P ), and for each k choose a map £, : @; — Ay
such that

P € A) = ;;1;:#1(A A As(k)

for any A C A;. Similarly construct £’ : 23 — A;. Finally, take the space A = 3 X Ay X Q3
with the product measure p = P, ® p, ® Ps, and for any A = (wq, A2,ws) € A define

Ak(A) = A((w1),A2) ,  Bi(A) = B(Ag,§'(ws)) -
Then

p{A 1 Ae(X) = a, Bi(X) = b} = /Nz(d/\z)R(A(fL’ A2) = a)P3(B(X,§) = b)
- fuz(d,\z)%m{xl L K(\1) =k, AQr, A) = a}%pg{xa . L(As) = I, B(\z, \s) = b}
k 4

1
= pr pu(p’l @ p: ® #3){(A1)A27A3) . K(Al) = k, A(/‘q,Ag) =a, B(Ag,Aa) = b, L()\3) = l}
kF]

_ Prabl __ _ab
— .0 P »
P

q.e.d.

So, the two frameworks are equivalent for the classical theory. Returning to the two-
valued case we conclude, that a necessary and sufficient condition is obtained for a quadruple
(A1, Az, As, Ay) of two-valued random variables to be a (classical) two-block factor (defined
by Eq. (7.2)). Indeed, the last means that their joint distribution {pi.u} is a new-type
classical probability set. Due to Theorems 1,2 it is necessary and sufficient that corresponding
{pi?} is an old-type classical probability set. (The quadruple (A;, Az, As, A4) is supposed one-
dependent. The case, when at least one of p}, p{’ vanishes, is omitted because of its triviality.)
Now inequalities (7.5) form a necessary and sufficient condition, as is well-known [7]. It
follows that inequalities (7.4-7.5) are the best possible.

Note that the given proof of necessity provides us with one more proof of inequality (3.2),
as was promised in Sect. 3.

A similar question for a sequence (A;,...,A,) with n > 4 remains open.
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Are the two frameworks equivalent for quantum theory, too? Yes, they are. Define
old-type and new-type quantum probability sets by replacing Eq. (8.1) with

Pt = Tr((1a(Ax) ® 1,(B1))W) ,
and Eq. (8.2) with

Prabt = Tr((1(K) ® 1,(4) ® 1,(B) ® L(L))W),
W =W, @ Wiy ® Wie ;

cf. Egs. (4.1) and (5.1).
Theorem 3 The same as Theorem 1, but replacing “classical” with “quantum.”
Theorem 4 The same as Theorem 2, but replacing “classical” with “quantum.”

Proof of Theorem 4 is a straightforward generalization of the construction used in Sect. 6.

Proof of Theorem 3. Having Tr(1x(K)W;z2) = p;, > 0, consider the state W, on H,
obtained from W, by postselection for K = k on H;; that is, W] is defined by the equality

1

TI(XWi) - I_)'— Tr((lk(K) ® X)le)
k

holding for any observable X on H,. Similarly introduce W;" on Hs. The conditional

probabilities pg may be computed via conditional states Wy, W}":

Pz? = Tr((1.(4) ® 1Li(B))(W, @ W3, @ W)")) , (8.5)

the trace being taken on H, ® H3® Hy® Hs. (Eq. (8.5) can be proved similarly to Eq. (5.4).)
Take some new Hilbert spaces G,, G5 (these are quantum counterparts of {2, {23 used in the
proof of Theorem 1), and represent each W] by a vector 9}, € G2 ® Hy:

Tr(XW,) = (ell ® X[¢i)

for any observable X on H,. Fix some unit vector 1’ € G,® H;, and choose unitary operators
U, on G @ H, such that Ujy’ = 1. The same holds for ¢;’,%",U;". (These operators are
quantum counterparts of £}, £/’ used in the proof of Theorem 1.) We have

P = Tr((La(4) ® 1(B)) ([9i) (%] ® Was ® [97)(¥1']) );

here and henceforth A is transferred from H, ® H3 to G; ® H; ® H3 by means of tensor
multiplication by identity on G,. Substituting |¢)(¥;| = Ui|¥'){(¥'|U*, we obtain

Pu = Tr((1a(4) ® 1,(B)) (Ux ® Uf) (1) (¢'] ® Was ® [¢")(4"]) (Ux ® U')")
= Tr((1a(Ar) ® 1s(B))W)
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where

Ay = U,:*AUL ; Dis= UIM'BU" ,
W = 99| ® Waa @ |9") (%],

q.e.d.

So, the two frameworks are also equivalent for quantum theory. Returning to the two-
valued case, can we obtain a necessary and sufficient condition for a quadruple (A;, 42, As,
A,) of two-valued random variables to be a quantum two-block factor, as defined in Sect. 77
Yes, it can be done similarly to the classical case considered above, provided that a neces-
sary and sufficient condition is available for an old-type quantum probability set. Such a
condition was indeed obtained [8], though not in the form of explicit inequalities, but in a
form free of operators in Hilbert spaces. Unfortunately, the condition is too cumbersome to
be reproduced here.

The case of a sequence (A, ..., A,) with n > 4 has not yet been investigated.

9 A connection to statistical physics

Consider a system of classical statistical physics with a finite-range interaction. Divide it
into a chain of subsystems such that the n-th subsystem interacts only with its two adjacent
subsystems, the (n — 1)-th and the (n + 1)-th. The Hamilton function may be written as

N N-1
H(Al, A AN) = Z Hn(Aﬂ) + Z Hn,n-q-l(Ana An+1) 3 (91)
’ n=1 n=1

here ), denotes the state of the n-th subsystem, which may have any number of discrete
and/or continuous components. Suppose that the decomposition of H is made so that

Hn,n+1(An1 Aﬂ+1) 2 0

for all n, A,, and A,4;1. The partition function is

2 = fexp(-ﬁH(,\l,...,AN))d)«l...dAN

N-1
Zy...ZN [exp (_/8 Z Hn,n+1(/\m An+1)) »u'l(d)‘l) .o -#N(d/\N) ) (9-2)

n=1

here B = (kT')™! is the inverse temperature, Z, is the partition function for the n-th sub-

system released from the interaction with its neighbors, and g, is the corresponding Gibbs
measure:

Zo = [exp(~BHA(A)dn,
pn(dXn) = Z7'exp(—BHn(An))dA, . (9.3)
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A connection to two-block factors considered in Sect. 7 may be established as follows. Let
us treat A;,...,Any as independent random variables with distributions p,,..., unN, respec-
tively. Introduce additional random variables 6, ...,8x_; distributed uniformly on [0, 1] and
such that all 2N — 1 variables (A, 6,...,AN-1,0N-1,An) are independent. Then random

variables
A _ { ]., when 9,—, < exp(—ﬁHn_nH(An, An.’.]_)),
"7 10, otherwise,

form a two-block factor, and their product averages to a ratio of partition functions:

Z

(Al...AN__l) = ﬂ

Moreover, each product of some A, averages to some ratio of partition functions. To be
more specific, we restrict ourselves to a homogeneous one-dimensional lattice system with
pair interaction:

2 = ZK(l)/exp (—ﬂfghz(zk,nﬂ)) p(dey) . .. p(dek)

2(1) = [ exp(~Bhu(2)) de,

w(dz) = (1/2(1)) exp(~Bhs(2)) dz
ha(zk, zk+1) > 0 always.

Divide the system into N = 5 subsystems:

A1 = (wli EES 7mk1)} )‘2 = (zkl-l—l) €% 7mk1+k2)) sEsy AS = (mk;+k2+k3+k4+1) vy :mK) ;
Hi(Ar) = ha(z1) + ho(z1,z2) + hi(z2) + ... + ho(Tk, -1, Tk, ) + h1(zx,) and so on;
Hy2(A1,A2) = ha(zk,, Th,+1) and so on.

Denote by Z(k) the partition function for a k-element subsystem:

k-1
Z(k) = Zk(l)/exp (—ﬂz hz(m,-,m._-ﬂ)) p(dey) . .. p(dzy) .
=1
Now Z, introduced before appear to be
Z]_ - Z(kl) R 25: Z(k5),
ki + ...+ ks = K. For the above two-block factor (A;, Az, As, As) we have

Z (k1 + kg + k3 + ks + ks)

(A142A3Aq) = Z(k1)Z(ky)Z(k3)Z(ke)Z(ks) '

and similarly for other connected products; for example,

 Z(kiths)  Z(ka + Rat k)
) = 22k A2 = Z0k)2(ke) B (k)
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Substituting them into Eq. (7.4-7.5) we obtain Bell-type inequalities for partition functions!
It is natural to suppose that these are irrelevant consequences of some relevant, hopefully
simpler inequalities. It should be noted, however, that the inequalities obtained are the best
possible for the general inhomogeneous framework given by Eqs. (9.1)—(9.2). This statement
follows from the following two facts. First, inequalities (7.5) are the best possible for two-
valued two-block factors, as was shown in Sect. 8. Second, any two-block factor valued in
{0, 1}, corresponds (exactly or as a limit) to a system described by Eqgs. (9.1)-(9.2), as will
be shown now. Let A, = fno(An-1,A,) € {0,1} with independent },, as in Eq. (7.2). Each
An runs over a probability space which may be chosen as [0,1] with Lebesgue measure, or
equally well, may be identified with the phase space of a physical system, equipped with its
Gibbs measure p,, as in Eq. (9.3). Introducing an interaction as

Hn,n-{»l(An, A‘n-+—1) = C(l - fn-}-l(An; A'n-{—l))

with a constant ¢, we obtain

N-1
CEEIOO eXp (_/6 Z Hpnt1(An, Anta )) n1(dAr) ... pn(dAn)
n=1
= / pa(d) .. pn(ddw) = (A1 .. Ax) .
{fnt1(An,Any1)=1 for all n}

The above connection between partition functions and two-block factors remains valid
for the homogeneous case. Hence, any inequality for stationary two-valued two-block factors
gives an inequality for homogeneous partition functions. However, the inequalities for sta-
tionary two-block factors, obtained in Ref. [4], concern only the special case {4;A4;A43) = 0,
which is uninteresting for statistical physics. The inequalities obtained in Ref. [6] are non-
applicable here, since they require at least five different values for each A;. The inequalities
obtained in Ref. [5] can be applied, giving

Z(3k) < Z%/%(2k), when Z(2k) > -Z%(k),

B |

and

Z(3k) < (Z(k) — Z(2k))*/? + 22(k)Z(2k) — Z%(k), when Z(2k) < %zz(k).

But the inequalities of Ref. [5] do not distinguish two-block factors from one-dependent
processes, so, they are not Bell-type inequalities.

10 Independence, free will, conspiracy, and all that

It was not evident from the very beginning, but now it is understood [9, 10, 11], that
no experimental test of a Bell-type inequality can be interpreted without assuming some
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independencies. The traditional framework assumes that the choice of k,[ is not correlated
with the state of the system. Moreover, no idea of a testable local causality is possible
without assuming the statistical independence (or maybe a weak dependence) of observers
from observed systems before observations. See Refs. [9, 10, 11] for discussions involving free
will, conspiracy, and all that.

The important but implicit premise of independence becomes explicit in the proposed
new framework. Figs. 2(b) and 4 show clearly the two kinds of assumptions: on dynamical
laws (no faster-than-light propagation) and on initial conditions (no initial correlations). The
former is directly connected to the causal structure of space-time. The latter is much more
vague. Can it be grounded on the causal structure of the space-time, too? An attempt was
made in Ref. [11]: two telescopes pointing at opposite sides of the sky were used as sources of
independent random events. If we believe that the sky contains no mirrors or other optical
devices at least up to the third minute after the Big Bang, is it enough for becoming free of
statistical physics in the argumentation? The answer depends on the accepted cosmology. A
Friedman-like scenario leads to non-intersecting past cones, while an inflation scenario does
not.
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