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Abstract. In L (R. we study a perturbation of a semi-classical periodic Schrôdinger operator
where each of the wells has been randomly deviated from its initial position. For this operator,
we show exponential localization for energies close to the bottom of the spectrum. Then we study
the effect of random perturbation of the bottom of each of the wells of the previous model. We
show that the summing up of the two types of disorder leads to a stronger localization than if we
would only consider one kind of disorder alone.

Résumé. Dans L (R nous étudions une perturbation d'un opérateur de Schrôdinger semi-

classique à potentiel périodique dont chacun des puits a été aléatoirement déplacé. Pour cet

opérateur, nous démontrons un résultat de localisation exponentielle pour des énergies voisines de

la borne inférieure du spectre. Puis nous étudions l'effet d'une perturbation aléatoire des fonds
de puits du modèle précédemment étudié. Nous constatons que l'effet conjugué des deux types
de désordre conduit à une localisation plus forte que celle due à l'un de ces désordres pris tout seul.

0) Introduction.
In [Kl 2], we studied the following class of random perturbations of a periodic Schrôdinger

operator: in each of its wells, the periodic potential was perturbated by some compactly
supported function which size was given by a random variable; all these random variables
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were assumed to be independently identically distributed. We proved localization results
for such random operators. In this work, we study other classes of random perturbations
of a periodic Schrôdinger operator. In our first model, we will randomly distort the lattice
that is defined by the periodic potential, at each of its sites and study the random operator
thus obtained. Then as a second model, we will consider the sum of both disorders that
is, each of the lattice sites will be randomly distorted and the bottom of the wells will be

randomly perturbed.

The hamiltonians we will study are of the following form:

(0.1) PitU -h2A + £ q-,0(x - 7 - w7) -h2A + V,,u,

where

(*) 6 is a C°° function supported in a sufficiently small compact,

(**) (w7)7gz<i is a collection of i.i.d random variables valued in G, some sufficiently small

neighborhood of 0 in Kd,

(* * *)
(1) either V7 € Zd, qy 1; in this case, we will speak of model 1.

(2) or V7 € Zd, g7 1 + i7, (<7)7gz,< is a collection of i.i.d random variables valued in
some neighborhood of 0 in R; in this case we speak of model 2.

Such hamiltonians are models used in solid state physics (see, for example, the works
of B. Halperin [Ha], E. Lieb and D. Mattis [Li-Mat]). They describe the behaviour of an
electron in a pure crystal (model 1) (or in an alloy (model 2)) which lattice structure was
disturbed.

Mathematicians also have been interested in this class of random Schrôdinger operators
(see, for example [Ki 2]). In [Ki-Ma 1], W. Kirsch and F. MartineUi characterized the set

supporting the spectrum of such hamiltonians (see also [Ki 1]). In [Ki-Ma 2], they defined
and studied the integrated density of states of these operators, and gave asymptotics for
this quantity in the regimes of very large positive or negative energy.

In this paper, we are interested in studying the spectrum of Pq,u, more precisely the
nature of this spectrum. Using the ergodicity of the random field defining the potentials
seen, we know that the nature of the spectrum of Pq<u is the same for almost every
realization of the potential (see for example [C-L], [Ki 2] or [P-Fi]). In [Co-Hi], J-M.
Combes and P. Hislop study ,among others, an operator similar to Pq,u- Nevertheless, in
their study, the presence of the random variables (<7)7gz<i ls essential as it is the main
argument to prove the Wegner estimate.

Let us first discuss model 1. Let Q be the following operator: Q —h2A + 0. Let p(h)
be the ground state of Q. The semi-classical method we use (i.e we study Px,u in the limit
h tends to 0) permits us only to study Pi]l4, in some fixed energy interval where we know
precise information on the spectral data for Q; in the present case we choose this interval
to be a neighborhood of p(h), the minimum of the spectrum of Q. First, as in [Kl 2], we
will restrict PitU1 to some suitable energy interval, neighborhood of p(h), and show that it
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is then unitarily equivalent to some matrix which coefficients we control. To the opposite
of what happens in [Kl 2], Pi;u, is not a small perturbation of Pito, the periodic operator
where all the (q-r)yçzd are sef to 1 and the (w7)76z<i to 0. Indeed, one notices if G is much
larger than supp(ö), for some configuration u (w7)7gz<i>

II Pi,u - Pi,o ||=| e u •

So one can not use simple perturbation theory to reduce the operator PxiU from the
reduction known for Plj0 by Floquet theory. Instead of this, we use a w-uniform version of
the results of U. Carlsson [Ca]. The main assumption for this to work is that, uniformly
in u, the Agmon distance relevant for our problem does not degenerate. This permits us
to reduce, uniformly in u, the operator Plu, restricted to an energy interval neighborhood
of p(h), to a matrix acting on ê2(Zd).

Under suitable geometric assumptions on supp(ô) and G, as all the wells of VxiU are at
the same energy level, the main term in the reduced matrix will be the interaction matrix
(see [Ca] or [He-Sj 1] for the case of finitely many wells). This matrix has only non zero
terms on the first off-diagonals (i.e the terms indexed by (a,ß) with | a — ß \= 1). Using
the works of B. Helffer and J. Sjöstrand [He-Sj 1] and [He-Sj 2], we study these terms
carefully. Under suitable geometric assumptions on 6 and the support of the distribution
of the random variables (w7)7ez'*, the interaction coefficient between the wells a and ß is

only a function of the Agmon distance between a + ua and ß + Uß.

Using this study, we axe able to show a Wegner estimate for this matrix in the high
energy regime that is, in this case, for energies outside some arbitrarily small neighborhood
of p(h) when h is small enough. Then using a rewritten version of Theorem 1.7 of [Kl 2],
we axe able to prove exponential localization (when h is small enough) for P\tU.

Let us mention that, if in the reduced matrix, we only keep the interaction matrix, then
the operator we get is close to the "off-diagonal disorder" model studied by W. Faris (see
[Fa 1] and [Fa 2]) for which he proved localization at high energy (see also the section 5 of
the work of M. Aizenman and S. Molchanov [Ai-Mo]).

For the second model, as the random variables (<7)7gz<< are supposed to be small, we
reduce Pq>u (restricted to a suitable energy interval) to a well controled infinite matrix
using the reduction known for Px<u and perturbation theory. We then prove localization
results for the second model. This shows how both disorder add up to produce stronger
localization. Indeed, we can separate 3 regimes depending on the relative strength of the
disorders due to the (<7)7€zj and the (w7)76Z<i.

We axe in the first regime when the order of magnitude of the random variables (<7)7gz<i
is smaller than the order of magnitude of the interaction coefficient depending on the
random variables (w7)76z<<- In this case, we get localization in the same conditions as for
model 1. In this regime, one can forget the disorder due to the (rfa7ezd-

In the second regime, when the order of magnitude of the interaction coefficient depending

on the random variables (uy)y^Zd ls smaller than the order of magnitude of the random
variables (£7)7gzd> we get localization in the same conditions as in the model studied in [Kl
2] that is the whole energy band gets localized. In this regime we can forget the disorder
due to the (uy)y€Zd.
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In the third and last regime, when both order of magnitudes are equal, we axe able to
prove localization in the whole energy band though none of the disorders alone would be

strong enough to ensure this.

The paper is organized as follows: in section I, we give a precise description of the
models we study and state the main results. Section II is devoted to the study of the
interaction coefficients relevant to our problem. In section III, we state a generalization
of the main localization result of [Kl 2], which we apply to model 1 having proved the
Wegner estimate in section IV. We study the model 2 in section V.

Acknowledgement: the author would like to thank the Mittag-Leffler Institute for its

hospitality as well as B. Helffer, A. Jensen et J. Sjöstrand, the organizers of the program
"Spectral Problems in Mathematical Physics" for their kind invitation to participate.

I) Definitions and Results.

A) The first model.

1) The semi-classical reduction. Let | • | be the supremum norm on Zd. Let Q be a

relatively compact open subset of Rd, and 9 € C£° ((—¦§, \)d) suc^ *^a*

(H.l)

i)n + supp0c(-i,i)d,
2) — 1 < 9 < 0, 0-1(—1) {0} and —1 is a non degenerate minimum of 0.

Consider, on L2(

(1.4) Q -h2A + 9.

By standard semi-classical analysis (see, for example [He] and references therein), we know
that there exists h0 > 0, Co > 0 such that, for h € (0, h0), there exists p(h) inf ff(Q), a

simple eigenvalue of Q, verifying:
* p(h) -» -1 when /i-»0,
** a(Q) n [p(h) - 2C0h, p(h) + 2C0h] {p(h)}

(here cr(Q) denotes the spectrum of Q).

Let us denote by ip(h), the normalized positive eigenfunction of Q associated to p,(h).

Pick u (ua)a€Zd e Çiz For a € Zd, define the functions

6ui,a(x) — 9(x — a —ua) and Vu \ 9u>a.

aeid

and, the transformations

ra : tt*" -y to1'

U H-> TaU (ua+ß)ß€Zd
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and
Ta:F(Rd,C) -^T(Rd,C).

u h-> Ta(u) : Rd -» C

x *-* Ta(u)(x) u(x — a)

where T(Rd, C) is the space of C-valued functions on Rd.

Then one has, for any a € Zd and w € fìz

(1-2) r„(Vw) VraUI.

Let us consider the following Schrôdinger operator acting on L2(Rd),

(1.3) Pu -h2A + V„.

As Vu is bounded for w € fiz Pu is self-adjoint, semi-bounded from below with domain
tf2(Rd).

For u> € fiz we define dw the Agmon distance defined by the metric (Vu + l)dx. Notice
that, by assumption (H.l) 1), for a and ß in Zd such that a ^ ß,

(1.1) supp(0)+ÏÏ + aP|supp(0)+ÏÏ+/3 0.

This implies that the Agmon distance du does not degenerate when u varies in fìz

We define 1(h) [p(h) — C0h, p(h) + Coh]. Let n^ be the orthogonal projection on Fu,
the spectral space associated to 1(h) and Pu. We get

Theorem 1.1. Let Pu be defined as above and assumption (H.l) hold. Then, there exists
e0 > 0 such that, for e € (0, e0), there exists h( > 0 such that, for any h € (0, ht),

1) there exists (ipa,u)aez'i, a Hilbert basis of Fu, and a constant C(h) > 0 such that,

(1) || eTJ.(°K,-)Vau y +h y eV<Ua+ow)V(^|U) ||< C{h)^

2) the matrix of Pu\fw P^u> expressed in this basis, is

H(u) p(h) + W(u) + M(w),

where

a) p(h) is the first eigenvalue of Q,

b) the two self-adjoint matrix valued mappings u <-* H(u) and u >-* M(u) are

inC1(iizd,B(e2(Zd))),.



Klopp 815

c)ifwe write W(u) ((w(u; a, ß))\a,ß)c.z*xz*, °ne has,

[O if not

d) if we write M(u>) - ((m(w;a,/?)))(ai/j)€z<ixz<<, then we get

I m(u;a,ß) |< expl — inf (dja + wa,7 + w7 + supp(9))+
\ h 1±a

-l'±ß

+ du(j + w7 + supp(0), 7' + w7, + supp(ö)) + dw(7' + w7. + supp(0), ß+Uß))\

' e-T-1(<ia,(a-l-wa,7-|-w7-|-supp(#))+^(7+w1+supp(li»),^-|-^))

9u,7m(w;o',^) |<

if a ^ 7 and /3 ^ 7
-((i^t^+u),, ,7+u)7+supp

ifa^ß and (p,y) (a, fi) or (ß,a)
•j—inf,,^., (£„(7+

if a — 7 ß

e--!X£(<M/j-H'>(,,7-|-i»;-Y+supp(0))+inf„?È", «C (7+u>-,+supp(0),e+w„))

e-2i^inf„^7 d„(y+uy+supp(0),v+u>„)

Remark. In fact, one may weaken assumption (H.l) as the only point that is really needed

to get Theorem 1.1 is w-uniform non degeneracy of the Agmon metric defined by (V^+V^dx.

We will not give a detailed proof of this result. To get the reduction to the matrix
form, one merely rewrites the proof of the Main Theorem of [Ca] taking into account the
uniform nondegeneracy of the relevant Agmon distance. Then to get the estimates on the
terms of the matrix of follows the strategy given in [Kll].

In the next proposition, under additionnai assumptions on the Agmon distance induced
by Vu + 1, we will give more precise informations about the matrix W(u). This analysis
mainly relies on the analysis of the interaction coefficients that was developped be B.
Helffer and J. Sjöstrand (see, for example, [He-Sjl], [He-Sj2] or [He]).

Let us assume that

(H.2)

a) if BA(0) is the smallest closed Agmon ball containing supp(#) (here the Agmon distance
we consider is the one defined by 9 + 1). Then BA(0) is strictly convex.

b) if, for a € Zd, we define BA,n(a) a + Q + BA(0), then, for | a — ß |= 1 and any
7 ^ a,ß, one has

de(BAta(a),BA^(7))+de(BA^(j),BAM(ß)) > de(BAtÇi(a),BAyii(fi))
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(here de denotes the euclidian distance in Rd.)

Remark.

It is easily seen that this assumption holds if, for example, 9 is spherically symmetric
(to get (a)) and the euclidian diameters of Ci and supp(ö) axe small enough (to get (b)).

Let us define,
du(a, fi) du(a + ua, ß + <*>ß).

One shows the

Proposition 1.2. Under assumption (H.l) and (H.2), there exists h0 > 0 and Co > 0

such that, for h € (0, ho), one has

/1\ I \ Ll-4 I -, -ÌMÌ£LÉl ,n f, 2-i\ -*»('l»(1) u)a^(w) /i1 *a(ua,Uß)e " + Ö [h2 *) e »

where:

* a(ua,Wß) is a C°° function of (ua,Uß) in Çl x Çl and continuous in ft x ft,

** for any (ua,Uß) € ft x ft,

— < a(ua,Uß) < C0.
Oo

and

(2) -ÄV„„«;«,,(«) w.»V^dL,(o,/9) + O (fc2~*) e-iï^,
In both formula (lj and (2), the Ö is uniform in (a, ß) e Zd x Zd such that \ a - ß \— 1.

2) The random structure.

Let gr be a distribution density in Rd (i.e g > 0 and / gr 1) and G be its closed
Jm"

support, that is

G=(iéR ; Vf/, neighborhood of x, one has / gdx > 0}.
Ju

Without restriction, we may suppose that 0 € G. Suppose that G and 9 satisfy (H.l) and

(H.2). Moreover assume that

(H.3)

a)
S0 inf du(a,ß)< inf du(a + ua, ß + u>ß + supp#),

u,6Gz" u.€Gz"
a*i8 |q-/J|>2
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and

S0 < 2 inf du(a+ua,ß+Uß + suppö),

\a-ß\>\

b) 360 > 0 and e0 such that, if ft G + 5(0, e0), then Vw € ftz* and V(a,/3) G Zd x Zd
such that I a — /3 |= 1, one has

<L(a,/3) < So + So =* V7 ± a, 7 ^ /9
f dw(a, 7) > S0 + 2^o

\du,(^7)>So + 2*o

c) 3p0 > 0, 770 > 0 such that, Vn € [0,770],

/ sup I g(x + r)v) - g(x) \ dx < I —
ym" k€B(o,i) \»7o/

ÄemorÄ;.

Point a) of assumption (H.3) ensures that the leading order term in H(u) — p(h) will be

W(u). It may be obtained by assuming that G and supp(ö) are small enough.

Point b) is a geometric assumption on G. We assume that a well can be nearest neighbor
(in the Agmon distance sense) of at most one other well. So a well may interact significantly
with at most one of its | • |oo-nearest neighbors. This assumption is merely technical. It
restricts the choice for G (e.g G can not be a square). However, it may easily be relaxed
(though its formulation gets more complicated) so as to include a larger class of admissible
G's.

Point d) is a regularity assumption on g. One can notice that it implies that g is bounded.
Point d) will be essential in our proof of the Wegner estimate. Moreover it will allow
us to use a high energy regime at the edges of the band of spectrum we study. Indeed
we will only be able to prove localization near the edges of the part of the spectrum we
consider. The fact that the random variables (wa)oez,i admit a density will tell us that
the probability that a finite rank restriction of our reduced operator is of this size is very
small

For 0 < h < ho, we define the interval

I(ho, h) p(h) + [-Coh, -e-^] U [e"2"***, C0h]

As the random variables (ua)a^Zd axe supposed to be independent identically distributed,
we may apply Theorem 2 of [Ki-Ma 1], and so get that ff(Pu), the spectrum of Pw, its pure
point part, its absolutely continuous part and its singular continuous part are non-random
sets.

We now state our main result concerning model 1 that is,
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Theorem 1.3.

Let G and 9 satisfy (H.l) and (H.2). Let (ua)açzd De a family of independent identically
distributed random variables with common distribution density g (with closed support G)
satisfying (H.3). Let Pu be defined by (1.1). Then there exists h0 > h'0 > 0 such that, for
h € (0, h'0), with probability 1, one has,

«0

ff(Pu)ni(h0,h)?Q,

b) the spectrum of Pu in I(hQ, h) is pure point,

c) if<p is an eigenfunction of Pu associated to an eigenvalue in I(ho, h), then there exists
C(h, <p)>0 such that, for x € Rd,

\v(x)[<C(h,v)e-h-£W.

Remark. Using the ergodicity of our family of operators Pu, one shows that, there exists
some constant C > 0 such that, for w in some set of probability 1, for h small enough,

II ^«Ift,-/*(*) ll^^ft1"*«-*,
(see, for example, the proof of point a) given in section 3.)

Looking at sublattices of Zd, using Theorem 4 of [Ki-Ma 2] and semi-classical techniques
conjuguated to Floquet theory, one may prove that, for any «o > 0 small enough and
h small enough, there exists an interval of width 2e >y around p(h) that is in the
spectrum of Pu for almost every w.

So, by point b) and c), we see that, when h goes to 0, most of the spectrum becomes
localised.

We see that we are not able to prove that the spectrum of Pu is localized for energies
close to p(h). This is mainly due to the fact that for energies to close to p(h), the Wegner
estimate breaks down (see also [Fa 2] and [Ai-Mo]). The reason for this breakdown is the
same as for the break down in the "off-diagonal" disorder.

B) The second model.

1) The reduction theorem.

Using the same notations as in part A) of this section, we consider the operator

(1.5) Pt,u -h2A + J2 (1 + *?)*(* - 7 - w7),
7ez<<

where (ty)y&zd are real parameters in [— ACo/i, xCoh]. We suppose that ft and 9 satisfy
(H.l) and that, for 7 € Zd, w7 € ft. Then, for every (t,w), Pt,u is a semi-bounded
self-adjoint operator with domain H2.

Let Ht,u be the orthogonal projection on P«,w, the spectral space associated to 1(h)
[p(h) - C0h,p(h) + C0h] and PtyU. We show the
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Theorem 1.4.

Let Pttu be defined as above, and suppose that ft and 6 satisfy (H.l). Then there exists

e0 > 0 such that, for e € (0, e0), there exist h( > 0 such that, for h € (0, h(), w € ftz and

t£[-\Coh,\Cohf,
1) there exists (<pa,t,u)aezd > a Hilbert basis of Ft,u and a constant C(h) > 0 such that,

(1) || e^^+^Vt,« II +h || e^d^a+^AV^aAu ||< C(h),

2) the matrix of Pt,u\F, „ Pt,uKt,w expressed in this basis, is

H(t,u) p(h) + W(u) + D(t) + M(t,w),

where

a) p(h) is the first eigenvalue of Q,

b) the self-adjoint matrix valued mapping (t,w) i—? H(t,u) is analytic in t and C1 in w,
the mapping t i—? D(t) is analytic and the mapping w i—> W(u) is C

c) point c) of Theorem 1.1 is valid for W(u),
d) D(t) is the diagonal matrix ((b(taSa,ß))(a<ß)^zd xzd where b is an analytic bijection
between two neighborhoods of 0,

e) if we write M(t,u) ((m(t,u; a,ß)))(a j)ezdxZd, then, form(u;a,fi) and

V<7)U,7m(t,w;a, ß), we get the estimates given in point d) of Theorem 1.1.

Remark.

a) We will not give a detailed proof of this result. Using Theorem 1.1, one may prove it
by regular perturbation theory (using the same method as in [Kl 1]), as for w € ftz and

t£[-\Coh,\Cohf\

II Pt,u - Pu ||< \Coh and ^PJI^) C [p(h) - e~^,p(h) + e^]

for some Co > 0 and h small enough.

b) By section 3 of [Kl 1], we know that the bijection 6 satisfies, for u in some complex
neighbohood of 0,

&(«) p(u, h) - p(h) p(h)t(l + tq(t))

where p(u, h) is the infimum of the spectrum of Q + u9 (Q is defined in part A) of this
section), where q is analytic and, where -^ < p(h) < C for h small enough and some C > 0

independent of h.

2) Localization for the second model.
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Let gu be a distribution density on Rd satisfying (H.1)-(H.3). Let gT be a distribution
density on R supported in [—1,1] such that, there exists po > 0 and eo > 0 such that for
ee[0,e0],

/ sup | gT(x +u)- g(x) \ dx < —

Pick a function a(h) such that, for h € (0,/io), 0 < a(h) < \Coh. Suppose that the
limit of h log a(h) exists when h tends to 0. Define ga,r(u) — iTh)9(7(t)u) an<^ ¦$>

inf inf du(a,ß) (here Gn denotes the closed support of gn).
"€(G„F'' <*±f>

We will now define two different asymptotic regimes in w and t depending on a(h). We

will say that we axe in xegime (1) if

lim hloga(h) < —So,
k—*o

and then, for 0 < h < h0, define

h(h0,h) p(h) + [-C0h,-e-^] U [e-^,C0h).
We will be in regime (2) if

lim hioga(h) > —So,
k—>o

and then, for 0 < h < ho, define

I2(ho,h) p(h)+[-C0h,C0h].

Then the following result holds

Theorem 1.5.

Let gaT and gn be constructed as above. Let (ta,ua)a^id be independent identically
distributed random variables having ga^ ® gn as common distribution density. Let P<jW

be the operator defined by (1.4).

Then, in regime (k) for k 1 or 2, there exists ho > h'0 > 0 such that for h € (0, h'0),
with probabihty 1,

a)ff(PtiU)nlk(ho,h)^$,
b) the spectrum of Pf<u in Ik(ho, h) is pure point,

c) if tp is an eigenfunction associated to E, an eigenvalue of Pt,u> in Ik(ho, h) then there
exists C(h,tp) > 0 such that, for x 6 (R)d,

\<p(x) \<C(h,tp)e-^W.

Remark. A priori in the way the result is stated one sees only two different asymptotic
regimes. In fact these should be separated into three regimes. The regimes are:
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(1) when lim hìoga(h) < —So,

(2) when lim h\oga(h) —So,

(3) when lim hloga(h) > —Sq.
h—»0

In regime (1), the effect due to the random variables (ua)a^zd dominates the one created
by (ta)aezd- So the (w„)aGZ'' axe alone responsible for localization. Hence only a part of
the band gets localized.

In regime (2), it is the effect due to the random variables (ta)a€zd that dominates; the
whole band gets localised.

In regime (3), both of the effects are of the same order of magnitude but none alone
would be strong enough to localize the whole band. It is the summing up of both effects
that localizes the band.

II) The interaction coefficients.

a) An auxiliary lemma.

Let BAu(a) a +ua + BA(0). One proves

Lemma 2.1. Under assumptions (H.1)-(H,2), for | a — ß |= 1, the following assertions
hold

a) For any w € ftz there exists a unique minimal Agmon geodesic going from a + wa to
ß + Uß; this geodesic depends only on (ua,Uß).

b) du(a,ß) depends only on (ua,Uß) and is a C°° function on ft x ft.

c) Let x0(ua,Uß) be the intersection point of the unique minimal Agmon geodesic going
from a + ua to ß +Uß and the hyperplane Taj {x € Rn; [ x - a \=\ x - fi \). Then
Xo(ua,u>ß) is a C°° function of(ua,Uß) € ft x ft.

d) VUadu(a,ß) -VUßdu(a,ß).
e) There exists C > 1 such that, for h small enough and (ua,Uß) € ft x ft,

^<\V„adu(a,ß)[<C.

Proof. To prove Lemma 2.1, we will use the following elementary geometric lemma, the
proof of which is left to the reader:

Lemma 2.2. Let C andC be two strictly convex compact subsets ofRd with C°° boundary.

Then, for z € Rd such that (z+C)nC- 0,

1) there exists a unique (x(z),x'(z)) € (z+C) xC such that | x(z) — x'(z) |= de(z+C,C).

2) z *-y x(z) and z h-> x'(z) are C°° functions; hence z t-> de(z +C,C) is C°°.
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3) For any compact K such that (K +C) flC 0, there exists Ck > 0 such that

^-<\Vtdt(z-rC,C')\<CK.

By Proposition 6.5 of [He-Sj 1] (see also [He] Proposition 4.4.2), we know, that, for any
a € Zd, for x g dBAiU(a) (here dBA<u(a) is the boundary of BAiU(a)), there exists a
unique minimal Agmon geodesic from a + wa to x. We also know that dBAiU(a) is C°°
(see [He-Sj 1] and [He]).

Let C BAtUI(a), C BAiW(ß) and z(u) z(ua,Uß) ua —Uß. Then, by assumption

(H.l), we know that (z(ft x ft) + C) flC 0. So we may apply Lemma 2.2. For x and x'
defined by Lemma 2.2, let xa(u>) a:(2(w))+wa € dBAjU(a) and Xß(u) x'(z(u))+ua €
dBA<u(fi). Let yu„,ut, be the path sum of the minimal Agmon geodesic from a +ua to
xa(u), the straight line from xa(u) to Xß(u) and the minimal Agmon geodesic from Xß(u)
to ß + Uß. Then, one sees easily that yUa,up is the unique minimal Agmon geodesic (for
the metric defined by (Vu + 1)) from a + wQ to ß + Uß, which proves point a) of Lemma
2.1.

Points c), d) and e) of Lemma 2.1 are immediate consequences of points 2) and 3) of
Lemma 2.2. We know that xa(u) and Xß(u) are C°° in (wa,w^). Moreover, by assumption
(H.l), we know that

BaM<*) c ix e R"; I * - « l<l * - ß 1}

BA,ii(fi)C {x£Rd; \x-ß\<\x-a\).
So, for (wQ,w^) £ ft x ft,

(xa(u)-xß(u))-(a-ß)^0.
This in turn implies

Ta,ß H -yUa,Uß {ioK,«jj)}
where

ß2 -a2
x0(ua,Uß) xa(u) + ^(i»(w) - x0(u)).

(xa(u) - Xß(u)) -(a- fi)
So one derives point b) of Lemma 2.1 from point 2) of Lemma 2.2. This ends the proof of
Lemma 2.1.

b) Proof of Proposition 1.2.

We recall that ip denotes the normalized positive eigenvector associated to p(h), the
ground state of the operator Q —h2A + 9, and that ipQ,u(x) ip(x ~ a ~ ua)- By
definition, for | a — ß |= 1,

(2-1) «,„,,(«) (*„,„, "'-; p'- ipß,u)(0q,u + &0,u\
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Following the appendix of [Kl 1] (see also [He-Sj 1]), we define T+^ {x € Rn; | x - a \<\
x —ß |} and T~ ß {iER"; [x-a\>\x- ß |}, and compute

(2.2)

W>C/j(w) / 1pa,u ¦ "'" — j 1pß,u + I 4>a,v ¦ a'U
2

ß'" *Pß,u

2 / ^a,« • 0ß,u,1pß,u + / 1pa,U ¦ 0a,U1pß,u ]
\ <*,ß <*,ß /

as, for any w, supp(0Q>w) f~l T+ß =supp(9ßiU) D T~ ^ 0.

Using the fact that Qip p(h)ip and Green's formula, we get

watß(u) -( [ ipa,u-(h2A + p(h))iPß,u+ I
_

ipß,u-(h2A + p(h))ipa<u\

2\l (^.<"V^«.«' ~ *l>a,JVi>ß,w) ¦ ~ndff+

(2.3) + / ipß,u-(h2A + p(h))ipaA

+ ö I ^2 / (^.wV^a.u, - ipa,uVipßiU) ¦ ~nda+
1 V Jr°.ß

+ / V-a.a, • (h2A + /i(/l)) ^|W j
a,ß /

where n is the normal to Taß oriented toward a.

Hence, because Qip p(h)ip and supp(0tt)U) fl ]?£« =supp(ö^jl4,) fl T"^ 0, we get

(2.4) «^(w) h2 / (ipß,u,Vipa,u, - ipa,uNipß,u) ¦ ~rfda.
Jra,ß

Now, following [He-Sj 1] pp 397-398 (see also [He-Sj 2] Theorem 6.1.1), using the W.K.B
expansions known for ip0tU and ipß}Ui along faj(u) (see [He-Sj 1] Theorem 5.8 and Remark
3.10), and a stationnaxy phase method, by Lemma 2.1, we get

(2.5) waiß(u) hx-î a(xo(ua,u0))e-ìd»(°^ + 0(h2~^ «-*<-<».»),

where x i-y a(x) is a C°° and ^ > a(x) > C for some C > 0, for x in a neighborhood of

xo^cW^) and h small enough.

To estimate *7u,awaß(u), we just derivate (2.4) with respect to ua to get

(2 •6) Vw„ waiß(u) h2 f ipß,uVUa (Vipa^ ¦ ~n) - VWa ipatU (Vipß,„ ¦ ~n) der.

Jr..»
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Computing VWa (Vipa<u - ~n) and VUaipaiU using the W.K.B expansions known for ip near
the point xo(ua,Uß), and using a stationnaxy phase method as above, by Lemma 2.1, we
get

VUawa,ß(u) -h-^a(xo(ua,Uß))e-^^^Uadu(a,ß) + O^1^e~id^a^),

that is, using the /i-uniform boundedness of —,—r~ tt,

-hVUawa>0(u) waJ(u>)VUad<a,ß) + ö(h2-^e-id^a^).

This end the proof of Proposition 1.2.

Ill) The proof of Theorem 1.3.

The idea of the proof is to reduce our initial operator Pu,nw via Theorem 1.1, then
to rescale this reduced operator so as to be able to use a slightly modified version of the
localization theorem, Theorem 1.7, of [Kl 2].

1) A uniform version of the localization theorem.

Let m > 0 and d > 0. Let D be some fixed set. Let H(m,d) : D —* Mat(Z a
matrix valued application satisfying

(H".l)

a) Vt € Dz H(m,d,t) ((H(m,d,t;x,y)))^zy-j£Zdxxd ls formally self-adjoint,

b) 3K > 0 such that, for (x, y) € Zd x Zd such that x / y,

sup [H(h,t;x,y)[<em(KA*-y\\

Under assumption (H".l), H(m, d, t) defines a self-adjoint operators on £2(Zd). One shows

Theorem 3.1. (Theorem 1.7 [Kl 2])

Let m0 > 0 and d0 > 0. Let K0 > 0 and K'0 > 0. Let e0 > 0, po > 0 and t/0 > 0. Pick
p > sup(4, d), ß>0 such that ßp < inf(4, d). Pick e 6 (0, |). Let I C R.

Assume that, for m > m0 and -j- > ¦&-, H(m,d,t) satisfies (H".l) for (m,K0) and a

decoupling property oforder (d, eK"d). Suppose that the (tz)zezd are i-i-d random variables
such that, for m > mo and j- > —, H(m,d,t) satisfies in I a Wegner estimate of type
(eo,Po,»?o)-

Then, there exists Lo > ^(depending on m0, d0, K0, K'0, r\o, po, eo, p, fi, e) such that,
for m > mo, if there exists I > Lo such that V(x, y) € Zd x Zd satisfying \ x — y \> 1(1 + e),

P({WE e I, A,(x) or.A,(y) is (E,m(l - e),ß,e) - regular}) > 1 - l~p
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then, with probability 1, the spectrum of H(m,d,t) in I is pure point; and if ip is an
eigenvector associated to E, an eigenvalue of H(m,d,t) in I, then

limsupl2iM£)J<_m(1_2e)
|xH°o I x I

Remark. The terminology used here (e.g decoupling property of order (d, k), Wegner
estimate of type (e0,po,rio), (E,m0(l — e), ß, «)-regulaxity) is defined in section I of [Kl 2].

We will not give a detailed proof of Theorem 3.1. It is obtained from the proof of
Theorem 1.7 of [Kl 2] by merely following what happens to the constants eK"m and ek"d
through this proof. Without too many difficulties, one gets an (m, d)-uniform version of
Lemma 2.2, 2.3 and 2.6 of [Kl 2] (for m > m0 and j- > -^-); then, following the arguments
of [Kl 2], one gets a (m,d)-uniform version of Theorem 1.7 of [Kl 2] that is Theorem 3.1.

2) The rescaling and the proof Theorem 1.3.

Let <$o be given as in assumption (H.3)b). By assumption (H.l),

c„= inf inf dUa + suPp(9),ß + suVp(9))>0_
w€nz« a*ß | a - ß I

By assumptions (H.l) and (H.3)a), we may pick c'0 > 0 small enough such that, if ft
G + B(0, c'0), then (H.l) holds for ft and 9 and

£0 inf inf du(a + supp(0), fi) - S0 > 0.
u€n*d \a-ß\>2

Fix ho mi(6o,S'0, ^, hinf(i ^) (here /*jnf(i ìaj is given by Theorem 1.1).

For 0 < h < h' < h0,we rescale

H(u) e^(s»+',')(F(w) - p(h))

M'u) + W(u)

e*(s°+h'>M(w) + e^s°+h'iW(u)

(where A is given in Proposition 1.2).

In the sequel, for the sake of simplicity, we omit to write the h and h' dependence of H(u).
One should keep in mind that the only semi-classical parameter is h. h! only appears as a
renormalisation parameter.

To get point a) of Theorem 1.3, we just have to prove

Lemma 3.2. There exists 0 < h'0 < ^ such that VO < h < h'0 and h! h0, with
probability 1,

II H(u) ||> 1.
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Proof. By the estimates known for M(u) (see Theorem 1.1), we get that there exists C > 0

and h'0 > 0, such that for any 0 < h < h' < h'0,

\\ M(u) \\< e-è*.

Moreover,if waj(u) is the generic coefficient of W(u), by Proposition 1.2, we know that,
for some A > 0 and for h small enough,

(3.1) | waJ(u) |> jh1-îe-i^a<V-s°-h'l

By the ergodicity of the family (ua)açzd, we know that there exists E a subset of Gz of
probability 1 such that, for any w £ E, there exists (a, ß) € Zd x Zd such that | a — ß |= 1

and such that
du(a,ß) S0.

Pick 0 < h'Q < ho such that

f«)-*efa|
So, for any u € E, for 0 < h < h'0 and h' ho, we get

3
I waß(u) |> -.

Consequently, || H(u) ||> 1, which ends the proof of Lemme 3.2.

Now to get points c) and d), we will apply Theorem 3.1. Let us fix h' h0 and write
H(u) ((H(u;a, fi)))(atß)ezdxzd- Using the estimates given Theorem 1.1, reducing h'0 if
necessary, we get

(1) |J(Y(w;a,/?)|<e^(2-la-^) if a ^/3,

and

(2) | VyH(u;a,ß) \< e^(3-\d-i\-h-ß\)_

Using (2) in the same way we did in [Kl 2] Section IV)B), one proves that, for some K'Q > 0,

H(u) satisfies a decoupling estimate of order (-^, e ° » for 0 < h < h'0.

Now, if we prove

Lemma 3.3 (The Wegner estimate). There exists /i0' > 0, €o > 0 such that, for
0 < h < h' < h'â, H(u) satisfies a Wegner estimate of type (1 + sup(l, -j-), inf(1, po), 1) in
(-co, —1] U [1, +oo) where po is given in assumption (H.3)d).

and
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Lemma 3.4. For any I < 1, there exists hi > 0 such that, for h £ (0, hf) and (a, fi) €
Zd x Zd such that | a - ß |> f/,

P({V £ (-oo, -1] U [1, +oo), A,(a) or A,(ß) is (E, ^,ß, ^-regular}) > 1 - /"".

then, fixing e 4, we can apply Theorem 3.1 to H(u) to get that, there exists h0 > h'0 > 0
such that, for h £ (0, h'0), with probability 1,

a) <r(H(u)) n ((-oo, -1] U [1, +00)) # 0,

b) the spectrum of ff(w) in (—oo, —1] U [1, +oo) is purely punctual,

c) if ip is an eigenvector associated to E, an eigenvalue of H(u) in (—oo, — 1] U [l,+oo),
then

lim sup l°g[ïK*)l<_^
|X|—TOO \X\ h

Then, rescaling H(u) to H(u) and using the fact that the vectors of our basis of Fu
are uniformly exponentially decreasing, we get Theorem 1.3 (see the end of the proof of
Theorem 1.9 in [Kl 2]).

The proofs of Lemma 3.3 and 3.4 are given the next section, section V.

IV) The proof of Lemma 3.3 and 3.4.

A) The proof of the Wegner estimate (Lemma 3.3).
To prove this, we will apply the strategy we applied to prove the Wegner estimate in

[Kl 2]. We will construct a vector field in the w variables such that when you derivate
the operator H\(u) (i.e. the operator H(u) restricted to A some cube of Zd (see section
I of [Kl 2])) along this vector field, you obtain an operator that is of constant sign when
restricted to the spectral space associated to H\(u) and the energy interval you consider.
In our present case, we will give a vector field such that the derivative of H\(u) along it
is approximately 2H\(u). This will be enough to conclude a Wegner estimate.

For a € Zd such that | a |= 1, define

Wo)C» {w0 £ G; 3wa £ G such that dw(0, a) S0},

and
H {a E Zd; | a |= 1 and W0tO, f 0}.

Then, by definition of So, continuity of du and compacity of G, E ^ 0. Moreover, there
exists S'0 > 0 such that, for a € 5 and u £ Gz

du(0,a)>So+S'o.

For S > 0 and a £ !E, let Wo,a(S) be the following open neighborhood of Wo,a,

Wo,a C Wo,a(S) {w0 £ ft; 3wa £ ft such that du(0,a) < S0 + S},
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(here ft is the neighborhood of G defined in section IV)2)).

Let Xo,a be a Cq° function such that

Xo,a 1 on Wo,a(-So)

3
Xo,a 0 outside of Wo,a(-<So)

where S0 < inf(6o, ^i) (here 60 given by assumption (H.3) b)) and S0 is such that Woia(^S0)C[

Wo,/»(|«o) 0 if a f ß. For a $ S, let xo,« 0.

Then define, for | a - ß |= 1 and w £ R2*,

Xa,/î(W) X0,a-/j(W/j) • Xo,0-a(wa).

Let A C Zd. Let Va(/i) be the following vector field,

VUadu(a,fi)\2

Vu,adu,(a,/9)

VA(h;u) -h ^ Xa»|v ïïf?-V"»

(4.1) 'f "-'-,
-fc I XI *«./»(«)]

Remark. If one changes assumption (H.3), one must change the definition of the vector
field V\(h,u) so as to take into account the fact that a well may interact significantly with
more than one of its | • loo-nearest neighbor wells.

By Proposition 1.3 and the localization of supp(xo.a), V\(h) is defined and C°° on Rd'lAl

(here | A | denotes the cardinal of A). Moreover, there exists C > 0 (independent of A),

(4.2) sup sup|(VA(fc;w))J<C-fc,
ui€K'HAl a€A

and

(4.3) sup || Vu,VÂ(fc;w) ||b(je«-ia|)< C ¦ h,

where VuVA(h;u) denotes the Jacobian matrix of V\(h;u), || • ||e, the operator norm for
bounded linear operators from E to E, a Hilbert space ((4.3) holds because, by construction,

VUß[(VA(h,u))a] 0 for | a - fi |> 1).

So, by the ordinary differential equation theory (see, for example, [A]), we know that, there
exists h0 > 0, such that, for h £ (0,h0) and any A C Zd, there exists a C°° semigroup
SGA(t) : [-2,2] x RdlAl ?-» Rd'lAl such tha for | r |< 2,

(4.4) JtSG^ Fa (h> SGaO) ^ 5Ga(°) Id'
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and

(4.5) fvuSGA(t) [VUVA (h; SGA(t))] ¦ WuSGA(t) and VwSGA(0) Id.

Moreover, for some C > 0 (independent of A and h), one has

(4.6) sup | SGA(t)(w) -u\<Ch\t\,
ui€K<,,lAl

and

(4-7) sup \\\fuSGA(t)-U\\B9t-W)<Ch\i\.
u)6]R<<IA|

Now choose h0 > 0 small enough such that, for h £ (0,h0) and | t |< 2, SGA(t) maps
GA into ftA; and define the mapping S~GA(t) : (Rd)z" k+ (Rd)z* in the following way: for
a£Zd,

uxi (<r mt ù f(SGA(t)u)aifa£A(4-8) (SGA(t)(w)ja | Waifa0A

At last, for h £ (0, h0), 11 |< 2 and w £ Gz', we define

HA(t,u) HA(SGA(t)(u))

WA(SGA(t)(u)) + MA(SGA(t)(u))

WA(t,u) + MA(t,u).
We show

Lemma 4.1. There exists 0 < h'0 < h0 such that, for 0 < h < h' < h'0, -2 < t < 2,

w € Gz<l and any A C Zd, one has

jtHA(t,u) (1 + A(t,u))HA(t,u) + HA(t,u)(l + A(t,w)) + O (e~>)

where:

(*) A(t,u) is a diagonal matrix satisfying, for some C > 0 (independent ofu, A and t),

(1) || A(t,u) ||< Ch.

(**) O is uniform in u, t and A.

Proof. To compute j^HA(t,u), we will compute separately -^WA(t,u) and -^MA(t,u).
Let us begin with £tMA(t,u). Write MA(t,w) ((m(t,u;a,fi)))(a^)€zdxzd- So, by (4.1),
(4.4) and (4.8), for (a, fi) £ Zd x Zd,

-fh(t,u;a,ß) VA(h)(SGA(t)u) ¦ VUafh(S~GA(t)u;a,ß)

-fc E X7.m(SGa(<V) i ^^^^^HSGAit^aJ).
7€A

I v^«ui7,M; i

lc-7l=i
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So, by Lemma 2.1, for some G > 0 (independent of A and t),

| jtm(t,u;a,ß) [< ChJ^ \ Vu>17n(SGA(t)w; a, fi) \

7€A

By estimate d) of Theorem 1.1, assumption (H.3) a) and the definition of M, we get that,
there exists 0 < h'0 < ho and C > 0 (independent of A) such that, for 0 < h < h' < h'0,

-2< t <2 and w € Gz",

| jtm(t,u;a,ß) | < Che~^ £ c-*(l--irl+hr-fl>
7€A

< Che-1* £ e-^<l°-^-"l>
76Z-'

<Che-^e-^a-^.

Hence, using Schur's Lemma, we get, for h small enough, for any admissible t, w and A,

(4-9) ||^MA(t,w)||m)<e-^.

We already knew that, for h small enough, for any admissible t, u and A,

(4.10) ||MA(t,w)||/J(A)<e->.

Let us now estimate -^WA(t,u). First, notice that, by (4.6) and by Proposition 1.3,

there exists C > 0 (independent of (a, ß)) such that, for | a — ß |= 1 and any w £ Gz

SUP I rfSGA(()>^) - M<*,ß) l^ Ch,
l<l<2

so, for -2 < t < 2,

(4.11) e_ce-s-(d-(».«-So) < e-Tr(dsGA(tv(a.«-so) < ece-A(<U«,/J)-So)_

By assumption (H.3) b), defintion of E and localization of supp(xo,a-/î), for (a, ß, 7) €
Zd x Zd x Zd such that a / £ and | a - 7 |=| /3 - 7 |= 1, and w € ftz', we have

(4.12) I et<-<0-»x«,7M |< e-1^ and | e*<U«,/») (1 - *„,/»(«)) |< e"^.
By Proposition 1.2, we know that, for h small enough and u £ Gz and —2 < t < 2,

(4.13) -/*V„>a(S~GA(t)w) [yUads-GA{t)u(a,ß) + i>a(a,/?)) wa(S~GA(t)w),
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where:

(*) va(a,ß) va(fi,a) —Vß(a,ß) (using the results of Theorem 1.1),

(**) there exists C > 0 (independent of (a, ß)) such that

(4.14) \va(a,ß)\<Ch.

Now, we compute

d
—wa<ß(SGA(t)u)

_ ,„ sV^ds-GA(t)u(i,p)-(-hV^waJ(S~GA(t)u)\
1^ X-r,?(SGA(t)u) r-^ '-
$tA V ' |Vu,7ds-GA(t)w(7,^)|2

|/i-7l=i; p€A

E (xa,M (SGA(t)w) û5„^(SGA(t)w)) •

|/i-c|=i

V"c rfsGA«yK /*) • (Vw„ dSGAWu(a, fi) + t>q(a, /3))

I V"<AGA«)u/a> ^) I2

+ E (xß,li(SGA(t)u)watß(S~GA(t)u)y
1/1-/91=1

V*M dSGA(«)u,(& /^) • (V^ dSGA(()«(tt' #) + Vß(<*, ßj)

IVWM I2 '

using (4.13) and the fact that uJtt]0 only depends on (w„,uj).
Using (4.11), (4.12) and the localization of supp(xo a), we get
(4.15)

d
—waiß(SGA(t)u)

waj(S~GA(t)u) (2 + yUads-GA{t)u,(a,ß) ¦ va(a,ß) + VUßds-GA(t)Ja,fi) ¦ vß(a,ß))

+f e x.^sG.^),;^^^,VlM-«feM€A V y |Vu,„dSGA(t)>,M)|2

+ 2^ *">* ^5GA(t)wJ rg-r-jj

+ ((x„,^(SGA(t)w) - l) + (x/J,Q(SGA(t)w) - l)) • 0 (W(ds-GA(1fa<^>-<So+'.'))^

wa,ß(S~GA(t)u) (2 + VWads-GA(f)w(o, ß) ¦ va(a,ß) + V„,ds-GA(t)u;(a,/?) • vß(a,ßj)

+ 0(e-i^-fc')),
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where ö is uniform in a and ß.

We define the matrix A(t,u) ((Aa(t,u)6aj))(aj)çAxA where

Aa(t,u)= J2 Xa,n((SGA(t)u)vUads-GA(t)u(a,p)-va(a,p).
I/i—a\—l; /x€A

Estimate (1) of Lemma 4.1 follows from (4.14) and the localization of the supports of the
functions Xo,a-

Using (4.11), we compute the coefficients of the matrix

W(t,u)A(t,u) ((u>aa,/?))(a)0)€AxA to get

waaß watß(SGA(t)u)Aß(t,u)

û3a!/3(SGA(t)w)V^dSGA(()w(/3,a) • vß(ß,a)

+ E X/»,, (SG^t^) e-Ud^-(So+k')) 0(1)
l/l—a|=lj /i€A

/i#a

+ ((l - Xß,a(SGA(t)u)) e-HdA°,0)ASo+h>)) Q(1)

then, according to (4.12), we get

(4.16) waaJ watß(S~GA(t)u)VUßds-GA(t)Jß,a) ¦ v0(ß,a) + O (e-^-h'^
where O is uniform in a and ß.

At last, combining (4.15) and (4.16), we showed that, there exists 0 < h'0 < ho such

that, for 0 < h < h' < h'0 and for any A and any admissible t and w,

jtWA(t,u) (1 + A(t,w))WA(t,w) + WA(i,w)(l + A(t,u)) + 0 (e-T?)

Lemma 4.1 then follows from (4.9) (4.10) and (4.13).

¦
Now define the following semi-group of A | x | A |-matrices,

U(t,u) exp / (1 + A(u,u))du J

Notice that, as A(t,u) is diagonal so is U(t,u). One checks that U(0,u) =Id, || U(t,u) ||<

e|*|(i+CA)j that U~l(t,u) exp (- j (1 + A(u,u))du\ and that

jU-\t,u) -(1 + A(t,u))U-\t,u) -Ur\t,u)(l + A(t,u)).
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So, by Lemma 4.1, we get, for admissible h, t and w,

(4.17) jt (u-\t,u)HA(t,u)U-\t,u)) O (e->)

Integrating (4.17), we get, for 0 < h < h' small enough, —2 < t < 2 and w £ Gz

(4.18) HA(t,u) U(t,u)HA(0,u)U(t,u) + tö (c-^) •

Denote by pk(t,u) the kth eigenvalue of HA(t,u) (the eigenvalues being ordered

increasingly), and by pk(t,u) the kth eigenvalue of U(t,u)HA(0,u)U(t,u). By Ostrowsky's
Theorem (see, for example [Ho-Jo] p.224) and the estimate (1) of Lemma 4.1,

„,«n ec^he2tpk(0,u)<pk(t,u)<e-c^he2tpk(0,u) if^(0,w)<0
(4 19)

e-cW>e2tpk(0,u) < pk(t,u) < ec^he2tpk(0,u) if pk(0,u) > 0

where C > 0 is some constant independent of t, h, u and A.

Combining (4.18) and (4.19), we get that, for 0 < h'0 < h0 small enough, for 0 < h < h' <
K,

l)rfpk(0,u) pk(u)>l

pk(t,u)-pk(0,u)>t if < > 0
(4.20)

Pk(t,u)-pk(0,u)<t if t < 0

2) if pk(0,u) pk(u) <-1

Pk(t,u) - pk(0,u) < -t ift>0
pk(t,u)-pk(0,u)>-t ift<0.

Define /_ (-oo, -1], J+ [1, +oo) and I I~ U I+. For E £ R, define the counting
function

N(E,u) l{l<k<[A[; pk(u)<E).

Pick E £ /fa. Then, by (4.20), for tj e]0,1[,

{1<*<|A|; £-»7</it(w)<JE; + 7?}c

C {1 < k <\ A |; pk(-r],u) < E and pk(r,,u) > E)

so

N(E + Tf,u) - N(E - 77,w) < N(E, SGa(-t/)w) - N(E, S~GA(ri)u).
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Then, following Wegner [We], if P denote the probability defined by the random variable
(ua)açzd, we compute

P({w; dist(£,<r(tfA(w))) < ,}) <

(4.22) < J (N(E + 77,w) - N(E - v,u)) dP(u)

< J (n(E, SGa(-V)u) - N(E, SGA(r,)u)) dP(u).

We know that the distribution of each of the vaxiables (wa)agz<i is given by the same
density g, and that SGA acts only on the components (wa)a€A, so

[N(E,S~GA(-r1)u)dP(u)= f N(E,S~GA(-V)u) TT g(ua)dwa
J M<)*d a%td

j t N(E,u)Det (vwSGa(t/)) (w) JJ g(S~GA(ri)ua)dua
JW)Z a&zd

(4.23) f (f N{EiU) rr g(Ua)du\

JJ g(SGA(rì)ua)Det(VuSGA(V))(u) JJ dw„
a€A a€A

where

and

/ JVA(£,w)0A(w)Det(VwSGA(77))(w)dwA,

fA(E,u) / N(E,u) JJ g(ua)dua
J(ß,dy.d\\ __".a€ZJ\A

S'a(w) JJ j(u0) and dwA JJ dwa.
a€A a€A

As | N(E,u) \<\ A |, we know that | NA(E,u) \<\ A |, so

Jn(E, SGa(-t?)w) - N(E, SGA(7?)w)dP(w)

/ NA(E,u)(gA(SGA(ri)u)Det(VuSGA(r1))(u)

-ffA(SGA(-»/)w)Det (VwSGA(-7;)) (w)) dwA

|A|„-i
<l A

"<»")A t=o
-ffA(SGA(77t+i)w)Det(Vu,SGA(77/t+i)) | dwA,

|A|,„-i
/ E lffA(SGA(7?/fcV)Det(Vu,SGA(77fc))(w)-
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where | A |„0=| A {**'& and m r, (l - -f-\
Using the semigroup property of SGA and the changes of variables w ¦-> SGA(77/t-|-i)u>

for each k, we get
(4.24)

Jn(E, S~GA(-r,)u) - N(E, S~GA(r,)u)dP(u) <

lAU-i r 2 v

<|A| E / |ffA(SGA(1-^_)w)Det(vu,SGA(--^-))(w)-<?A(w)|^A

<| A l1*»»^1-«)

• f / I ffA(SGA(-^-)w) - gA(u) | Det (v^SG^-^f-)) (w)dwA
\J(nd)* IA |P0 V IA |po /

+ / gA(u) | Det (VwSGA(-^-)N) (w) - 1 | dwA
J(K')A \ I A Ipo / /

using the positivity of gA(u) and Det (Vu,SGa(t?)) (w).

By (4.7), we know that, for w £ GA,

0 - »nrfcf s D" (v-OT*(ixt>)Ms ('+ChwtT'
so

(4.25) | Det fvuSGA(jjL-)\ (w) - 1 |< Chr, | A f""*1.*)

Denote <7oo(wa,77) sup | g(ua + 777;) — g(ua) |; by (4.6), we know that, for some
i>€B(0,l)

C>0,

(4.26) I <,(SGA(-^-)wa) - g(ua) \< 9oo(ua, ^-).
I A Ipo I A Ipo

Notice that, assumption (H.3) d) implies

(4-27) j^igoo(oJa,ri)dua<(^-

So

</a(SGa(-H1_)w) - PA(w) JJ g(SGA(-^-)ua) - JJ g(ua)
1 '"> «6A

I A I*»» a€A

E IJ (ff(5GA(r^-K)-ffK)) û ^)
A'UA"=A£»6A' V I IP« / /J€A"
A'nA"=0

|A'|>1
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so, by (4.26),

I </A(SGA(-^-)w) -gA(u) |< E II «»("«•[?) II ^ß)-
I A 'P° A'UA"=A «€A<

I IP» /?€A»
A'nA"=»

|A'|>1

Integrating this inequality over all (wa)„eA and using (5.25) and (5.27), we get, for some
C > 1,

/ I gA(SGA(y£-)u) - gA(u) | Det f^uSGA(-A-)) (w)cL,A <
7(1^)1*1 IA Ipo V IA Ipo /

HSotmr
Then plugging (4.28) and (4.25) into (4.24), and then (4.24) into (4.22), we get, for E £ I+,

P({w; dist(£,<7(£A(w)))<r,)<

<| A I1-*»*1.*) (chr, | A f—*».*> +C (j^Y I A l1-*"»^.*))

<| A l1-1-9"^1'^) r/i«'(i.po))

for h small enough depending only on 770, po and d.

Of course the same estimate holds for E £ I~. This ends the proof of the Wegner estimate.

B) The proof of Lemma 3.4.

We recall that, for | 7 — ß |= 1, we defined

W7j {w7 £ G; 3uß £ G, such that du(y, ß) So}.

Then, if A denotes the Lebesgue measure in Rd,

KW-,*) o-

Indeed, if we suppose that A(W7/j) > 0 then, for almost every x £ A(W7 ^),

„.«^ X(Wy0r\B(x,e)) „(5.29)
v A'* fa-^ -> 0 when e -> 0.V ' A(P(X,6))

(see, for example, [Ru]).
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Let w7 £ WJtß such that (4.29) holds and Uß £ G such that du(-y,ß) S0. By Lemma
2.1, the vector v ra—fa 0\iVu^du(y,fi) is well defined. By (4.29), in any cone of axis

v, we will find a point of Wyj C G as close as we want to w7. So using the Taylor formula
for du(y,fi), we will find u'y £ G such that

du(-y+u'y,ß+Uß) > So,

which is in contradiction with the definition of So-

Then, using the regularity of the measure defined by the random variable w7, when
S —y 0, PUy(Wyiß(S)) —y 0 (here Pu denotes the conditionnai probability knowing the
variables (w0)Q^7). Define the event

£a,(0)(ä) {K)7€Al(a); 37 £ A,(a) and fi £ Zd

such that | ß - 7 |= 1 and w7 € Wyj(6)}

Clearly

P(€A,{a)(6))< E E P^(Wy,ß(S)).
7€A,(o) \ß-y\=l

So P (£A,(a)(6)) —y 0 when S —y 0. Choose now S small enough such that

P(*A,(.)(*))<£.

We know that, there exists some Co > 0 and 0 < h'0 < ho such that, for 0 < h < h' < h'0

and w e G2',

||MA((a)(w)||<e-^,
and

II Wa,(«)H ||< Co sup (e-*(MT,/»-<*+*')))
(7,/3)€A,(o)xA,(a)

So for w € Gz such that (w7)7€A((a) 0 £A/(a)(^)> we get, for some C > 0,

(4.30) || HAl(a)(u) ||< Ce-T^-h'>.

Pick 0 < /i; < inf(2(j^ïj, /i0)- For 0 < fc < fc' < fc/ and -E € (_00> *] u I1- +°°)> we Set

/ - \-i 1 v-^ (-^A,(a)(w))
GA((o)(£) (E - ffA,(a)(w)) - + E V

En+1
' ¦

n>l

Using (4.30), one computes

II Ö^)(E) ll< £_Ce-i(,_,) * £Je-^'
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and

E I GAl(a)(E;a,fi) | e2*^ < Cdlde-Hf-h<«+ì» Cdlde~*.
4<l/*-«l<i

So, for hi > 0 small enough, with probability larger than 1 — j^ (i.e for w £ Gz such that
(w7)7€A,(o) $ £a,(o,)(6)), we obtain

||GA((a)(£)||<e",

and

E \GAl(a)(E;a,ß)\e^a-^<l.
4<I^-«I<ï

This ends the proof of Lemma 3.4.

V) Proof of Theorem 1.5.

To prove this, we will suitably renormalize the reduced operator H(t,u) obtained in
Theorem 1.4 and show that the conditions required to apply Theorem 3.1 to this
renormalization axe satisfied.

Case 1: in this case, we renormalize, for 0 < h < h',

H(t,u) ei*PL(H(t,u)-p(h)).

So, if 0 < 2h' < lim (-h log a(h)) - So S0, we get
k—?O

II D(t) ||< e-«.

Then counting D(t) into the negligible terms of H(t,u), we use the techniques we used to
prove Theorem 1.3 to get the announced result.

Case 2: in this case, we use the same renormalization as in [Kl 2]. Pick So lim (h log a(h))+
h—?O

So and set

Ê{Ï,W) h~kh) m,U) ~ Kk)) D(î) + ™H +^^
where *¦» lim^f), W(u) x^WH and M(t,u) j^M^-^h ¦ a(h)t^),u).

Using the estimates given in Theorem 1.4, we get, for h small enough and some h0,

(5.1) || M(t,w) ||< e->.

That H(t,u) satisfies assumption (H".l) (see section IV) and a decoupling property, is

proved in the same way as in [Kl 2]. To prove Wegner estimate for H(t,u) on R, we use
the same method as in [Kl 2] (Appendix II)B)). Now, if we prove
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Lemma 5.1. For any I > 1, there exists hi > 0 such that, for 0 < h < h' < hi, for
a,7) € Zd x Zd such that | a - 7 |> f I,

P({VE £ R, A,(a) or A,(7) is (E,2^, ß, ^-regular}) > 1 - T".

then, applying Theorem 3.1, we conclude Theorem 1.5 using the uniform exponential
decrease at infinity of the functions (Vy,t,u)-rezd exhibited in Theorem 1.4.

Proof of Lemma 5.1.

First notice that, if lim hloga(h) > —So then, for some S > 0 and h small enough,
h—*0

\\W(h)\\<e-%.

One could then directly apply the proof of Lemma 1.11 ([Kl 2]) to get Lemma 1.6. This
partly justifies the fact that one should consider three regimes instead of two (remark that
follows Theorem 1.5).

Define Sjffaiy(6) £Al(a)(6)U£Al(y)(6) where the event £Al(7)(6) has been defined in the
proof of Lemma 4.4. Pick S small enough such that

(5.2) Pu (££„,#)) P» (SAl{a)(6)) + Pu (£a,(7>(*)) < ^-
where Pu is the probability computed with respect to the w variables.

For 6' > 0, define the event

^•a,7^') {<;3£ e R such that || (DAl(a)(t) - E)~' ||> S'

and \\{DAl{y)(t)-E)-l\\>6'}
C {t; 3E £ R and 3(p, p) £ A,(a) x A/(7) such that | tß -1^ |< 26'}.

Using then the proof of Lemma 1.11 (see [Kl 2]), we estimate

(5.3) Pt (£/.0i7(tf')) < (2Cl2d)h,

for some C > 0 independent of h, I, a and 7 (here Pt is the probability computed with
respect to the t variables).

Pick 8' le'". By (5.3), there exists hi > 0 such that, for h £ (0, hi),

Pt (et,a,,(6')) < ±
Now define the event

e,;a,y ((R")z' \ Stian(6')) x (czi \ e?tan(6)).
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Then, as the t's and w's are independent random variables,

^(^,7)>(l-^)d-^)>l-^
For (t,u) £ £i,a,y, for any E £ R, one has

|| (D^fî-E)'1 ||< ±e" or || (DAl{y)(t) - E)'1 ||< |e".

Assume it is the first that holds. Then

(HAl(a)(t,u) - E)'* (DAl{a)(t) - E)'1 •

• (id + (wAl{a)(t,u) + MAl{a)(t,ufj ¦ (DAl{a)(t) - E)'1)

As w ^ ££a y(6), we know that

||tfW«)||<e-*.
Using (5.1), and expanding (5.4) using a Neumann series, we get

(5.5) GAl(a)(E) (ÉAl(a)(t,u) -E)"' (DAl(a)(t) - E)'1 + R,

where

(5.6) \\R\\<e-^,

for some C > 0 (independent of /, a and h).

Then for h small enough, we get

||GA,(a)(£)||<e".

Moreover, by (5.5) and (5.6), as (DAl(a)(t) — E)~l is diagonal,

E I GAl(Q)(E;a,p) | e^l^l < C^e'1^^ < 1,

if 0 < h < hi, for some hi > 0 small enough (independent of a).

So, for 0 < h < hi, with probability larger that 1 — — (i.e. for (t,u) £ £j;a,7), either A/(a)

or A|(7) is (E,2-£,ß, l)-regular. This completes the proof of Lemma 5.1.
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