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Abstract. In Lz(Rd), we study a perturbation of a semi-classical periodic Schrédinger operator
where each of the wells has been randomly deviated from its initial position. For this operator,
we show exponential localization for energies close to the bottom of the spectrum. Then we study
the effect of random perturbation of the bottom of each of the wells of the previous model. We
show that the summing up of the two types of disorder leads to a stronger localization than if we
would only consider one kind of disorder alone.

Résumé. Dans LQ(Rd), nous étudions une perturbation d’un opérateur de Schrodinger semi-
classique & potentiel périodique dont chacun des puits a été aléatoirement déplacé. Pour cet
opérateur, nous démontrons un résultat de localisation exponentielle pour des énergies voisines de
la borne inférieure du spectre. Puis nous étudions I’effet d’une perturbation aléatoire des fonds
de puits du modéle précédemment étudié. Nous constatons que |’effet conjugué des deux types
de désordre conduit & une localisation plus forte que celle due & I’un de ces désordres pris tout seul.

0) Introduction.

In [K1 2], we studied the following class of random perturbations of a periodic Schrédinger
operator: in each of its wells, the periodic potential was perturbated by some compactly
supported function which size was given by a random variable; all these random variables
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were assumed to be independently identically distributed. We proved localization results
for such random operators. In this work, we study other classes of random perturbations
of a periodic Schrodinger operator. In our first model, we will randomly distort the lattice
that is defined by the periodic potential, at each of its sites and study the random operator
thus obtained. Then as a second model, we will consider the sum of both disorders that
is, each of the lattice sites will be randomly distorted and the bottom of the wells will be
randomly perturbed.

The hamiltonians we will study are of the following form:

(0'1) PQv"" = _hZA + Z q'Ye(x -7 _w'Y) = —h2A + Vﬂ':w’
yeZd

where

(*) @ is a C* function supported in a sufficiently small compact,

(*#*) (wy)4eze is a collection of i.i.d random variables valued in G, some sufficiently small
neighborhood of 0 in R¢,

(% * %)
(1) either Vy € Z?, ¢, = 1; in this case, we will speak of model 1.
(2) orVy € Z4, g, =1+t., (t4)~ez4 is a collection of i.i.d random variables valued in
some neighborhood of 0 in R; in this case we speak of model 2.

Such hamiltonians are models used in solid state physics (see, for example, the works
of B. Halperin [Ha], E. Lieb and D. Mattis [Li-Mat]). They describe the behaviour of an
electron in a pure crystal (model 1) (or in an alloy (model 2)) which lattice structure was
disturbed.

Mathematicians also have been interested in this class of random Schrédinger operators
(see, for example [Ki 2]). In [Ki-Ma 1], W. Kirsch and F. Martinelli characterized the set
supporting the spectrum of such hamiltonians (see also [Ki 1]). In [Ki-Ma 2|, they defined
and studied the integrated density of states of these operators, and gave asymptotics for
this quantity in the regimes of very large positive or negative energy.

In this paper, we are interested in studying the spectrum of P, ., more precisely the
nature of this spectrum. Using the ergodicity of the random field defining the potentials
seen, we know that the nature of the spectrum of P, is the same for almost every
realization of the potential (see for example [C-L], [Ki 2] or [P-Fi]). In [Co-Hi], J-M.
Combes and P. Hislop study ,among others, an operator similar to P, . Nevertheless, in
their study, the presence of the random variables (t.),cz+ is essential as it is the main
argument to prove the Wegner estimate.

Let us first discuss model 1. Let @ be the following operator: @ = —h?A + 6. Let u(h)
be the ground state of ). The semi-classical method we use (i.e we study Py ,, in the limit
h tends to 0) permits us only to study P, in some fixed energy interval where we know
precise information on the spectral data for @); in the present case we choose this interval
to be a neighborhood of u(h), the minimum of the spectrum of Q. First, as in [KI 2], we
will restrict P ., to some suitable energy interval, neighborhood of u(h), and show that it
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is then unitarily equivalent to some matrix which coefficients we control. To the opposite
of what happens in [KI 2], Py, is not a small perturbation of P; o, the periodic operator
where all the (¢,),cz¢ are set to 1 and the (w,),ez4 to 0. Indeed, one notices if G is much
larger than supp(6), for some configuration w = (wy),ez4,

| Prw—Pro||=]6 |oo -

So one can not use simple perturbation theory to reduce the operator P, ., from the re-
duction known for P, o by Floquet theory. Instead of this, we use a w-uniform version of
the results of U. Carlsson [Ca]. The main assumption for this to work is that, uniformly
in w, the Agmon distance relevant for our problem does not degenerate. This permits us
to reduce, uniformly in w, the operator P, ,, restricted to an energy interval neighborhood
of u(h), to a matrix acting on ¢%(Z%).

Under suitable geometric assumptions on supp(f) and G, as all the wells of V; ,, are at
the same energy level, the main term in the reduced matrix will be the interaction matrix
(see [Ca] or [He-Sj 1] for the case of finitely many wells). This matrix has only non zero
terms on the first off-diagonals (i.e the terms indexed by (a, 8) with | @ — 3 |= 1). Using
the works of B. Helffer and J. Sjostrand [He-Sj 1] and [He-Sj 2], we study these terms
carefully. Under suitable geometric assumptions on € and the support of the distribution
of the random variables (w,),ez¢, the interaction coefficient between the wells a and 3 is
only a function of the Agmon distance between @ + w, and 3 + wg.

Using this study, we are able to show a Wegner estimate for this matrix in the high
energy regime that is, in this case, for energies outside some arbitrarily small neighborhood
of u(h) when h is small enough. Then using a rewritten version of Theorem 1.7 of [KI 2],
we are able to prove exponential localization (when h is small enough) for P .

Let us mention that, if in the reduced matrix, we only keep the interaction matrix, then
the operator we get is close to the “off-diagonal disorder” model studied by W. Faris (see
[Fa 1] and [Fa 2]) for which he proved localization at high energy (see also the section 5 of
the work of M. Aizenman and S. Molchanov [Ai-Mo]).

For the second model, as the random variables (¢, ).z« are supposed to be small, we
reduce P, (restricted to a suitable energy interval) to a well controled infinite matrix
using the reduction known for P, ,, and perturbation theory. We then prove localization
results for the second model. This shows how both disorder add up to produce stronger
localization. Indeed, we can separate 3 regimes depending on the relative strength of the
disorders due to the () ez« and the (wy).eza.

We are in the first regime when the order of magnitude of the random variables (t).,ez4
is smaller than the order of magnitude of the interaction coefficient depending on the
random variables (w,),ez¢. In this case, we get localization in the same conditions as for
model 1. In this regime, one can forget the disorder due to the (¢,),eze-

In the second regime, when the order of magnitude of the interaction coefficient depend-
ing on the random variables (w,). ¢z« is smaller than the order of magnitude of the random
variables (%,),cz«, we get localization in the same conditions as in the model studied in [KI
2] that is the whole energy band gets localized. In this regime we can forget the disorder
due to the (wy),ezq.
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In the third and last regime, when both order of magnitudes are equal, we are able to
prove localization in the whole energy band though none of the disorders alone would be
strong enough to ensure this.

The paper is organized as follows: in section I, we give a precise description of the
models we study and state the main results. Section II is devoted to the study of the
interaction coefficients relevant to our problem. In section III, we state a generalization
of the main localization result of [Kl 2], which we apply to model 1 having proved the
Wegner estimate in section IV. We study the model 2 in section V.

Acknowledgement: the author would like to thank the Mittag-Leffler Institute for its
hospitality as well as B. Helffer, A. Jensen et J. Sjostrand, the organizers of the program
“Spectral Problems in Mathematical Physics” for their kind invitation to participate.

I) Definitions and Results.

A) The first model.

1) The semi-classical reduction. Let | - | be the supremum norm on Z?. Let  be a
relatively compact open subset of R?, and 8 € C§° ((—3, 1)) such that

(H.1)

1) 0+ suppd C (=3, 1)%,

2) -1<6<0,67!(-1)= {0} and —1 is a non degenerate minimum of 6.
Consider, on L?(R?),

(1.4) Q= —-h:A+6.

By standard semi-classical analysis (see, for example [He] and references therein), we know
that there exists hg > 0, Cy > 0 such that, for h € (0, hg), there exists u(h) = inf 0(Q), a
simple eigenvalue of @Q, verifying:

* u(h) > —1 when h — 0,
** a(Q) N [u(h) — 2Coh, p(h) + 2Coh] = {u(h)}
(here o(Q) denotes the spectrum of Q).
Let us denote by (h), the normalized positive eigenfunction of @ associated to u(h).

Pick w = (wq)aezd € 02’ For a € Z4, define the functions
Ouo(z)=0(z —a—wq)and V, = Z 0.4
a€Zd

and, the transformations
d d
1o : QF — OF

W Tow = (Wa+tp)gezs
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T : F(R?,C) — F(RY,C).
u To(u) :R* = C
T — To(u)(z) = u(z — a)
where F(R?, C) is the space of C-valued functions on R¢.

Then one has, for any a € Z% and w € de,

(1.2) Ta(Vo) = Vi w0

Let us consider the following Schrédinger operator acting on L2(R?),
(1.3) P,=-R*A+V,.

As V,, is bounded for w € de, P, is self-adjoint, semi-bounded from below with domain

H2(RY). |

For w € Q2 , we define d,, the Agmon distance defined by the metric (V,, +1)dz. Notice
that, by assumption (H.1) 1), for @ and J in Z¢ such that a # 3,

(1.1) supp(6) + 2 + o |supp(8) + 0+ 8 = 0.

This implies that the Agmon distance d,, does not degenerate when w varies in oz,

We define I(h) = [u(h) — Coh, u(h) + Coh]. Let I, be the orthogonal projection on F,,,
the spectral space associated to I(h) and P,. We get

Theorem 1.1. Let P, be defined as above and assumption (H.1) hold. Then, there exists
€0 > 0 such that, for € € (0, ¢), there exists h, > 0 such that, for any h € (0, h,),

1) there exists (Ya,w)acze, @ Hilbert basis of F,,, and a constant C(h) > 0 such that,

l—¢ 1—¢ i
(1) | 7 duleteadpy || +h || e WleteadTp, , ||< C(h),

2) the matrix of P, |, = P,IL, expressed in this basis, is
H(w) = p(h) + W(w) + M(w),

where
a) u(h) is the first eigenvalue of Q,
b) the two self-adjoint matrix valued mappings w — H(w) and w — M(w) are
in CY(Q%° B(¢2(Z?))), .
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c) if we write W(w) = ((w(w; a, B)))(a,g)ezd xz4, one has,
00’ w + 6 w .
(o 22— g0} if o= f|=1

w(w;a,f) = {
0 if not

d) if we write M(w) = ((m(w; @, #)))(a,p)ezdxz4, then we get

— €

1
| m(w; a, B) |< exp (—— igf (dw(@ + wa, ¥ + wy + supp(8))+
r#a

¥ #8

§ Aglip-+, -+ pplB), 4 Hsy - upp(E) £ 407 ¥ s + mupp(), B+ wa)))

and
( "'"l';_é (du (atwa ,y+wy +supp(8))+do (v+wy +supp(8),8+wg))

€
ifa#~vyandf #v
e~ 5 (du (utwy v+ wy +3upp(8)) Hinl u 4 du (y+wy +supp(6),v+wy))

if o # B and (4,7) = (a, B) or (B, )

6_2%—‘ inf, 2y dy (y4+wy+supp(8),v+w,)

{ fa=y=48

| O, m(w; a, B) |< 4

Remark. In fact, one may weaken assumption (H.1) as the only point that is really needed
to get Theorem 1.1 is w-uniform non degeneracy of the Agmon metric defined by (V,,41)dz.

We will not give a detailed proof of this result. To get the reduction to the matrix
form, one merely rewrites the proof of the Main Theorem of [Ca] taking into account the
uniform nondegeneracy of the relevant Agmon distance. Then to get the estimates on the
terms of the matrix of follows the strategy given in [KI1].

In the next proposition, under additionnal assumptions on the Agmon distance induced
by V., + 1, we will give more precise informations about the matrix W(w). This analysis
mainly relies on the analysis of the interaction coefficients that was developped be B.
Helffer and J. Sjostrand (see, for example, [He-Sj1], [He-Sj2] or [He]).

Let us assume that
(H.2)

a) if B4(0) is the smallest closed Agmon ball containing supp(f) (here the Agmon distance
we consider is the one defined by 6 + 1). Then B 4(0) is strictly convex.

b) if, for a € Z¢, we define Baa(a) = a + Q 4+ B4(0), then, for | a — 8 |= 1 and any
v # a, B, one has

de(Baa(a), Baa(v)) +de(Bag(7), Baa(B)) > de(Baa(a), Baa(B))
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(here d, denotes the euclidian distance in R¢.)

Remark.

It is easily seen that this assumption holds if, for example, 8 is spherically symmetric
(to get (a)) and the euclidian diameters of © and supp(#) are small enough (to get (b)).

Let us define,
du(a,B) = do(a + we, B+ wg).

One shows the

Proposition 1.2. Under assumption (H.1) and (H.2), there exists hg > 0 and Co > 0
such that, for h € (0, ho), one has

(1) Wa p(w) = K'Y a(wa,wp)e” 52 + O (h""%) e

where:
* a(wq,wg) is a C*® function of (wy,wg) in Q x Q and continuous in Q x R,

** for any (wa,wg) € N x (2,
—-1 < a(wg,wg) < C
CO b ﬂ 0'

and
(2) AV, Wa p(w) = W f(w) Ve, du(a, B) + O (h2-%) e~

In both formula (1) and (2), the O is uniform in (a, 8) € Z¢ x Z? such that |a — 8 |= 1.
2) The random structure.

Let g be a distribution density in R¢ (i.e ¢ > 0 and / g = 1) and G be its closed
d

R
support, that is

G={z€ R?; VU, neighborhood of z, one has / gdz > 0}.
U

Without restriction, we may suppose that 0 € G. Suppose that G and @ satisfy (H.1) and
(H.2). Moreover assume that

(H3)

a)
So = inf ) d.(a,pB) < infd do(a + wq, B+ wg + suppd),

weG? weGE
a#f |a—B]>2
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and
So <2 infd do(a +wy, B +wg + suppé),
YA

w€eG
la—B|>1

b) 36, > 0 and € such that, if @ = G + B(0,¢), then Vw € Q% and V(a, 8) € Z¢ x Z¢
such that | & — # |= 1, one has

du(a,vy) = So + 240

dw(a,lB)SSQ-{-éo:}V'Y#a’ V#ﬁ{dw(ﬁ 7)>SO+260

c) dpo > 0, no > 0 such that, Vn € [0, no],

Lm0 Lo+ m)-g(e) 1 ds < ()"

4 yeB(0,1

Remark.

Point a) of assumption (H.3) ensures that the leading order term in H(w) — pu(h) will be
W(w). It may be obtained by assuming that G and supp(#) are small enough.

Point b) is a geometric assumption on G. We assume that a well can be nearest neighbor
(in the Agmon distance sense) of at most one other well. So a well may interact significantly
with at most one of its | - |-nearest neighbors. This assumption is merely technical. It
restricts the choice for G (e.g G can not be a square). However, it may easily be relaxed
(though its formulation gets more complicated) so as to include a larger class of admissible
G’s.

Point d) is a regularity assumption on g. One can notice that it implies that g is bounded.
Point d) will be essential in our proof of the Wegner estimate. Moreover it will allow
us to use a high energy regime at the edges of the band of spectrum we study. Indeed
we will only be able to prove localization near the edges of the part of the spectrum we
consider. The fact that the random variables (wq)qeze admit a density will tell us that

the probability that a finite rank restriction of our reduced operator is of this size is very
small

For 0 < h < hg, we define the interval
I(ho, h) = p(h) + [~Coh, —e~ ¥ *] U [~ "% Coh]

As the random variables (wq)qez4 are supposed to be independent identically distributed,
we may apply Theorem 2 of [Ki-Ma 1], and so get that o(P,), the spectrum of P,, its pure
point part, its absolutely continuous part and its singular continuous part are non-random
sets.

We now state our main result concerning model 1 that is,
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Theorem 1.3.

Let G and 6 satisfy (H.1) and (H.2). Let (wa)qeze be afamily of independent identically
distributed random variables with common distribution density g (with closed support G)
satisfying (H.3). Let P,, be defined by (1.1). Then there exists hg > hy > 0 such that, for
h € (0, hy), with probability 1, one has,

a)
a(P,) N I(he,h)#0,
b) the spectrum of P, in I(hy, k) is pure point,

c) if p is an eigenfunction of P,, associated to an eigenvalue in I(ho, h), then there exists
C(h,p) > 0 such that, for z € R?,

| o(2) < C(h, p)e= R,

Remartk. Using the ergodicity of our family of operators P, one shows that, there exists
some constant C > 0 such that, for w in some set of probability 1, for A small enough,

1 d
| Pt = u(k) 12 A~ 2e=,

(see, for example, the proof of point a) given in section 3.)

Looking at sublattices of Z4, using Theorem 4 of [Ki-Ma 2] and semi-classical techniques
conjuguated to Floquet theory, one may prove that, for any ¢y > 0 small enough and

h small enough, there exists an interval of width 2¢= %+ around p(h) that is in the
spectrum of P, for almost every w.

So, by point b) and c), we see that, when h goes to 0, most of the spectrum becomes
localised.

We see that we are not able to prove that the spectrum of P, is localized for energies
close to p(h). This is mainly due to the fact that for energies to close to u(h), the Wegner
estimate breaks down (see also [Fa 2] and [Ai-Mo]). The reason for this breakdown is the
same as for the break down in the “off-diagonal” disorder.

B) The second model.

1) The reduction theorem.
Using the same notations as in part A) of this section, we consider the operator
(1.5) Poo=—-hA+ ) (1+t)0(z —7—w,),
YEZ?

where (t,),ez4 are real parameters in [-1Coh, 2Coh]. We suppose that  and 6 satisfy

(H.1) and that, for v € Z%, w, € Q. Then, for every (¢t,w), P;. is a semi-bounded
self-adjoint operator with domain H?2.

Let II; ., be the orthogonal projection on F; ,, the spectral space associated to I(h) =
[u(h) — Coh, u(h) + Coh] and P, ,. We show the
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Theorem 1.4.

Let P, be defined as above, and suppose that 2 and 6 satisfy (H.1). Then there exists
d
€0 > 0 such that, for € € (0,¢€), there exist h, > 0 such that, for h € (0, h), w € Q%" and
t € [-1Coh, 1Coh)%,

1) there exists (¢a,t,w)aczd, @ Hilbert basis of Fy, and a constant C(h) > 0 such that,

—¢ . l1-e atwe,
(1) | eFtdwlatway || +h || e F et Ty, L ||1< O(R),

2) the matrix of Py ,F, , = Py 11t expressed in this basis, is
H(t,w) = p(h) + W(w) + D(t) + M(t,w),

where

a) u(h) is the first eigenvalue of Q,

b) the self-adjoint matrix valued mapping (t,w) +— H(t,w) is analytic in t and C' in w,
the mapping t — D(t) is analytic and the mapping w — W(w) is C?,

c) point c) of Theorem 1.1 is valid for W(w),

d) D(t) is the diagonal matrix ((J(taba,s))(a,g)czixz¢ Where b is an analytic bijection
between two neighborhoods of 0,

e) if we write M(t,w) = ((m(t,w; &, 8)))(a.p)eze xz¢, then, for m(w;a, B) and

Vi, w,m(t,w; a, B), we get the estimates given in point d) of Theorem 1.1.

Remark.

a) We will not give a detailed proof of this result. Using Theorem 1.1, one may prove it
d

by regular perturbation theory (using the same method as in [KI 1]), as for w € 22" and

t € [-1Coh,1Coh)%,

| P = Po || 5Coh and o(Pull) C [u(h) — e~ %, u(h) + ¥

for some ¢y > 0 and h small enough.

b) By section 3 of [KI 1], we know that the bijection b satisfies, for u in some complex
neighbohood of 0,

b(u) = pu(u, h) — u(h) = p(R)4(1 + tq(t))

where p(u, h) is the infimum of the spectrum of @ + ué (@ is defined in part A) of this
section), where g is analytic and, where & < p(h) < C for h small enough and some C >
independent of A. '

2) Localization for the second model.
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Let g, be a distribution density on R? satisfying (H.1)-(H.3). Let g7 be a distribution
density on R supported in [—1,1] such that, there exists pg > 0 and ¢ > 0 such that for
€ € [0, €],

[, 1on(e +u)-sa) 1< (£

¢ Jul<e €

Pick a function a(h) such that, for h € (0,h¢), 0 < a(h) < %C{)h. Suppose that the
limit of hloga(h) exists when h tends to 0. Define g, r(u) = Tlﬁg(;{l,—ﬁu) and Sy =

inf inf d,(a, ) (here Gg denotes the closed support of gq).
we(Ga)?* a#h

We will now define two different asymptotic regimes in w and ¢ depending on a(h). We
will say that we are in regime (1) if

ilziino hloga(h) < —So,

and then, for 0 < h < hy, define
I (ho, h) = p(h) + [~Coh, —e~ = F2]U [e= 752, Coh).

We will be in regime (2) if

lim hlog a(h) > ~Sp,
and then, for 0 < h < hg, define

L (ho,h) = p(h) + [-Coh, Coh].

Then the following result holds

Theorem 1.5.

Let g, 7 and ga be constructed as above. Let (ta,wq)aeze be independent identically
distributed random variables having g, T ® go as common distribution density. Let P,
be the operator defined by (1.4).

Then, in regime (k) for k = 1 or 2, there exists hg > hy > 0 such that for h € (0, hy),
with probability 1,

a) O'(Pt,w) N Ik(ho, h) :,é 0,
b) the spectrum of P, in Ix(hy, k) is pure point,

c) if ¢ is an eigenfunction associated to E, an eigenvalue of P, , in Ix(ho,h) then there
exists C(h,¢) > 0 such that, for z € (R)?,

| ¢(2) |< C(h, p)e= 1.

Remark. A priori in the way the result is stated one sees only two different asymptotic
regimes. In fact these should be separated into three regimes. The regimes are:
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(1) when ’l‘in{)hlog a(h) < =S,
(2) when %m}) hloga(h) = -5,
(3) when %inlljhloga(h) > —Sp.

In regime (1), the effect due to the random variables (wq)qeze dominates the one created

by (ta)aezd- So the (wq)qeze are alone responsible for localization. Hence only a part of
the band gets localized.

In regime (2), it is the effect due to the random variables (4 )4ecz¢ that dominates; the
whole band gets localised.

In regime (3), both of the effects are of the same order of magnitude but none alone
would be strong enough to localize the whole band. It is the summing up of both effects
that localizes the band.

IT) The interaction coefficients.

a) An auxiliary lemma.
Let B4 (@) = a +wq + B4(0). One proves

Lemma 2.1. Under assumptions (H.1)-(H.2), for | @« — B |= 1, the following assertions
hold

a) For any w € O2° | there exists a unique minimal Agmon geodesic going from a + w4 to
B + wpg; this geodesic depends only on (wq,wg).

b) d.(a, 8) depends only on (wa,wg) and is a C*™ function on  x Q.

c) Let xo(wq,wg) be the intersection point of the unique minimal Agmon geodesic going
from o + wq to B+ wg and the hyperplane T'y g = {t € R*; |z —a |=| z — 3 |}. Then
To(wa,wg) is a C* function of (wq,wg) € 2 x .

d) V,du(a,B)=-V,,d.(a,p).
e) There exists C' > 1 such that, for h small enough and (wq,wg) € Q x ,

7 <1 Vuadul(, ) IS C.

Proof. To prove Lemma 2.1, we will use the following elementary geometric lemma, the
proof of which is left to the reader:

Lemma 2.2. Let C and C' be two strictly convex compact subsets of R? with C* bound-
ary. Then, for z € R? such that (2 +C)NC' =0,
1) there exists a unique (z(z),z'(z)) € (z+C) xC' such that | 2(z) —z'(2) |= de(2 +C,C").

2) 2+ z(2) and z — z'(2) are C™ functions; hence z — d.(z + C,C') is C°.
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3) For any compact K such that (K +C)NC' = 0, there exists Cx > 0 such that

L V.d(z+0,C) |< Ck.
Ck

By Proposition 6.5 of [He-Sj 1] (see also [He] Proposition 4.4.2), we know, that, for any
a € 24, for z € 8B, (a) (here B4 (a) is the boundary of By u(a)), there exists a
unique minimal Agmon geodesic from a + w, to z. We also know that 0B 4 o (a) is C™
(see [He-Sj 1] and [He]).

Let C = By o(a),C' = B4 o(B) and 2(w) = z(waq,wp) = wa —wg. Then, by assumption
(H.1), we know that (2(2 x Q) +C)NC’' = 0. So we may apply Lemma 2.2. For z and z'
defined by Lemma 2.2, let z4(w) = z(2(w)) +wa € 0B w(a) and zg(w) = z'(2(w)) +wq €
0B 4,u(B). Let vy, w,, be the path sum of the minimal Agmon geodesic from a + wq to
Tq(w), the straight line from z,(w) to zg(w) and the minimal Agmon geodesic from zg(w)
to B + wg. Then, one sees easily that +,,, ., is the unique minimal Agmon geodesic (for

the metric defined by (V,, + 1)) from a + w, to 8 + wg, which proves point a) of Lemma
2.1.

Points c), d) and e) of Lemma 2.1 are immediate consequences of points 2) and 3) of
Lemma 2.2. We know that r,(w) and zg(w) are C* in (wq,wp). Moreover, by assumption
(H.1), we know that

BA,n(a)C{JCGRd; |z —a|<|z—-8|}
Bag(B)C{zeR% |z-B|<|z—al}.

So, for (wa,wp) € N x Q,

(Ta(w) —zg(w)) - (= B) #0.
This in turn implies

L8N Yuawp = {To(wa,wp)}

where
52 _ 0[2

(za(w) —28(w)) - (a = B)

So one derives point b) of Lemma 2.1 from point 2) of Lemma 2.2. This ends the proof of
Lemma, 2.1.

(2a(w) — z5(w)).

Zo(waywp) = Ta(w) +

b) Proof of Proposition 1.2.

We recall that 1 denotes the normalized positive eigenvector associated to u(h), the
ground state of the operator @ = —h%A + 6, and that ¥, o(z) = ¥(z — a —w,). By
definition, for | a — f |= 1,

(s NP3 9 o
(21) 00,0(0) = (o (2225022 ) ),
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Following the appendix of [KI 1] (see also [He-Sj 1]), we define I‘I,,s ={zeR"* |z—a ||
¢—f|}and T, ;={z €R"; |z —a|>|z - |}, and compute

B + 0 6o + 05,0
wa,ﬂ(w) = '/F_'_ d’a,w : (_,2_‘?’”) ¢ﬂ,w + o ‘/)a,u . (_awz—ﬂ) 'nbﬂ,u
a, g o, B

1
=R j @ba,w : 9ﬂ,w'l/),8,w -+ j T/)a,w . 9a,wd’ﬂ,u ’
: T Tas

as, for any w, supp(fa,.) N I‘:’B =supp(fs,.) NT, 5 = 0.
Using the fact that Qv = u(h)y and Green’s formula, we get

(2.2)

wap() = 5 ( [, Vo (284 u0) b+ [ V- (FA+u(h) ¢a,u)
a,f . ]

= l (h2 j (wﬂ,wvwa,w - d’a,wv'd)ﬁ,u) - mdo+
2 Ta.p
(23) +[r+ Yow (R A+ p(h)) %,w)
«,p
+3 (h2 | 0V = Yo Vbs) - Tt
Ta,p

¥ Yaw - (th + l‘(h)) d’ﬂ,w)

F;,p
where 7 is the normal to [ g oriented toward a.

Hence, because Qi = p(h)y and supp(8s.) NTF , =supp(8s )N T2 5 = 0, we get
U s a,B 8, a,f

(2.4) wa‘ﬁ(w) = h2 / (d’ﬂ,uku,w - 1/)0,’“,‘71/)3,“) . Wda.

Ia,s

Now, following [He-Sj 1] pp 397-398 (see also [He-Sj 2] Theorem 6.1.1), using the W.K.B
expansions known for 1, ., and ¥, along v, g(w) (see [He-Sj 1] Theorem 5.8 and Remark
3.10), and a stationnary phase method, by Lemma 2.1, we get

(2.5) Wa,5(w) = M1~ Fa(2o(we,wp))e Fe (@B 4 O(R2 R du(A)),

where z — a(z) is a C* and & > a(z) > C for some C > 0, for z in a neighborhood of
ro(wa,wg) and h small enough.

To estimate V,_ wq g(w), we just derivate (2.4) with respect to w, to get

(2.6) Vi, Wa g(w) = h? f ¥8.0Vws (Vaw: ) = Vi Yaw(Vig. 7 )do.
Fap
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Computing V,,, (Vifa,w - ) and V,,_1q . using the W.K.B expansions known for ¢ near
the point z¢(wa,wps), and using a stationnary phase method as above, by Lemma 2.1, we
get

Ve, Wa (W) = —h~2a(zo(wa,wp))e  F @AY d (a,B) + O(h1~F e Hdu(@A)

that is, using the h-uniform boundedness of = T ] ‘:a Z2))°

_hVua U)a,ﬂ(UJ) = wﬂ’,ﬂ(w)qudw(a,ﬂ) + O(hz—%e—%dw(a,ﬂ)).

This end the proof of Proposition 1.2.

IIT) The proof of Theorem 1.3.

The idea of the proof is to reduce our initial operator P,II, via Theorem 1.1, then
to rescale this reduced operator so as to be able to use a slightly modified version of the
localization theorem, Theorem 1.7, of [KI1 2].

1) A uniform version of the localization theorem.

Let m > 0 and d > 0. Let D be some fixed set. Let H(m,d) : pr Mat(Zd), a
matrix valued application satisfying

(H”.l)
a) Vt € Dzd, H(m,d,t) = ((H(m,d,t;2,Y)))(z,y)cz¢ xz¢ is formally self-adjoint,
b) 3K > 0 such that, for (z,y) € Z¢ x Z? such that = # y,

sup | H(h,t;z,y) |< e™(K=lz=y))
teDZ!

Under assumption (H”.1), H(m, d,t) defines a self-adjoint operators on ¢2(Z%). One shows

Theorem 3.1. (Theorem 1.7 [K1 2])

Let mg > 0 and dy > 0. Let Ky > 0 and K > 0. Let ¢ > 0, pg > 0 and 9 > 0. Pick
p > sup(4,d), B> 0 such that Bp < inf(4,d). Pick e € (0,3). Let I CR.

Assume that, for m > my and d%, > ., H(m,d,t) satisfies (H”.1) for (m, Ko) and a
decoupling property of order (d, e¥ t')d). Suppose that the (t;),eze are i.i.d random variables
such that, for m > my and dio 2 o=, H(m,d,t) satisfies in I a Wegner estimate of type
(€0, P0;70)-

Then, there exists Ly > 0(depending on my, dy, Ko, Ky, no, po, €, P, B, €) such that,
for m > my, if there exists | > Lo such that ¥(z,y) € Z% x Z¢ satisfying | z —y |> I(1 +¢),

P({VE € I, Ai(z) or-Ai(y) is (E,m(1 —€),,€) — regular}) > 1 —[7?
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then, with probability 1, the spectrum of H(m,d,t) in I is pure point; and if ¢ is an
eigenvector associated to E, an eigenvalue of H(m,d,t) in I, then

lim Sup}g_g_]cp(_m)l < —m(1 — 2¢)

|z|—o0 | T |

Remark. The terminology used here (e.g decoupling property of order (d, k), Wegner esti-
mate of type (€o, po,m0), (E, mo(1 — €), B, €)-regularity) is defined in section I of [KI 2].

We will not give a detailed proof of Theorem 3.1. It is obtained from the proof _?f
Theorem 1.7 of [KI 2] by merely following what happens to the constants eX°™ and e¥o?
through this proof. Without too many difficulties, one gets an (m, d)-uniform version of
Lemma 2.2, 2.3 and 2.6 of [Kl 2] (for m > m, and di;, > =); then, following the arguments
of [KI 2], one gets a (m, d)-uniform version of Theorem 1.7 of [KI 2] that is Theorem 3.1.

2) The rescaling and the proof Theorem 1.3.
Let &9 be given as in assumption (H.3)b). By assumption (H.1),

0
o= inf inf Je(otsupp(8),8 + supp(6))

> 0.
weﬂzd a#p | o — ﬂ |

By assumptions (H.1) and (H.3)a), we may pick cj > 0 small enough such that, if Q =
G + B(0, c}), then (H.1) holds for 2 and 6§ and

6= inf inf d, 8), 8) — So > 0.
o= b Ju dule & euppi0), B) =S

Fix ho = inf(éo, 6y, £, hint(4,%)) (here hint(3,5g) is given by Theorem 1.1).
For 0 < h < h' < hg, we rescale

H(w) = ex o) (H(w) - u(h))
= M(w) + W(w)
= eF S+ a1(0) + eF S +R I (W)

(where A is given in Proposition 1.2).

In the sequel, for the sake of simplicity, we omit to write the h and k' dependence of H (w).
One should keep in mind that the only semi-classical parameter is h. A’ only appears as a
renormalisation parameter.

To get point a) of Theorem 1.3, we just have to prove
Lemma 3.2. There exists 0 < h{ < 20 such that YO < h < h} and k' = hg, with

2
probability 1, )
| H(w) > 1.
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Proof. By the estimates known for M(w) (see Theorem 1.1), we get that there exists C > 0
and hy > 0, such that for any 0 < h < h' < hj,

| M(w) |I< 7.

Moreover,if t, g(w) is the generic coefficient of W(w), by Proposition 1.2, we know that,
for some A > 0 and for h small enough,

" A gl o oo, B SR
(3.1) | g p(w) |> '§'h1 $ e~ t(du(a,B)=So—h")

By the ergodicity of the family (wq)qez4, We know that there exists E a subset of GZ* of
probability 1 such that, for any w € E, there exists (a, 8) € Z¢ x Z% such that |a— g |=1
and such that

du(a, B) = So.
Pick 0 < hg < hg such that
h
Shytet >

oW

So, for any w € E, for 0 < h < hy and h' = hg, we get

. 3
l We,p(w) |> 9

Consequently, || H(w) ||> 1, which ends the proof of Lemme 3.2.
]
Now to get points ¢) and d), we will apply Theorem 3.1. Let us fix h' = hg and write

H(w) = (H(w;a, B)))(a,pyezixzd- Using the estimates given Theorem 1.1, reducing hg if
necessary, we get

(1) | H(w; a, ) |< ef,fl(z—ia-m) if & # B,
and
(2) | V., H(w;a, B) |< e G-la=vl=l—8D,

Using (2) in the same way we did in [KI 2] Section IV)B), one proves that, for some Kj > 0,

~ ] -+ h
H(w) satisfies a decoupling estimate of order (Ehﬁ, efo ), for 0 < h < hj.

Now, if we prove

Lemma 3.3 (The Wegner estimate). There exists hy > 0, ¢¢ > 0 such that, for
0 <h<h'<hy, Hw) satisfies a Wegner estimate of type (1 + sup(1, ﬁ),inf(l,po), 1) in
(—o0,—1] U [1, 400) where pg is given in assumption (H.3)d).

and
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Lemma 3.4. For any | < 1, there exists hy > 0 such that, for h € (0,h;) and (o, ) €
Z? x Z* such that |a — g |> 21,

P({V € (=00, -1]U[1,+00), Ai(a) or Ay(B) is (E, —2-5-’-,6, %)-regular}) >1-17P,

then, fixing e = {, we can apply Theorem 3.1 to H(w) to get that, there exists ko > hf > 0
such that, for h € (0, hy), with probability 1,

a’) J(ﬁ'(w)) n ((—OO, "'1] U [1’ +°°)) # 0,
b) the spectrum of H(w) in (—o0, —1] U [1, +00) is purely punctual,

c) if ¢ is an eigenvector associated to E, an eigenvalue of H(w) in (—o0,—1] U [1,+00),
then 1 "

Lm sup M g _....9.._

|z]—+o00 |z | h
Then, rescaling H(w) to H(w) and using the fact that the vectors of our basis of F,,
are uniformly exponentially decreasing, we get Theorem 1.3 (see the end of the proof of

Theorem 1.9 in [KI 2]).

The proofs of Lemma 3.3 and 3.4 are given the next section, section V.

IV) The proof of Lemma 3.3 and 3.4.

A) The proof of the Wegner estimate (Lemma 3.3).

To prove this, we will apply the strategy we applied to prove the Wegner estimate in
[KI 2]. We will construct a vector field in the w variables such that when you derivate
the operator H(w) (i.e. the operator H(w) restricted to A some cube of Z¢ (see section
I of [KI 2])) along this vector field, you obtain an operator that is of constant sign when
restricted to the spectral space associated to Hx(w) and the energy interval you consider.
In our present case, we will give a vector field such that the derivative of Hj(w) along it
is approximately 2H A{w). This will be enough to conclude a Wegner estimate.

For a € Z% such that | a |= 1, define
Wo,o = {wo € G; 3wq € G such that d,(0,a) = S},

and

E={a€Z% |a|=1and Wy # 0}

Then, by definition of Sy, continuity of d,, and compacity of G, = # @. Moreover, there
; —_ a
exists 8y > 0 such that, for « € Z and w € G%°,

d,(0,a) > So + 6.
For 6 > 0 and a € E, let Wy o(8) be the following open neighborhood of Wy ,
Wo,a C Wo o(8) = {wo € Q; Jw, € Q such that d,(0,a) < Sp + 6},
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(here Q is the neighborhood of G defined in section IV)2)).
Let x0,o be a C§° function such that

1
X000 = 1 on Wg,a(-é(so)
X0,a = 0 outside of Wg,a(-:‘)i&o)

where §, < inf(6p, ) (here 6, given by assumption (H.3) b)) and 6, is such that Wy o(360)N
Wo,8(360) =0if a # . For a € =, let xg,a = 0.

Then define, for | a — 8 |= 1 and w € R%",
Xa,8(w) = X0,a-p(wp) * X0,-a(Wa)-
Let A C Z%. Let Vj(h) be the following vector field,
Ve du(a, )

VA(h,w) = _h Z Xﬂ,ﬁ(w)l V d (OL' ﬁ) |2 ) Vw«
pen;Ti=al=1 R
(4.1) ’
Vi, du(a, B)
=—h Z XG,B(LU) = 2) g
(ﬂEA; |B—al=1 l Vuadw(a,ﬂ) | a€A

Remark. If one changes assumption (H.3), one must change the definition of the vector
field Va(h,w) so as to take into account the fact that a well may interact significantly with
more than one of its | - |-nearest neighbor wells.

By Proposition 1.3 and the localization of supp(Xo,a), Va(k) is defined and C*° on R4l
(here | A | denotes the cardinal of A). Moreover, there exists C > 0 (independent of A),

(4.2) sup sup | (Va(h;w)), |ISC-h,
wER? 1Al a€A
and
(4.3) sup || VoVa(h;w) ||gma1an< C - b,
wERE 1A
where V,, V) (h;w) denotes the Jacobian matrix of Vp(h;w), || - ||E, the operator norm for

bounded linear operators from E to E, a Hilbert space ((4.3) holds because, by construc-

tion, Vo, [(Va(h,w))a] =0 for |a — 3 |>1).

So, by the ordinary differential equation theory (see, for example, [A]), we know that, there
exists ho > 0, such that, for h € (0, ko) and any A C Z¢, there exists a C* semigroup
SGa(t) : [-2,2] x R*IM  R?IAl such tha , for | ¢ |< 2,

(4.4) %SGA(t) = Vi (h; SGA(t)) and SG4(0) = Id,
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and

45)  L9,5GA(1) = [VuVa (b SGA()] - VuSGa(t) and VoSG (0) = Id.

dt
Moreover, for some C' > 0 (independent of A and k), one has
(4.6) sup | SGA(t)(w)—w |SCh|t],
weR 1Al
and
(4.7) sup || VuSGa(t) — Id ||g@a-1an< Ch|t].
wERT 1A

Now choose hy > 0 small enough such that, for h € (0,hg) and | t |< 2, SGA(t) maps
GA into QA; and define the mapping SGa(t) : (R%)Z* — (R?)Z" in the following way: for
a € Z4,

~ SG ifa€eA
(4.8) (SGA(t)(w))a = {( A(t)w(j: £ o Z &

At last, for h € (0, ko), | t]|< 2 and w € GZ°, we define
Hi(t,w) = HA(SGA(t)(w))
= WA(SGA(t)(w)) + MA(SGA(t)(w))
= WA(taw) + MA(taw)‘
We show

Lemma 4.1. There exists 0 < hy < hg such that, for 0 < h < h' < hg, =2 <t < 2,

w € G and any A C Z¢, one has
d

ZHa(t,w) = (1 + At,w) H(t,w) + Hat0)(1 + Atw) + 0 (7)),

where:
(*) A(t,w) is a diagonal matrix satisfying, for some C > 0 (independent of w, A and t),
(1) I A(t,w) |I< Ch.

(**) O is uniform in w, t and A.

Proof. To compute -&‘-'?fIA(t,w), we will compute separately %WA(t,w) and %MA(t,w).
Let us begin with ;i-dt-MA(t,w). Write MA(t,w) = ((m(t,w; @, 3)))(ap)ezixzd- SO, by (4.1),
(4.4) and (4.8), for (a, B) € Z¢ x Z4,
d N
Ev‘h(t,w; a,f) = VaA(R)(SGA(t)w) - Vo, m(SGA(t)w; o, B)
vad‘*’(lY’”)
| Ve, du(r, 1) [2

= —h Z X'y,u(SGA(t)w)

~YEA
[e—v|=1

V., m(SCa(t)w; @, B).
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So, by Lemma 2.1, for some C' > 0 (independent of A and t),

d . i
| 7t wie, B) I Ch > |V, m(SGA(tws @, B) | -
YEA

By estimate d) of Theorem 1.1, assumption (H.3) a) and the definition of M, we get that,
there exists 0 < hy < ho and C > 0 (independent of A) such that, for 0 < h < h' < hg,
—25t52a.ndw€sz,

| %ﬁz(i,w;a,ﬂ) | < Che™# Z o= (la=|+|v=8))
YEA

Ol Y e— R Ua—l+v=8D
yE€Z4

Che=% 8101

IA

IA

Hence, using Schur’s Lemma, we get, for h small enough, for any admissible ¢, w and A,

d - o
(4.9) | 5 Ma(tw) lamS e .

We already knew that, for h small enough, for any admissible ¢, w and A,

(4.10) | Ma(t,w) e S e .

Let us now estimate %WA(t,w). First, notice that, by (4.6) and by Proposition 1.3,
there exists C > 0 (independent of (a, 8)) such that, for |a — 3 |=1 and any w € G*

sup | dgg, (1yo(@, B) — du(a,B) |[< Ch,
It <2

so, for —2 <t <2,
(4.11) e=Ce=tdu(@B)=50) < o= (s (@H=50) £ (Co—}(du(@B)=S0)

By assumption (H.3) b), defintion of = and localization of supp(xg,«-g), for (a,B,7) €
Z% x Z® x Z% such that a # B and |a— v |=| B —v |=1, and w € N%°, we have

S0+t So+l
(412) e @My ) < e and | eb @ (1 -y p(w) |< e T

By Proposition 1.2, we know that, for h small enough and w € GZ' and —2 <t<2,

(4.13) —hV,,, Wa(SGA(thw) = (qu s (0@ B) + vala, ﬂ)) Ba( SGA(t)w),
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where:
(*) va(a, B) = va(B, &) = —vg(a, B) (using the results of Theorem 1.1),
(*x) there exists C' > 0 (independent of (o, 8)) such that

(4.14) | va(a, B) |< Ch.

Now, we compute

d _ .
Ezwa,ﬂ(SGA(t)w) =

C Y i (SO () ) (21 B SCr(01)

~€EA ' Vw-r dS.GA(t)w('Ys.u) |2
lu=~1=1; neA

= 3 (xon (SCAW) a g (SCA (1))

lp—al=1
Vu, ds*GA(t)w(O‘» ) (Vwa dS*GA(t)w(C”a B) + va(a, ﬂ))
I vwadS-GA(t)u(aa H) !2
+ Y (xow (5GA(tW) Gap(SGa(t)w))

lu—Bl=1

Vs g, w(Bs 1) - (pr dsg (@ B) +vs(a, ﬂ))
I VwadS-GA(t)w(ﬁHu) 2 ’

using (4.13) and the fact that @, g only depends on (wq,wp).

Using (4.11), (4.12) and the localization of supp(xo.«), We get
(4.15)

d _ e
a’wa,ﬂ(SGA (tw) =

= o,6(SCA(tW) (2 + Ve dsG, (9(@: B) - val @, B) + Vi, iz, s B) - v5(a, B))

+( ) DT (S"GA(t)w) Vuadsc, (0w #)

|p—a|=1; €A I v‘”adS'G,\(t)w(aa .u) |2

Vs g (w8 1)
| Vi ds‘GA(t)u(ﬁ, ) 2

Y e (SGatt)

lu—Bl=1; neA

+ (X (SCA(tN) - 1) + (Xpa(SGa(tw) 1)) - © (e'% (ds'cww(a’ﬂ)-(5°+h’)))

= Wa,8(SCA(tW) (2 + Ve iy B) - va(@, 8) + Vi dsi, il B) - va(, )
+0 (emHCE-m),
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where O is uniform in « and S.

We define the matrix A(t,w) = ((Aa(t,w)ba,8))(a,p)erxa Where
Aaty)= Y Xaw ((SCAW) Vaads, (@ 1) - vale k).
lu—al=1; peA

Estimate (1) of Lemma 4.1 follows from (4.14) and the localization of the supports of the
functions xo q-

Using (4.11), we compute the coefficients of the matrix

W(t,w)A(t,w) = (waa,6))a,merxh to get

Waa,p = o 0(SCA () Ap(t, )
= Ba,3(SGA(HwW) Vi, dg, (1B, @) - v8(B, @)
Y xpu (Seat) b @n=0) o)

|p—al=1; peA
nEa

+ ((1 - Xﬁ,a(SbA(t)w)) e 1 (du(e,B)—(So+h')) | O(1)
then, according to (4.12), we get
) 180t
(4.16) Waa,p = Ba,g(SCA(W) Vo, dgg, (B @) - v5(8,a) + O (e_T(_Z’Q A )) :

where O is uniform in a and g.

At last, combining (4.15) and (4.16), we showed that, there exists 0 < hy < hg such
that, for 0 < h < A’ < h{ and for any A and any admissible ¢ and w,

%WA(t,w) = (1 + A(t,w))Wa(t,w) + Wa(t,w)(1 + A(t,w)) + O (e—’h’{l) .

Lemma 4.1 then follows from (4.9) (4.10) and (4.13).

Now define the following semi-group of | A | X | A |-matrices,

() = it (fotu + A(u,w))du) .

Notice that, as A(t,w) is diagonal so is U(¢,w). One checks that U(0,w) =Id, | U(t,w) ||<
4
eltl0+Ch) that U~1(t,w) = exp (_/ (1+ A(u,w))du), and that
0
d

EU_l(t,w) = —(1+ A(t, ) U™ (t,w) = U (t,w)(1 + A(t,w))-
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So, by Lemma 4.1, we get, for admissible k, ¢t and w,

d

(4.17) =

(U—l(t,w)ﬁA(t,w)U-l(t,w)) =0 (e—%“) .
Integrating (4.17), we get, for 0 < h < A’ small enough, —2<t<2andw € GZ*,

(4.18) H(t,w) = U(t,w)Hp(0,0)U(t,w) +tO (e-%“) .

Denote by pi(t,w) the k*! eigenvalue of Hy(t,w) (the eigenvalues being ordered in-
creasingly), and by ji(t,w) the k'! eigenvalue of U(t,w)H(0,w)U(t,w). By Ostrowsky’s
Theorem (see, for example [Ho-Jo] p.224) and the estimate (1) of Lemma 4.1,

ecltlhemuk(ﬂ,w) < jfir(t,w) < e_C|f|"e2‘”k(0,w) if ,uk(O,‘;") <0

(4.19)
e Ol (0,0) < fik(t,w) < Py (0,w) i pe(0,0) 2 0

where C' > 0 is some constant independent of t, h, w and A.
Combining (4.18) and (4.19), we get that, for 0 < k) < ho small enough, for 0 < h < h' <
!
0>
1) if pr(0,w) = pr(w) > 1

tw) — up(0,w) >t ift>0
(4.20) pi(t,w) — pr(0,0) 1
pr(t,w) — up(0,w) <t ift <0

2) if pr(0,w) = i) < —1

pr(t,w) — pr(Ow) < —t ift>0

4.21
(4:21) pr(t,w) — pr(0,w) > -t if ¢t <0.

Define I~ = (—o0,—1], IT =[1,+00) and I = I~ UI*. For E € R, define the counting
function

N(E,w) =#{1 <k <|A|; m(w) £ E}.
Pick E € I't. Then, by (4.20), for 5 €]0,1],

{I<k<|A[f E-n<mw)<E+n}cC
C{1<k <Al p(—nw) < E and pp(n,w) > E}

80

N(E 4+ n,w) — N(E — n,w) < N(E, §Gr(—n)w) — N(E, SGa(n)w).
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Then, following Wegner [We], if P denote the probability defined by the random variable
(Wa )aeczd, We compute

P ({w; dist (E,o(Hr@w))) < n}) <
(4.22) < [ V(B +n,0) = N(E = n,0)) dP()
< [ (N(B,5Ga(-n) - N(B, SGa(n)e)) dP(w).

We know that the distribution of each of the variables (wq)q,eze is given by the same
density g, and that SG, acts only on the components (wq )aea, 50

N(E,SGa(—nw) [] 9(wa)dw

a€Zd

[ M. SGr-nw)aPw) = [

(Rd)z¢

- /(md)zd N(E,w)Det (VW.S’GA(n)) @) [ 9(5CGa(njwa)dwa

a€gZd
(4.23) _ N(E, i
lmd)/\ ([md)ld\A "-’ EI;!\A g( ) )
[T 9(SGa(n)wa)Det (VuSGa(m)) (@) [] dwa
a€A a€A

= [na)A NA(E,w)ga(w)Det (V,S5GA(n)) (w)dwh,

where
NA(E,w) = j NEw) [] 9(wa)dws
(md)zd\/\ a€ZA\A
and
gr(w) = H g(wq) and dwy = H dwe.
a€A a€EA
As | N(E,w) |<| A |, we know that | NA(E,w) |[<| A |, so -

[ N(B,5Gr (=)o) — N(B, $Ca(np)iP(w) =

B /() NA(E,w) (97(SGa(n))Det (VuSGa(n)) () -
—~9a(SGa(~n)w)Det (VuSGa(~n)) () dn

|A|Po_1

SIM [, D0 Toa(SGa(me)Det (VuSGa(me) ()=

k=0

— gA(SGA(e41)w)Det (VuSGA(nk+1)) | dwa,
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where | A |,,=| A **(1:35) and =7 (1 - )
| A oo

Using the semigroup property of SG, and the changes of variables w +— SGj(nk41)w
for each k, we get
(4.24)

[N (B, SGx (1)) - N(B, S6r(n)iP(w) <
[Alpo—

<1al f 1 98(SGA (o poyDet (VuSGr() ) () = 3n) | do

S' A |l+8up(1,po .

. w w e % 21 w)dw
(/m«) SN0 = onte) | et (VoS ) I

2n _
+ ./(md)A ga(w) | Det (VWSGA(I AL )) (w)—1] de) ;

using the positivity of ga(w) and Det (V,SGA (7)) (w).
By (4.7), we know that, forw € G*,

|A]
2 )" < per (95602 ) o) < (14 O 2
1-Ch < Det | V,5G <(1+Ch
( an,) <P M7a)) @ A,

0

S0
(4.25) | Det (VWS‘GA(%)) (w)—1|<Chp|A I}_s“p(l"ﬂl?) .
PO
Denote goo(wa,n) = sup | g(wa + nv) — g(wa) |; by (4.6), we know that, for some
v€B(0,1)
C >0,
2Ch

(4.26) | 9(SG( 3

Wo ) — glw < Yo(Way T57)-
|A|po) ) g( Ot)l ( IAlpo)
Notice that, assumption (H.3) d) implies
n\"
(4.27) f Goo(War, N)dwa < (—)
R4 Mo
So

gA(SGA(

Jw) — ga(w H 9(SGA(

acA |

s o ree) = Lot

A aEA
IT (s(5Ga(ri=pon) - swn) ) TT st
A” AaeA’ BEA"
AnA”
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so, by (4.26),
2 2Ch
|9a(SGA (=) —aa@) 1< Y [T geolwa, 5) T o).
lA PO ' "_ ' I IPO "
AUA"=A a€A BEA
ANA"=8
A" 21

Integrating this inequality over all (wq)aea and using (5.25) and (5.27), we get, for some
C'>1,

20_ 1) — ga(w) | De NS
[md)lAl IgA(SGA(l A lpnv)w) ga(w) | Det (V“’SGA(' A |p° )) (w)dwy <

|A]

(4.28) 50,2(121) ( ;__2%7 )”"

k=1

< c' (2Chn)p° | A |l—po sup(l,:—o) )
o

Then plugging (4.28) and (4.25) into (4.24), and then (4.24) into (4.22), we get, for E € I,

P ({w; dist (E,a(f{,\(w))) o r]) <
<| A ooy (ChnlA [t==ep(1.35) 4 o (ZChn)"" A ll-posupu,;};))

U]

Sl A |1+sup(l,%) ninf(l,po),

for h small enough depending only on 7, po and d.
Of course the same estimate holds for E € I~. This ends the proof of the Wegner estimate.

B) The proof of Lemma 3.4.
We recall that, for | v — 8 |= 1, we defined

W, s = {wy € G; Jwg € G, such that d,(v,8) = So}.
Then, if A denotes the Lebesgue measure in R?,
A(W'Vlﬂ) = 0'
Indeed, if we suppose that (W, 3) > 0 then, for almost every x € A(W, ),

A(Wy.s 0 B(z,€))

(5.29) AB(z,))

— 0 when € — 0.

(see, for example, [Ru]).
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Let w, € W, 3 such that (4.29) holds and wg € G such that d,(v,8) = So. By Lemma
2.1, the vector v = mvwv du(7, ) is well defined. By (4.29), in any cone of axis

v, we will find a point of W, 3 C G as close as we want to w,. So using the Taylor formula
for du (7, B), we will find w!, € G such that

dw(')’ +w;aﬂ +wﬂ) > Sg,

which is in contradiction with the definition of S.

Then, using the regularity of the measure defined by the random variable w., when
6 = 0, P, (W, 3(8)) — 0 (here P, denotes the conditionnal probability knowing the
variables (wq)ast~). Define the event

Er(6) = {(w“i)vem(o:); Jy € Ai(a) and S € VA
such that | 8 —v|=1 and w, € W, 3(6)}.

Clearly
P(Epn@®) < Y. Y. Py, (Wy,8(9))-

v€A(a) |[B—~]=1
So P (€p,(a)(6)) — 0 when 6§ — 0. Choose now é small enough such that

1
P (Epy(8)) < T

We know that, there exists some Cy > 0 and 0 < hj < ho such that, for 0 < h < b’ < kg
and w € G%°, )
| Mpey(@) IS ™,

and

| WA:(G)(“’) 1< Co sup (e'%(dw(%ﬁ)—(sﬁh'))) _
[v—8l=1
(v,8)EAN(a)xA(a)

So for w € GZ* such that (Wy)wer (a) € En(a)(8), we get, for some C > 0,
(4.30) | Hayop() IS Cem 70,

Pick 0 < hy < inf(5y, hp). For 0 < h < h' < by and E € (—o0,1] U [1, +00), we get

- n
} . -1 (HA;(a)(w))
Cr(B) = (B - HA,(a)(W)) =z+)
n>1
Using (4.30), one computes
x 1 1
I Gae(E) I < ,

E—Ced0m = p_co
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P — 0
Y 1 Ga(Eia,B) | @RAl < CllemRE-h41) = g ydemTh
e3<|B—al<$

So, for A > 0 small enough, with probability larger than 1 —  (i.e forw € GZ* such that
(@y)venie) & Eai(e)(6)), we obtain

~ [}
| Gruy(E) IS €,

and

Z | Gm(a)(E; a, ) | 2la=pl < 1,

e4<IB—al<t

This ends the proof of Lemma 3.4.

V) Proof of Theorem 1.5.

To prove this, we will suitably renormalize the reduced operator H(t,w) obtained in
Theorem 1.4 and show that the conditions required to apply Theorem 3.1 to this renor-
malization are satisfied.

Case 1: in this case, we renormalize, for 0 < h < h',

A(t,w) = e (H(tw) — u(h).
So, if 0 < 2R < ’llirrh(—hloga(h)) — So = 6o, we get

[

| D(t) ||< e 2.
Then counting ﬁ(t) into the negligible terms of H(t,w), we use the techniques we used to
prove Theorem 1.3 to get the announced result.

Case 2: in this case, we use the same renormalization as in [Kl1 2]. Pick o = ’llin})(h log a(h))+
So and set

H(tw) = 4 clz(h)

where £, = 12+ a(h) b(t), W(w) = = a(h)W(w) and M(t,w) = 1 (h)M(b Y(h-a(h)t,),w).

(H(t,w) — u(h)) = D) + W(w) + M({,w),

Using the estimates given in Theorem 1.4, we get, for k small enough and some h,,
(5.1) | M (F,w) ||< e .

That H(f,w) satisfies assumption (H".1) (see section IV) and a decoupling property, is
proved in the same way as in [K1 2]. To prove Wegner estimate for H(f,w) on R, we use
the same method as in [Kl 2] (Appendix II)B)). Now, if we prove
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Lemma 5.1. For any | > 1, there exists hy > 0 such that, for 0 < h < h' < hy, for
a,v) € Z¢ x Z¢ such that |a — v |> 51,

P({VE € R, Ay(a) or Ai(y) is (E,Z%,ﬂ, %)-regular}) >1-177,

then, applying Theorem 3.1, we conclude Theorem 1.5 using the uniform exponential
decrease at infinity of the functions (¢+,t,w)ez¢ exhibited in Theorem 1.4.

Proof of Lemma 5.1.
First notice that, if lllin}) hloga(h) > —S, then, for some § > 0 and k small enough,

| W(h)|I< e %

One could then directly apply the proof of Lemma 1.11 ([KI 2]) to get Lemma 1.6. This
partly justifies the fact that one should consider three regimes instead of two (remark that
follows Theorem 1.5).

Define £f, L (6) = &€, (a)(6) UER,(4)(6) where the event &4,(,)(6) has been defined in the
proof of Lemma 4.4. Pick é small enough such that

(5.2) Py (Eia1(6)) = Pu (Er,(2)(8)) + P (Er,)(8)) < %

where P, is the probability computed with respect to the w variables.
For §' > 0, define the event
£t o -(8") = {t;IE € R such that || (D)) - E) " [|> 6"
- -1
and || (Da,(5(t) = E) |2 &'}
C {t; 3E € R and I(y, u') € Ay(a) x Ay(7) such that | £, —7, |< 26}

Using then the proof of Lemma 1.11 (see [KI 2]), we estimate

(5.3) P, (€ ,,(8") < (2C12d)h,

for some C' > 0 independent of &, I, a and v (here P, is the probability computed with
respect to the ¢ variables).

Pick §' = 1¢””. By (5.3), there exists h; > 0 such that, for h € (0, k),

1
Py (Efar(8) < 55

Now define the event

Evary = (R \ €, 4(8)) x (67 \ €20 r(8))
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Then, as the ¢’s and w’s are independent random variables,

1

1 1
T

Pt,w (gl;an) > (1 - ) 21— l—P'

For (t,w) € &0, for any E € R, one has

% -1 1 ;6 % -1 1 4
| (D)) = E) 7 || 5e"" or || (Dayn(® —E) ™ II< 3"

Assume it is the first that holds. Then

(6. (I?A,(a)(f,w) —E) - (Do) — E)-1~

Klopp

(14 (Wa(@(E:0) + M ) (E@)) - (Da@® - E) 7).

Asw ¢ &, (6), we know that

r sl
I Wa(ay(w) [|< 7.
Using (5.1), and expanding (5.4) using a Neumann series, we get

1

~ 5 - -1 - -
(55) GA:(Q)(E) = (HA,(Q)(t’w) - E) = (DAt(a)(t) - E) + Ra
where
(5.6) | R ||< e7@F,

for some C' > 0 (independent of [, « and h).

Then for h small enough, we get
o s
I G (E) IS "

Moreover, by (5.5) and (5.6), as (Djy,(a)(f) — E)™! is diagonal,

Y. |Ga@(Biap)| eIkl < Oyt <1,
s<la—p|<5

if 0 < h < hy, for some h; > 0 small enough (independent of a).

So, for 0 < h < hy, with probability larger that 1 — liP (i.e. for (t,w) € &i.a,4), either Ay(a)

or Ai(y) is (E,2%’~,ﬁ, %)—regular. This completes the proof of Lemma 5.1.
|
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