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GAUGE-INVARIANT O(N) NON-LINEAR SIGMA
MODEL(S) AND GAUGE-INVARIANT
KLEIN-GORDON THEORY:
WESS-ZUMINO TERMS AND HAMILTONIAN
AND BRST FORMULATIONS

Usha Kulshreshtha, D.S. Kulshreshtha and H.J.W. Miiller—Kirsten
Department of Physics, University of Kaiserslautern
67653 Kaiserslautern, Germany

(22.1X.1993)

Abstract

The Wess—Zumino terms for the gauge—non—invariant O(N) non—linear sigma model and
for the gauge—non—invariant Klein—Gordon theory, both in one—space one—time dimen-
sion are calculated and the Hamiltonian and BRST formulations of the resulting gauge—
invariant theories (obtained by the inclusion of the corresponding Wess—Zumino terms)
are investigated.

1. Introduction

The O(N) nonlinear sigma models in one—space one—time dimension have some striking
qualitative similarities with quantum chromodynamics and have attracted wide interest
in the recent years [1-8]. Some of the common features of both the field theories are e.g.,
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renormalizability and asymptotic freedom [1-8]. The quantum sigma model in (1+1)-—
dimension is a non—trivially solvable [5] quantum field theory. Sigma models provide a
laboratory for various nonperturbative techniques e.g., the 1/N expansion, operator—
product expansion and low—energy theorems [7]. They are also of importance in the
context of string theories [6] where they appear in the classical limit. The model exhibits

a nonperturbative particle spectrum, has no intrinsic scale parameter and possesses topo-
logical charges.

The Hamiltonian formulation and Dirac quantization of the gauge—non—invariant O(N)
nonlinear sigma model in (1+1)—dimension has been studied, in particular, by Maharana
[1]. The model is seen to possess a set of four second—class constraints, reflecting a lack
of gauge symmetry. The gauge symmetry, however, when present in a theory has many
beneficial consequences. It is rather well known that the addition of an appropriate Wess—
Zumino kind of term [9—11,2] to the action of a gauge—non—invariant theory possessing a
set of second—class constraints converts it into a gauge—invariant theory possessing a set
of first—class constraints.

Several procedures exist in the literature [9-11,2] for the calculation of the so—called
Wess—Zumino term. One of the simplest and perhaps the oldest procedures (sometimes
called the theta—trick) was introduced originally by Stuckelberg about five decades ago
[10] in the context of a study of the renormalization properties of massive gauge theories
[10]. Another method for reformulating a gauge—non—invariant theory possessing a set of
second—class constraints into a gauge—invariant theory possessing a set of first—class
constraints is due to Mitra and Rajaraman [17,2]. In the present work we employ both of
the above methods, namely, the Stuckelberg method and the Mitra—Rajaraman method,
for constructing two different gauge—invariant versions of the gauge—non—invariant O(N)
non—linear sigma model in (1+1) dimension possessing a set of four second—class con-
straints [1-2]. One of the gauge—invariant models so constructed (called model A in our
text) is obtained by calculating the Wess—Zumino term [9,10] (that transforms the
second—class constaints of the theory into the first—class ones) by enlarging the Hilbert
space of the corresponding gauge—non—invariant theory [1-3] using the Stuckelberg
method [10]. This gauge—invariant model (model A) is seen to possess a set of three
first—class constraints. The other gauge—invariant model (called model B in our text) is
obtained by using the Mitra—Rajaraman method [17,2]. The Hamiltonian [12] and
Becchi—Rouet—Stora—Tyutin (BRST) [13,14,15] fomulations of these gauge—invariant
models (model A and model B) are then investigated. Before coming to the sigma model,
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however, we first consider a rather trivial and well known example, namely, that of the
Klein—Gordon theory in one— space one—time dimension in light—cone coordinates (rede-
fined as space and time coordinates) which is seen to possess one (primary) second—class
constraint. We first construct a gauge—invariant model corresponding to. this
gauge—non—invariant Klein—Gordon theory by calculating the Wess—Zumino term [5]
using the Stuckelberg method [10] and then study the Hamiltonian and BRST formu-
lations of the gauge—invariant Klein—Gordon theory so obtained.

In the context of the nonlinear sigma model it is important to mention (as is also pointed
out in Ref. [1], and as we would see in Secs. 3 and 4), that the constraints of the theory
involve the products of canonical variables in the classical description of the theory as
well as in the calculation of the Dirac brackets. These variables are, however, envisaged as
noncommuting operators in the quantized theory and therefore one encounters the
problem of operator ordering [1,16,17]. This problem can, however, be resolved if one
demands that all the relevant brackets be consistent with the hermiticity of the operators
(i.e. the fields and the momenta canonically conjugate to the fields [1,18]).

The work on the Klein—Gordon theory is presented in the next section (Sec. 2), and the
Hamiltonian and BRST formulations of the gauge—invariant O(N) non-linear sigma
models, namely, models A and B are presented in Sections 3 and 4 respectively. Finally,
the summary and discussion is given in Sec. 5.

2. The Gauge—Invariant Klein—Gordon Theory

2A. The Gauge—Non—Invariant Theory
We start with the gauge—non—invariant Klein—Gordon theory in one—space one—time

dimension in light—cone coordinates (redefined as space and time coordinates) described
and defined by the Lagrangian density [2]:

N = ¢ —gm’e” (2.1

Where overdot and prime denote time and space derivatives respectively (i.e., 60¢ =(§
and 61¢ = ¢’). Throughout this work we would work with the Lorentz metric:

g'” := diag(+1,~1). The momentum canonically conjugate to ¢ is
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a
)

T=

= ¢ (2:2)

implying that £N possesses a primary constraint
Q:= (')~ 0 (2.3)

where the symbol (%) represents a weak equality in the sense of Dirac [12]. The canonical

Hamiltonian density corresponding to N (2.1)is

#N =1 — N = 1 m%? (2.4)

After including the primary constraint Q in the canonical Hamiltonian density JJCN with
the help of the Lagrange multiplier field w, one can write the total Hamiltonian density

a"érN as:
N = 2 2% + (147w (2.5)

For the Poisson bracket {,} p of two functions A and B, we choose the convention:

Demanding that the primary constraint Q be maintained in the course of time one does
not obtain any secondary comstraint but instead gets a condition on the Lagrange
multiplier field w namely,

2w’ — m2¢ %0 (2.7)

and therefore the theory is seen to possess only one constraint 2. Also, the Poisson
bracket of 2 with itself is

{ﬂ(z),ﬂ(z’)}p =—26'(z—=z") (2.8)

The matrix of the Poisson brackets of the constraints of the theory is therefore
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Jaﬁ(z,z’) = {Q(2), Qﬁ(z’)}p = [-26(z—=")] 1,4 (2.9)

with the inverse

J;é(z,z’) = [ 3 ez2)] 1,4 (2.10)
and

sz I(x2) I ay) = 1., 8(x—) (2.11)

Here ¢(z—z’) is a step function defined as

/ 1, 1>0
€(z—z') := {il, {;:ZZ,} z 0 (2.12)

The nonsingular nature of the matrix J " implies that the constraint (2 is a second—class
constraint. The Dirac bracket {,}, of two functions A and B is defined as [12]:

{AB}y = {AB}, —-”dz dz’ a‘:?ﬂ[{A,I‘a(z)}p [A;é(z,z')]{Fﬁ(z’),B}p] (2.13)

where T'; are the constraints of the theory and Aaﬂ(z,z’) [:={T a(z), I‘ﬂ(z’)}p] is the
matrix of the Poisson brackets of the constraints I‘i.

The nonvanishing equal—time Dirac brackets obtained for the theory [ZN (2.1) are:

6,13} p = 5 6(x—y) (2.142)
{#(x),1(¥)}p = 5 & (x-¥) (2.14b)
()W)} p = —  e(x—y) (2.14c)

2B. The Wess—Zumino Term

In constructing a gauge—invariant Klein—Gordon theory from the gauge—non—invariant

one described by & [2], we calculate the Wess—Zumino term for N, For this following
the Stuckelberg method [10] we enlarge the Hilbert space of the quantum theory

described by LN [9,10], and introduce a new field 4, called the Wess—Zumino field,



Kulshreshtha, Kulshreshtha and Miiller-Kirsten 757

through the following redefinition of field ¢ in the original Lagrangian density N [9,10]
(the motivation for which comes from the gauge—transformations (2.26) under which the

proposed gauge—invariant theory i (2.16) is expected to be invariant):
b—d=0¢—10 (2.15)

The Wess—Zumino field 6 is a full quantum field [9,10]. Performing the changes (2.15) in
£ (2.1), we obtain the modified Lagrangian density as

b (h—ay L1 2 2_,N, WZ
= (-0) @¢'—0) - 3m*@ - 02 =N+ ¢ (2.16)
V2= 00— 04 — 40 + m*p0 3 m20? (2.17)
where EWZ is the appropriate Wess—Zumino term corresponding to £N. We shall see later
that CI describes a gauge—invariant theory. In fact, we will be able to recover the physical

content of the gauge—non—invariant theory described by N under some special choice of

gauge. The Euler—Lagrange equations obtained from L are:
26 —¢’) + m2 (8—¢) = 0 (2.18a)

2¢’ —8’) + m? (¢ — ) = 0 (2.18b)

2C. Hamiltonian Formulation of the Gauge—Invariant Theory

The canonical momenta for the gauge—invariant theory described by ! are:
= _a._‘c.izq)’ -0; (2.19a)
% I
rgi=E =0 —¢ (2.19b)
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The equations (2.19) imply that the theory e possesses two primary constraints
Q:=(r—¢'+0’)~0 and Q,:=(rp—0" +¢')=0 (2.20)

The canonical Hamiltonian density corresponding to Lis
I_1_2 2
K, =nm” (p—0) (2.21)

After including the primary constraints ﬂl and 920f the theory in the canonical Hamil-

tonian density J{:I with the help of the Lagrange multipliers u and v, one can write the

total Hamiltonian density J;I\I as
I.1,2 —02+1r— "+ a4 (rp—=0 + 0 )v (2.22)
2 0

The Hamilton’s equations obtained from the total Hamiltonian H,} = [dx J#I.I are:

.oy .y -

¢=-—-—3T=u, ——')r:—a—¢—=m(¢—-0)+u—v (2.233)

) . oay! .

0='—a—1‘r—0=v, —1r0=—a—g—=—m (¢ —0)—]1’+V’ (223]))
GH.p! GH

{1=_ap_u=0; —p =g =(T—¢" +6) (2.23c)

; BHTI ; aHTI

V=—ap—v=0; —pvz—av—::(ﬂ'a—ﬁ’ +¢’) (223(1)

These are the equations of motion of the theory that preserve the constraints of the
theory Qi in the course of time.

Demanding that the primary constraints Ql and 92 be maintained in the course of time
leads (in both cases) to the condition
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m?(¢— 6) —2u’ +2v/ =0 (2.24)

which involves Lagrange multiplier fields u and v. Thus there are no further secondary
constraints and therefore the theory is seen to possess only two constraints ﬂl and 92.
The matrix of the Poisson brackets of the constraints Q. is

K ,gl02") = 10, (a0 )} = [ 02} 28(re)] (2.25)

the above matrix Kaﬂ(z,z’) is clearly singular implying that the constraints {1, and Q,
are first class and that the theory described by disa gauge—invariant theory. In fact, the

Lagrangian density EI is seen to be invariant under the time—dependent gauge—transfor-
mations:

& = px,t), 60 = p(xt), 6r=0, bmy=0, (2.26)

where u(x,t) is an arbitrary function of the coordinates. In quantizing the theory with
Dirac’s procedure [12], we have to convert the first—class constraints of the theory into
second—class ones. This we achieve by imposing, arbitrarily, some additional constraints
on the system, in the form of gauge—fixing conditions. Following the work of Ref. [15],
we go to a special gauge given by # = 0 (or equivalently, 0,0=10" = 0), and accordingly
choose the gauge fixing condition of the theory as [15]:

G=0 =0, (2.27)

With the gauge—fixing condition (2.27) the total set of constraints of the theory becomes

To=Qy=(1p—0" +¢') %0 (2.28b)

The matrix of the Poisson brackets of the constraints T is obtained as
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—26"(z—2’) 26'(z—=2’) 0
Maﬂ(z,z’) 1= {'ra(z),'rﬂ(z’)}p =| 20'(z—=2’) —=26'(z—=2’) +6(z—=2’) (2.29)

0 +6'(z—2") 0
with the inverse
— le(z—2') 0 je(z—z')
M;‘I,j,(z,z’) - 0 0 +ie(z—z') (2.30)

te(z—2z’) +ie(z—2') 0
and

sz M(x,z) M_l(z,y) =1,,4 0(x-y) (2.31)

Finally, the nonvanishing equal—time Dirac brackets of the gauge—invariant theory des-

cribed by I under the gauge (2.27) are finally obtained as:

{6(x),1(¥)}p = 3 8x—y) (2.32)
{1(x),1(¥)}p = — 5 & (xy) (2.33)
{6() 90} = — 7 (x—) (2.34)
)7 D}y = 5 8x-3); {Kx),71(3)}p = 26(xy) (2.35)
{2(x), 1y} = 5 6 () {7y, mf3)}p = — 58" (%) (2.36)

Following the sequence of reasoning offered in Ref. [15], where the quantization of a
gauge—invariant theory of chiral bosons (obtained by the inclusion of an appropriate Wess—
Zumino term) has been treated along similar lines, it is easy to see that the above

relations (2.32) — (2.36), together with a’%‘él (2.21) under the gauge (2.27), reproduce
precisely the quantum system described by o (2.1). It is easy to see that (2.27) when

inserted in (2.20), yields the constraint (2.3) of EN, thus implying that under (2.27),
7, 8 . Also, when (2.27) is inserted in (2.21), one recovers exactly the Hamiltonian

density (JJCN) corresponding to EN, and thus implying that under (2.27), JaEI R J%N.
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Thus under the gauge—fixing condition (2.27), one is able to recover the physical content
of the theory described by L‘N. The difference of the descriptions of the theories given by

L‘I and EN appears in terms of the additional constraint ¢ which serves the purpose of
- eliminating # and Ty In fact, in view of the above, we see that we have succeeded in
finding a gauge (namely (2.27)) which translates the gauge—invariant version of the

theory described by L into the gauge—non— invariant one described by EN. A comparison
of (2.32)—2.36) and (2.14) reveals that (2.32)—(2.34) coincide completely with (2.14) as
they should. The additional commutators (2.35), (2.36) express merely the dependence on
¢ and Ty It is important to observe here that the gauge—non—invariant theory described

by EN is equivalent to working in a specific gauge of the corresponding gauge invariant

formulation of the theory [15]. In fact, the physical Hilbert spaces of the two theories (EI

WZ

and EN) are the same. The addition of the Wess—Zumino term £" “ to the theory (i.e. to

EN) enlarges only the unphysical part of the full Hilbert space of the theory EN, without
modifying the physical content of the theory. The Wess—Zumino field ¢ itself, infact,
represents only an unphysical degree of freedom and consequently the physics of the theo-
ries with and without the Wess—Zumino term remains the same.

2D BRST Formulation of the Gauge—Invariant Theory

In considering the BRST formulation of the gauge—invariant theory described by EI, we

first convert the total Hamiltonian density a"s’TI into the first—order Lagrangian density:

. N 2
= pgi+ i+ (b 8) (¢'-0)~Em? (0 0) (2.37)

In (2.37), the terms w(d)—u), and wa(b—v) drop out in view of the Hamilton’s equations
(2.23a) and (2.23b).
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2D1. The BRST Invariance

We rewrite the gauge—invariant theory described by [I as a quantum system which
possesses the generalized gauge invariance called BRST symmetry. For this, we first

enlarge the Hilbert space of the quantum theory described by L and replace the notion of
gauge transformation which shifts operators by c—number functions by a BRST transfor-
mation which mixes operators having different statistics. We then introduce new

anti—commuting variables ¢ and ¢ (called the Faddeev—Popov ghost and anti—ghost fields
which are Grassmann numbers on the classical level, and operators in the quantized
theory) and a commuting variable b called the Nakanishi—Lautrup field (with the

property = 0) such that

=2¢ b0=¢ Ir=0, bry=0; (2.38a)
5 =0, §c=b, §b = (2.38b)

The transformations for the Lagrange multiplier fields and their canonical momenta need
not be specified as they are not needed. We then define a BRST—invariant function of the

dynamical variables to be a function f(r,r g:Pb,WC,WE:‘I’»”:b,C,E) such that &f = 0.

2D2. Gauge—Fixing in the BRST Formalism
Performing gauge—fixing in the BRST formalism implies adding to the first—order

Lagrangian density (2.37) a trivial BRST—invariant function [14,15]. We could thus

write the quantum Lagrangian density (taking e.g., a trivial BRST—invariant function as
follows) [14,15]:

I T =foh a4 1

= pyi + v + (b= 0)(4'—0') 3 m? (4 0)2 + B[ T2 — 0+ L b))
(2.39)

The last term in the above equation (Eq. (2.39)) is the extra BRST—invariant

gauge—fixing term. Using the definition of & we can rewrite LoRsT (with one integration
by parts) as:
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. . £ Lean ax 1 9 2 ,1,2
+ b(2p — 6) + c& (2.40)

Proceeding classically, the Euler—Lagrange equation for b reads:

—b= (20— 6 (2.41)

Also, the requirement &b = 0 (cf. Eq. (2.38b)) implies:

—Bb=(20p-50) =0 (2.42)

which in turn implies

¢=0 (2.43)

The above equation is also an Euler—Lagrange equation obtained by the variation of

LgRsT With respect to ¢. In introducing momenta we have to be careful in defining those
for fermionic variables. Thus we define the bosonic momenta in the usual way so that

a / /
m=SLppor =4 — 0 +2b (2.44a)

a / /
Tg=— CBRST =6 —-¢'-b (2.44b)
a0

implying that b = (7+p). For the fermionic momenta with directional derivatives, we
set

9 _ - 9
o= LBRST 5y = €5 M= —LBRST = ¢ (2.45)
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implying that the variable canonically conjugate to c is ¢ and the variable conjugate to c

is ¢. In forming the Hamiltonian density "T‘BRST from the Lagrangian density in the
usual way we remember that the former has to be Hermitian. Then

J‘BRST = ndp + wga +put+pv+met E‘H’E— EBRST

; . 2
= ¢ (14" +0/—2b) + Kr—0'+¢'+b) + 2 m® (¢ — 02 -2+ 1

= %m2 (¢- 0)2 - % (1r+'1r0)2 + 7T (2.46)

We can check the consistency of (2.45) and (2.46) by looking at Hamilton’s equations for
the fermionic variables, i.e.

-+ -
. 0 Z il
¢=7r #BRST  °= ¥BRST 7r (247)
Thus
- -
§ =2 =r; C= 9 _, (2.48)
“BFCJ‘BRST— g —”BRSTBFE— c :

in agreement with (2.45).

For the operators c,c,c and ¢ one needs to specify the anti—commutation relations of ¢
with ¢ or of ¢ with ¢, but not of ¢ with c. ¢ and c are, in general, independent canonical
variables and one assumes that [14,15]:
- d -
rord =G =0;  HEa=0 (249)
{ecy =—{&e) (2.49b)
where {,} means anticommutator. We thus see that the anti—commutators in (2.49b) are

non—trivial and need to be fixed. In order to fix these we demand that c satisfy the
Heisenberg equation of motion [14,15]:
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[e, Hgpgp] =it (2.50)

2

and using the property ¢“ = e = 0, one obtains

[e, el = {Cc} & (2.51)

Eqgs. (2.49) — (2.51) then imply:
{cc} =—{ea} =i. (2.52)

Here the minus sign in the above equation is non—trivial and implies the existence of
states with negative norm in the space of state vectors of the theory [14,15].

2D3. The BRST Charge Operator
The BRST charge operator Q is the generator of the BRST transformation (2.38). It is

nilpotent and therefore satisfies Q2 = 0. It mixes operators which satisfy Bose and Fermi
statistics. According to its conventional definition, its commutators with Bose operators
and its anti—commutators with Fermi operators, in the present case, satisfy:

Q1 =¢; [0Q1=& {5Q}=(r+np (2.53)

All other commutators and anti—commutators involving Q vanish. In view of (2.53), the
BRST charge operator of the present theory can be written as

Q=Jfdx [—ic(r—¢' + 0 + 7y + ¢’ —0')] |
= [dx [-i¢ (7 + 7mp)] (2.54)

This equation implies that the set of states satisfying the condition (7—¢’+6’)|¢> =0
and (mg-0'+¢’)|9> =0 belongs to the dynamically stable subspace of states |y>
satisfying Q| ¥> = 0, i.e., it belongs to the set of BRST—invariant states.

In order to understand the condition needed for recovering the physical states of the

theory we rewrite the operators ¢ and ¢ in terms of fermionic annihilation and creation
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operators. For this purpose we consider Eq. (2.43) (namely, ¢ = 0). The solution of this

equation gives the Heisenberg operator ¢(t) (and correspondingly c(t)) as:

(t)=Gt+F; o) =gt +Ft;
which at time t = 0 imply

czc(0)=F, c=c(0)=F!

¢zé0)=G, c=¢o)=al

By imposing the conditions

=P ={C}={ce} =0 {cc}=i=~-{ec}

one then obtains

F=F2=(FlF={clG}=0
{G1F} =~ {G,FT} =i

We now let |0> denote the fermionic vacuum for which
G|0> =F|0> =0;
Defining |0> to have norm one, (2.58b) implies

<0|FGJ‘|0>= i <0|GF*|0>= —i

so that
aflo> #0; Fl|0> #0

(2.55)

(2.56a)

(2.56b)

(2.57)

(2.58a)
(2.58b)

(2.59)

(2.60)

(2.61)

The theory is thus seen to possess negative norm states in the fermionic sector. The exis-
tence of these negative norm states as free states of the fermionic part of J‘BRST is, how-
ever, irrelevant to the existence of physical states in the orthogonal subspace of the

Hilbert space.
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In terms of annihilation and creation operators the Hamiltonian density is
1_2 2 1 2
Hgrst =3 (- 0% -1 (v + 7% + Gl (2.62)
and the BRST charge operator Q is
Q = [dx {-[G(7 + 7]} (2.63)
Now, because Q| %> = 0, the set of states annihilated by Q contains not only the set of

states for which (2.20) holds but also additional states for which G|¢¥> = F|¢> = 0 but
(2.20) does not hold. However, the Hamiltonian is also invariant under the anti-BRST

transformation (in which the role of ¢ and — ¢ is interchanged) given by

?5¢ = —é, %0 = — é, ?51 =0, Tﬁvra = () (2.64a)

&=0 bc=—b, db=0 (2.64b)

with generator or anti—-BRST charge

Q= Jdx [ic (v + 7] = fdx {i[GT(r+7 )1} (2.65)

We now have [Q,H] = 0 and [ Q,H] = 0, and we further impose the dual condition that
both Q and Q annihilate physical states implying that

Q|¢> = 0 and Q|¢> = 0 (2.66)

The states for which (2.20) holds strongly satisfy both of these conditions and, in fact, are
the only states satisfying both the conditions since, although with (2.58)

afe = —gat (2.67)

there are no states of this operator with GT|0> =0 and FT|0> =0 (cf. (2.61)), and
hence no free eigenstates of the fermionic part of H;p g which are annihilated by each
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of G,GT,F,Ff. Thus the only states satisfying (2.66) are those satisfying the constraints
(2.20).

The states for which (r—¢’+6")|¢> = 0 and (7, —0"+¢")| ¥> = 0 satisfy both of these
conditions (2.66) and, in fact, are the only states satisfying both of these conditions (2.66)

because in view of (2.57), one cannot have simultaneously ¢,c and E,f:' applied to |¢> to
give zero. Thus the only states satisfying (2.66) are those that satisfy the constraints of
the theory (2.20), and they belong to the set of BRST—invariant and
anti-BRST—invariant states.

One can understand the above point in terms of fermionic annihilation and creation
operators as follows: the condition Q| %> = 0 implies that the set of states annihilated by
Q contains not only states for which (r—¢’+60")|¢¥> =0 and (7, —0"+¢")|y> = 0, but
also additional states for which G|y> =F|¢y> =0, but (=—¢'+6’)|¢¥>#0 and

(mg—0"+¢")|¥> ¢ 0. However Q| > = 0 guarantees that the set of states annihilated by
Q contains only the states for which (7—¢'+6')|9> =0 and (7y)—0'+¢’)|¢> =0
simply because G1|¢> # 0 and F'I'|¢> # 0. Thus in this alternative way also we see that

the states satisfying Q|¢> =Q|¢> =0 (i.e. (2.66)) are only those that satisfy the
constraints (2.20) and also that these states belong to the set of BRST—invariant and
anti—-BRST— invariant states.

3. _The Gauge—Invariant O(N) Non—Linear Sigma Model (Model A)

3A. The Gauge—Non—Invariant Model
We start with the gauge—mon—invariant O(N) non—linear—sigma model in one—space
one—time dimension described by the Lagrangian density [1,2]:

N=1 8,0,F 0 + Ao2-1); k=12,.N (3.1a)
=55 —5 012+ Ao2-1); k=12, (3.1b)

Here o = {crk(x,t); k = 1,2,..,N} is a multiplet of N real scalar fields in one—space

one—time dimension and A(x,t) is another scalar field. The field o(x,t) maps the
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two—dimensional space—time into the N—dimensional internal manifold whose coordinates
are 0y (x,t). The Euler Lagrange equations fo o, and ) are

o} — & + 2Xap =0 (3.2a)

(of-1)=0 (3.2b)

The canonical momenta conjugate respectively to o) and A are:
m o= N 05, = &;  k=12,.,N (3.3a)
k . k — k, v yhdyeeny - .
N .
D) = oL [dX =0 (3.3b)
The last equation (Eq. (3.3b)) implies that the theory possesses a primary constraint:
X; =Py R0 (3.4)

The canonical Hamiltonian density corresponding to N i

N__. \ N
12,1 ,2 2

After including the primary constraint X7 in the canonical Hamiltonian density JféN with

the help of a lagrange multiplier w, one can write the total Hamiltonian density Jé’I.N as

H =27+ 302~ Mo2-1) + pyw (3.6)

demanding that the primary constraint X, be preserved in the course of time, we obtain
the secondary constraint

Xq = {XI’J‘[N_}p = (aﬁ—l) %0 (3.7
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The time evolution of Xg leads to a further constraint

N
X3 = {Xo, Hp }p =20y,m %0 (3.8)

demanding that X3 be also maintained in the course of time one obtains a further con-
straint

| N 2 2
X4 = {XS’”KI‘ }p = (21rk + 4Aoy + 2crkcrﬂ) x 0 (3.9)

the time evolution of X4 does not, however, lead to any further constraint but instead
leads to a condition involving the Lagrange multiplier w, namely:

2 1 r7 /
4oy w + 2m oy o1’ + 2mop —4mopop + 16 Aoy =0 (8.10)
The theory is thus seen to possess a set of four constraints X1:X9:X3 and x 4
The matrix of the Poisson brackets of the constraints X; namely, Taﬂ(z,z’)

= {Xa(z),xﬂ(z’)}p,'is then calculated. The nonvanishing matrix elements of the matrix
T aﬁ(z,z’) are (the arguments of the field variables being suppressed):

2 /
Ty =—Ty =40, 8(z2") (3.11a)
2 y
Toq = — Tqq = 40} 6(z—2") (3.11b)
Toy =—Ty9 = 8oy m Kz—2') (3.11c)
2 2 7/ 2 /
Tgy= —Tyg= [8m — 16A0 — 40y 03] Kz—2") — [403 ] 8"(z—2") (3.11d)

The matrix T of is seen to be nonsingular and therefore its inverse exists. The
nonvanishing elements of the inverse of the matrix T of (i.e. the elements of the matrix

(T_l)a p 31 (the arguments of the field variables being suppressed again):

27r]2( - 4,\012( — akai;

('I‘—l)12 = = (T—1)21 - [ 4012(012{ ]6(z—z’) — [ ii-] §"(z—z")

(3.12a)
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-1 -1 %%k p
(T 5= — (T )y, = [2_2_2] §(z—z") (3.12b)

)41 = —12- &(z—z") (3.12c)

(T g = = (T7Y),, = iz §z—") (3.12d)

Finally, the nonvanishing equal-time Dirac brackets of the gauge—non—invariant theory

described by N are obtained as

{mfx),m (Np = =15 [ofx0)7_(¥) — 14x)0_ (¥)] &x-y) (3.13)
%%
{ofx)m_(M}p = [6hn—"‘(—x§i'f‘(y—)]a(x—y) (3.14)
"

which are seen to be in agreement with the results obtained in Ref. [1].

3B. The Wess—Zumino Term
In constructing a gauge—invariant model corresponding to £ (3.1), we calculate the
Wess—Zumino term for £y, For this following the Stuckelberg method [10], we enlarge

the Hilbert space of the quantum theory defined by CN , and introduce a new field 6
(called the Wess—Zumino field [9,10]), through the following redefinition of fields o; and

A in the original Lagrangian density o (3.1) (the motivation for which comes from the
gauge transformations (3.24)).

o, — 5 =0 -6 A—oA=X+14 (3.15)

Performing the changes (3.15) in e (8.1), we obtain the modified Lagrangian density
(ignoring total space and time derivatives) as:
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Lot + LY (3.16a)
with
WZ _ 1 a2 y
7" =350, 06"0 — 6uok6"'0 + 8(0,—1) — (A+0) 6(20,—6)
12 1,2 - g :
=3P =507 50+ o0 + oi-1)— (\+0) A20,~0)  (3.16b)
where EWZ is the appropriate Wess—Zumino term corresponding to LN. We shall see later

that £ describes a gauge—invariant theory. Infact, we will be able to recover the physical
content of the gauge—non—invariant theory described by N under some special choice of

gauge [15,19]. The Euler—Lagrange equations obtained from I (3.16) are:

(3-6") — (5y—0}) + 2, —O)(A+0) = 0 (3.17a)
(0"=0) + (&—0}) — 2(o, —0)(op,+2) = 0 (3.17b)
(012{—-1) - (20, —6) =0 (3.17¢)

3C Hamiltonian Formulation of the Gauge—Invariant Theory (Model A)

The canonical momenta for the gauge—invariant theory described by L are

By = a_{:f =0; (3.18a)
oA
I :
m = ZL = (5,-0) (3.18b)
Tk
1.
Ty = ai = [(6\-&k)+(a§——1) — (20, —0)]
a0
= [~ m + (02-1) — 0(20,~6)] (3.18¢)

Egs. (3.18) imply that £I possesses two primary constraints:
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Y =Dy R0; Yyi=[mg+m — (aﬁ—l) + #20,—0)] = 0 (3.19)

The canonical Hamiltonian density corresponding to EI is

I_ . . .

C
=31 45l 43020l 8= NoP-1) + A0 (20,~0) (3.20)

After including the primary constraints wl, %o in the canonical Hamiltonian density Ja;:l
with the help of Lagrange multipliers u and v, one can write the total Hamiltonian

density %I.I as
' = H 4 pyut [1y+ 1 —(02-1) + H20,—0)]v (3.21)

The Hamilton’s equations obtained from the total Hamiltonian HTI = ji&rldx are:

OH,.1 OH.,.1

& = “a% = (M4 V) -7 = aT = [ of + 0'-2(o,—0)(A+v)] (3.222)

"

. oHy! . oHg .

A= —BF; =1u,; —_ pA = —BT = [— (Uk—].) + 0(20'1(—9)] (322b)

. 6HTI aHTI

b= ——=v; —7p=—5g-= [o}—0" + 2o, ~8)(A+v)] (3.22¢)

. oHg! _ aHTI

1= —ap—uzo; —Py = —z =P, (3.22(1)
oty OH 2

These are the equations of motion of the theory that preserve the constraints of the
theory %, and 9, in the course of time.

Demanding that the primary constraint a,bl be preserved in the course of time, we obtain
the secondary constraint
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Vg = {9, Hp1} = (62-1) — H20,~0) % 0 (3.23)

The preservation of 9, for all time does not give rise to any further constraints. The
preservation of ¢, for all time also does not yield any further constraints. The theory is
thus seen to possess three constraints 1111, ¢2, 1,()3. Also the matrix of the Poisson brackets
of the constraints ¢i is seen to be singular implying that the constraints 1pi form a set of

first—class constraints [12], and that the theory described by Lis a gauge—invariant

theory. In fact, the Lagrangian density ' is seen to be invariant under the time—
dependent gauge transformations:

boy = B(x,t); bm =0; k=12, ,N. (3.24a)

o\ = —b(x,t); 60 = f(x,t); py =0; émy=0 (3.24b)

where ((x,t) is an arbitrary function of the coordinates. The action st = jLI dxdt is there-
fore gauge—invariant. In quantizing the theory using Dirac’s procedure [12], we convert
the first—class constraints of the theory into second—class ones by imposing, arbitrarily,
some additional constraints on the system in the form of gauge—fixing conditions. We go
to a special gauge given by 8 = 0, and accordingly choose the gauge—fixing conditions of
the theory as [15]):

G, =20,m —(mp+ m) =0 (3.25a)
G, = 272 + 4Ao? + 20,00 % 0 (3.25b)
Gy =050 (3.25¢)

With the gauge—fixing conditions (3.25) the total set of constraints of the theory becomes

51 = '901 =Py %0 (3.26&)
€y = ¥ = (6}—1) — 6(20,~0) % 0 (3.26b)
2 2
54 = 52 =2m + 4/\ak -+ 20kai; 20 (3.26d)
2
b = Yo = (1ptm) — (6}-1) + K20, —0) # 0 (3.26e)

o =G, = 0%0 (3.260
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The matrix of the Poisson brackets of the constraints §i namely Raﬂ(z,z’) =
{¢ a(z),ﬁﬂ(z’)}p is then calculated. The nonvanishing matrix elements of the matrix
R aﬂ(z,z’) (with the arguements of the field variables being suppressed) are:

2 ’
R,y =—Ry =—40y §(z—2") (3.27a)
Ros =— Ry, = 40 (0 —0) §z—2') (3.27b)

Rgy = —Ryg = {[87 — (203-1) (8Ac +20})] 8(z—")
- [20 (20,-1)] &"(z—2")} (3.27d)

Ror =—Rgq = [21rk + 40y (0 —0)] &z—=") (3.27e)
Rae = —Rgg = §(z—2') (3.271)

Rys = —Rgy = {[8Acy + 20} + 87 (0 —0)] &(z—=2') + 20y 8"(z—2")} (3.27)
Ree = —Rep = — §(z—2") (3.27h)

The matrix R af is clearly nonsingular and therefore its inverse exists. The nonvanishing

elements of the inverse of the matrix R of (i.e. the elements of the matrix (R_l)aﬂ are
(with the arguments of the field variables being suppressed once again):

2 7r12(—4)\ aﬁ-—ak aﬂ—2 O 7rk+ 2 01rk

(R_l)u = (R_1)21 = [ ] §(z—2")

of 4oy (0,—0)
- [la_k%ak_—ﬁj] §"(2—2") (3.28a)
R g=— Ry, = __;k_-} 82—z’ (3.28b)
Ry =@y = [ 23] d2) (3.280)

R s =—R),, = _:;"__‘ Kz—z) (3.28d)

, 2
(Rwl)16 =— (I"{,_l)ﬁ1 — ——-———2——-—] 6(z—z") + [—24]5———} 6(z—z")

- [Zly_] §"(z—2") (3.28¢)
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- ] -1 /
= | gt ] e
Ry = - (7Y, = ﬁﬁ?ﬂi] Kz—2")

(R_1)56 = (R—1)65 = §(z—z")

sz R(x,z) R_l(z,y) =1lc.6 6(x—y)

o - 2m
)gg = — (R 1)gq = _1+W%Fg,] Ko=)

(3.28f)

(3.28g)

(3.28h)

(3.28i)

(3.29)

The nonvanishing equal—time Dirac brackets of the gauge—invariant theory described by

£! under the gauge (3.25) are finally obtained (with the arguments of the field variables
being suppressed) as:

- 0(1rm-—1r£) B (alwm_wf m)

{"T[(x):”rm(Y)}D = ak(ak_a) ] &(x—y)

oy ~ T
"l’rm2 "m ] §(x—y)

2

{ofx)m (M} =

"
20y (0, —0) +
{my(x),mgy)}p = 7k > akwk} (x—y)
k
. [2012(0k2+ ak'rrk] xy)
—4) b
@7} = —123] o(x-y)
7%

(3.30a)

(3.30b)

(3.31a)

(3.31b)

(3.32a)

(3.32b)

(3.33)
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The results for the Dirac brackets expressed by (3.30a) — (3.32a), are valid throughout

the phase space of the gauge—invariant theory ! (3.16), except for the constraint surface
or on the submanifold of the constraints, where they are given by (3.30b) — (3.32b). This
is a simple consequence of the fact that the constraints vanish identically on the
constraint surface or on the submanifold of the constraints. On the other hand the result
for the Dirac bracket expressed by (3.33) is valid throughout the phase space of the
gauge—invariant theory.

Further the relations (3.30) — (3.33), together with o‘!%I (3.20) under the gauge (3.25),
reproduce precisely the quantum system described by o (3.1) [5]. The gauge (3.25)
translates the gauge—invariant version of the theory described by EI into the gauge—non—

invariant one described by N A comparison of (3.30) — (3.33) and (3.13) — (3.14) reveals
that (3.30b) — (3.31b) coincide completely with (3.13) and (3.14) as they should. The
additional commutators (3.32) and (3.33) express merely the dependence on 6 and Ty In
fact, as explained in Sec. 2, the physical Hilbert spaces of the two theories (LI and £N) are
the same. Also as observed in Sec. 2, the addition of the Wess—Zumino term (£WZ) to
the theory (i.e. to CN) enlarges only the unphysical part of the full Hilbert space of the

theory LN, without modifying the physical content of the theory.

For the later use for considering the BRST formulation of the gauge— invariant theory

described by £I, we convert the total Hamiltonian density Jérl into the first—order
Lagrangian density:

L,JIO=1rk&k+pA}\+1rab+pu{1+pv{r—.%TI
—mo +pi+pv—in-1s2 1p2, 0’0’+A(02—1)—A0(2a —b)
ST TP TPV T, T 50k T3 k k k

~ [m, — (6}-1) + &20,-0)] B (3.34)
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3D The BRST Formulation of the Gauge—Invariant Theory (Model A)
3D1 The BRST Invariance

We now rewrite the gauge—invariant theory of nonlinear sigma model (model A) as a
quantum system which possesses the generalized gauge invariance called BRST
symmetry. For this, we first enlarge the Hilbert space of our gauge—invariant model and
replace the notion of gauge transformation by a BRST transformation (as in Sec. 2, in

terms of the new anti— commuting variables ¢ and ¢ and a commuting variable b) (with

5 = 0) such that:

bo, =c, BA=—¢, B0=c, bm =0, &p 5 =0, bry=0; (3.35a)

bc =0, §c=b, =0 (3.35b)

The transformations for the Lagrange multiplier fields and their canonical momenta again
need not be specified as they are not needed. We now define a BRST—invariant function

of the dynamical variables to be a function f(wk,p A,vro,pb,rc,wa,ak,)\,0,b,c,E) such that &f
= 0.

3D2 Gauge—Fixing in the BRST Formalism
Performing gauge—fixing in the BRST formalism implies adding to the first—order

Lagrangian density (3.34) a trivial BRST—invariant function [14]. We thus write the
quantum Lagrangian density (taking, e.g., a trivial BRST—invariant function as follows)
[14,15]:

I r=ryy 1
. . « 1.2 1. ;2 1842, g 2
= MOy + Pyl + PV —g M —5 04" — 5 0"+ op 87 + A(oj 1)
+ A(6°~20, 6) — [m~(02-1) + 0(20,~6)] 0
W 1
= 0[ c(A+ 5 b — 0 —0)] (3.36a)
The last term in the above equation (3.36a) is the extra BRST—invariant gauge—fixing

term. Using the definition of § we can rewrite LpRrsT (with one integration by parts):
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_ . 1.2 1 9
LRRST = 0 + Pyl + PV — 5 1o 3 01 2= 2 024 0{ 0/ + A(02-1) + M(#P—20,0)

~ [m~(g}-1) + &20,-0)] 6

— 3 b% —b(A—0, ) + c& — % (3.36b)

Proceeding classically, the Euler—Lagrange equation for b reads:

= (-0 - 0) (3.37)

Also, the requirement §b = 0 (cf. Eq. (3.35b)) implies:

— b = (5X — B0y — 56) = 0 (3.38)
which in turn implies
_&=2 (3.39)

The above equation is also an Euler—Lagrange equation obtained by the variation of

LpprsT With respect to ¢. In introducing momenta we have to be careful in defining those
for fermionic variables. Thus we define the bosonic momenta in the usual way so that

_90 _
Py=""LpgrgT =P (3.40)
o

but for the fermionic momenta with directional derivatives, we set as before

- -
9 = .8 .
= LpRsT 5 = ¢; mg="-Lppep=¢ (3.41)
&

implying that the variable canonically conjugate to c is ¢ and the variable conjugate to ¢

is ¢. In forming the Hamiltonian density ;‘BRST from the Lagrangian density in the
usual way we remember that the former has to be Hermitian. Then
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FBRST = Tk T gl + PyA + Py + PV + 7 C + e — Lppor
12,1 ,2
=gmt 3o

+ m 7z + 2cc (3.42)

+ 302 10— X(o%-1) + X 020,~0) + & D2 + p, (0} +0)

We can check the consistency of (3.41) with (3.42) by looking at Hamilton’s equations for
the fermionic variables, i.e.

e =
. L P
¢ = FBRST' ¢ = PBRST or (3.43)
Thus
- -
. 0 _ . = _ 0 _
¢=7r #BRST = "¢’ °= MBRST I~ " (3.44)

in agreement with (3.41). Further, the Egs. (2.49) — (2.52) hold in the present case also.

3D3. The BRST Charge Operator
The BRST charge operator Q is the generator of the BRST transformations (3.35).
According to its conventional definition, its commutators with Bose operators and its

anti—commutators with Fermi operators in the present case satisfy:

[ak:Q] = [A)Q] = [B:Q] = (3'453‘)
[16Q] = [74Q] = 2(c—%) (5—0) (3.45b)
{€Q} = py + m + 1= (o3=1) + K20, ~0) (3.45c¢)
{cQ} = — (}-1) + &(20,~0) (3.45¢)

All other commutators and anti—commutators involving Q vanish. In view of (3.45), the
BRST charge operator of the present gauge—invariant theory can be written as
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Q= de[ic{(aﬁ—n — 6(20,~0)} —iE{py+ mp + m—~{(02-1) + 0(2ak—0)}] (3.46)

This equation implies that the set of states satisfying the conditions (3.19), and (3.23)
belongs to the dynamically stable subspace of states |y> satisfying Q|y> =0, i.e, it

belongs to the set of BRST—invariant states.

In order to understand the condition needed for recovering the physical states of the

theory we rewrite the operators ¢ and ¢ in terms of fermionic annihilation and creation

operators. For this purpose we consider Eq. (3.39) (namely, — ¢ = 2c). The solution of

this equation gives the Heisenberg operator c(t) (and correspondingly c(t)) as:

o(t) = ei‘/it B+ e"i‘m; D; ct)= e"i‘me + ei’ﬂ-tD]L :

which at time t = 0 imply
¢czc(0)=B+D, c=¢0)=Bl+Df
¢ = &0) = iy3(B-D), ¢=¢(0) = —iy¥BT —D)

By imposing the conditions

=P =) ={ci}=0; {Ce}=i=—{C}

one then obtains

B2 + {B,D} + D2 = B2 4 (B DT} + D12 =0
(88" + {p,p"} + (BT} + (BI D} =0
(8,87} + {p,pT} - (B,p"} - (BT, D} = 0
{BB"} -~ {p,p"} - {B DT} + (DBY} = —1/2
{88} - {p,0"} + (8,01} - {D,BT} = —1/42

with the solution

(3.47)

(3.48a)

(3.48b)

(3.49)

(3.50a)
(3.50b)
(3.50¢)
(3.50d)
(3.50e)
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B2-p?-812-p"2_ (B} = (B D} = (D'} = (BT DT} =0 (3.519)

tpr=_1_ tpy=4 1l 51b
{B',B} v {pTp} = +2,/2 (3.51b)

We now let |0> denote the fermionic vacuum for which

B|0> = D|0> = 0; (3.52)
Defining |0> to have norm one, (3.51b) implies

<0|BBT|0> <01DDT|0> '" (3.53)

242
50 that
Bf|0> #0; pfjo> #0 (3.54)
As usual the theory is thus seen to possess negative norm states in the fermionic sector.
The existence of these negative norm states as free states of the fermionic part of HBRST
is, however, again irrelevant to the existence of physical states in the orthogonal subspace
of the Hilbert space.
In terms of annihilation and creation operators the Hamiltonian density is
1 2,1 ;B T 1_2

¥ 4(BTB " DTD) (3.55)

and the BRST charge operator Q is
Q= de[+ iB [{(aﬁ—n — (20,~0)} — iV {py+7p +m,—~(0i-1) + B(ZUk—B)}]

i iD[{(aﬁ-l) — 020,~0)} + iV {p,+7p +m—(02-1) + 0(2ak—0)}]] (3.56)

Now, because Q| 9> = 0, the set of states annihilated by Q contains not only the set of
states for which (3.19) and (3.23) hold but also additional states for which B|¢> = D|¢>
= 0 and for which the conditions (3.19) and (3.23) do not hold. However, the Hamiltonian
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is also invariant under the anti—BRST transformation (in which the role of ¢ and —c is
interchanged) given by

b, =%, D= B0=-G br =0, bry=0, Gpy=0;  (3.57a)

=0, bc=-b, sb=0 (3.57b)

with generator or anti-BRST charge

O= de —iE{(03-1) - 020, —~0)} + iC {py +7gtm ~(of-1) + 0(2ak—0)}]
o dx[—iB’f [{(aﬁ—n — 6(20,-0)} + iV2 {py +7 4 m —(02-1) + 0(20k—0)}]
_ipf [{(a§—1)— 020, )} — iV {py+7 m, ~(o2-1) + 0(2ak—0)}” (3.58)

We again have [Q,H] =0, and [ Q,H] = 0, and we also impose the dual condition that
both Q and Q annihilate physical states implying that

Qy>=0andQ[y>=0 (3.59)

The states for which (3.19) and (3.23) hold strongly, satisfy both of these conditions and,
in fact, are the only states satisfying both conditions since, although with (3.51)

4(B'B + p'D) = 4(BBT + DD (3.60)

there are no states of this operator with BT|O> =0 and DTlO> =0 (cf. (3.54)), and
hence no free eigenstates of the fermionic part of ;‘BRST which are annihilated by each

of B,BT,D,DT. Thus the only states satisfying (3.59) are those satisfying the constraints
(3.19) and (3.23).

Also, the states for which p,|y> =0, [(rgtm) — (0'12(—1) + 0(20,—0)] |¥> =0 and

[(012(—1) - 0(2ok~0)] | ¥> = 0 satisfy both of these conditions (3.59) and, in fact, are the
only states satisfying both of these conditions (3.59) because in view of (2.57), one can not
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have simultaneously ¢,c and E,é applied to |¢Y> to give zero. Thus the only states
satisfying (3.59) are those that satisfy the constraints of the theory (3.19) and (3.23), and
they belong to the set of BRST—invariant and anti—-BRST—invariant states.

As in the preceeding section, one can also understand the above point in terms of annihi-
lation and creation operators of the theory in the following way. The condition Q|%> =0
implies that the set of states annihilated by Q contains not only the states for which

29> =0, [(mg+m) — (§-1) + K20, ~0)] [ 4> = 0 and [(of-1) - A2, )] |¥> =0,
but also additional states for which B|¢> = D|y> =0, but pA|¢> #0, [(7r8+1rk) -

(0i-1) + 0(20,~6)] 9> #0 and [(o7-1) — &20,~6)]|¥> #0. However, Q|¢> = 0
guarantees that the set of states annihilated by Q contains only the states for which
2 2
pyl¥> =0, [(rgtm) — (0 —1) + 20, —0)] | ¢> = 0 and [(o}—1) — K20y —0)] | > =0,
simply because BT] ¥> #0 and DT|1/1> # 0. Thus in this alternative way also one finds

that the states satisfying Q|¢> = Q|¥> = 0 (i.e. (3.59)) are only those that satisfy the
constraints of the theory (3.19) and (3.23) and also that these states belong to the set of
BRST—invariant and anti—-BRST—invariant states.

4. The Gauge—Invariant O(N) Non—Linear Sigma Model (Model B)

4A. Construction of Gauge-Invariant model (Model B) using Mitra—Rajaraman Method
and its Hamiltonian Formulation

Mitra and Rajaraman [2] have constructed a gauge—invariant version of the gauge—non—

invariant O(N) nonlinear sigma model gt (3.1) considered in Sec. 3 (using their
procedure of gauge—invariant reformulation [2] described by the total Hamiltonian
density [2]:

1 2 2 7-7) 22
and the associated first—order Lagrangian density [2]:

I - 12,1 ,2 2 o7 '
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Now (4.1) and (4.2) define the new gauge—invariant theory, namely, the model B. The
Hamilton’s equations obtained from the total Hamiltonian HTI = [dx Jérl are:

.oy 3.7 Oy 37 2

_ _ . . . - _ " _ . _ -l.—F
% =g, = (M [271'{] %) =T = Fay =~ %k % ozoz Lokmou(o- ]

(4.3a)

I I
oH ol
T W
=, =% RS 5= (1) (4.3b)
. aHg! R

The second—order Lagrangian density corresponding to JérI with the help of (4.3) could
be written as [2]:

- =

(' = 50,005 + Nof-1) + [%] (20,57,) (4.4)

As observed in Ref. [2], it is not possible to eliminiate 7 in the last term of (4.4). In view
of this the authors of Ref. [2], introduce a new field (called 7 here) defined by [2]:

ni= [ —g’%—é] (4.5)

In view of (4.5), the gauge—invariant second—order Lagrangian density equivalent to (4.4)
could now be written as [2]:

CI = % Buakauak + A(alz‘—l) + 1)(2ak&k) (4.6)

In the following, we would, however, work only with the gauge—invariant model B defined
by (4.1) and (4.2) (and not with (4.6)).

The gauge—invariant model B defined by (4.1) and (4.2) is seen to possess two first—class
constraints [2]:
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xlszzO; (4.7)
Xg = 0p-1#0 (4.8)

where Xp is a primary and x, is a secondary constraint. The matrix of the Poisson
brackets of X; is seen to be a 2x2 null matrix implying that 40 describes a bonafide

(pure) gauge— invariant theory. Further, E{O is seen to be invariant up to a total
divergence [2]:

b10 = g (o)1 (49)

under the time—dependent gauge transformations [2]:

o, =0, 6x=oaxt), &n=olx;t), (4.10a)

where a(x,t) is an arbitrary function of the coordinates. The corresponding first—order
action is therefore gauge—invariant.

In order to quantize the gauge—invariant theory using Dirac’s procedure [12], we convert
the set of first—class constraints of the theory X; into a set of second—class constraints, by
imposing, arbitrarily, some additional constraints on the system as gauge—fixing condi-

tions. One acceptable set of gauge—fixing conditions under which the above theory could
be quantized is [2]:

vy =20,m #0; (4.11a)
2 2
Vo = (2m + 4Aoy + 20y 07) % 0 (4.11b)

Corresponding to the above choice of gauge—fixing conditions, one obtains the following
set of constraints

Py =X; =Py *»0 (4.12a)

2
p2 = X2 == (a’k—l) 20 (4.12b)
pyg=vy=20,m %0 (4.12¢)
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2 2

The above set of constraints p; is evidently identical with that of the set of constraints x;

of the gauge—non—invariant theory il (cf. Sec. 3A). The nonvanishing equal—time Dirac
brackets of the gauge—invariant theory under the gauge (4.11) are obtained to be identical

with those of gauge—non—invariant theory £ (3.1) and are given by (3.13) and (3.14).
This is what one expects because the gauge—invariant system under the gauge (4.11) is

equivalent to the system o (3.1) [2]. The main idea of the Mitra—Rajaraman method
[2] lies in suitably modifying the total Hamiltonian and correspondingly the Lagrangian
of a particular gauge—non—invariant theory possessing a set of second—class constraints
(where at least one or more of the constraints are secondary) in such a way that all or
some of the secondary constraints do not arise at all in the modified theory. The
constraints of the modified theory obtained in this way then form a set of first—class
constraints and consequently the resulting modified theory becomes a gauge—invariant
theory. The secondary constraints which did not appear in the modified theory (but were
otherwise present in the original gauge—non—invariant theory) could now be imposed on
the modified (gauge—invariant) theory as gauge—fixing conditions, so that the total set of
constraints again becomes a second—class set. The Dirac quantization of the modified
gauge—invariant theory under such gauge—fixing conditions remains identical with that of
the original gauge—mon—invariant theory. Consequently the physical content of the
modified gauge—invariant theory under such gauge—fixing conditions remains the same as
that of the original gauge—non—invariant theory. The physical equivalence of the modified
and the original theory is therefore transparent.

4B BRST Formulation of the Gauge—Invariant Theory (Model B)
4B1 The BRST Invariance

We now rewrite the gauge—invariant theory namely, the model B [2] as a quantum
system which possesses the generalized gauge invariance called BRST symmetry. For this,
we again enlarge the Hilbert space of our gauge—invariant model and replace the notion of

gauge transformation by a BRST transformation (with c,c and b having the meanings as

in Secs. 2 and 3) (with 4% = 0) such that
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¢ =0, bc=b, =0 (4.13b)

In this case also the transformations for the Lagrange multiplier field and its canonical
momentum are not required to be specified because they are not needed. We now define a
BRST—invariant function of the dynamical variables to be a function

f(wk,p A,pb,'nc,er,crk,A,b,c,a such that & = 0.

4B2 Gauge—Fixing in the BRST Formalism

Performing gauge—fixing in the BRST formalism implies adding to the first—order
Lagrangian density (4.2) a trivial BRST—invariant function. We thus write the quantum
Lagrangian density (taking, e.g., a trivial BRST—invariant function as follows) [14,15]:

LgrsT = Lo + S[EO +5b + [%,])]

- =
1 o-T| = 2

= wk&k—%r —5 al"z + A(aﬁ—l) + [W] (o-m)
+ e+ b+ [3—;%])] (4.14)

The last term in the above equation (Eq. (4.14)) is the extra BRST—invariant

gauge—fixing term. Using the definition of § we can rewrite LBRST (with one integration
by parts):

. oo 12 1,2, 2. (37 -._.+b2+b)'\ e
BRST = "% — 3™ — 3% +Mo1)+ %] (0:7) + 5~ tor
+ce — 2t (4.15)

Proceeding classically, the Euler—Lagrange equation for b reads:

~b=[i+ [?]] (4.16)

Also, the requirement &b = 0 implies:
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_ s [6A+6[" ]]zo (4.17)
which in turn implies
—t=2 (4.18)

The above equation is also an Euler—Lagrange equation obtained by the variation of

‘CBRST with respect to c. We define the bosonic momenta in the usual way so that

_9 -
Py=——LppsT="*D (4.19)
oA

but for the fermionic momenta with directional derivatives, we again set

iy a_

BRST 5z~ ¢ "¢~ . ‘BRST = ¢ (4.20)

T

implying that the variable canonically conjugate to c is C and the variable conjugate to C

is ¢. In forming the Hamiltonian density ”gBRST from the Lagrangian density in the
usual way we remember that the former has to be Hermitian. Then

FBRST = T T P)A + 7€ + T — Lppgr

Ql

1 2,1 .,2 2 12 1.2 7
s h A LR G EE (GRS e N Y
+ 7 7=+ 2cc (4.21)

We can again check the consistency of (4.20) with (4.21) by looking at Hamilton’s equa-
tions for the fermionic variables, i.e.

-

. a 2 _
¢ =r HBRST:  ©= PBRST (4.22)

S
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Thus
- -
& =0 =7 c= 0 _ o (4.23)
—Fag"BRST- x _;‘BRST'H%%_ ¢ :

are again in agreement with (4.20). The Eqgs. (2.49) — (2.52) hold again in the present
case.

4B3 The BRST Charge Operator

The BRST charge operator Q in this case is the generator of the BRST transformations
(4.13). According to its conventional definition, its commutators with Bose operators and
its anti—commutators with Fermi operators (in the present case satisfy):

[Wk;Q] = 20yC; [AQ] =¢ (4.24a)

{&Q} =py; {6.Q} =—(of-1) (4.24b)

All other commutators and anti—commutators involving Q vanish. In view of (4.24), the
BRST charge operator of the present gauge—invariant theory can be written as

Q = [ax {ic(of-1) ~icp)} (4.25)

This equation implies that the set of states satisfying the condition p ,\WD =0 and

(012(-—1) | 4> = 0 belongs to the dynamically stable subspace of states |¥> satisfying
Q|¥> =0, i.e., it belongs to the set of BRST—invariant states. Also because the equation
of motion (4.18) is identical with (3.39), the Eqgs. (3.47) — (3.54) hold in the present case
also.

In terms of annihilation and creation operators the Hamiltonian density is

1.2 .1 ,2 2 g2 1 2 g7
;‘BRST=7”k+§"k—A("k—l)‘[z?g](”‘”)—zprpx[E{

+ 488 + D'D) (4.26)

- = —»—v]
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and the BRST charge operator Q is

Q = [ax{+i[B(ef — 1~i%p,) + D(e — 1 +iV2p)]} (4.27)

Now, because Q|4> = 0, the set of states annihilated by Q contains not only the set of
states for which p, =0 and (aﬁ—l) = 0 but also additional states for which B|y>
=D|¢> =0 with p, # 0 and (02-1) # 0. However, the Hamiltonian is also invariant

under the anti—-BRST transformation (in which the role of ¢ and —c is interchanged)
given by

6ak =0, 6\=-rC, 3',1'k =— ZJkE, ;SpA =0, (4.28a)

bc=0, bc=-b, éb=0 (4.28b)
with generator or anti—-BRST charge
Q= Idx{— it(o2-1)+ icp,)
_ rat 2 ; 1.2 :
= |dx{-i[B (Uk -1+ 1\/§PA) +D ("k ol b 1\/71),\)]} (4.29)

In this case also [Q,H] =0 and [ Q,H] =0, and as in the previous cases, we again

impose the dual condition that both Q and Q annihilate physical states implying that
QYy>=0andQ|y> =0 (4.30)

The states for which p 5 =0 and (012:—1) = 0 satisfy both of these conditions and, in fact,
are the only states satisfying both conditions since, although with (3.51)

4(B'B + p'D) = — 4(BB' + DDT) (4.31)

there are no states of this operator with Bt|0> = 0 and DT|0> =0 (cf. (3.54)), and
hence no free eigenstates of the fermionic part of ;‘BRST which are annihilated by each
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of B,B*,D,DT. Thus the only states satisfying (4.30) are those satisfying the constraints
py = 0and (02-1) = 0.

Also, the states for which p, | ¢$ =0 and (o‘ﬁ—l) | > = 0 satisfy both of these conditions
(4.30) and, in fact, are the only states satisfying both of these conditions (4.30) because in

view of (2.57), one cannot have simultaneously c,c and c,c applied to |¢> to give zero.
Thus the only states satisfying (4.30) are those that satisfy the constraints of the theory
(4.8), and they belong to the set of BRST—invariant and anti-BRST—invariant states.

Once again, one can understand the above point in terms of annihilation and creation
operators of the theory as follows. The condition Q|%> = 0 implies that the set of states

annihilated by Q contains not only the states for which p Al ¥> =0 and (al2(—l)| ¥> =0,
but also additional states for which B|¢> = D|¢> = 0, but pA|1/)> # 0 and (aﬁ-—l)l >
# 0. However, Q| ¢¥> = 0 guarantees that the set of states annihilated by Q contains only
the states for which p A|¢> =0 and (012{—1)|¢> = 0, simply because BT|¢> #0 and
Df|'¢> # 0. Thus in this alternative way once again we see that the states satisfying

Q|y> = Q|¥> = 0 (i.e. (4.30)) are only those that satisfy the constraints of the theory
(4.8) and also that these states belong to the set of BRST—invariant and anti—
BRST—invariant states.

5. Summary and Discussion
The transition to quantum mechanics is made in general, by the replacement of the Dirac

brackets by the operator commutation relations [ , ], according to the Dirac quantization
rule [12]:

{ArB}D —_— (_1) [A’B] (5'1)

where the classical dynamical variables A and B after quantization become quantum
mechanical operators on some Hilbert space. In view of this, the equal-time commutators
for the Klein—Gordon theory considered in Sec. 2, can be obtained immediately from the
corresponding Dirac brackets by the above replacement (namely, using (5.1)).
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For achieving the canonical quantization of the non—linear sigma model, we encounter the
problem of operator ordering while going from Dirac brackets to commutation relations.
This problem can be resolved, as explained in Ref. [1,18] by demanding that all the fields
e.g., ok(x), A(x), and #(x); and all the canonical momenta e.g., rk(x), pA(x) and wﬂ(x)
are now hermitian operators and that all the canonical commutation relations be consis-
tent with the hermiticity of these operators [1,18].

In the usual Hamiltonian formulation of a gauge—invariant theory (like the ones consi-
dered in the present work) under some gauge—fixing conditions, one necessarily destroys
the gauge—invariance of the theory. However, in the BRST formulation when we imbed a
gauge—invariant theory into a BRST—invariant system, the new (BRST) symmetry which
replaces the gauge invariance is maintained even under gauge—fixing and hence projecting
any state onto the sector of BRST and anti—-BRST—invariant states yields a theory which
is isomorphic to the original gauge—invariant theory. The unitarity and consistency of the
BRST—invariant theory described by LgrsT 18 guaranteed by the conservation and
nilpotency of the BRST charge Q.
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