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HAMILTONIAN AND BRST FORMULATIONS
OF THE SCHWINGER MODEL
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Abstract .
The Hamiltonian and BRST formulations of the Schwinger model are investigated.

1. Introduction

Electrodynamics in one—space one—time dimension with massless fermions, known as the
Schwinger model [1] has been studied by several authors [1-7] in various contexts. In
1962, Schwinger was able to obtain the exact Green’s functions for the theory [1] and
since then many authors have obtained solutions of the theory in various gauges [2]. The
path— integral solutions and operator solutions have also been studied [4,2]. The various
solutions have been helpful in elucidating many properties (often nonperturbative) of the
Schwinger model [1-7]. Further, the model is exactly solvable [3]. The solvability of the
model is due to a remarkable property of one—dimensional fermion systems, namely, that
they can be completely described in terms of canonical one—dimensional boson fields [3].
In fact, a study of the two—dimensional field theories in general, and of the Schwinger
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model, in particular, has led to the conclusion that any fermion (plus bosons if desired)
field theory has its boson—equivalent field theory [3]. As a consequence of this, many
surprising features of field theories (at least in two dimensions) have been revealed [1-7].

The Schwinger model is well known to describe a bonafide (pure) gauge—invariant theory
possessing two first—class constraints. In the present work we study the Hamiltonian
[8,9] and Becchi—Rouet—Stora—Tyutin (BRST) [10—13] formulations of the bosonized
Schwinger model. The Hamiltonian formulation is considered in Sec. 2, and the BRST
formulation in Sec. 3.

2. The Hamiltonian Formulation

The Schwinger model in one—space one—time dimension is described by the Lagrangian
density [1]:

£=Tid, +gA )V - i F,F* (2.1)

which is equivalent to its bosonized form [3]:

L=2 8,00 — g0 94, —3F M (2.2a)

L

01

g,U.V:z dla‘g (+11_1); G,U:V == GV,U; € =41, pv= 011' (22b)

In (2.1) ((2.2)) the first term corresponds to a massless fermion (boson). The second term
represents the coupling of this fermion (boson) to the electromagnetic field A . The last

term is the kinetic energy term of the electromagnetic field. In component form (2.2)
could be written:

L=50" 0% +gd Ag—dA) + 5 (A, — Ay (23)

where overdots and primes denote time and space derivatives respectively. The Euler—
Lagrange equations obtained from £ (2.3) are:

G —¢") =g(A; —Ap) (2.42)



Kulshreshtha, Kulshreshtha and Miiller-Kirsten 739

—gl, = (A —Ap) = —gb (2.4b)

—gly = (A] - Ap) = — g’ | (2.4c)

It is easy to see from (2.4) that the vector current (Jﬂ) is conserved, i.e.,

v 1 ] ’ A/ L/
00" =—20,(0F") = (Jg-3{) = @' —¢") = 0 (25)
implying that the theory possesses (at the classical level) a vector—gauge symmetry.

We now study the Hamiltonian formulation [8,9] of the bosonized model described by £
(2.2). The canonical momenta obtained from £ are:

=20 BE=2E — (A -Apir=% = (h-gA) (2.6)
oA, oA, o

Here 7, E (= 7rl) and 7, are the momenta canonically conjugate respectively to AO, Al
and ¢. The first equation in (2.6) implies that the theory possesses a primary constraint

Q) :=m=0 (2.7)

The canonical Hamiltonian density corresponding to £ is

=%( E? + 2 + ¢’ )+EA6+g7rA +2-ng2 —gd’A, (2-8)
After including the primary constraint Q,, in the canonical Hamiltonian density J%, with
the help of Lagrange multiplier u, one can write the total Hamiltonian density Hp a8

[8,9]:

Hp = 5 (B2 +72+4'%) 3 EAf + grA | + 3 6°A% — g Ay + 7 (2.9)
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The Hamilton’s equations obtained from the total Hamiltonian HJ, = | %, dx are:

. GHy . GHy

b=—7=(r+gA)) —7= % = (8Agy —¢") (2.10a)

. aHT n 6IIT

A0-=_a7r—0=u; — 7y = -—a:roz-—(E’ +g¢’) (2.10b)

% 6HT ’ i HHT

Ai=—=(E+A4y); -E= —BA; =g(r+gA;) (2.10c)
dH oH

“=Bp_T=°’ _pu=3u_T=,0 (2.10d)

u

These are the equations of motion of the theory that preserve the constraints of the
theory in the course of time. For the Poisson bracket {,} p of two functions A and B, we
choose the convention:

{A().BO)}, = sz 3 [ %%-%%] (2.11)

Demanding that the primary constraint Ql be preserved in the course of time, we obtain
the secondary constraint

0y = {0, g} = (B +g) 0 (2.12)

The preservation of {1, for all time does not give rise to any further constraints. The
theory is thus seen to possess only two constraints ﬂl and 92. The matrix of the Poisson
brackets of the constraints ﬂi is a 2x2 null matrix and therefore singular implying that
the set of constraints ﬂi is first—class and that the theory described by £ is a bonafide
(pure) gauge—invariant theory. In fact, the Lagrangian density £ is seen to be invariant
under the time—dependent gauge transformations:

6Ag =+ B(x.t), 6A =+ f'(xt), 6p=0, fu=0 (2.13a)

bry=0, ¢E=0, fr=—pf (x,t), ép, =0 (2.13b)



Kulshreshtha, Kulshreshtha and Miiller-Kirsten 741

up to a total divergence:

o = ge“”a#(ﬁau‘p) (2.14)

where ((x,t) is an arbitrary function of the coordinates. The action S = [£ dx dt is there-
fore gauge—invariant. The reduced Hamiltonian density of the theory (;ﬁ?.)’ obtained
from %} after the implementation of constraints Q,, is finally given by [8,9]

Hy = 5 (B2 r+ ¢ 24 %A% 4 2gnA ) = 1 (Ji + 72 + 28?) (2.15)
where

are the U(1) kac—Moody currents. Jﬁ{ is thus seen to be positive semi—definite.

In order to quantize the theory using Dirac’s procedure [9], we ought to convert the set
of first—class constraints of the theory ), into a set of second—class constraints, by
imposing, arbitrarily, some additional constraints on the system called gauge—fixing
conditions or the gauge—constraints. For the theory under condsideration, we could
choose, for example, the gauge—fixing conditions: A0 = 0 and A; = 0. Corresponding to
this choice of the gauge— fixing condition, we have the following set of constraints under
which the quantization of the theory could be studied [8,9]:

Y =0, =m=x0 (2.17a)
Yo =0o=(E" +g¢’)» 0 (2.17b)
¢3 = AO 0 (2.17c¢)
Yy = A} %0 (2.17d)

We now calculate the Poisson brackets among the constraints %, and obtain the matrix:

0 0 —&z—=z') 0

0 0 0 &M(z—=z')
Aaﬂ(z,z’) = {¢a(z),1/)ﬁ(z’)}p = | 6(z—") 0 0 0 (2.18)

0 —8"(z—=z’) O 0

with the inverse
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0 0 &z—=2') 0
. 0 0 0 —|z—2’ |
-1 7\ —
Aaﬂ(z’z j= —b(z—2") 0 0 0 (2.19)
0 4|z—=z’'| O 0
and
s AGen) A7ay) = 14, Bx-y) (2:20)

The Dirac bracket {,}p, of the two functions A and B is defined as [8]:

— - ’ -1 / ’
{AB}p = {AB}, ”dz dz az’:ﬁ [{A,I‘a(z)}p [Aaﬁ(z,z )] {r s ),B}p] (2.21)
where T, are the constraints of the theory and A aﬁ(z,z’) [:= {T (=), I‘ﬁ(z’)} p] is the
matrix of the Poisson brackets of the constraints Fi' The transition to quantum

mechanics is made by the replacement of the Dirac brackets by the operator commutation
relations according to

{AB}p — (<)[AB]; i=T. (2.22)

Finally, the nonvanishing equal time commutators of the theory in the gauge AO =0 and

Ai = 0, are obtained as:

2 :
2[¢(x),7(y)] = g [E(x),x(y)] = [A}(x).E(y)] = 2idx~y) (2.23)
For the later use (in the next section), for considering the BRST formulation [10,11] of

the theory described by £, we convert the total Hamiltonian density Jép into the
first—order Lagrangian density [11,12]:

Ly ="+ EA, + 1Ay + p i~

: : . 1,2 ,2 2 2,2 ; /
=1r¢+EA1+puu——2-(1r +¢ +E +g Al)_EAO"gWA1+g¢ AO
(2.24)
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In (2.24) the term (A —u) drops out in view of the Hamilton’s equation (2.10b).

3. The BRST Formulation

3A. The Schwinger Model and BRST Invariance

Following Ref. [11], we rewrite the gauge—invariant theory of Schwinger model [1] as a
quantum system which possesses the gemeralized gauge invariance called BRST
symmetry. For this, we first enlarge the Hilbert space of our gauge—invariant model [1]
and replace the notion of gauge transformation which shifts operators by c—mumber
functions by a BRST transformation which mixes operators having different statistics.

We then introduce new anti—commuting variables ¢ and c called Faddeev—Popov ghost
and anti—ghost fields respectively (Grassmann numbers on the classical level, operators in
the quantized theory) and a commuting variable b called the Nakanishi—Lautrup field
such that [11,12]:

0

6=0, B&A;=¢ BA=c, br=—c’, BE=0, bry=0; (3.1a)
bc =0, §c=b, &b=0 bu=0 &ép =0 (3.1b)

with the property 52 = 0. We now define a BRST—invariant function of the ‘dynamical

variables to be a function f(r,rO,E,pb,vrc,ré-,tb,Ao,Al,b,c,E) such that &f = 0.

3B. Gauge—Fixing in the BRST Formalism

Performing gauge—fixing in the BRST formalism implies adding to the first—order
Lagrangian density (2.24) a trivial BRST—invariant function [11,12]. We could thus
write the quantum Lagrangian density (taking e.g., a trivial BRST—invariant function as
follows [11,12]:

o 1
; ; . 1,2.,,2 22 2,2 , ,
=19 + EA,+ p u—5 (7"+¢’“+E"+g"A]) —EAj —grA; + g’ A,

+ 5[ T(Ay+ 5b + A+ 7)] (3.2)
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The last term in the above equation (Eq. (3.2)) is the extra BRST—invariant gauge—fixing

term. Using the definition of & we can rewrite LBRST (with one integration by parts):

L - 1,.2,.,2, 02, 2,2 ; / 1,2
LgrsT = ™+ EA + p u —5 (7"+¢'“+E“+g"A]) —EAj —g7A, + gp’Aj+ 5 b
+ b(Ay+A + 7) + & (3.3)

Proceeding classically, the Euler—Lagrange equation for b reads:

~b=(Ag+A + 7) (3.4)

Also, the requirement &b = 0 (cf. Eq. (3.1b)) implies:
— &b = (6Ay + 6A, + Br) =0 (3.5)
which in turn implies
=0 (3.6)

The above equation is also an Euler—Lagrange equation obtained by the variation of

EBRST with respect to c.

In introducing momenta we have to be careful in defining those for fermionic variables.
Thus we define the bosonic momenta in the usual way so that [11,12]

_9d _

oA,

but for the fermionic momenta with directional derivatives we set [11,12]

- 4
— 9 _=. _ 90 s
"= LBRST ,; = "= _LBRST=°© (3.8)
¢ &

implying that the variable canonically conjugate to c is ¢ and the variable conjugate to ¢
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is ¢. In forming the Hamiltonian density HBRST from the Lagrangian density in the
usual way we remember that the former has to be Hermitian. Then [11,12]

1,.2,.,2. 02, 2,2 ; / 1 2
=5 (7" +¢' “+E"+g A7)+ EAj + gTA; —gd' Ay —5 1y — (A +7) + 7 72 (3.9)

We can check the consistency of (3.8) with (3.9) by looking at Hamilton’s equations for
the fermionic variables, i.e. (cf. Ref. [12]).

- -
. 9 = 9
=%r, PBRST'  ©= “BRST 7 (3.10)
Thus
d= ol =7 C= 9 _« (3.11)
'a?er‘BRST" ¢ —"BRSTWE— ¢ '

in agreement with (3.8).

For the operators ¢,c,c and <.'3, one needs to specify the anti—commutation relations of ¢

with T or of ¢ with ¢, but not of ¢ with c. ¢ and c are, in general, independent canonical
variables and one assumes that [11,12]:

{rory={gp=0; &@E=0 (3.12)

{ee} =—{¢c) (3.12b)

where {,} means anticommutator.

We thus see that the anti—commutators in (3.12b) are non—trivial and need to be fixed.
In order to fix these we demand that c satisfy the Heisenberg equation [11,12]:
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[c, Hypgr] = it (3.13)

and using the property 2= 0, one obtains

[, Hgpgr] = (e} ¢. (3.14)

Egs. (3.12) — (3.14) then imply:

{ce}=—{¢c) =i. (3.15)

Here the minus sign in the above equation is non—trivial and implies the existence of
states with negative norm in the space of state vectors of the theory [11,12].

3C. The BRST Charge Operator

The BRST charge operator Q is the generator of the BRST transformation (3.1). It is
nilpotent and therefore satisfies Q2 = 0. It mixes operators which satisfy Bose and Fermi
statistics. According to its conventional definition, its commutators with Bose operators
and its anti—commutators with Fermi operators in the present case satisfy:

Q] =—c; [ApQ]l=¢; [EQ]=c (3.16a)
{€Q}=-my; {cQ}=—(E" +gf) | (3.16b)

All other commutators and anti—commutators involving Q vanish. In view of (3.16), the
BRST charge operator of the present gauge—invariant theory can be written as

Q= Idx[ic(E’ + gb") —itmg] (3.17)

This equation implies that the set of states satisfying the condition 1ro|1p> =0 and
(E’+gd’)|¥> = 0 belongs to the dynamically stable subspace of states |¢¥> satisfying
Q|¥> =0, i.e., it belongs to the set of BRST—invariant states.



Kulshreshtha, Kulshreshtha and Miiller-Kirsten

747

In order to understand the condition needed for recovering the physical states of the

theory we rewrite the operators ¢ and ¢ in terms of fermionic annihilation and creation

operators. For this purpose we consider Eq. (3.6) (namely, € = 0). The solution of this

equation gives the Heisenberg operator ¢(t) (and correspondingly c(t)) as:

(t) =Gt +F; ¢(t)=Glt+Fl;
which at time t = 0 imply

cz=c(0)=F, c=c(0)= pf

¢28(0)=G, c=¢0)=Gl

By imposing the conditions
C=P=(Cc}={cc}=0 {cc}=i=—{&C)}
one then obtains
2 =r2= (FtF) = {GT,G} =0
(Gt F} =—{GFl} =i
We now let |0> denote the fermionic vacuum for which
G|0> = F|0> = 0;
Defining |0> to have norm one, (3.22) implies

<0|FG’f|o>=i; <0|GFT|0>= i

so that
allo> #o; F1]0>#0

(3.18)

(3.19a)

(3.19b)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)
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The theory is thus seen to possess negative norm states in the fermionic sector. The exis-
tence of these negative norm states as free states of the fermionic part of %RST is, how-
ever, irrelevant to the existence of physical states in the orthogonal subspace of the
Hilbert space.

In terms of annihilation and creation operators the Hamiltonian density is

1,240,202, 2,2 / . 12
Hanar = 5 (P+0 2+E24g?A2) 4 EA| + grA, —gd' Ay — i 72 — n (A +7) + GG
(3.26)
and the BRST charge operator Q is
Q= de{+ i[F(E'+g9’) — Gry]} (3.27)

Now, because Q| %> = 0, the set of states annihilated by Q contains not only the set of
states for which 1r0| ¥> =0 and (E’+g¢’)|¢¥> = 0 but also additional states for which
G|Y> = F|¢> = 0 with 1rO| ¥> # 0 and (E’+g¢’)|¢> # 0. However, the Hamiltonian is

also invariant under the anti—BRST transformation (in which the role of ¢ and —c is
interchanged) given by

B=0, BAj=—¢, BA=-T, br=¢, BE=0, bry=0; (3.28)
?5<_:=0, éc=—-b, éb=0, éu=0, T6pu=0 (3.28b)
with generator or anti—BRST charge
Q= [ax[— BB’ + gb')+ icng]
= de{—i [F1(E"+g0') - GTx 1} (3.29)
Like we had [Q,H] = 0 before, we now have [ Q,H] = 0, with all other commutators and

anti—commutators also vanishing. We can thus impose the dual condition that both Q

and Q annihilate physical states implying that
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Q¢y>=0andQ|y>=0 : (3.30)

The states for which 7)|9> =0 and (E’+g¢’)|¢> = 0 satisfy both of these conditions
and, in fact, are the only states satisfying both conditions since, although with (3.21) and
(3.22)

afa = —agt (3.31)

there are no states of this operator with Gt|0> =0 and FJ‘|0> =0 (cf. (3.25)), and
hence no free eigenstates of the fermionic part of BRST which are annihilated by each

of G,Gf,F,Ff. Thus the only states satisfying (3.30) are those satisfying the constraints
7, =0and (E"+g¢’) = 0.

Further, the states for which x,|¢> =0 and (E’'+g¢’)|¥> = 0 satisfy both of these
conditions (3.30) and, in fact, are the only states satisfying both of these conditions (3.30)

because in view of (3.20), one cannot have simultaneously ¢,c and c,c, applied to | ¢> to
give zero. Thus the only states satisfying (3.30) are those that satisfy the constraints of
the theory (2.7) and (2.12), and they belong to the set of BRST—invariant and
anti—-BRST- invariant states.

One can understand the above point in terms of fermionic annihilation and creation
operators as follows. The condition Q|%> = 0 implies that the set of states annihilated
by Q contains not only the states for which x,|¥> = 0 and (E’+g¢’)|y> = 0, but also
additional states for which G|y> = F|¢> =0, but =j|y> #0 and (E'+g’)|¥> #0.

However, Q| 9> = 0 guarantees that the set of states annihilated by Q contains only the
states for which =)|¥> =0 and (E’+gp’)|¢> =0, simply because GJr|1/)> #0 and
F1|1/1> #0. Thus in this alternative way also we see that the states satisfying

Q|¥> = Q|¥> = 0 (i.e. satisfying (3.30)) are only those that satisfy the constraints of
the theory (2.7) and (2.12) and also that these states belong to the set of BRST—invariant
and anti—-BRST—invariant states.

In the usual Hamiltonian formulation of a gauge—invariant theory (like the present one)
under some gauge—fixing conditions, one necessarily destroys the gauge—invariance of the
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(£) into a BRST—invariant system, the new (BRST) symmetry is maintained even under
gauge—fixing and hence projecting any state onto the sector of BRST and anti—-BRST-—
invariant states yields a theory which is isomorphic to £. The unitarity and consistency of
the BRST—invariant theory described by CBRST is guaranteed by the conservation and
nilpotency of the BRST charge Q.

Towards the end, we like to make an important observation that some interesting work
exists in the literature [6] where a bosonic version of the Schwinger model which couples
a Dirac fermion to a U(1) gauge field has been proposed and Dirac quantized in a reduced
phase space formalism [6]. This model has further been shown to be equivalent to the
fermionic massless Schwinger model considered in our present work. For the details of this
work we refere to the work of Ref. [6].
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