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Non—Spreading Coherent States Riding
on Kepler Orbits

By A. O. Barrit* and Bo-wei Xu"

International Centre for Theoretical Physics
Trieste, Italy

27.V.1993

Abstract. We construct exact non-spreading coherent states for the Kepler problem and show that
they must be two-dimensional lying on the plane of the orbit. The use of a new time variable in
the associated auxiliary oscillator problem plays a crucial role.

Ever since the Schrôdinger construction of non-spreading localized coherent states for
the one-dimensional oscillator problem :, many attempts have been made to construct the
analogous non-spreading coherent states for the Kepler problem, a task Schrôdinger himself
found difficult to solve 2. None have been found so far, although there are many ingenious
constructions of the so-called "quasi-classical states" 3_12 which, however, eventually
spread. There is now also considerable experimental interest in such states after the
realization of localized wave packets in Rydberg orbits and their vanishing and revival in
time 13-14.

We use the well-known transformation of the Coulomb Hamiltonian into an associated
four-dimensional problem 15_16 whose evolution is oscillatory in a new time variable dT —
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dt/r. This turns out to play an important role. The four-dimensional motion is constraint
and, transforming to the ordinary space property, we first show that the averaged motion
is a Kepler ellipse and then that the coherent state around the average is a non-spreading
two-dimensional gaussian wave function. We start from the well-known SO(4)-symmetry
of the Schrôdinger equation

^ee(-~V2-~)^ £V> (1)

for the Kepler problem, where p is the reduced mass. The conserved generators of angular
momentum L and the Lenz vector A satisfy

[L, H] [A,H]=0, L x L ihl, L x A ihA, A x A iKL (2)

L,A 0. (3)

In terms of two sets of boson operators b f1 V .3 [bi, b^] Sij we can represent

(4)
L -(b+ab + b'+ab1)

A= -(b+ab-b'+ab1)
2V ;

so that the condition (3) gives

X b+bx + b\b2 - b+h - 6+64 0 (5)

Introducing new variables a by

bx —7=(ax +ia2),b2 —^(a3 -ia4)

63 y=(ai -ia2),bi —7={a3 4-to4)
(6)

the condition (5) becomes

X a*a2 — a~2 ax — a*a^ + df a3 =0 (7)

From the set {a} we pass to the canonical coordinates qA,^A of an auxiliary space

aA (2mhw)~1'2(mwqA + ì^a)
(8)

a\ (2mhoj)~lI2(mwqA — ìta), A — 1,2,3,4

so that
[?a,7tb] ih Sab, *a -ih d/dqA ¦ (9)

The different operators 6;, a;, qA, tta all have their distinct physical interpretations.
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The condition (7) now becomes

d d d d
X q2 -z 9i ^—+93 ö 94 ^— 0 (10)

ôgi 9g2 oç4 dq3

The four-dimensional g-space has a well-known Kustanheimo-Stiefel projection to
the three-dimensional space

15_16

xx 2(qxq3 - q2qt), x2 2(g:g4 4- q2q3), x3 q\ A q\ - q\ - q\ (11)

from which we obtain

r (x2 + x2 + x2)1'2 =q2x+ q\ + qj + q\ q2 (12)

and

^ i^q-^X2 (13)

where X is defined by (10). For the Kepler symmetry X 0, and Eq.(l) becomes

(-£^+^mwV)^=^ (14)

m Ap, u (-E/2p.)1'2, e e2. (15)

This is an auxiliary pseudo-Hamiltonian in a four-dimensional Euclidian space

ft2 1
H, -— 4- - mu>2q2 Y^ (aAaA + 2)ftw (16)

A

with the eigenstates \nxn2n3n.i) and eigenvalues

€ /tw(ni 4- n2 + n3 + n4 4- 2) ft^2n (17)

The condition (10) gives the restriction

n2 + n2 n3 + n4 n — 1 (18)

It is easy to see that (17) together with (15) implies the Balmer formula with degeneracy

n2 so that the .H-atom is equivalently described by two independent two-dimensional
oscillators, or by 4 "ff-atom quarks" 17.

From (16), (13) and (1) we obtain

Hq-e r(Hr - E) (19)

It has been known for some time 18 that the operator $ r(Hr — E) is actually an
SO(4,2)-dynamical group operator for the Kepler problem and has a discrete spectrum -
it is in fact essentially the principal quantum number operator.
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According to a theorem in Hamiltonian systems, if for a Hamiltonian H with E being
some value of energy, we define the new Hamiltonian H G(p, q)[H — E], then the integral
curves which belong to H E with time parameter t, now belong to new energy H 0

with time parameter T, where
dt

/t„ G(g(t))
for each integral curve g(t) of H. In our case it follows from (19) that for the g-system we
have the new time variable

dT dt/r (21)

nt)=f7^ (2°)
Jto

Comparing (1) and (14) we further see a new type of remarkable symmetry of the

Kepler problem: states for fixed e2 and variable energies En — \ I^- on the one hand,
and states of a family of Coulomb problems with fixed energy E, but variable coupling
constants

e2n nfa-2£/m (22)

form two isomorphic representations of the same dynamical algebra 19. This is because
the .ff-atom equation (19) after tilting is [^/—2E/m To — e2]^ 0 where To has the
discrete spectrum To|n > n/n >. Hence we get — 2E/m)1'2n e2 so that we can
either solve for En —mei/2n2 for fixed e2 (usual case), or we can fix E and solve for e2:

en ny/(-2E/m).
In qA — tta space we have the Heisenberg equations

mdqA dt^A 2

dT dT (23)
" QA •> a TTA ¦>-^+-V o, ^ +^ o.

Transforming to the r-space with (20) we obtain the Heisenberg equations of the Kepler
problem. In particular we have a relation between the momenta in two spaces

E9xk .„,.
Wa Pk ¦ (24)

fc=i HA

The Schrôdinger coherent states for the oscillators are well known x, defined as the
eigenvectors of the annihilation operators

aA\a > aA[a > (25)

For the ground state of the oscillator in the g-representation we have

< 9i929394|o; > < q/a >
1 fmu>\

\ _l ;exP 2vfe,)X>-^))2trh I

{- (T {qA*A(T) - ^^sin2(^ +Wr)} -iwTx exp (26)
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h ^1/2
where

qA(T) < a[qA[a > I -£—\ (aA + a\)

- ,m\ ii • !mwh\
tta(J a\trA\a > =-i V——) (aA - aA)

and satisfy, from (23), the classical equations of the motion

d2

(27)

-^ qA A 0J2qA 0 (28)

and the classical pseudo-Hamiltonian is

Hq < a[Hg\a > £ & + \ mu? q\ e (29)
A

The condition X 0, Eq.(10), applied to the coherent state (26) gives

("T") ^92^1 _ 9l^2^ + ^?3^4 ~ 9493)] 4- r [q2*i - qiïï2 + g37f4 - g47f3] 0

Since our g's and 7r's are all real, each square bracket must vanish separately.

g27fi — gi7T2 4- 93*4 — 94*3 0

9291 - 9i92 + 9394 - 9493 0
(30)

In the r-space we have from (11) the following expectation values, or classical orbits

Xx < Xx > 2[qxq3 - q2qi]

x2 2[gig4 -(- g2g3]

X3 < g2 > + < q\ > - < qj > - < q\ >

f < g2 > -f < q\ > + < ql > + < 94 >

(31)

It follows from (8) and (25) that in the coherent state [a >

< q\ > < qA >2 +ft/2mu (32)

We must distinguish between f q2 and f q2

<r>=f f + 2h/mu> (33)

where

î (x\+x22+x\)A2, f (if + ^ + ïf)1/2 (34)
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Thus we can write for x3 in (31)

*3 9i + 92 - 93 - 94 (35)

because the constant term in (33) drops out. We also have the relation between the two
times, from (20), which we write as

dT dt/r (36)

From (7), (30) and (36) we obtain

*£*—(,* tm
where e' e — 2hu>. This is the classical equation of motion (in the limit h —> 0, the zero
point energy drops out).

We shall now exhibit r-space motion in the coherent state and show that its centre
describes an ellipse.

We can always choose the x-coordinates such that the classical orbit is in the xxx2-
plane. Thus setting

< x3 > 0 (38)

we obtain from (35)
9i g~3 and g2 g4 (39)

(or equivalently gi g4 and g2 g3. Then from (30) and (31)

ix 2(gf - gf), x2 4gxg2 (40)Xi

Now from (27) and (28),

/ 2% \1/2
9i=( |ai|cos(wT + ^i), i l,2 (41)

hence

f a(— [|a1|2cos2(u,r + ^1) + |a2|2cos2(Wr + ^2)] (42)
\mu>

Coming back to our coherent state (26), the conditions (30) now give

9i 93 and g2 g4 (43)

and this in turn implies
Tfi - 7T3, 7f2 7T4 (44)

so that our coherent state simplifies to

f mw 2i
_ i 1

exp<^-— [(qi -qx) + (g2 - g2) j 4- j (qi^i 4-g27T2) - - $ >

(45)

$ a^ \aA\2sin2(4>A+u>T)-hu>T

< q\a >
tvn
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Transforming (45) into the r-space we obtain

<r\a> =(^)expj- V2[ai\ cos(a;T 4- <j>i) 4= 4= (^) far(l-f cosÖ)

V2|a2| cos(u,T + <£2) qp \ (—)' '
far(l-cosÖ)

/2mw\
\ h

far(l 4-coso) |a!| sin(wT 4- <£i)

4- far(l -coso) |a2|sin(wr4-^2) + ä*
This is a non-spreading wave-form in time T. Its maximum is located at (rm,6m):

|ai|2cos2(wT + <pt)= ^ rm(l±cos0m)
2 2 on.

(46)

(47)

Taking <f>x 0,(f>2 7r/2, we see that the orbit of the maximum is the standard Kepler-
ellipse:

1 1 mw \ax\2 4- \a2\
8 h \a^\a2\2

„2

14-
4|ai|2|a2|2

(\ax\2 + [a2[2)2\

1/2

fie
1Ä 1+1 +

2L2E^1/2

pé1
cosf?„ (48)

with

i« i2 x u i2
e2 e2 f ^|ai1 +|a21 =^ ^(-ëJ

1/2

|ai|2|a2|2 -^I2.1_

4a2

In terms of the (rm,0m), the absolute value squared coherent state wave function can be
simply expressed

< fia > r (^) exp -^H (faKl+coso)-\/',m(14-cosôm)y

4- (far(l - coso) - farm(l - cos0m))' (49)

Finally, we construct the (nonstationary) coherent states of the time-dependent Schrôdinger
equation

dt \ 2p r ' (50)
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Set V> e
* * 'x. Then X satisfies

aS-r-^v-i-*lx. (5.)
dt \ 2p r

We now pass to the new time T, Eq.(20), and set

X eitTl\

so that ip satisfies
l2

¦* dip h2 l ,\in —— Do 4— mw q ip,m 4u
dT \ 2m ^ 2 /

(52)

whose coherent states are precisely < g|a > given in Eq.(26), or < r|a > given in Eq.(46).
Consequently our final solution for if> is

yp e-f* eUT'h < r|<* > (53)

Hence

M* I < r\a > |2 (54)

as given by Eq.(49), is a nonspreading Gaussian around the average orbit. The phase of
V> is, however, rather complicated and involves both times t and T.

In Reference 6 the transformation to the 4-dimensional oscillator was also considered,
but the authors did not take into account that the time has to be changed as well.

It is instructive to verify directly that the form (53) satisfies the time dependent
Schrôdinger Eq.(50) using (52) and (51).

From (53)

insert this into (50) using ^ — 1 from (20), we get

ih -~ rV2 - Er ipdT V 2M J

Using now the KS-transformation, Eqs.(13), (15), this is Eq.(52) and our < r\a >, Eq.(46),
are precisely the nonstationary coherent states of this oscillator problem in time T. The
time T(t) can be calculated from (47) in terms of the maximum of the localized state
around the orbit

2"Y/2t -i-— | tan Ntan^l
K*2

We remark finally that it is not unusual to express a solution in terms of an auxilliary
function T(t). The Kepler problem (even classical) has a conformai symmetry in velocity
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space (not in coordinate space) which can be best expressed in T as Levi-Civita, Hadamard
and Beltrametti have shown a long time ago 20. Many properties are expressed in simplest
way in time T, hence so our coherent states, as we see. However using rmax and 0max we
can express | < r\a > \2 independent of T, as in Eq.(49), and we see that \ip\2 is a Gaussian
relative to its maximum.

One of the authors (B-W.X.) would like to thank Professor F.M. Kong for helpful
discussions. The authors would like to thank Professor Abdus Salam, the International
Atomic Energy Agency and UNESCO for hospitality at the International Centre for
Theoretical Physics, Trieste.

References
[1

[2-

[3.

[4.

[5-

[6.

[7-

[8.

[9.

[10.
[11.
[12.
[13.
[14.
[15.

[16.
[17.
[18.
[19.
[20.

E. Schrôdinger, Naturwissenschaften 14, 664 (1926).
E. Schrôdinger, in Letters in Wave Mechanics, ed. K. Prizibram (Philos. Library,
New York, 1967).
L.S. Brown, Amer. J. Phys. 41, 525 (1973).
D.R. Snieder, Amer. J. Phys. 51, 801 (1983).
J. Mostowski, Lett. Math. Phys. 2, 1 (1977).
CC. Gerry, Phys. Rev. A33, 6 (1986).
D. Bhaumik, B. Dutta-Roy and G. Gosh, J. Phys. A19, 1353 (1986).
S. Nandy and CS. Shastry, J. Phys. A22, 1005 (1989).
M. Nauenberg, Phys. Rev. A40, 1133 (1989).
D.S. McAnnally and A.J. Bracken, J. Phys. A23, 2027 (1990).
Z. Dacie Gaeta and CR. Stround, Jr., Phys. Rev. A42, 6308 (1990).
J.C. Gay, D. Delande and A. Bommier, Phys. Rev. A39, 6587 (1989).
C Lena, D. Delande and J.C. Gay, Europhys. Lett. 15, 697 (1991).
J.A. Yeazell and CR. Stround, Jr., Phys. Rev. Lett. 60, 1494 (1988).
John A. Yeazell and CR. Stround, Jr., Phys. Rev. A43, 5153 (1991).
P. Kustanheimo and E. Stiefel, J. Reine Angew. Math. 218, 204 (1965).
M. Boiteux, Physica 65, 381 (1973).
A.O. Barut, CK. Schneider and R. Wilson, J. Math. Phys. 20, 2214 (1979).
A.O. Barut, Acta Physica Austriaca, Suppl.XI, 565 (1973).
A.O. Barut and G. Bornzin, J. Math. Phys. 12, 841 (1971).
See also A.O.Barut and R. Wilson, Phys. Lett. 10A, 351 (1985).
J. Milnor, Amer. Math. Monthly 90, 353 (1983).


	Non-spreading coherent states riding on Kepler orbits

