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Abstract. It has been shown by Flesia and Piron that the scattering theory of Lax and Phillips,
developed primarily for the treatment of hyperbolic systems (e.g., classical scattering of electro-
magnetic waves on a finite target), can be applied to the quantum theory. In order to construct
the correspondence, the continuously infinite family of (isomorphic) Hilbert spaces associated with
each value of the time t are taken to be a direct integral representation (with a choice of mea-
sure) of a larger Hilbert space which includes the variable ¢ in its measure space. We show that
this theory, for which the evolution contracted to the subspace orthogonal to the incoming and
outgoing subspaces is a contractive semigroup, provides a natural description of the irreversible
motion of an unstable quantum system.
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1 Introduction

The unstable system is an important example of irreversible phenomena in nature. Such
systems, ranging from excited atomic states to short-lived elementary particles, are char-
acterized by what is generally observed to be deterministic but irreversible evolution, and
also sometimes a random process. In the quantum theory, deterministic evolution has
the property that if there is an experiment that separates two states of the system after
some evolution, i.e., that these states are orthogonal, then there exists an experiment that
can distinguish the corresponding two states before the evolution takes place. Hence, two
orthogonal states cannot evolve deterministically from non-orthogonal initial states. The
stronger statement, that, in addition, two orthogonal states can only evolve to orthogonal
states, goes beyond deterministic evolution. This is the case for reversible evolution.

The description of irreversible evolution in the quantum theory has traditionally been
described by the addition of non-Hermitian terms to the Hamiltonian!'2. Structures of this
type were originally introduced by Gamow?®, who studied the effect of assigning complex
values to the energy spectrum, and hence introduced a kind of generalized eigenvector.
Weisskopf and Wigner®?, in a remarkable paper in 1930, succeeded in finding an approxi-
mate exponential decay law for an unstable system, for times not too short or too long. To
obtain this result, they studied, perturbatively, what has become known as the “survival”
amplitude’®

A(t) = (p, e Hy), (1.1)

where 1) represents the state of the undecayed system, which is not an eigenstate of the
Hamiltonian H. A study® of the reduced resolvent obtained by Laplace transform of (1.1),

A() = (b, ——=) (12)

provides a simple way to understand the exponential and long time behavior of (1.1).
In fact, in the Lee-Friedrichs model”, a closed formula may be obtained for the reduced
resolvent (1.2). The condition giving the location of the pole in the second sheet of the
function A(z) (analytic in the cut plane, and for H semibounded) corresponds precisely
to the condition for the construction of a generalized eigenfunction of (an extension of)
H which is an element of H' D H D D, a Gel’fand triple for which D is a subspace of
‘H of functions in the multiplication representation of the unperturbed Hamiltonian which
are analytic in some domain of the lower half z-plane including the pole®. Generalized
eigenstates of this type (corresponding to the states introduced by Gamow?®) have also
played an important role in statistical mechanics where the linear vector space is taken to
be the space of Hilbert-Schmidt operators on the Hilbert space of the underlying quantum
theory®. It has, nevertheless, been difficult to understand the physical meaning of these
generalized eigenstates, which are only defined through some kind of analytic continuation.

There is, furthermore, another, perhaps more fundamental problem associated with
the general method of Wigner and Weisskopf;* this is that the expression (1.1) for the
survival amplitude implicitly assumes the existence of a linear superposition

e~ Hby = A(t)p + x(1), (1.3)
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where x(t) represents the decayed system and (v, x(t)) = 0. In general, this linear super-
position does not correspond to any physical situation; a short-lived particle, for example,
is seen as either the particle before the decay, or the decay products at a certain time,
which cannot be predicted. The linear superposition does not correspond to the object
that we see experimentally in such a process.

It is not difficult to see that an irreversible process must be described by a semi-
group (for the reversible case it is a group generated by a unitary transformation). It is
well-known that the survival amplitude A(t) of (1.1) cannot satisfy the product law cor-
responding to a contractive semigroup if the generator H is semibounded®. In fact, since
with (1.1) the very short time decay is not exponential, but O(¢?), such a theory predicts
that a sequence of measurements performed on the unstable system at a sufficiently high
frequency inhibits the decay (the so-called Zeno paradox®). These features are essentially
related to the attempt to describe an unstable system in a framework appropriate to the
description of reversible phenomena.

There is, however, within the scope of the general quantum theory!!, a framework
more suitable to the description of deterministic, irreversible phenomena. It has been
known'? since 1952 that physical systems cannot be always described in the quantum
theory by a single Hilbert space, but, in general, by a direct sum of Hilbert spaces for which
the matrix elements of any observable between states belonging to different components
vanish. The work of ref. 12 provided the idea of superselection rules, a notion more general
than had been previously imagined. There may be many superselection rules in physics.
In particular, in the description of the state of a particle, the time plays the role of an
uncountable superselection rule, in fact continuous, and the system is therefore described
by a family of Hilbert spaces indexed by £.11

It is useful to consider this family of Hilbert spaces as a functional space!3. There
is a freedom in the choice of topology in the construction of this space; we shall choose
the Lebesgue measure here for the weights of the orthogonal direct sum, but the choice
depends, generally, on the mathematical problem. In fact, the procedure for the realization
of a Hilbert space as a space of functions with the help of a rigged Hilbert space, or Gel’fand
triple, is a special case of a more general result connected with the representation of a
Hilbert space as a direct integral of Hilbert spaces.’®> We briefly describe this structure.

Given a Hilbert space, one may choose a positive measure o on some set, for example
the real line, and denote by L2 the space of functions ¢(z) for which the norm with respect
to the measure do () converges; with the associated scalar product, one obtains a Hilbert
space. The elements of L2 are not separate functions ¢(z) but classes of functions which
differ from each other on a set of o-measure 0. Associating with these functions their
values at points , e.g., zo( except at points of non-zero measure), one does not obtain a
continuous linear functional, and one can not speak of their values at such points. In some
applications, such as the theory of the spectral decomposition of self-adjoint operators, and
the application we wish to treat here, it is desirable to consider the value of such functions
at a point as a linear functional. To do this, consider the Gel’fand triple ® ¢ H C ®'; to
each element of the nuclear space ® there corresponds a function ¢(z), which is naturally

embedded (® is dense in H) in H. The realization ¢ — ¢(z) of the space ® is then said to



696 Horwitz and Piron

be induced by the realizations of elements of H by functions (classes). One then has the

Theorem 1.1'* Let ® C H C ' be a rigged Hilbert space and ¢ — ¢(z) be the realization
of ®, as a space of functions, induced by the realization of the Hilbert space as a space L2.
Then, to each value of = one can associate a linear functional F, on the space ® such that
for any function ¢(z) € ®, ¢(zo) = F,(¢) for almost every zy (relative to the measure o).

We now turn to the question of the orthogonal direct sum of Hilbert spaces, gener-
alizing it to the uncountable case. In particular, consider some set T' on which there is
defined a positive measure p. Suppose that with each point ¢t € T there is associated a
separable Hilbert space H;. Defining a norm

/Mmme<w, (1.4)
T

for h(t) € H. and the corresponding scalar product, one obtains a Hilbert space, called
the direct integral of the Hilbert spaces H(t) with respect to the measure p. The analogous
theorem to that stated above then applies, i.e.,

Theorem 1.2'% Let ® C H C &' be a rigged Hilbert space and
H= / OHdu(t) (1.5)
T

be the direct integral representation of H. Then, for any t there exists a nuclear oper-
ator mapping ® into H; such that for § € ® the (vector valued) function ¢(¢) and the
corresponding map of ¢ differ only on a set of y-measure zero.

Each component in the direct integral (1.5) is a copy of a single Hilbert space H (as
in the usual Schrédinger picture); we shall take, in our application, the embedding to be
over Lebesgue measure. Scalar products in H then have the form

(f,9)= /°° dt(fe, 9¢)m (1.6)

— 00

and the norm squared is
(o o]

nm%=ﬁwmm%, (1.7)

where (f;,g:)n 1s the scalar product in the space of states H, (the states at time t).

Misra, Prigogine and Courbage!?, in their effort to describe irreversible processes, have
argued for the existence of a “time operator” in order to define an observable corresponding
to a Lyapunov function. Such a time operator could, of course, not exist in the framework of
a single Hilbert space with semi-bounded Hamiltonian!®. Several authors!® have therefore
considerably developed the theory of evolution of quantum systems in the framework of the
space of Hilbert-Schmidt operators, the so-called Liouville space, for which the generator
of evolution is the Liouville operator (the prototype for this operator is the commutator
with the Hamiltonian) and hence is not necessarily semi-bounded.



Horwitz and Piron 697

What we wish to show is that the structure of (1.5), within the scope of ordinary
quantum theory, provides a framework for the description of the semigroup evolution of
deterministic irreversible systems. This is, in fact, a solution of the problem. The direct
sum space plays the role of the generalized spaces obtained in the analysis of the Wigner-
Weisskopf expression (1.1); the eigenvalues of the generator of the semigroup correspond
to the poles in the second sheet of the resolvent, and the eigenfunctions to the generalized
eigenfunctions for the complex eigenvalue.*

The basic mathematical ideas which we shall apply to this problem were formulated
by Lax and Phillips'®; these have been adapted to the quantum theory by Flesia and
Piron!®. The essential mechanism introduced by Lax and Phillips!® (and maintained by
Flesia and Piron'?) for achieving the semigroup property is the decomposition of the large
space H into incoming and outgoing subspaces, and their orthogonal complement. In the
quantum case, for bound states and the problem of simple scattering, the results of the
usual reversible theory are obtained. For the unstable system, which must be created

(prepared) at some time, we find the semigroup behavior characteristic of deterministic
irreversible evolution.

2 Lax-Phillips Theory in the Quantum Case

In this section, for the sake of completeness and to establish our notation, we review the
construction of Flesia and Piron’®.

The evolution of a system, described by ¥ € H, is given by the family of operators
Vi(7), unitary on H;, according to (see also ref. 1, p.111)

Yiyr = Va(T)e. (2.1)

Since Vi(1) represents an evolution, it follows that

Vir (m2)Va(m1) = Vel + 7). (2.2)

Eq.(2.1) defines a unitary evolution in H. Let us define U(r) on H such that 37 =
U(r)y, ie.,

birr = (U(T))err = Va(T)pe. (2.3)

* Note that, as pointed out in the first of refs. 8, the analytic continuation method of
extending the Hamiltonian operator to obtain complex eigenvalues is not the only way to
achieve such a result; for dilation analytic potentials, one may analytically continue the
dilation parameter to rotate the continuous spectrum, and obtain the complex eigenvalues
on the first sheet of the modified resolvent'”. The use of the direct sum space in this way
is yet another, but carries with it important physical interpretation that is lacking in the
other, more ad hoc methods.
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The operators U(7) are then unitary:

“+ o0

(U(r)b, U(r)d)m = / dt(Vi(rYs, Vi(r)de)n

— o0

= /‘*"” di (e, i)

— 00

= (¥, d)7

Furthermore, the U(7) form a one-parameter group, i.e.,

(U(r2)U(11)) t4 11472 = Vit (T2)Va(71) 1
= V(1 + 72) ¢
= (U(r1 + 72)@)t+r 4,

If the action of U(7) is continuous, it has a self-adjoint generator

1
K=s- 1in'%] ;(U('r) - I). (2.4)
According to (1.4) —(1.6), the space H can be represented as L?(—o0, 00; H), with measure

dt, where we identify the “auxiliary” space H with the usual Hilbert space of the quantum
theory. We can then define the operator 18, on this space and assert the following

Theorem 2.1 If there exists a subset dense in L?(—o00,00; H) on which the operators K ,i5,
and 19; + K are essentially self-adjoint, then H, defined as the self-adjoint extension of
10y + K, is a decomposable operator ((H¢); = Hi¢:). The proof is given in ref. 1, p. 112.

Theorem 2.2. If ||Vi(7)¢:||5 is measurable in t,7 and Theorem 2.1 applies, then K is
unitarily equivalent to —id; and hence its spectrum is absolutely continuous in (—o0, 00).

The proof will be useful for the sequel, so that we shall reproduce it here (ref. 1, p.113
and ref.19). Let us define R(tp) on H such that

(R(to)¢): = Vi(to — t)¢e

= Vi, (t — to)¢e. (2

The second of these follows from the fact that Vi(to — t)¢, = (,b:g-t, and, conversely,
Vi (t — o) :g_t = ¢¢. Then,

(R(ta)e ™™ R™(ta)g): = Vi ' (t — to)(e X" R (t0)4)x

o]

Vig (t = to)Ver (T)(R7" (t0)$)e—r
Vo (8 = to)Vier (T) Vi (t — 7 — to)u—r.

I

According to the rule of composition (2.2), this is
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(R(to)e "R (t0)$): = ¢tr,

so that

R(to) KR *(ty) = —164, (2.6)

«“

where we have used the notation “—19;” to stand for the operator with the property

(~i8:0)c = —i0ie.

Hence, R(tp) is the unitary transformation on H which describes the usual connection
between the Schrédinger picture and the Heisenberg picture (for which evolution is trivial,
i.e., translation in time). It intertwines

K =H-id, (2.7)

and

K() —_ —~i3t. (2.8)
We remark that since H is decomposable, we have

2 (U(r))e = (U)K,
= W—T(T)(K¢)t—T
= 1/\.'.—'r('r)(IIt—‘r¢t——1" - i8t¢t—f)-

The Schrodinger equation (for a possibly time-dependent Hamiltonian as well),

10ypy = Hepy (2.9)

then corresponds to a ¢ which is an eigenvector of K with zero eigenvalue (generalized,
in the sense of Gel’fand’®, since K has continuous spectrum *). Under this condition,
somewhat analogous to the notion of equilibrium, there is no real evolution of the wave
function in H.

Lax and Phillips!? study the properties of a system described by H = L?(—o0, co; H),
with evolution defined by a one-parameter unitary group U(7). With the application to
scattering of classical electromagnetic waves on a finite target in mind, they assume the

* It is clear that if the set of functions {¢,} is related by the Schrodinger equation, their
H-norm is invariant along ¢, and hence their H norm, defined in (1.7) does not exist.
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existence of two subspaces D_ (incoming) and D, (outgoing), for which D is orthogonal
Yo Ll

U(r)Dy C Dy T>0
U(r)D_ c D_ T <0,

(VMﬂDi:(YHﬂD+I{M

and

Jv)p- =Ju(r)py =H. (2.10)

The subspaces Dy are to be associated with functions which are not affected by the target
(respectively, before and after the scattering) and hence can be identified with free waves
that would pass if the target were not there. For the incoming or outgoing subspaces,
there are mappings into representations for which the evolution is just translation.

Theorem 2.3 (Lax and Phillips’®) There is a Hilbert space (in our notation the space of
states H) called an auxiliary space!®, and W, such that

W+D+ = Lz(p+,OO; H)

) (2.11)
W_D_ = L*(—o00,p_; H),

for some finite p; > 0,p_ < 0; in these representations, U(7) acts everywhere as transla-
tion, and trivially on H, i.e.,

(WaU(m)WIHx)e = Xt—r- (2.12)

We can clearly identify W4 with R(p4);!® the latter operators map the Schrodinger
functions to the translations of ¢, or ¢, (where the two representations coincide, since
Vi(0) = I). We emphasize that these transformations do not correspond to modified laws
of evolution on correspondingly altered wave functions, as in the usual form of quantum
theory on a single Hilbert space, but simply to a change of representation in .

Furthermore, in the quantum mechanical case, the interacting scattering waves can
be put into correspondence with free waves only asymptotically, so that in general py
may have to taken very large in order that the Lax-Phillips S-matrix, defined as SL¥ =
W,.W>! or correspondingly,

S*(p-,p+) = R(p+)R(p-) ", (2.13)

coincides with the S-matrix of quantum mechanical scattering theory. The S-matrix de-
fined by (2.13) is always decomposable. For a homogenenous system, for which H is
independent of ¢, one finds (independently of ¢)

SLP(p_,p+) = gHRaps g Hipppitlpe ~iHap- (2.14)

In the limit p; — +o00,p_ — —o0, this becomes QLQ_, in the sense of a bilinear form
on a dense set, which defines the S-matrix of the usual quantum mechanical scattering
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theory. The necessity of taking the limits can be understood physically, since the S-matrix
is a relation between asymptotically free waves. The translation representations for D or
D_ can be interpreted as the free motion only asymptotically, as in the usual theory. The
properties (2.10) are maintained for p1 large, since the asymptotic waves span the space
(when asymptotic completeness holds) of the continuous spectrum of H.

The physical interpretation of this structure is that at each £, one specifies a state in H
which is a possible initial condition. In the absence of interaction, the evolution translates
this set of initial conditions along the t-axis without change. With interaction, the entire
set of initial conditions is shifted along with the continuous mappings that correspond to
the effect of the dynamics. The H-norm of these states must be taken to vanish sufficiently
rapidly for £ — 400 so that this set may be considered a proper element of H. As we have
pointed out, the set of initial conditions that are related by Schrodinger evolution does not
constitute an element of H, but can only be described as a generalized function.

3 The Unstable System

In the evolution of an unstable system which we assume to be deterministic but irreversible,
there is an earliest time beyond which it is inconceivable that the system existed in its
characteristic form. One may consider that the system was prepared at this time, that is, by
some mechanism for which there is no deterministic model, or that some idealized structure
existed in a persistent configuration, and at this time an interaction was “turned on”
(smoothly but in arbitrarily short time) which puts the system into its usual configuration,
1.e., its normal unstable mode. It is convenient for our mathematical treatment to take
this latter point of view, but the physical interpretation and predictions are concerned
only with observations that can be made after this initial time.

Let us consider a Hamiltonian H of the form
H = Ho +V(t), (3.1)
where Hy is the Hamiltonian of an ideal undecayed persistent system and

0 t < 0;
V(t) = {v ey (3.2)

is the interaction which causes the system to decay; the onset of the interaction, here
described as instantaneous, must be taken as smooth but over as small an interval as we
wish. Under the evolution

U(r) = e "H—00r, (3.3)

where H is the decomposable operator defined in Theorem (2.1), we may carry out the
(pointwise) transformation

P = e oty (3.4)

inducing a change in basis in H. In this new basis, H is replaced by!®

v(t) = eHotV (1) Hot, (3.5)
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The evolution Vi(7) is then defined by

(e7ivW=iBITg) = Vi(7)¢s (3.6)

The evolution operator can, by definition, be represented by the Trotter formula

e—i(v(t)—i&,)‘r ws Pitr (e—iv(z)r/ne——ﬂtr/n)"

n—oo
= lim (e_at"/"e—iv(t)r/n)n (3.7)
n—00 ]

where v(¢) has a common domain with —i8; (it is sufficiently smooth in ¢, as we have
assumed above). Then, by considering successive terms from left to right of (3.7) in (3.6),
one can show that for v(t') = 0,t' € [¢,t + 7], V() = 1. Since v(t) = 0 for ¢ < 0, we have

Vi(r)=1 t<0,t+7<0, (3.8)

and the evolution is translation (the evolved function at ¢+ 7 is equal to the initial function
at t).

The intertwining operator R(p_), for any p— < 0 and t < 0 is therefore unity, since

(R(p=)¢): = Va(p— — t)¢u, (3.9)

and p_ —t+1t = p_ (the alternative expression, the second of (2.5), Vp__l(t — p—), satisfies,
as it must, the same condition). We shall therefore take p_ = 0 in the sequel, and call
p+ = p. The intertwining operator R(p), for p > 0, acting as

(R(p)¢): = Vilp — t)¢4, (3.10)

is not, in general, trivial for any ¢, since p — t + ¢ = p. We then have

(5(0,p)¢): = (R(P)R(O)_1¢)t
= Vi(p — 1)(R(0) 94
= Vi(p — t)Vo(t) 1.

We thus obtain, for ¢t = 0,
(5(0,p)¢)0 = Vo(p)do

N
= Qp

(3.11)

the state of the system evolved from t = 0 to £ = p.

During the time t < 0, external and internal interactions are in the process of forming
what is to become the unstable system; we do not attempt to describe this process. In
our model, we shall consider the evolution of the system in this domain to be simple
translation of a set of states characteristic of the ideally defined initial system before the
interaction which causes the decay is turned on, taking R(0) = 1. Hence, we consider our
basic representation as the one which is translation for D_. The evolution of the system
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in the domain ¢ > 0 reflects the action of the instability inducing interaction, and it is
this evolution which we shall make an effort to characterize. For some very long time
after this interaction is introduced, almost all of the evolution becomes that of the free
decay products of the unstable system, which are no longer affected by the interaction; it
then becomes again simple translation. We shall associate this domain with the outgoing
subspace Dy . The description of the evolution of the system in the intermediate domain,
which is of essential physical interest, corresponds to the Lax-Phillips semigroup, to be
discussed in the next section.

We denote the functions corresponding to D_ in the incoming representation by f_ €
L?*(—00,0;H). Then, the functions f(~) taking into account all interactions are given by

F(=) = R(0)™1£_. (3.12)

According to (2.5) and (3.8), f(-) = (f-)t for t <0, and ft(—) = 0 for ¢t > 0. The mapping
R(0) of f € H to the translation representation of D_ is, however, defined for all ¢ (Ve(—1)
is, in general, not the unit operator for ¢t > 0).

In the outgoing representation, the functions f. € L?(p, 00; H) with evolution repre-
sented as translation, are related to the “interacting waves” f(t) € D, by

f) = R(p)7 £y,

which, according to (2.5), is zero for ¢ < 0. The mapping R(p) of f € H to the outgoing
representation is also defined for all t.

The mapping from the outgoing representation to the incoming representation is there-
fore given by

5(0,)™* = R(0)R(p)™" | (3.13)
and D, is represented in the incoming representation as (pointwise)

S(O,p)—le(p,oo;'H), (3.14)

i.e., each function f; € L?*(p,c0;H), in the outgoing representation, corresponds to a
function 5(0,p) ! f. in the incoming representation. We shall use these representations
in the discussion of the evolution of an unstable system in the next section.

4 The Lax-Phillips Semigroup
Lax and Phillips!® define the operator on H

Z(t) = PLU(7)P-, (4.1)
where P_ is the projection on the orthogonal complement of D_ and P, the projection

on the orthogonal complement of D,. This operator vanishes on Dy and D_ and maps
the subspace

K=He(D;®D_) (4.2)
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into itself'®. The mapping is a semigroup
Z(m)Z(m2) = Z(m1 + 72), (4.3)

and is strongly contractive, i.e., there exists a 74 for any ¢ € K such that

N

1Z ()8l < € (4.4)
for any 7 > 74 and any € > 0.

According to (3.14) and (4.2), the functions of the subspace X in the incoming repre-
sentation are in

K = L*(—o0,00;H) © {L*(—00,0; H) & S1(0, p)L*(p, 00; H)}

or

K = L*(0,00;H) © S71(0,p)L*(p, 00; H). | (4.5)

As pointed out in Section 3, one may regard the structure of the subspace K as referring
to a system created at £ = 0; no explicit reference is made to functions with support on
the negative half line. Implicitly, however, we make use of the incoming representation as
the natural description giving identity to the initial system before the interaction causing
instability is turned on. '

The essential nature of the truncation at ¢ = 0 is illustrated by the fact that every
semigroup of contraction operators can be represented as a translation followed by a trun-
cation acting on a translation invariant subspace, provided it tends strongly to zero as
t — co (see Lax and Phillips'®, p. 67; one can work equally well with L2(0, co; H)).

From (3.11), for ¢t > 0, we see that the S-matrix is independent of ] and
S7H0,p) = Vo(p) ™" = Va(—p). (4.6)

The latter form provides an interpretation of the structure of the subspace K. Since

(U(=p)p)t-p = Vi(—p) 1, (4.7)

it follows from (4.6) that
(U(=p)d)o = Vo(—p)Pp, (4.8)
i.e., the functions ¢; of the outgoing representation, when transformed to the incoming

representation, can be put into correspondence with a set of elements of H, {U(—p)d},
which have support in ¢ € (0, 00), but are modified by the interaction.

I A generalization of the evolution law (2.1) for which V() acts as a non-trivial integral
kernel on the ¢ variable (as-it can in a different representation of ¢) will be discussed in
a succeeding publication. In this case, the S- matrix is a (operator-valued) kernel of the
form S(¢ — t'), and its Fourier transform is singular on the spectrum of the generator of
the Lax-Phillips contractive semigroup, as in the general Lax-Phillips theory.
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Note that if v(t) = 0, U(7) takes the form e~ "%, so that

(U(T)qs)t’#r =g "% bilo+r = br—rlo4r = dv; (4.9)

hence Vi(r) = 1. In this case (U(—p)d)o = ¢,, i.e., the correspondence is just by transla-
tion.

Since in this limit S(0,p) = 1, the subspace K reduces to

K® = L*(0,00; H) © L*(p, 00; H)

= L*(0,p;H), i

the set of L? functions with support in ¢ = (0, p).

For p sufficiently large, the functions in D, can be put into correspondence with the
asymptotic states of scattering theory (S(0,p) can be expected to converge, as in (2.14)).
If we are concerned only with the behavior of the system for ¢ > 0, the projection operator
P_, in the construction of Z(7), acts as unity. If p becomes very large, so that D,
corresponds to asymptotic states, the operator Z(r) corresponds to the evolution of the
system in the interval (0, p). Its contractive semigroup behavior follows from the restriction
placed on the full unitary evolution in H by P_ and P4, i.e., that we are concerned only
with the behavior of the system after it is created at t = 0, and after some large time p, the
“unstable system” is essentially gone, i.e., only asymptotic states remain, corresponding to
a new equilibrium state (for the decaying particle, for example, only the decay products).

As shown by Lax and Phillips'®, the strongly contractive property of Z(7) follows
directly from the fact that the left (dynamical, i.e., under U(7)) translates of D are
dense in H. If the left translates of the asymptotic states are dense in K (consistent with
asymptotic completenesszo), the strong contractive property remains for any large p.

5 Imprimitivity of the Full Evolution

In this section we study the Lax-Phillips theory from a different point of view. The
theorems of Lax and Phillips!® follow by direct construction in terms of the spectral family
of an operator on H, conjugate to the full evolution K, which we shall call T, corresponding
to a “time operator.” Some of the essential properties of the Lax-Phillips construction are
clarified in this way.

We start by postulating the existence of a self-adjoint operator T on H (with absolutely
continuous spectrum) with spectral representation??,

T= foo 1dE(2), (5.1)

—o0
and a unitary family U(r) = e7*%7 such that

U(r)TU(r)™ =T — 71, (5.2)
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i.e., on a suitable domain, [T, K] = ¢. In the spectral representation corresponding to the
operator T', the generator K has the form (2.8), i.e., just translation. This structure can
be realized by transforming the operator conjugate to (2.7) by the same wave operators
that bring (2.7) to (2.8). The dynamical information for the system is thus contained in
the spectral family for the new operator T.

By the uniqueness of the spectral family for a self-adjoint operator, we have the
imprimitivity relation??

U(T)E(t)U(T)_l = E(t + 7). (5.3)

Under these conditions,H can be represented as L?(—o0, 00; H) such that U(7) corresponds

to a right translation by 7 and T to multiplication by the independent variable (see ref.
18, p. 35).

For our example, which is, in effect, equivalent to the so-called “free representation”!8,

we take D_ to be the subspace defined by

D_: E(0) = / 0 dE(t) (5.4)

— 00

and
o0

Dy :1I- E(p) =/ dE(t) (5.5)

p

It is clear from the properties of a spectral family that
E(0) D E(-7)—0

and
I-E(p)DI—-E(p+71)—0 (5.6)
for 7 — o0, and that the requirements (2.10) are satisfied.

In this case, according to (4.2), the projection to K is given by

Pc = I - (I - E(p)) - E(0)

~ B(p) - E(0). all
Since )
P+ = E P
P_=1- E(0), (5.5)
it follows that
Z(1) = P U(r)P_
~ B(p)U(r)(I - E(0)
= (E(p) — E(p)E(7))U(r) (5.9)

_ { (E(p) — E(r))U(r) T<p
0 T > p.
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An alternative form can be found for Z(7) by bringing U(7) to the left, instead of to
the right, i.e.,

Z(r) = { ([)J(T)(E(P — 1) — E(0)) : § g (5.10)

The semigroup property of Z(7) follows directly from (for 0 < 71,7 < p)
Z(11)Z(m2) = (E(p) — E(n))U(71)(E(p) — E(2))U(2)
= (E(p) — E(11))(E(p + 11) — E(11 + 72))U(71 + 72)

_J(E(p) —E(m+m))U(ri+72) Ti+T12<p
0 T1+ T2 2 p.

(5.11)

These structures are of the form of the dilation construction of Sz.-Nagy and Foias.?1:22

The contractive property follows just from the support on L?(—o0,00;H), i.e., for
z € K, and 7 < p (P- acts as the identity on K), *

1Z()all® = |(E(p) - E())U(r)e|?
= [ atw el
= ["ater_.1% (5:12)

p—T
2 2
_ / |7 1% < |lzIP*-
0

We see that the rate of decrease of ||Z(7)z|| in 0 < r < p depends on the support of z in
K. For p — oo, and any fixed 7, ||Z(7)z||? = ||z||?, and the contractive semigroup appears
to become a group. However, for any fixed p, there is a 7 sufficiently large so that the
left hand side of (5.11) is as small as we wish. To resolve this ambiguity, we calculate the
generator of the semigroup explicitly in the following.

The generator for the semigroup can be calculated explicitly from (5.9). We do this
here at 7 = 0. Taking the derivative with respect to 7 and setting 7 = 0, we obtain
dZ(r)

dr

1

o = E(p)K (I — E(0) = A. (5.13)

* In the proof of Lax and Ehillips18 that the semigroup is strongly contractive, the fact
that {U(7)D4} is dense in H is used (leading to the result (4.4)) in the following way.
There is a y € D4 and a 7y such that for any z € K,

lz = U(=mo)yl < e

It then follows (since Z(7)U(—79)y = PU(r — 1)y = 0 for 7 > 79) that ||Z(7)z —
Z(T)U(=m)yll = |1Z(7)z|| < ||z — U(—70)y|| < € for 7 > 7; hence the semigroup is
strongly contractive. Since we are dealing in this case with simple translation, we may
set, for z € K, y = U(rg)z € D4 for 70 > p. It then follows from this argument that
|Z(7)z|| = 0 for all > p, as we have concluded directly above.
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The imprimitivity relation (5.3) implies (on a suitable domain)

dE(T)
= 5.14
1K, B(r)] = iS22, (5.14)
so that (5.13) is equivalent to
A= PxK - idE(O)
dr
or IE
4= Kpe - 3EP) (5.15)
dr

These relations also follow from the alternative forms (5.9) and (5.10). Since K and Px
are self-adjoint in H, the anti-Hermitian part of the generator is

dE(0) | dE(p)

A— AT = —( - = ). (5.16)

Since dE(7)/dr > 0 for all 7, this is a non- positive imaginary operator. It also follows?*

from this result that the semigroup is contractive?®,

This conclusion remains valid for p very large. In this case, one sees from (5.9) that
if E(p) is close to the unity, the principal mechanism for the contraction is the action of
P_, the projection which removes the elements of L?(—oo0,0;H).

It is rather remarkable that the “free case” contains so much structure. The non-
trivial content of this structure is governed by the spectral family {E(t)}, on which we
have imposed no restriction but absolute continuity.

6 Conclusions

We have extended the work of Flesia and Piron'?, which demonstrated that quantum
theory can be embedded in a theory of the type developed by Lax and Phillips’®. This
was done by constructing a larger Hilbert space as a direct integral of quantum mechanical
Hilbert spaces over time.

As we have seen, the interaction picture of quantum theory provides concrete models
for which the interaction term of the Lax-Phillips formulation (i.e., the first term of the
right hand side of Eq.(2.7)) acts decomposably (pointwise on the t-axis). There are many
such applications; for example, the Lee-Friedrichs model?, a soluble model in quantum
mechanical scattering theory, also provides a soluble model in this framework. We also
point out that the fact that the transformation between the Heisenberg and Schrodinger
pictures is, in the Lax-Phillips formulation, a single global unitary transformation, can be
exploited to study the relation between these pictures (in some cases, as in quantum field
theory in the usual framework, this is a non-trivial mathematical question).

The larger Hilbert space carries a description of the global motion of the system.
The physical states, for which the time evolution is governed by the Schrédinger equation,
emerge as generalized states (elements of a Gel’fand triple'®) associated with the larger
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space. The vectors of the larger space therefore do not correspond to states, but to an
auxiliary structure in which the dynamical evolution of the system is described.

Since the generator of unitary evolution in the larger space has continuous spectrumin
(—o0,0), a conjugate “time” operator can be defined. We show in the simple example for
which incoming and outgoing subspaces of the larger space are determined by projections
from the spectral family of this time operator, that the contraction semigroup of Lax and
Phillips has a generator whose non-self-adjoint part is proportional to the derivatives of
the spectral family of the time operator at the end points of the interval between the
support bounds of the incoming and outgoing subspaces. These are projections to the
defect subspaces of the operator —i0, restricted to the interval. More generally, if the
generator contains an additional term which is self-adjoint when restricted to this interval
(as for an operator which acts decomposably on the larger space and is self-adjoint on the
quantum mechanical Hilbert space), this conclusion remains valid. It therefore is a general
property of the application of Lax-Phillips theory to quantum mechanics.
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Z(t) = PcU(7)Px,

and defining the semigroup, for the case in which U(r) is pure translation, as an
operator restricted to the subspace X = H© D, © D_. They show that since in this
subspace, Z(7) = e~B7, and it must vanish for 7 > p, its Laplace transform,(s+ B)™?,
must be an entire function of s. Hence the spectrum of B is empty. The relation
Z(7) = PxU(r)Px follows, in fact, directly from the imprimitivity relation (5.3) since,
for 0 < 7 < p,

(E(p) — E(0))U(r)(E(p) — E(0)) = (E(p) — E(0))(E(p + 7) — E(r))U(r)
= (E(p) — E(7))U(7),

in agreement with (5.9). In this form, the derivative at 7 = 0 is, however, not well-
defined; after differentiation and setting 7 = 0, one obtains a formal result which is
not in agreement with (5.15). The derivatives obtained from (5.10) and the two forms
of (5.9) (which are well-defined at 7 = 0) all yield (5.15). With suitable boundary
conditions in K, the derivatives of the spectral family at the endpoints of the interval
(0, p) do not contribute to the restricted operator, and the defect spectrum evident in
(5.15),(5.16) is removed. We thank B. Simon for a communication on this point.
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